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Abstract

It is widely known that if p and ¢ are relatively prime positive integers
then (a) the set of linear combinations of p and ¢ with nonnegative inte-
ger coefficients includes all integers greater than pg — p — ¢, (b) exactly
half the integers between 0 and pg — p — ¢ belong to this set and (c) an
integer m belongs to this set if and only if pg —p—q—m does not. A mul-
tidimensional version of statement (a) was recently obtained by Simpson
and Tijdeman subject to a geometric condition. Here we unconditionally
obtain multidimensional versions of all three statements.

1 Introduction

In a certain far off country there are only two denominations of currency, five dollar
notes and eight dollar notes. With these notes the inhabitants can make up amounts
of $5, $8, $10, $13, and so on. The inhabitants find they can’t make up $27 but can
make up any amount greater than this. They have also noticed that exactly half the
amounts between $1 and $26 can be made up and that an amount $m can be made
up if and only if $(27—m) can’t be. There are a number of references in the literature
to the amounts that can be made up using denominations $p and $g. The earliest
known to us is a comment by Sylvester [7, p. 134 (p. 620 of Collected Mathematical
Papers, III)], essentially stating that there are precisely 3(p — 1)(¢ — 1) amounts
that cannot be made up when p and ¢ are relatively prime. This was offered as the
simplest case of a much more general result and was later presented as a challenge
problem in [8]'. We state the known facts as a theorem.

!The volume and page numbers of this problem are commonly wrongly cited in the literature.
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Theorem 1.1 Let p and q be relatively prime positive integers. We say that an
integer m is reachable if there exist nonnegative integers a and b such that m =
ap + bq. Then

(a) pg — p — q is the largest integer that is not reachable,

(b) exactly half the integers m in the range 0 < m < pg — p — q are reachable, and
(¢) m is reachable if and only if pg — p — ¢ — m is not reachable.

Part (c) says that the set of reachable integers is anti-symmetric about the point
(pg — p —q)/2, and the other two parts are a consequence of this (part (a) because 0
is clearly the smallest reachable integer). Note that it is necessary for this theorem
that p and ¢ are relatively prime, since if they had a common divisor, d say, then
integers not divisible by d would be unreachable.

More generally, Frobenius raised the question of the largest amount that cannot
be made up from an arbitrary set of denominations $pi,. .. ,$ps, where py,. .., p; have
no common factor. There are no such clean results as Theorem 1.1(a) when & > 2
but there are various upper bounds for this largest amount, many of them described
in [6] which has a brief history of the problem prior to 1981. Selmer and Beyer [4] and
Rodseth [3] found different continued fraction algorithms for calculating the largest
unreachable number when k& = 3 and Greenberg [1] combined these approaches to
obtain a linear time algorithm for this case. Later Kannan [2] showed that, for
each individual k, there is a polynomial time algorithm for calculating the smallest
reachable number (though he states that the problem is NP-hard if & is allowed to
vary, as well as p1, ..., pr).

Here we are concerned with increasing the dimension rather than the number of
denominations. A multidimensional analogue of Frobenius’ question can be formu-
lated by taking a set S of vectors that generates (as an Abelian group) a lattice L
and calling a point of L S-reachable if it is a nonnegative integer linear combination
of vectors in S. The analogue of Frobenius’ question is then to ask for the largest
region such that all points of L in the region are reachable. Figure 1 illustrates the
situation when L = Z? and S = {vi,va,v3} = {(1,1),(3,1),(3,6)}. The lattice
points are the intersections of the grid lines, with the reachable points shown as solid
circles. The convex hull of the set of reachable points is the outlined wedge-shaped
region with its vertex at the origin (the bottom left corner). Looking like a deep
shadow we see a translate of this wedge-shaped region (also outlined) that has all
lattice points in its interior reachable. Between these regions is a penumbra in which
half the lattice points are reachable and half unreachable.

This paper deals with the cases |S| = dim L and dim L + 1. Clearly |S| > dim L,
since S generates L, and in view of what is known when £ > 3 in dimension 1 we
cannot expect any sharp, simply-stated results when |S| > dim L+ 2. In [5] the case
|S| = dim L + 1 was considered and, subject to the condition that one vector in S
is a positive linear combination of the others,? a maximal region in which all lattice
points are reachable was identified (a generalization of part (a) of Theorem 1.1).
Here we obtain unconditional generalizations of all three parts of the theorem. The

2This condition is not emphasized in [5]. It is introduced in the middle of the first page but is
not mentioned in the abstract, and Theorem 2 is described as “Sylvester for k 4 1 vectors in Z*”.
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Figure 1: The reachable points (shown as solid circles) when S = {vi,vy,v3} =
{(1,1),(3,1),(3,6)}. The lattice is Z* with the origin at the lower left corner. All
reachable points lie in the wedge-shaped region with its vertex at 0 and all lattice
points in the interior of the translate of this region with vertex at (8,7) are reachable.
A proportion one half of the lattice points between the boundaries of these regions
is reachable.

key is to generalize part (c), from which, as in the 1-dimensional case, the other parts
can be derived.

As is clear from Figure 1, where less than half the lattice points are reachable,
we can no longer expect a single centre of anti-symmetry. We in fact give two
different generalizations of part (c). One replaces the global anti-symmetry centre
by a network of local anti-symmetry centres, each having limited range but whose
ranges cover R". This is illustrated in Figure 2 where, with S as in Figure 1, the
local centres are shown as two lines of small dots in the centre of the penumbral
region between the boundaries of the wedges. The narrow central strip parallel to v;
is the region of anti-symmetry about the local centre (4,3.5) (closest to the origin).
Widening this strip by replacing its upper boundary by the upper broken line gives
the range of anti-symmetry about (7,9.5), and widening it by replacing its lower
boundary by the lower broken line gives the range for the local centre (8.5,5). The
second generalization keeps a single centre ((4,3.5) in the figures) and gives a simple
characterization of the reflections of the unreachable points. Among these reflections
are all the reachable points but, in general, other points too. This is illustrated in
Figure 3 and will be described in more detail later.

The case |S| = dim L is trivial, but in Section 4 we formally state the results for
this case too, because we use them in treating the case |S| = dim L 4 1 and because
they provide an introduction to the form of our main result, which is Theorem 6.1.
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Figure 2: The local antisymmetry centres, given by Theorems 5.5 and 6.2 (with S as
in Figure 1), shown as small dots midway between the wedge-shaped regions. The
central narrow strip parallel to vy is a region of antisymmetry for the centre (4,3.5),
closest to 0. Also shown are the region of antisymmetry for the centre (7,9.5) (the
central strip with its upper edge raised to the top broken line) and the region for the
centre (8.5,5) (the central strip with its bottom edge lowered to the bottom broken
line). The regions for the centres further from the origin are successively wider strips
whose union covers the plane.

2 Notation and outline of results

For an arbitrary finite set of vectors S = {vy,..., vy} in a real vector space W we
define
C=C(S)={x1vi+ - +apvy :@1,...,z, > 0}, (1)

the cone generated by S. It is an unbounded polytope with < (,* ) facets. When
S spans W we also define C° = C°(S) to be the interior of C, defined by replacing
the nonstrict inequalities in (1) by strict ones, and 9C' = 9C(S) to be the boundary
of C. This definition stretches the notion of cone in certain cases. When S does
not span W the cone will have dimension less than dimW. And when the convex
hull of S contains an open neighbourhood of the origin C' = W and 0C = (). More
generally, when the convex hull of S has 0 on its boundary the dimension of the
lowest dimensional nonempty face of C'is > 1 and C ceases to have a vertex, the role
of the vertex being played by the unique lowest dimensional face. For a cone C' of
the full dimension dim W its facets are the faces of codimension 1. Each facet F' of
C is the cone generated by the vectors of S it contains: F' = C(S N F). We denote
by H(F) the closed half-space containing C' with F' on its boundary and by H°(F)
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the corresponding open half-space. Since C' is convex, C' = (| H(F) over all facets
F. Also 0C = |J F. Additionally, we define

FI£F

the enlarged cone got by removing the part F' of the boundary of C' but retaining
all other bounding hyperplanes, which has as its interior

D°(F)= (| H*(F').

F'4F

We call a facet F of C(S) ordinary if S N F is linearly independent and ezceptional
if SN F is linearly dependent.
We further define

L=L(S)={a1vi +- - +apvy : a; € Z}, (2)
a Z-module in W that will be a lattice in the cases of interest to us,
R=R(S)={a1vi+ - +avy : a; € Z,a; > 0}, (3)
the set of S-reachable points in L, and
v=v(S)=vi+ -+ v (4)

We shall use the operators + and —, applied to subsets of W, to denote vector
addition and subtraction:

AtxtB={axb:ac Abe B}
The following theorem is trivial.

Theorem 2.1 For any finite set of vectors S, C(S) is the unique minimal cone to
contain R(S) in its closure.

Proof: ( is clearly the convex hull of R. O
The kinds of results we shall obtain when |S| = dim L or dim L + 1 are:

(a) There is a vector w such that all lattice points in C° + w are reachable but
there is a relatively dense® set of unreachable lattice points on the boundary
of C + w.

(b) The proportion of reachable lattice points in the open region C°\ (C + w) is
a half.

3That is, there is a radius p such that within a distance p of every point of 9C + w there is an
unreachable lattice point on 0C + w.
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(cl) The sets L\ R and R — (RN JC) are images of each other by reflection in the
point 3w.

(c2) There is a network of local centres of anti-symmetry whose ranges cover W.

These generalize the corresponding parts of Theorem 1.1, where C' = [0, 00) and
w = pg — p — q. Part (c) of the theorem, which says that (pg —p — ¢q)/2 is a global
centre of anti-symmetry, is a particular case of both (cl) and (c2), since in (c1) we

have 9C = {0}, so RN9oC = {0} and R — (RNJC) = R.

3 General lemmas

Before specializing further we give some general lemmas, some of which are almost
immediate. The only assumption we make about S in this section is that it spans
W, and even that is unnecessary for Lemma 3.2.

Lemma 3.1 (a) For cach facet F of C(S), C(S)— F = H(F).
(b) C(5) = 9C(S) = WA (=C°(5))-

Proof: (a) Being a hyperplane with O on its boundary, H(F) = H(F) + H(F);
hence, since it contains both C' and —F, H(F) contains C' — F. Conversely, if
x € H(F) choose any y € F that is not on any lower dimensional face of C'. Then
z=y+0x € C, for § > 0 sufficiently small and x ="'z -6y e C - F.

(b) €= 0C = UplC - F) = Uy H(F) = W\ (p—H*(F)) = W'\ (~C?). O

Lemma 3.2 R(S) — R(S) = L(S).

Proof: Clearly R — R C L. Conversely, if 1 = a;vy +--- 4 agvy € L then

1= Zaivi—2|ai|vi€R—R. O
a; >0 a;<0
Lemma 3.3 (a) For each facet F of C(S), R(S)NF =R(SNF).
(b) For each ordinary facet F of C(S), R(S)NF = L(SNF)NC(S).
(¢) If all facets of C(S) are ordinary then

((R(S) NOC(S)) = R(S)) N C(S) = R(S) N AC(S).

Proof: (a) Since F is a facet of C, all vectors in S\ F lie on the same side of the
hyperplane containing F' (and not on it). Hence these vectors all have coefficient 0
in any nonnegative linear combination of S that lies on F'.

(b) When F is an ordinary facet each point in the hyperplane of F has a unique
representation as a linear combination of SN F. Hence L(SNF)NC = R(SNF).
(c) Clearly RNOC C ((RNAC)— R)NC. Conversely, suppose s € RN OC,
r € R and F is a facet of C' that s lies on. Then s —r € —H(F), so if s—r is
also in C' then s —r € F and hencer € (F — F)NC = F. Now part (a) gives
s—re R(SNF)—R(SNF)C L(SNF), and since the facet F is ordinary part (b)
gives L(SNF)NC=RNFCRNAC. O
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Lemma 3.4 If W = U @&V s a direct sum of subspaces U and V', S and T are
finite subsets of U and V', Ay and By are arbitrary subsets of U and Ay and By are
arbitrary subsets of V', then

(a) v(SUT)=v(S)®v(T),

(b) L(SUT)=L(S)® L(T),

(¢) R(SUT)=R(S)® R(T),

(d) C(SUT)=C(S)aC(T),

(e) C°(SUT)=C°(S)® C(T),

(f) 9C(SUT) - (6C(S) & C(T)) U (C(S) @ HC(T)),

(9) (A1© A\ (B1® By) = ((A1\ B1) @ Ay) U (A1 © (A2 \ By)),

where we have used & for vector addition when the first vector is in U and the second
mV.

Proof: These are all straightforward. O

4 |S|=dimL

Let S = {v1,..., vy} be aset of n = dim W linearly independent vectors in W. This
case is particularly simple because every vector in W has a unique representation as
a linear combination of S. The following lemma is immediate.

Lemma 4.1 When |S| =dim L, C has n facets given by C(S\{v;}),i=1,...,n, all
of which are ordinary, and the section of C' by the hyperplane through AiXy, ..., AnXp,
where A1, ..., N\, are any positive real numbers, is an (n — 1)-dimensional simplez.

To state the main result of this section we need some notation to describe the
regions of anti-symmetry. For a vector s = s;vy + - + s, v, € R we define

Po(s)={avi+ - Favp i —x; <s;+1fori,j=1,...,n}

It is an infinite open prism parallel to v containing a neighbourhood of the origin
and it is easily checked that it is invariant under reflection in the point (s — v). The
prisms for different s are nested in a manner corresponding to the componentwise
partial ordering of R: if s < t componentwise then P, (s) C Py(t).

Theorem 4.2 Let C, L, R and v be as in (1), (2), (3) and (4). When S is a basis
of W we have

(a) all points of L in the interior of C'— v are S-reachable, but no points of L on
the boundary of C' — v are S-reachable,

(c1) the sets L\ R and R — (RN 9C') are images of each other by reflection in the
point —%v, and

(c2) for each s € RN OC, 3(s — v) is a centre of anti-symmetry for the points of
R in the prism P,(s) and these prisms are nested in a manner corresponding to the

componentwise partial ordering of RN OC and cover W.
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Proof: (a) Ifl=a;vi+--+a, v, € LN(C°—v) thena; > —-1fori=1,...,n
and, since the a;’s are integers, 1 is reachable. Points of L on the boundary of C° —v
have at least one a; equal to —1, so are unreachable.

(c1) A vector 1 € L is unreachable if and only if a; < 0 for some 7 and is in
R —(LNJC) if and only if a; > 0 for some 3. Reflection in —%v changes each a; to
—1 — a;, which has the opposite sign (counting 0 among the positives), so L'\ R and
R — (LN OC) are images of each other by this reflection.

(c2) Since s € 9C, s; = 0 for some i, so if 1 is reachable the reflection of 1 in
5(s —v) has a negative coefficient of v; and is unreachable (whether or not 1 is in
Py(s)). For the other direction, we use the trivial fact that if e;,e; > 0 then

eja; — eaj < bej +ce; = (aj < —c=a; < b) (5)

(presented in this general form because we shall make further use of it later). With
e; = ej =c=1and b=s,; it shows that if 1 € Py(s) then ay,...,a, are either all > 0
or all < s;. Consequently the unreachable lattice points in P, (s) reflect to reachable
points (not only for s € RN OC but, more generally, for s € R). The nesting of
the prisms is clear from their definition. For the covering of W, any x € W can be
written uniquely as

X=T1Vi+ -+ 2, V, + AV

with A € R, z1,...,2, > 0 and x; = 0 for some 7. Now the point
s=[z]vi+ -+ [z,]|Vn
is a reachable lattice point on the facet C(S \ {v;}) of C and x € P, (s). O

5 |S|=dimL + 1: nondegenerate case

Let S = {v1,...,vu11} be a set of n + 1 vectors that generate an n-dimensional
lattice L in a real vector space W. There is a single linear relation between the v’s
which is rational and which, after reordering the vectors and multiplying by a scalar,
can be put in the form

divi+- -+ dp vy = dpp1Vepr + o dpysVigs (6)

withr,s > 0,1 <r+s<n+1anddy,...,d ;s positive integers having no common
factor. (When 7 or s is 0 the corresponding side of the equation is to be interpreted
as 0.) The ordering of the v’s is determined up to permuting vy, ..., V,, permuting
V41, -, Veps and interchanging these two sets of vectors. Once an ordering is chosen
the relation (6) is unique. We denote by

u= u(S) = dlvl ++ d'rv'r = d'r+1v'r+1 ++ d'r+sv'r+s (7)

the common value of both sides of (6).

Having 7 +s < n+ 1 in (6) is an exceptional situation, unlikely to occur if
Vi,...,Vpe1 18 @ randomly chosen generating set for L. We shall call such a set
S degenerate. In this section we consider only nondegenerate sets of vectors, with
r+s=n+1.
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Lemma 5.1 When |S| = dim L + 1 and S is nondegenate, C' has rs facets all of
which are ordinary. More precisely, the sets S N F, for the facets F of C, are the
sets S\ {vi, v} with1 <i<r,r+1<j<n+1

Proof: In the nondegerate case no n vi’s are linearly dependent so every facet F of
C contains exactly n—1 v;’s which are linearly independent: SNF = S\{v;,v;}, say,
with ¢ < j. These v;’s span a hyperplane that contains no positive linear combination
of v; and v; (since these vectors are on the same side of the hyperplane) so v; and
v; are on opposite sides of (6) and 1 < ¢ <r,r+1 < j < n+ 1. Conversely, for each
such pair {v;,v;}, S\ {v;,v;} is linearly independent and spans a hyperplane which
contains d;v; — d;v; but not v; or v;. Hence d;v; and d;v; (and therefore the whole
of C') are on the same side of the hyperplane and consequently C(S \ {v;,v;}) is a
facet of C' not containing v; or v;. O

Lemma 5.2 The sets R — (RN AC) and L\ R are the images of each other by
reflection in the point $(u —v).

This is illustrated in Figure 3 where, with S as in Figure 1, the solid circles are
again the reachable points, the points of R — (RN dC) not in R are hollow circles
and the reflection point is the small dot at (4, 3.5).

Proof: Without loss of generality we can suppose that r # 0. The key idea is that,
by using (6), each point 1 of L can be put in the canonical form

a; >0 for all i with 1 <i <,

l=ayv e ApaV : . .
Vit a1 Vo a; < d; for some 7 with 1 <i <7,

and that then 1 € R if and only if a; > 0 for r+1 < j < n+1, since by the uniqueness
of (6) these coefficients can be increased only by decreasing each a; with ¢ < r by a
multiple of d;.

Suppose that 1 € L\ R and 4, j are such that 1 <i<r,0<a; <d;, r+1<j5<
n+1,a; <0. Then u —v —1+s € R, where

s = Z(|ak| +1)vp € RNF,
ki g
with F the facet C'(S \ {v;,v;}), and we have used the representation of u on the
left of (6). So the reflection, u — v —1, of 1in (u—v) isin R — RN aC.
Conversely, suppose that l =r —s, with r € R and s € RN F for some facet
F = C(S\ {vi,v;}) of C. Then a;,a; > 0 and the contribution of v; and v; to
u—v-—1is (d—a; — 1)v; — (a; + 1)v;, with d; —a; — 1 < d; and —(a; + 1) < 0.
Since the coeflicient of v; will not be positive if it is decreased by a multiple of d;,
the coefficient of v; must be negative in the canonical representation of the reflection
of 1, which is therefore not in R. O
For a facet F of C'and a coset A = L(SNF)+1of L(SNF) in L, the reflection
L(ISNF)+u—v—1lof Ain £(u—v) is also a coset of L(S N F) in L. Lemma 5.2

2
leads to the following useful property of such reflection pairs of cosets:
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Figure 3: The global reflection centre, represented by the small dot at (4,3.5). The
set .S is again as in Figures 1 and 2, and the solid circles are the reachable points R,
but grid lines (other than the axes) have been omitted for clarity. The hollow circles
are the unreachable points in R — (RN OC). So circles (solid and hollow) reflect to
hollow circles or empty spaces. The edges of the cones C' and C'+ u — v have been
extended backwards to form a parallelogram with the reflection centre at its centre.

Lemma 5.3 For any facet F of C and any pair of cosets of L(SN F) in L that are
reflections of each other in +(u — v), one coset contains no reachable points and the
other has every point which lies in the interior of D(F)+ u — v reachable.

We note that every coset of L(SNF) has points in D°(F)+u — v by an argument
like that in the proof of Lemma 3.1(a): for any point f € F that is not in any lower
dimensional face of C' there is a ball B with centre f contained in D°(F); then
AB C D°(F) for all A > 0 and AB contains points of the coset when X\ is large
enough. So the cosets in each reflection pair are indeed of two quite distinct types.

Proof: ByLemma3.2 L(SNF) = R(SNF)—R(SNF),soifl € Rthen L(SNF)+1 C
R+R(SNF)—R(SNF) C R—(RNJC). Hence all points in L(SNF)+u— v — l are
unreachable, by Lemma 5.2. Conversely, if 1 € D°(F)+u — v is unreachable then, by
Lemmab.2,u—v—-1€ —D°(F)N(R—RNIC). But —D°(F)N(R—OD(F)) =0, by
Lemma 3.1(b) applied to D, and clearly 0C\0D(F) C F,sou—v —1€ R—(RNF)
and, in view of Lemma 3.3(a), there are reachable points in L(SNF)+u—v -1 O
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Theorem 5.4 Let C, L, R and v be as in (1), (2), (3) and (4). When |S| =
dim W + 1, L is an n-dimensional lattice in W and u is as in (7) with r + s = |S|
we have

(a) all points of L in the interior of C + u —v are reachable and a point 1+ u —v
of L on the boundary of C'+ u — v is unreachable if and only if the corresponding
point 1 on the boundary of C' is reachable, and

(b) the proportion of points of L in C° but not in C'+ u — v that are reachable is a
half, in the sense that the difference between the numbers of reachable and unreachable
points of L in (C°N B,) \ (C +u—v) is O(p"2), where B, is the ball with radius
p centred at the origin.

Proof: (a) Since C°+ u—v is the reflection of —C° in 1(u — v) the first part
is immediate from Lemmas 5.2 and 3.1(b). For the second part, the reflection of
dC +u—vin g(u—v)is —=9C. If 14+u—v € C + u—v then, by Lemmas 5.1
and 3.3(c), its reflection —1 € —9C is in R — RN JC if and only if 1 is reachable.
So, by Lemma 5.2, this is a necessary and sufficient condition for 1 +u — v to be
unreachable.
(b) For each facet F of C the slice K(F) = H°(F)\(H(F)+u— v) of W maps into
itself under reflection in }(u — v) and contains only finitely many cosets of L(S N F)
in L. The difference between the numbers of points of K(F)N(D°(F)+u—v)NB,
in the cosets of any reflection pair in K(F) is O(p"?), since discrepancies occur
only within a bounded distance of the (n — 2)-dimensional boundary of F' N B,.
By Lemma 5.3, in one coset all these points are reachable and in the other none
of them are. The regions K(F) N (D°(F) + u— v), for the different facets F, are
disjoint (because each lies outside only one H(F') + u— v) and cover the whole of
C°\(C+u — v) with the exception of certain areas that lie within a bounded distance
of the (n — 2)-dimensional faces of C. Since these areas contain O(p"?) points of
LN B,, this establishes (b). O

Before giving a result of type (¢2) we again need some notation to describe the
regions of anti-symmetry. By the proof of Lemma 3.3(a) and the fact that all facets
of F are ordinary, any s € RN JC has a unique representation as s = s;vy + -+ +
Sp41Vne1, With s1,..., $,41 nonnegative integers. For such a point s we define

Ty = Tij(s) = (djw; — diwy) — (djs; + d;)
and
Pu(s)={zivi+ -+ any1Vvpp1 : Ty <0for 1 <i4,j<randr+1<1i,j <n+1}.

Since I';; is unchanged when multiples of u are added to x = vy + -+ - + Zpq1Vpqt,
P,(s) is an infinite open prism parallel to u with parallel pairs of opposite facets
defined by T';j(s) =0, 'j;(s) = 0, for certain pairs, ¢, j. (The constraints T';(s) < 0
are trivially satisfied and can be ignored.) This prism contains a neighbourhood of
the origin and it is easily checked that it is invariant under reflection in the point
i(u— v +s). The prisms for different s are nested in a manner corresponding to the

2
componentwise partial ordering of R N 0C.
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Theorem 5.5 With the assumptions of Theorem 5.4, if r and s are both nonzero
then, for eachs € RN IC, %(u — v +s) is a centre of anti-symmetry for the points
of R in the prism Py(s). These prisms are nested in a manner corresponding to the
componentwise partial ordering of RN OC and cover W.

Proof: By Lemmas 3.3(a) and 5.1 any s € RN OC can be represented as s =
S$1vy+ -+ Spy1Vaa1, With $1,..., s,.1 nonnegative integers, s; = 0 for some I with
1<I<randsy=0forsomeJwithr+1<J<n+1l. Ifl=avi+- -4a41Vns1
is a reachable point of L in canonical form then the coefficient of v; in the reflection
of lin £(u — v +s) (using the representation of u on the left of (6)) is < d; and the
coefficient of v; is < 0. Hence the canonical form of this reflection has a negative
coeflicient of v; and the reflection is unreachable (whether or not 1 is in P,(s)).

Conversely, (5) with e¢; = d;, ¢j = dj, b = d; + s;, ¢ = 1 — d; shows that if
1 € P,(s) is in canonical form then a; < di+ sy for 1 < k < r and hence its reflection
has nonnegative coefficients of vy, ..., v,. If, further, 1 is unreachable then (5) with
e; = d;, ej = dj, b =s;, c =1 shows that a; < s, for r +1 <k <n+ 1, and hence
that the reflection of 1 also has nonnegative coefficients of v,.1,..., v, and so is
reachable. Again, the conclusion in this direction holds more generally for s € R,
not just s € RN AC.

The nesting of the prisms is clear from their definition. For the covering of W,
since r, s # 0 we can use (7) to express any x € W uniquely in the form

X =1V1+ -+ Tpp1 Ve + Au

with A € R, z1,...,2p41 > 0, 2; = 0 for some ¢ with 1 < ¢ <7 and z; = 0 for some
jwith r+1< 37 <n+ 1. Now the point

s=[z1]vi+ -+ [Tn1]Van

is a reachable point on the facet of C' spanned by S\ {v;,v;} and x € P,(s). O

6 |S|=dimL+ 1: general case

For the general case of a set S = {vy,...,Vp+1} of n+ 1 vectors in an n-dimensional
real space W that generate a lattice L of the full dimension n, and hence satisfy an
essentially unique relation (6) when suitably ordered, we can write W as the direct
sum

wW=Ua&V,
where U and V are spanned by the sets of vectors Sy = {vi,...,v,4s} and Sy =
{Vigs11s---,Vni1}. Then Sy is a nondegenerate set of r+s vectors in the (r +s—1)-

dimensional space U, to which the results of Section 5 apply, and Sy is a linearly
independent set of vectors, to which the results of Secton 4 apply. Lemma 3.4 can
then be used to combine the two.

For example, by Lemmas 3.4(f), 4.1 and 5.1, the cone C has precisely rs+n+1—
r — s facets: rs ordinary facets of the type F = Fyy @ Cy (for which SN F consists of
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n — 1 linearly independent vectors) and n 4+ 1 — r — s exceptional facets of the type
F = Cy @ Fy (for which SN F consists of n vectors that satisfy a linear relation).

We shall use the convention that u(T) = 0 when T is linearly independent. The
convenience of this is that then

u(S) =u(Sy) ®u(Sy) = uy ® uy, (8)

but it also sits well with the fact that u(TU{0}) = 0 when T is a linearly independent

set of n vectors. Also, for any x € W we shall, as in (8), write its U and V' components

as xy and xy, and for any entity E(S) that is a function of a set of vectors S we

shall use E; and Ey as abbreviations for E(Sy) and E(Sy) (as we have already been

doing above). When we need to deal with two possible symmetric situations without

specifying which, we shall use X to denote one of U, V and Y to denote the other.
We can now give our most general form of results of types (a), (b) and (cl).

Theorem 6.1 Let C, L, R and v be as in (1), (2), (3) and (4). When |S| =
dim W + 1, L is an n-dimensional lattice in W and u is as in (7) we have

(a) all points of L in the interior of C + u — v are reachable and a point 1+ u —v
of L on the boundary of C + u — v is unreachable if and only if the corresponding
point 1 on the boundary of C is in L(S N F) for some facet F of C,

(b) the proportion of points of L in C° but not in C' + u — v that are reachable is a
half (in the sense of Theorem 5.4) and

(c1) the sets R — (RN IC) and L\ R are the images of each other by reflection in
the point +(u —v).

We note that (a) agrees with Theorem 5.4(a), since L(SNF)NC = RN F when
F is ordinary, by Lemma 3.3(b), and all facets are ordinary in the nondegenerate
case. In general, however, L(SNF)NC # RN F for exceptional facets. These facets
have |S N F| = dim F + 1 and identifying the reachable points on them is just the
problem of identifying the reachable points in W with the dimension reduced by 1.

Proof: (a) The first part follows from Theorems 4.2(a), 5.4(a), Lemma 3.4(a)—(e)
and (8). For the second part, let m =1+ u — v be a point of L on the boundary of
C +u—v. Then

m¢R my & Rx for X = U or X =V (Lemma 3.4(b)(c))

lx € Rx N 9Cx for some X (Theorems 4.2(a), 5.4(a))

Ix € Rx N Fx for some X and some facet Fx of Cx

lx € L(Sx N Fx) for some X and Fx (Lemmas 3.3(b), 3.4(d))
1€ L((Sx N Fx) U Sy) for some X and Fx (Lemma 3.4(b))

1€ L(S N F) for some facet F of C,

frrees

where the last step uses the fact that, by Lemma 3.4(f), the facets of C' are the sets
Fx@Oy with X =U or V.
(b) Since CY C Cy — vy, the lattice points in C°\ (C' 4+ u — v) are those in

(Co\ (Cy +upy —vy)) @ Cy,
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by Lemma 3.4 and (8). These points are reachable if and only if their U-components
are reachable (since all points in C}, are reachable), so by Theorem 5.4(b) and the
fact that there are O(p™"™'~"~) lattice points in B, N Cy the difference between the
numbers of reachable and unreachable points of L in (C°N B,) \ (C +u—v) is
O(pT+573+n+lfrfs) — O(pn—Z)' B
(c1) Let1be a point of L and I = u — v — I its reflection in $(u — v). Then
1d R <= 1y ¢Rxfor X =Uor X =V (Lemma 3.4(b)(c))
< ly € Rx — (Rx N9CYx) for some X (Theorem 4.2(cl), Lemma 5.2)
<= 1€ R—(RNJC) (Lemmas 3.4(b)(c)(f) and 3.2). O

Again we separate off the type (¢2) result, as it is more complicated to describe.
By Lemma 3.4(c), any s € R can be written as

s=sy @sy = (51Vi+ -+ SrysVits) B (Srpsp1Vrgst1 T + Sng1Vat1), 9)

with sq,...,$,+1 nonnegative integers. When s lies on an ordinary facet of C (i.e.
sy € Ry NOCy) this representation is unique, but in general there are several repre-
sentations arising from different representations of s;;. Writing an arbitrary x € W
as

X=x1Vi+ -+ Tpr1Vpyl,

we define Pi(s) to be the set of all points x € Py(sy) ® Py(sy) that satisfy
—sidi—1<a;—dizj<s;+d;forr<i<r+sandr+s<j<n+l1 (10)

(inequalities similar to I';; < 0, but with 1 in place of d; when j > r + s). When
s has more than one representation (9) we take for Pj(s) the union of these regions
over all such representations. Then Pi(s) is an infinite prism parallel to uy @ vy
containing a neighbourhood of the origin. We also define P(s) in the same way
except for changing the range of ¢ in (10) to 1 < ¢ < r. Finally we put

P(s) = Pi(s) U Py(s),

an infinite prism parallel to uy @ vy containing a neighbourhood of the origin and
invariant under reflection in the point 3(u — v +s). Then

Theorem 6.2 With the assumptions of Theorem 6.1, if {r,s} # {n + 1,0} then,
for each s € RNOC, t(u—v+s) is a centre of anti-symmetry for the points of
R in the prism P(s). These prisms are nested in a manner corresponding to the
componentwise partial ordering of RN OC. If r and s are both nonzero then W is
covered by the prisms P(s) corresponding to the reachable points s on the ordinary
facets of C and if r+s < n+1 it is covered by the prisms P(s) corresponding to the
reachable points s on the exceptional facets of C.
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Proof: When s € RN JIC we have sy € Rx NICx with X one of U or V, by
Lemma 3.4(c)(f). So, by Lemma 3.4 and the proof of Theorem 4.2(c2) or 5.5,

leR=1y€Rx=>ux—vx+sy—Ilxy€Lx\Rx=u—v+s—-1€L\R

(whether or not 1 is in P(s)).

In the converse direction, if s € R and 1 € L is in canonical form with 1 € P,(sy)
then the second paragraph of the proof of Theorem 5.5 shows that u — v +s — 1 has
nonnegative coefficients of vq,...,v,. Now (5) with ey, =dj forr <k <r+s,¢, =1
forr+s<k<n+1,b=s;ors;and ¢ =1 shows that if 1 € P;(s) then

lxeLx\RxﬁuY—VY—FSy—lyeRY

when X is either of U or V' (and Y is the other one). Also the proofs of Theo-
rems 4.2(c2) and 5.5 show that for 1y € Py(sx) (with x =u or v)

lxeLx\RxﬁuX—Vx-i‘Sx—lxeRx,

since the implication in this direction requires only that sy € Ry. So, by Lemma 3.4,
if s € R then the reflection in %(u — v +s) of any unreachable point of L in Pi(s) is
reachable (whether or not s € 9C). The same holds for unreachable points 1 € Py(s),
by interchanging the roles of the indices 1,...,7 and r+1,...,r 4 s in the definition
of canonical form.

The nesting of the prisms is clear, provided we define s < t to mean that there
exist representations (9) of s and t for which the inequality holds componentwise.

For the coverings of W, let

X = (21Vy + -+ Ty Vips) O (Trpsp1Vigorr + - + Tpgp1 V1) = Xy © Xy

be an arbitrary point of W. If r and s are both nonzero then by Theorem 5.5 we can
find an sy € RyNOCy such that x; € Py(sy). Now use (6) to decrease @41, ..., Tris
(at the expense of increasing z1,...,2,) so that

@ < d;min(@yysin, ..., Epgr) for i =r+ 1,07+,

making the expression z; — d;z; in the middle of (10) negative for all relevant ¢ and j
so that the right hand inequality is automatically satisfied. Then any sy € Ry with
sufficiently large coefficients has xy € P,(sy) and satisfies the left hand inequality
of (10), so x € Pi(sy @ sy) and sy @ sy is a reachable point on an ordinary facet of
C. Similarly, if 7 + s # n + 1 then by Theorem 4.2(c2) there is an sy € Ry N OCYy
with xy € Py(sy) and we can use (6) to arrange that

x; > d;max(Trqsy1, .o, Tny1) fori=r+1,...,7+s,

so that the expression «; —d;x; in the middle of (10) is positive for all relevant ¢ and j
and the left hand inequality is automatically satisfied. Now any sy € Ry with large
enough coefficients has xy € P,(sy) and satisfies the right hand inequality of (10).
Then sy @ sy is a reachable point on an exceptional facet of C and x € Py (sy ®sy).
Since Pi(s) C P(s) these are enough to establish the coverings, but the argument
also applies with P, in place of P;, of course. O

We note that the anti-symmetry centres in this theorem all lie on the boundary
of the cone C' + 3(u — v), midway between C' and C + (u —v).
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7 Loose ends

Here we comment on some matters arising from the main body of the paper.

Interconnections

Naturally Theorem 5.4 and Lemma 5.2 are a special case of Theorem 6.1 and Theo-
rem 5.5 is a special case of Theorem 6.2.

Also when (in the case |S| = dimL 4+ 1) v; = 0, we have u = 0, so Theo-
rem 6.1(a)(cl) gives Theorem 4.2(a)(cl) as a special case and Theorem 6.2 gives
Theorem 4.2(c2) as a special case. (From this point of view the case |S| = dim L is
extremely degenerate.)

When {r,s} = {n+1,0} (6) shows that 0 is in the interior of the convex hull of S
and hence that C'=W. In that case Theorem 5.4(a) tells us that every lattice point
is reachable. When n = 1 this even adds to Theorem 1.1, giving the not quite trivial
result that when one of the two denominations is negative then every (positive or
negative) integral sum of money can be made up.

With {r,s} = {1,n} Theorem 5.4(a) gives Theorem 2 of [5].

More vectors

In the light of what is known about the ordinary 1-dimensional Frobenius problem
it would not seem possible to obtain any such simply stated result as Theorem 6.1
for sets of more than n + 1 vectors in an n-dimensional lattice. Instead one might
look for extensive, but non-optimal, regions in which all lattice points are reachable.
It might also be possible to use methods like those of [2] to obtain, for fixed n and
k, polynomial time algorithms to compute the maximal translate of C in which all
lattice points are reachable.

Comparing cones

Theorem 2.1 identifies the minimal cone that contains all reachable lattice points
and Theorem 6.1(a) identifies a cone that contains no unreachable lattice points in
its interior but has unreachable lattice points on its boundary. Both this fact and
inspection of Figure 1 suggest that the cone of Theorem 6.1 is in some sense maximal.
This sense can be made precise by putting a suitable partial ordering on the set of all
cones in W. The partial ordering should extend to all cones (open, closed or neither)
with vertices anywhere in W. The partial ordering we chose is to order primarily on
the solid angle at the vertex and secondarily, for cones with the same solid angle, by
inclusion. With this definition we have

Theorem 7.1 The cone C+u — v of Theorem 6.1 is the unique maximal cone such
that all points of L in its interior are S-reachable.
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Proof: Two elementary facts are, first, that if the solid angle of a cone C is less
than that of a cone Cs, or the solid angles are equal but Cy is not a translate of
C1, then a positive proportion of all lattice points lies in C§ \ C; (because the solid
angle of a cone measures the proportion of space it covers) and, second, that if Cy
is a translate of C; but is not contained in C; then it contains in its interior an
infinite segment of some edge of C;. By the first of these facts, any cone that is not
a translate of C' but whose solid angle is greater than or equal to that of C' contains
in its interior lattice points not in C', which by Theorem 2.1 are unreachable. And
by the second fact, a cone that is a translate of C' but not contained in C' 4+ u — v
contains in its interior an infinite segment of some edge {A\v; + u—v : A > 0} of
C + u — v. This segment contains lattice points mv; + u — v, for sufficiently large
m, which by Theorem 6.1(a) are also unreachable. Hence C'+ u — v is the unique
maximal cone containing no unreachable lattice points in its interior. O

Our reason for introducing solid angles is that if cones are ordered by inclusion
alone then maximal cones containing no unreachable lattice points in their interiors
are not unique. For example, in Figure 1 the wedge C'({vy, v2}) + (3.5,5.5) contains
no unreachable lattice points in its interior yet is not contained in C'({vs, v3})+u — v,
the maximal such wedge. However, it sacrifices infinitely many reachable points
inside the maximal wedge to gain only 8 reachable points outside, and does not
detract from our feeling that the maximal wedge is the significant one.

The relationship between (c1) and (c2)

The fact that Theorems 5.5 and 6.2 do not apply when {r, s} = {n+1,0} is inevitable,
as in that case all points of L are reachable, as already mentioned, and there can be
no centres of local anti-symmetry. In this respect Theorem 6.2 is slightly less general
than Theorem 6.1(cl).

From the proofs of Theorems 4.2(c2), 5.5 and 6.2 we see that the restricted ranges
are necessary in the direction unreachable-to-reachable only. In the other direction
we have, without restriction: if 1 € R then for every s € RN OC the reflection of
1 in L(u—v+s) is unreachable. In the unreachable-to-reachable direction, since
the prisms in these theorems cover W we have: if 1 € L\ R then there is some
s € RNAC such that the reflection of 1 in $(u — v + s) is reachable. The combination
of these two italicized statements is equivalent to (cl) (at least for the cases with
{r,s} # {n+1,0}).

We should mention here that the prisms P(s) are not maximal regions of anti-
symmetry. For example, (C° +u —v)U P(0) U (—C°) is a region of anti-symmetry
about 3(u—v) larger than P(0), and there are similar regions (consisting of two
opposing cones joined by a prismatic neck) for the other centres. This shows in
particular that there is no uniquely determined direction for the axes of prisms that
are regions of anti-symmetry: there are non-empty prisms that are regions of anti-
symmetry in any direction close enough to uy @ vy. Even if we restrict attention to
regions that are convex prisms, it is not easy to determine whether the prisms P(s)
are in some sense maximal.
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The case {r,s} = {1,n}

The requirement of [5] that one v; is a positive linear combination of the others is,
with our present notation, equivalent to {r,s} = {1,n}. How restrictive is this?
For one thing, it restricts C' to having only n facets (its cross-section is a simplex)
whereas in general it can have as many as [(n + 1)2/4| facets when r and s are
nearly equal. We can also calculate the probability of the condition holding when
the vectors vi,..., Va4 are randomly chosen in an isotropic manner (so that the
vectors v and —v have an equal chance of being picked). We could either pick
vectors from a preassigned lattice L, discarding nongenerating sets, or pick arbitrary
vectors subject to the requirement that at every stage vi,...,v; span a subspace of
dimension at least i — 1 and that whenever v; is chosen in the subspace spanned by
vi,...,V;_1 then it is chosen to be a rational linear combination of them. In either
case the resulting set satisfies a nontrivial rational linear relation

vy + -+ Cpy1Vagpr = 0.

Disregarding the degenerate case when some ¢;’s vanish (which has probability zero),
we can normalize so that ¢; = 1, and then all patterns of signs for ¢,,...,c,41 are
equally likely. There are 2™ possible allocations of sign in all and, for n > 2, n+1 of
them correspond to the {1,n} case, which therefore has probability (n + 1)/2™.

When n = 1 there are two nondegenerate possibilities for {r,s}: {1,1}, when
p and ¢ have the same sign, and {2,0}, when p and ¢ have opposite signs so that
C =R and all integers are reachable. Each has probability % When n = 2 there are
also two possibilities: {1,2} and {3,0} (when C = W), with probabilities 3/4 and
1/4. But when n = 3 there are the three possibilities {1, 3}, {2,2}, {4, 0}, of which
the last is the case C'=W. A typical example of the second is when {v1, vy, v3, v4}
lie along the generators of a square pyramid. The probabilities of these three cases
are 1/2, 3/8, 1/8. The corresponding probabilities for n = 4 are 5/16, 5/8, 1/16,
and the case {r, s} = {1,4} is no longer among the most probable.

Validating generating sets

Mention above of discarding sets of n + 1 vectors that do not generate L raises the
question of how to determine whether a set of vectors in a lattice generates the
lattice. Our point of view throughout has been that we start with a set of vectors
S, which we are told generate a lattice, and we investigate the reachable points of
that lattice. But what if we are interested in a specific lattice A (Z™ say) and are
given a set S of vectors in A? How can we decide whether L(S) = A so that our
results apply? The following theorem gives a general criterion for a set of vectors in
a lattice to generate it.

Theorem 7.2 Let S be a subset of an n-dimensional lattice A. A necessary and
sufficient condition for S to generate A is that the set of integer indices

{[A: L(T)] = det L(T)/det A : T C S, |T| = n} (11)

4We use the convention that [A : L(7)] = 0 when 7" is contained in a subspace of dimension less
than n.



THE FROBENIUS PROBLEM ON LATTICES 45

has no common divisor.

Here det A is the volume of the fundamental region® of A. Note that this theorem
does not require S to be finite. Nor does it require |S| > n, if we adopt the natural
convention that the empty set has common divisor 0.

Proof: If T C S then L(T) C L(S) and [A : L(T)] = [A : L(S)][L(S) : L(T)]. So
the integers (11) are all divisible by [A : L(S)], and if S does not generate A then
[A : L(S)] > 1. Conversely, suppose the integers (11) are all divisible by a prime
p. The quotient Abelian group A/pA is isomorphic to Iy, where I, is the finite
field with p elements, and the fact that each det L(T')/ det A is divisible by p means
that the image in [} of every n-element subset of S is linearly dependent. There is
certainly one subset of S whose image in F} is linearly independent: the empty set.
(When all vectors of S are in pA this is the only such subset.) Let T be a maximal
such subset. Then |T| < n and the image of T' spans a proper subspace Z of Iy which
contains the images of all vectors in S. Now [A : L(S)] > [F} : Z] = p"~%m% > 1, s0
L(S)#A. O
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