Minkowski tangent-circle structures and key distribution patterns*

S. Bonvicini

Dipartimento di Matematica Università di Modena e Reggio Emilia via Campi 213/B, 41100 Modena Italy bonvicini.simona@unimore.it

G. Rinaldi

Dipartimento di Scienze Agrarie Università di Modena e Reggio Emilia via Kennedy 17, 42100 Reggio Emilia Italy rinaldi.gloria@unimore.it

Abstract

Key distribution patterns, as defined in Mitchell and Piper, Discrete Applied Math. 21 (1988), 215–228, are finite incidence structures satisfying a certain property which enables them to be applied to a problem in network key distribution. Few examples of key distribution patterns are known. In this paper we present new examples of finite Minkowski tangent-circle structures, (Quattrocchi and Rinaldi, Research and Lecture Notes in Mathematics, Combinatorics '88, Mediterranean Press 2 (1988), 349–357) and show how to construct key distribution patterns from them.

1 Introduction

The Minkowski tangent-circle structures were introduced in [13] and [14] as a generalization of Minkowski planes. More precisely, a Minkowski tangent-circle structure of finite order $s, s \geq 2$, is an incidence structure $\mathcal{M} = (\mathcal{P}, \mathcal{B}, \mathcal{G}_1, \mathcal{G}_2)$ where \mathcal{P} is a set of $(s+1)^2$ points, \mathcal{B} is a set of subsets of \mathcal{P} (circles), \mathcal{G}_1 and \mathcal{G}_2 are respectively sets of s+1 disjoint subsets of s+1 disj

(i) Each circle has exactly one point in common with each generator;

^{*} Research done within the activity of GNSAGA-INdAM with the financial support of MIUR (project "Strutture Geometriche, Combinatoria e loro applicazioni")

- (ii) Each generator contains s+1 points and each generator of \mathcal{G}_1 intersects each generator of \mathcal{G}_2 at exactly one point;
- (iii) For every pair of points P and Q not lying on the same generator and for every circle B with $P \notin B$ and $Q \in B$, there exists a unique circle C such that $P, Q \in C$ and C and B are tangent at Q.

A set of points no two of which belong to the same generator is called a set of *independent* points.

The incidence structure \mathcal{M} satisfies the following properties (see [14]):

- (i) There is a fixed number u of circles, $1 \le u \le s 1$, containing any two given independent points;
- (ii) At most one circle contains any three given independent points;
- (iii) There are su circles containing any given point;
- (iv) The total number of circles is s(s+1)u.

The number u is called the degree of \mathcal{M} . Each Minkowski plane of order s is a Minkowski tangent-circle structure of order s and degree s-1, as well as each affine plane of order s is a Minkowski tangent-circle structure of order s-1 and degree 1. If $s \equiv 1(2)$, the relation $u = \frac{s-1}{2}$ is a necessary condition for a finite Minkowski tangent-circle structure to be contained in a Minkowski plane of the same order, [13], [14]. The known finite Minkowski planes of odd order p^m , p prime, [9], properly contain Minkowski tangent-circle structures of the same order p^m and degree $\frac{p^m-1}{2}$, [14]. Moreover a Minkowski plane of even order (which is necessarily the (B)-geometry associated with a group $PGL(2, 2^m)$, [12]) does not contain Minkowski tangent-circle structures of the same order properly, [14]. It is still an open problem to find examples which cannot be embedded in a Minkowski plane. An example was constructed in [13] using points and lines of the affine plane $AG(2, 2^m)$ together with a family of conics. In this paper we generalize this example using a suitable family of ovals. We show that the method given in [15] can be applied to these new examples to construct key distribution patterns.

2 Examples of finite Minkowski tangent-circle structures of even order

Let $\mathbb{K}=GF(2^m)$ and $\sigma\in Aut\mathbb{K}$ with $\sigma:x\mapsto x^2$. Let $I=\{h\in\mathbb{N}|1\leq h< m,(h,m)=1\}$, and $a,b\in\mathbb{K},\ a\neq 0$; the set $\theta^h_{a,b}=\{(x,y)|y=ax^{2^h}+b\}$ is an oval in $AG(2,2^m)$ which is tangent to the line at infinity, [5]. Its tangent lines are all those of equation $y=k,k\in\mathbb{K}$, together with the line at infinity. The lines of equation x=k contain the point at infinity of the oval and intersect the oval in exactly one affine point. For every pair of points $(x_1,y_1),\ (x_2,y_2)$ with $x_1\neq x_2$ and $y_1\neq y_2$ and for every $h\in I$ there exists exactly one oval $\theta^h_{a,b}$ passing through $(x_1,y_1),\ (x_2,y_2)$. In

fact the equations $y_1 = ax_1^{2^h} + b$, $y_2 = ax_2^{2^h} + b$ have exactly one common solution for (a, b). Let $p \neq 1$ be the smallest factor of m. We prove the following:

Proposition 1. Let $h, k \in I$. If $h \neq k$ and (k-h, m) = 1, then $|\theta_{a,b}^h \cap \theta_{c,d}^k| \in \{0, 2\}$. If h = k and $\theta_{a,b}^h \neq \theta_{c,d}^k$, then $|\theta_{a,b}^h \cap \theta_{c,d}^k| = 0, 1$ according to a = c or $a \neq c$.

Proof. Suppose $|\theta_{a,b}^h \cap \theta_{c,d}^k| = s$, then the equation $ax^{2^h} + b = cx^{2^k} + d$ or equivalently $a^{2^{n-h}}x + b^{2^{n-h}} = c^{2^{n-h}}x^{2^{k-h}} + d^{2^{n-h}}$ has exactly solutions in \mathbb{K} . If (k-h,m)=1, the curve $y=c^{2^{n-h}}x^{2^{k-h}} + d^{2^{n-h}}$ is an oval in $AG(2,2^m)$, [5], and $s \in \{0,2\}$. Suppose now h=k, then we obtain $a^{2^{n-h}}x + b^{2^{n-h}} = c^{2^{n-h}}x + d^{2^{n-h}}$ and the assertion follows. \square

Let $T \subset I$ be a set such that $k - h \in I \cup \{0\}$ for every $h, k \in T$.

Proposition 2. If $m \equiv 0(2)$, then |T| = 1. If $m \equiv 1(2)$, then $|T| \leq p - 1$, where p is the smallest prime dividing m.

Proof. Suppose $m \equiv 0(2)$, let h, k be distinct elements of I, then $h - k \equiv 0(2)$, $h - k \not\in I$ and the first assertion follows. Let now $m \equiv 1(2)$, let $h, k \in T$, $h \neq k$, let q be a factor of m, then the relation (h - k, m) = 1 implies $h \not\equiv k(q)$. The prime p is the smallest factor of m, then $h \not\equiv k(p)$. This implies $|T| \leq p - 1$.

We can find a set T of maximal length p-1 simply taking $T=\{i|1 \leq i < p\}$. Denote by \mathcal{R} the set of lines of $AG(2,2^m)$ with equation $y=ax+b,\ a\neq 0$. Let $h\in T$ and $\Theta^h=\{\theta^h_{a,b},a,b\in\mathbb{K},a\neq 0\}$. To standardize the notation set $\mathcal{R}=\Theta^0$ and $\overline{T}=T\cup\{0\}$. For each subset $J\subset\overline{T},\ J\neq\emptyset$, denote by $\mathcal{M}_J=(\mathcal{P},\mathcal{B},\mathcal{G}_1,\mathcal{G}_2)$ the incidence structure defined in the following manner: \mathcal{P} is the set of points of $AG(2,2^m)$, $\mathcal{B}=\{\Theta^h|h\in J\},\ \mathcal{G}_1$ and \mathcal{G}_2 are the sets of lines of $AG(2,2^m)$ with equation x=k and $y=k,\ k\in\mathbb{K}$, respectively.

Proposition 3. The incidence structure \mathcal{M}_J is a Minkowski tangent-circle structure of order $2^m - 1$ and degree $|J| \leq p$.

Proof. It follows from Proposition 1 observing that for each pair of independent points (x_1, y_1) , (x_2, y_2) there is exactly one oval of Θ^h , $h \in T$, containing them, and from the fact that each line of \mathcal{R} intersects each oval of Θ^h , $h \in T$, in either 0 or 2 points.

When $J = \{0, 2\}$ we reobtain the example of [13], when $J = \{0\}$, we have the affine plane of order 2^m which is a finite tangent-circle structure of order $2^m - 1$ and degree 1.

3 Examples of Key Distribution Patterns

A key distribution scheme (KDS) is a method of distributing secret pieces of information to nodes in a network in such a way that any pair of nodes can compute a secure common key. This information is generated and distributed by a trusted server which is active only at the distribution stage. In [8] Mitchell and Piper proposed the use

of a certain special kind of incidence structure to give a KDS. They called such an incidence structure a key distribution pattern (KDP). Their basic idea was that of issuing each node with a set of subkeys and each key to be used by a pair of nodes is made up from a combination of some of these subkeys. The combining should be done using a publicly known function which takes a specified number of subkeys as arguments and yields an n-bit symmetric key. For increased security, the function should be one-way. Suppose we think of the set of nodes as the set of points \mathcal{P} and the set of subkeys as the set of blocks \mathcal{B} of an incidence structure $\mathcal{K} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$. The incidence relation \mathcal{I} between points and blocks is defined so that a point is incident with a block if the corresponding node posesses the corresponding subkey. Denote by (P) the set of blocks incident with the point P, then the symmetric key K_{ij} of P_i and P_j is generated by the subkeys in $(P_i) \cap (P_j)$. Following Mitchell and Piper, let $|\mathcal{P}| = v, v \geq 3$, and let w be an integer with $1 \leq w \leq v - 2$. The incidence structure $\mathcal{K} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ is called a w-KDP (w-key distribution pattern) if for every pair of points P_i, P_j we have:

$$(P_i) \cap (P_j) \not\subseteq \bigcup_{i=1}^w (Q_i)$$
 (*)

for any point $Q_1, \ldots, Q_w \in \mathcal{P} - \{P_i, P_j\}.$

Condition (*) ensures that P_i and P_j share at least one subkey not in any of $(Q_1),\ldots,(Q_w)$. Let $\mathbb N$ be the set of positive integers and let $l:\mathcal B\to\mathbb N$ be a mapping which simply assigns to each subkey x the number l(x) of bits it contains; we call such a mapping a length mapping. Denote by L_s the mapping $L_s:\mathcal B\to\{s\}$. A length mapping l is said to be w-secure if for each pair $P_i,P_j\in\mathcal P$ and for each set of w points $Q_1,\ldots Q_w\in\mathcal P-\{P_i,P_j\}$ we have:

$$\sum_{\substack{x \in ((P_i) \cap (P_i)) - \bigcup_{i=1}^w (Q_i)}} l(x) \ge n \quad (*)'$$

where n is the number of bits comprising each key. The condition insures that even if Q_1, \ldots, Q_w pool their subkey sets, their chance of guessing the common key $K_{i,j}$ between P_i and P_j is no greater than that of someone who knows none of the subkeys in $(P_i) \cap (P_j)$. Obviously L_n is a w-secure length mapping for any w-KDP.

Let $\mathcal{K} = (\mathcal{P}, \mathcal{B}, I)$ be a w-KDP and let P be a point of \mathcal{K} . Let l be a w-secure length mapping for \mathcal{K} . The node storage ρ_P at P is defined as follows: $\rho_P = \sum_{x \in (P)} l(x)$. The average node storage $\overline{\rho}$ of (\mathcal{K}, l) is the average of the node storages. The total storage β of (\mathcal{K}, l) is the total number of bits in the subkeys of \mathcal{K} , that is: $\beta = \sum_{x \in \mathcal{B}} l(x)$. The length mapping l is said to be optimal if there is no w-secure length mapping l such that either the node storage of (\mathcal{K}, l') is less than $\overline{\rho}$ or the total node storage of (\mathcal{K}, l') is less than β .

Let m be the greatest value such that

$$|((P_i) \cap (P_j)) - \bigcup_{k=1}^{w} (Q_k)| \ge m$$

for every pair P_i , $P_j \in \mathcal{P}$ and for any $Q_1, \ldots, Q_w \in \mathcal{P} - \{P_i, P_j\}$. Quinn proved that $L_{\lceil \frac{m}{m} \rceil}$ is an optimal constant w-secure length mapping for \mathcal{K} , [10]. The number m is said to be a w-residue of \mathcal{K} .

If we consider the trivial w-KDP on v nodes, that is a 2-(v,2,1) design, then w=v-2, L_n is an optimal (v-2)-secure length mapping, $\overline{\rho}=(v-1)n$ and $\beta=\frac{v(v-1)n}{2}$. This is the standard against which all other w-KDPs are compared. Examples of KDPs have been constructed using the so called circle geometries (Inversive, Laguerre and Minkowski planes), [6], [7], using families of conics in finite affine Deasrguesian planes [11], and using tangent-circle structures, [15]. All these examples work on either r^{2m} , $(r^{2m}+1)$, $r^{2m}+r^m$ or $(r^m+1)^2$ points, r a prime. In this paper we give a family of examples working on 2^{2m} points, m odd. More precisely, let $m \in \mathbb{N}$ be an odd positive integer and let $p \neq 1$ be the smallest factor of m. Let \mathcal{M}_I be the Minkowski tangent-circle structure of order $s=2^m-1$ and degree u=|J|, constructed in Proposition 3. When $u \geq 2$, \mathcal{M}_J provides an example of w-KDP, with $1 \leq w \leq u-1$ ([15, Proposition 2]). Denote by $\overline{\mathcal{B}}$ the set of circles of \mathcal{M}_J together with the pairs $\{P_i, P_i\}$ where P_i and P_i are distinct points which lie on one and the same generator. Let $l:\overline{\mathcal{B}}\to\mathbb{N}$ be the length mapping defined by either $l(x) = \lceil \frac{n}{n-w} \rceil$ or n, according to x is a circle of \mathcal{M}_J or not. The map l is a w-secure length mapping, [15], leading to the storage:

$$\overline{\rho} = su\lceil \frac{n}{u-w} \rceil + 2sn$$

 $\beta = s(s+1)u\lceil \frac{n}{u-w} \rceil + s(s+1)^2n$
and we obtain the following table:

	${\cal M}_J$
u	$2 \le u \le p$
w	u-1
v	2^{2m}
$\overline{\rho}$	$u(2^m-1)\lceil \frac{n}{u-w}\rceil + 2(2^m-1)n$
β	$u(2^{m}-1)2^{m}\lceil \frac{n}{u-w}\rceil + (2^{m}-1)2^{2m}n$

Another KDP can be obtained from \mathcal{M}_J applying [15, Proposition 3]. Precisely, suppose the existence of $t \geq 2$ permutations $\pi_1 \dots \pi_t$ on the point-set of \mathcal{M}_J satisfying the following property:

(i) for each ordered pair (i, j), with $1 \le i, j \le t, i \ne j$ and for each pair P_1, P_2 of points, if $\pi_i(P_1)$ and $\pi_i(P_2)$ lie on a same generator, then $\pi_j(P_1)$ and $\pi_j(P_2)$ are independent.

Under this condition denote by \mathcal{M}'_J the incidence structure $(\overline{\mathcal{P}}, \overline{\mathcal{B}})$ which is defined as follows. The point-set $\overline{\mathcal{P}}$ is the point-set \mathcal{P} . The block-set $\overline{\mathcal{B}}$ is the set of all blocks $\pi_i^{-1}(C)$ as C varies in \mathcal{B} and π_i varies in $\{\pi_1, \ldots, \pi_t\}$. It does not matter if

some blocks are repeated. For each w with $1 \leq w \leq u-1$, let $l: \overline{\mathcal{B}} \longrightarrow \mathbb{N}$ be the length mapping defined by $l(x) = \lceil \frac{n}{(u-w)(t-1)} \rceil$. It was proved in [15] that l is a w-secure length mapping leading to the following storages: $\overline{\rho} = u(2^m-1)t\lceil \frac{n}{(u-w)(t-1)} \rceil$, $\beta = u(2^m-1)t2^m\lceil \frac{n}{(u-w)(t-1)} \rceil$ and to the following table:

	\mathcal{M}_J'
u	$2 \le u \le p$
w	u-1
v	2^{2m}
$\overline{ ho}$	$ u(2^m - 1)t\lceil \frac{n}{(t-1)(u-w)}\rceil $
β	$u(2^m-1)t2^m \lceil \frac{n}{(t-1)(u-w)} \rceil$

If we take the maximal values u=p and w=p-1 then we have the maximal security. Furthermore the storages \overline{p} and β depend on t. In particular their values decrease as t increases. A minor adaptation of the proof of [6, Lemma 3.3] shows that the existence of N mutually orthogonal latin squares of order 2^m give rise to $\lfloor \frac{N}{2} + 1 \rfloor$ permutations with the property (i). In particular 2^m is a power of a prime so that we can take for N each value from 1 to $2^m - 1$, [2], therefore we have $t \leq \lfloor \frac{2^m-1}{2} + 1 \rfloor = 2^{m-1}$. We can compare our new models to those obtained from circle geometries, see [7], [11] and [15]. Our models involve 2^{2^m} nodes. The same number 2^{2^m} can be found in the models constructed in [7] starting from a Laguerre plane of order s, when $s=2^m$, and in [11, Theorem 7.8]. In some cases our examples yield better parameters, in fact the models of [7] and [11] both lead to the following table, see [7, Table 1]:

	$\mathcal{K}_4(s,u,t)$
u	$2 \le u \le s$
t	$2 \le t \le s+1$
w	u-1
v	s^2
$\overline{ ho}$	$tus \lceil \frac{n}{(t-1)(u-w)} \rceil$
β	$tus^2 \lceil \frac{n}{(t-1)(u-w)} \rceil$

If $s=2^m$ and u=p, where p is the smallest prime factor of m, we can compare the two models. In \mathcal{M}'_J the best chioce for t is $t=2^{m-1}$ which leads to the storages: $\overline{\rho}=p(2^m-1)2^{m-1}\lceil\frac{n}{2^{m-1}-1}\rceil$ and $\beta=p(2^m-1)2^{m-1}2^m\lceil\frac{n}{2^{m-1}-1}\rceil$.

In the models of [7] and [11] the best choice for t is $t=2^m+1$ which leads to: $\overline{\rho}=(2^m+1)p2^m\lceil\frac{n}{2^m}\rceil$ and $\beta=(2^m+1)p2^{2m}\lceil\frac{n}{2^m}\rceil$.

The total number of subkeys in \mathcal{M}'_J is less then the total number of subkeys of $\mathcal{K}_4(s,u,t)$. Despite that we take the same n, the length of each subkey in \mathcal{M}'_J is greater than the length of each subkey in $\mathcal{K}_4(s,u,t)$, but a suitable choice for n (for example take n in such a way that $2\lceil \frac{n}{2^m} \rceil \ge \lceil \frac{n}{2^{m-1}-1} \rceil$) leads to smaller storages in \mathcal{M}'_J .

4 Information rates and resilient functions

Let $\mathcal{K}=(\mathcal{P},\mathcal{B},\mathcal{I})$ be a w-KDP. Let \mathcal{U} be the finite set of keys. There will be some probability distribution associated with each key K_{ij} and \bar{K}_{ij} will denote a random variable defined on \mathcal{U} having that probability distribution. Denote by U_{P_i} the set of all possible secrete subkeys distributed to user P_i and \bar{U}_{P_i} denotes a random variable which assumes values U_{P_i} according to a probability distribution. Following the lines of [16] the efficiency of the KDP can be mesured by the amount of secret information that is distributed to each user. The information rate is thus defined to be $min\{\frac{H(\bar{K}_{ij})}{H(\bar{U}_{P_i})}: P_i \in \mathcal{P}\}$, where H denotes the entropy function, (for a definition of the entropy function see [17]). Let q be a prime power and suppose each subkey of \mathcal{K} to be an element of GF(q). The symmetric key K_{ij} of two points P_i and P_j is thus the sum of their common subkeys. A key K_{ij} is equally likely to be any element of GF(q), in which case $H(\bar{K}_{ij}) = \log q$. Furthermore a user P_i receives (P_i) values of GF(q), and each value is equally likely to be any element of GF(q), so that $H(P_i) = (P_i) \log q$. Therefore the information rate of a KDP is $\frac{1}{\{max(P_i): P_i \in \mathcal{P}\}}$

and the total information rate is $\frac{1}{|\mathcal{B}|}$, [16, Theorem 3.1]. The information rate and the total information rate of a KDP are in general low values.

In [16] Stinson described a method to improve them, and then to improve the efficiency of a KDP, using resilient functions. We review this approach. An (n, l, t, q)-resilient function is a function $f: [GF(q)]^n \mapsto [GF(q)]^l$ which satisfies the property that if the values of t of the n inputs are fixed, and the remaining n-t inputs are chosen independently at random from GF(q), then all possible output l-tuple are equally likely to occur. Resilient functions were introduced in [1] and [3]. As an example, the function $f: [GF(q)]^n \mapsto GF(q)$ defined as $f(x_1, \ldots, x_n) = x_1 + \cdots + x_n$, is an (n, 1, n-1, q)-resilient function. (It is used above to determine the key K_{ij} when two nodes have n subkeys in common). It can be shown that $l \leq n-t$ in any resilient function. A construction of resilient functions with l = n-t can be found in [4], more precisely, if q is a prime power such that $q \geq n-1$, then there exists a (n, n-t, t, q)-resilient function. For each pair $a = (P_i, P_j)$ of points of K and for each set $\{Q_1, \ldots, Q_w\} \subset \mathcal{P} - \{P_i, P_j\}$, denote by C_a the number of subkeys in $(P_i) \cap (P_j)$ and by D_a the number of subkeys of $(P_i) \cap (P_j)$ which contain at least one point Q_i . Define $l = \min\{C_a - D_a\}$ as a varies in the set of pairs of \mathcal{P} .

Let q be a prime power with $q \geq max\{C_a\} - 1$ as a varies in the set of pairs of \mathcal{P} . Then there exists a (C_a, l, D_a, q) -resilient function f_a and the key K_{ij} is thus an element of $[GF(q)]^l$: precisely $f_a(x_1, \ldots, x_{C_a})$ denoting by x_i a common subkey of the pair $a = (P_i, P_j)$. Now the information rate and the total information rate are respectively $\frac{l}{max\{(P): P \in \mathcal{P}\}}$ and $\frac{l}{|\mathcal{B}|}$, [16, Theorem 3.5]. The value l improves the efficiency of the KDP and we have chosen l as large as possible.

Let now go back to \mathcal{M}'_{J} and $\mathcal{K}_{4}(s, u, t)$. In the first case we obtain $C_{a} = p2^{m-1}$ and

 $D_a = (p-1)2^{m-1}$ for each pair a. Let q be a prime power with $q \ge 2^{m-1}p-1$ and let f be a $(p2^{m-1}, 2^{m-1}, (p-1)2^{m-1}, q)$ -resilient function. Each subkey is an element of GF(q) and then it can be represented by an r-bit string with $2^r \ge q$. Recall that the length of each subkey must be $\lceil \frac{n}{2^{m-1}-1} \rceil$, where n denotes the length of each key. Therefore we must take n in such a way that $\lceil \frac{n}{2^{m-1}-1} \rceil \ge r$. An easy calculation shows that it is possible to take n in such a way that $\lceil \frac{n}{2^{m-1}-1} \rceil = r$. This leads to the storages: $\overline{\rho} = p(2^m-1)2^{m-1}r$ and $\beta = p(2^m-1)2^{m-1}2^mr$. With r the smallest

value satisfying the relation $2^r \ge q$. The information and total information rates are: $\frac{1}{p(2^m-1)} \text{ and } \frac{1}{p2^m(2^m-1)} \text{ respectively. In } \mathcal{K}_4(s,u,t) \text{ we obtain } C_a = p(2^m+1) \text{ and } D_a = (p-1)(2^m+1). \text{ Let } \bar{q} \text{ be a prime power with } \bar{q} \ge (2^m+1)p-1 \text{ and let } \bar{f} \text{ be a } (p(2^m+1), 2^m+1, (p-1)(2^m+1), \bar{q}) \text{-resilient function. Each subkey is an element of } GF(\bar{q}) \text{ and then it can be represented by a } \bar{r} \text{-bit string with } 2^{\bar{r}} \ge \bar{q}. \text{ As before, denoting by } \bar{n} \text{ the length of each key, we must take } \bar{n} \text{ in such a way that } \lceil \frac{\bar{n}}{2^m} \rceil \ge \bar{r}.$

It is possible to take \bar{n} with $\lceil \frac{\bar{n}}{2^m} \rceil = \bar{r}$. This leads to the storages: $\overline{\rho} = p(2^m + 1)2^m \bar{r}$ and $\beta = p(2^m + 1)2^{2m} \bar{r}$. With \bar{r} the smallest value satisfying the relation $2^{\bar{r}} \geq \bar{q}$. The information and total information rates are : $\frac{1}{p2^m}$ and $\frac{1}{p2^{2m}}$ respectively.

The efficiency of \mathcal{M}_J' is better than the efficiency of $\mathcal{K}_4(s,u,t)$. Furthermore $\bar{q} \geq q$ which implies $\bar{r} \geq r$ so that the storages of \mathcal{M}_J' are better (smaller) than the storages of $\mathcal{K}_4(s,u,t)$.

References

- [1] C.H. Bennett, G. Brassard and J.M. Robert, *Privacy amplification by public discussion*, SIAM J. Comput. **17** (1988), 210–229.
- [2] R.C. Bose, On the applications of the properties of Galois fields to the construction of hyper-Graeco-Latin squares, Sankhyā 3 (1938), 323-338.
- [3] B. Chore, O. Goldreich, J. Hastad, J. Friedman, S. Rudich and R. Smolensky, *The bit extraction problem or t-resilient functions*, Proc. 26th IEEE Symposium on Foundations of Computer Science (1985), 396–407.

- [4] K. Gopalakrishnan, A study of correlation-immune, resilient and related cryptographic functions, PhD Thesis, University of Nebraska-Lincoln, 1994.
- [5] J.W.P. Hirschfeld, Projective geometries over finite fields, Clarendon Press, Oxford 1979-XII.
- [6] C.M. O'Keefe, Key distribution patterns using Minkowski planes, Designs Codes and Cryptography 5 (1995), 261–267.
- [7] C.M. O'Keefe, A comparison of key distribution patterns constructed from circle geometries, Advances in Cryptology, AUSCRYPT '92, Springer-Verlag, Berlin. Lecture Notes in Computer Science 718 (1992), 517–527.
- [8] C.J. Mitchell and F.C. Piper, Key storage in secure networks, Discrete Applied Math. 21 (1988), 215–228.
- [9] M. Meschiari and P. Quattrocchi, Una classificazione delle strutture di incidenza associate a insiemi di sostituzioni strettamente 3-transitivi finiti, Atti Sem. Mat. Fis. Univ. Modena 24 (1975), 123-141.
- [10] K.A.S. Quinn, Combinatorial structures with applications to information theory, PhD thesis, RHBNC, University of London, (1991).
- [11] K.A.S. Quinn, Some construction for key distribution patterns, Designs, Codes and Cryptography 4 (1994), 177–191.
- [12] P. Quattrocchi, Sugli insiemi di permutazioni strettamente 3-transitivi finiti, Atti Sem. Mat. Fis. Univ. Modena 24 (1975), 279–289.
- [13] P. Quattrocchi, Insiemi planari di permutazioni, Atti Sem. Mat. Fis. Univ. Modena 36 (1988), 141–151.
- [14] P. Quattrocchi and G. Rinaldi, *Finite tangent-circle structures*, Research and Lecture Notes in Mathematics, Combinatorics '88, Mediterranean Press **2** (1988), 349–357.
- [15] G. Rinaldi, Key Distribution Patterns using tangent circle structures, Designs, Codes and Cryptography, 31 (2004), 289–300.
- [16] D.R. Stinson, On some methods for unconditionally secure key distribution and broadcast encryption, Designs Codes and Cryptography 12 (1997), 215–243.
- [17] D. Welsh, Codes and Cryptography, Oxford University Press (1988).