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Abstract

Key distribution patterns, as defined in Mitchell and Piper, Discrete Ap-
plied Math. 21 (1988), 215-228, are finite incidence structures satisfy-
ing a certain property which enables them to be applied to a problem
in network key distribution. Few examples of key distribution patterns
are known. In this paper we present new examples of finite Minkowski
tangent-circle structures, (Quattrocchi and Rinaldi, Research and Lecture
Notes in Mathematics, Combinatorics ‘88, Mediterranean Press 2 (1988),
349-357) and show how to construct key distribution patterns from them.

1 Introduction

The Minkowski tangent-circle structures were introduced in [13] and [14] as a gener-
alization of Minkowski planes. More precisely, a Minkowski tangent-circle structure
of finite order s, s > 2, is an incidence structure M = (P, B, G, G>) where P is a set
of (s+1)% points, B is a set of subsets of P (circles), G; and G, are respectively sets
of s + 1 disjoint subsets of P (generators) which partition P and:

(1) Each circle has exactly one point in common with each generator;
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(ii) Each generator contains s + 1 points and each generator of G; intersects each
generator of G, at exactly one point;

(iii) For every pair of points P and @) not lying on the same generator and for every
circle B with P ¢ B and Q € B, there exists a unique circle C such that
P, € C and C and B are tangent at Q.

A set of points no two of which belong to the same generator is called a set of
independent points.
The incidence structure M satisfies the following properties (see [14]):

(i) There is a fixed number w of circles, 1 < u < s — 1, containing any two given
independent points;

(ii) At most one circle contains any three given independent points;
(iii) There are su circles containing any given point;

(iv) The total number of circles is s(s + 1)u.

The number u is called the degree of M. Each Minkowski plane of order s is a
Minkowski tangent-circle structure of order s and degree s — 1, as well as each affine
plane of order s is a Minkowski tangent-circle structure of order s —1 and degree 1. If
s = 1(2), the relation u = *5* is a necessary condition for a finite Minkowski tangent-
circle structure to be contained in a Minkowski plane of the same order, [13], [14].
The known finite Minkowski planes of odd order p™, p prime, [9], properly contain
Minkowski tangent-circle structures of the same order p™ and degree pm;l, [14].
Moreover a Minkowski plane of even order (which is necessarily the (B)-geometry
associated with a group PGL(2,2™), [12]) does not contain Minkowski tangent-circle
structures of the same order properly, [14]. It is still an open problem to find examples
which cannot be embedded in a Minkowski plane. An example was constructed in
[13] using points and lines of the affine plane AG(2,2™) together with a family of
conics. In this paper we generalize this example using a suitable family of ovals.
We show that the method given in [15] can be applied to these new examples to
construct key distribution patterns.

2 Examples of finite Minkowski tangent-circle structures of
even order

Let K = GF(2™) and 0 € AutK with 0 : ¢ — 22 Let I = {h € N1 < h <
m, (h,m) =1}, and a,b € K, a # 0; the set 027,, ={(z,y)|ly = az® + b} is an oval in
AG(2,2™) which is tangent to the line at infinity, [5]. Its tangent lines are all those
of equation y = k,k € K, together with the line at infinity. The lines of equation
x = k contain the point at infinity of the oval and intersect the oval in exactly one
affine point. For every pair of points (z1,31), (@3, y2) with 1 # x5 and y; # y» and
for every h € I there exists exactly one oval 02,(, passing through (z1,y1), (@2,92). In
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fact the equations y; = ax%h + b, Yo = am%h + b have exactly one common solution
for (a,b). Let p # 1 be the smallest factor of m. We prove the following:

Proposition 1. Let b,k € I. If h # k and (k —h,m) =1, then |0}, N6k | € {0,2}.
If h=Fk and Gg,b # 02(1, then |0(’;,b N Gf,d| = 0,1 according to a = ¢ or a # c.

Proof. Suppose |6 ,N0% ;| = s, then the equation az?" +b = cx?* +d or equivalently
a4 b7 " = " 442" has exactly s solutions in K. If (k—h,m) = 1, the
curve y = ¢ "2 " 442" is an oval in AG(2,2™), [5], and s € {0,2}. Suppose now
h = k, then we obtain " "z + b*" " =¥ "z + d*" " and the assertion follows. O

Let T C I be a set such that k —h € I U {0} for every h,k € T.

Proposition 2. If m = 0(2), then |T'| = 1. If m = 1(2), then |T| < p— 1, where p
15 the smallest prime dividing m.

Proof. Suppose m = 0(2), let h, k be distinct elements of I, then h — k = 0(2),
h —k ¢ I and the first assertion follows. Let now m = 1(2), let h,k € T, h # k, let
q be a factor of m, then the relation (h — k,m) = 1 implies h # k(g). The prime p
is the smallest factor of m, then h # k(p). This implies |T| < p — 1. O

We can find a set T of maximal length p — 1 simply taking T = {i|l < i < p}.
Denote by R the set of lines of AG(2,2™) with equation y = ax + b, a # 0. Let
h e T and ©" = {0, a,b € K,a # 0}. To standardize the notation set R = ©°
and T = T U {0}. For each subset J C T, J # (), denote by M; = (P,B,G1,Gs)
the incidence structure defined in the following manner: P is the set of points of
AG(2,2™), B = {©"h € J}, G, and G, are the sets of lines of AG(2,2™) with

equation z = k and y = k, k € K respectively.

Proposition 3. The incidence structure M is a Minkowsk: tangent-circle structure
of order 2™ — 1 and degree |J| < p.

Proof. It follows from Proposition 1 observing that for each pair of independent
points (z1,1), (22,y2) there is exactly one oval of ©" h € T, containing them, and
from the fact that each line of R intersects each oval of ©", h € T, in either 0 or 2
points. O

When J = {0,2} we reobtain the example of [13], when J = {0}, we have the
affine plane of order 2™ which is a finite tangent-circle structure of order 2™ — 1 and
degree 1.

3 Examples of Key Distribution Patterns

A key distribution scheme (KDS) is a method of distributing secret pieces of informa-
tion to nodes in a network in such a way that any pair of nodes can compute a secure
common key. This information is generated and distributed by a trusted server which
is active only at the distribution stage. In [8] Mitchell and Piper proposed the use
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of a certain special kind of incidence structure to give a KDS. They called such an
incidence structure a key distribution pattern (KDP). Their basic idea was that of
issuing each node with a set of subkeys and each key to be used by a pair of nodes
is made up from a combination of some of these subkeys. The combining should be
done using a publicly known function which takes a specified number of subkeys as
arguments and yields an n-bit symmetric key. For increased security, the function
should be one-way. Suppose we think of the set of nodes as the set of points P and
the set of subkeys as the set of blocks B of an incidence structure X = (P, B,Z). The
incidence relation Z between points and blocks is defined so that a point is incident
with a block if the corresponding node posesses the corresponding subkey. Denote
by (P) the set of blocks incident with the point P, then the symmetric key Kj; of P
and P; is generated by the subkeys in (P;) N (P;). Following Mitchell and Piper, let
|P| = v, v >3, and let w be an integer with 1 < w < v — 2. The incidence structure
K = (P,B,Z) is called a w-KDP (w-key distribution pattern) if for every pair of
points P;, P; we have:

for any point Qy,...,Q, € P —{P;, P;}.

Condition (*) ensures that P; and P; share at least one subkey not in any of
(Q1)---,(Qu)- Let N be the set of positive integers and let [ : B — N be a mapping
which simply assigns to each subkey z the number I(z) of bits it contains; we call
such a mapping a length mapping. Denote by L, the mapping Ls : B — {s}. A
length mapping [ is said to be w-secure if for each pair P;, P; € P and for each set
of w points Q1,...Qy € P —{P;, P;} we have:

ze((P)N(P;)—UiL,1(Qs)

where n is the number of bits comprising each key. The condition insures that even

if @1,...,Q pool their subkey sets, their chance of guessing the common key K ;
between P; and P; is no greater than that of someone who knows none of the subkeys
in (P;) N (P;). Obviously Ly is a w-secure length mapping for any w-KDP.

Let K = (P,B,I) be a w-KDP and let P be a point of K. Let [ be a w-secure length
mapping for K. The node storage pp at P is defined as follows: pp = >_ (p)!(z). The
average node storage p of (K, 1) is the average of the node storages. The total storage
B of (K,1) is the total number of bits in the subkeys of K, that is: 8 =} _gl(z).
The length mapping [ is said to be optimal if there is no w-secure length mapping I’
such that either the node storage of (K,1') is less than p or the total node storage of
(K, 1) is less than £.

Let m be the greatest value such that

((P) N (7)) = J(@u)] 2 m

k=1
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for every pair P;, P; € P and for any @, ...,Q, € P —{P,, P;}. Quinn proved that
Lr=q is an optimal constant w-secure length mapping for K, [10]. The number m is
said to be a w-residue of K.

If we consider the trivial w-KDP on v nodes, that is a 2 — (v,2,1) design, then w =
v—2, L, is an optimal (v — 2)-secure length mapping, p = (v —1)n and g = @
This is the standard against which all other w-KDPs are compared. Examples of
KDPs have been constructed using the so called circle geometries (Inversive, Laguerre
and Minkowski planes), [6], [7], using families of conics in finite affine Deasrguesian
planes [11], and using tangent-circle structures, [15]. All these examples work on
either ™, (r?™ + 1), 7™ 4+ 7™ or (r™ + 1)? points, r a prime. In this paper we
give a family of examples working on 22™ points, m odd. More precisely, let m € N
be an odd positive integer and let p # 1 be the smallest factor of m. Let M; be
the Minkowski tangent-circle structure of order s = 2™ — 1 and degree u = |J|,
constructed in Proposition 3. When u > 2, M provides an example of w—KDP,
with 1 < w < u — 1 ([15, Proposition 2]). Denote by B the set of circles of M,
together with the pairs {P;, P;} where P; and P; are distinct points which lie on one
and the same generator. Let [ : B — N be the length mapping defined by either
I(r) = [-2=] or n, according to x is a circle of M or not. The map [ is a w-secure
length mapping, [15], leading to the storage:

p = sul =] +2sn

f=s(s+ul2-]+s(s+1)°n

and we obtain the following table:

M,
U 2<u<p
w u—1
v 22m
poun - D[]+ 22" - n
B | u(@m —1)2m[2] + (2™ — 1)2mp

Another KDP can be obtained from M applying [15, Proposition 3]. Precisely,
suppose the existence of ¢ > 2 permutations 7 . .. 7 on the point-set of M ; satisfying
the following property:

(1) for each ordered pair (7,7), with 1 < 4,5 < t, ¢ # j and for each pair P, P,
of points, if 7;(P;) and m;(P,) lie on a same generator, then m;(P;) and m;(Ps)
are independent.

Under this condition denote by M/, the incidence structure (P, E_) which is defined
as follows. The point-set P is the point-set P. The block-set B is the set of all
blocks 7;*(C) as C varies in B and 7; varies in {m,...,m}. It does not matter if
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some blocks are repeated. For each w with 1 < w < u — 1, let I : B — N be the
length mapping defined by I(z) = [—j7=g |- It was proved in [15] that [ is a w-
secure length mapping leading to the following storages: 5 = u(2™ — 1)tfm],
B =u(2™ — 112" [ =57 and to the following table:

M
U 2<u<p
w u—1
) 22m
p | w2 =Dt gt |
B u™ = D2 [ gt |

If we take the maximal values u = p and w = p — 1 then we have the maximal
security. Furthermore the storages p and § depend on t. In particular their values
decrease as t increases. A minor adaptation of the proof of [6, Lemma 3.3] shows
that the existence of N mutually orthogonal latin squares of order 2™ give rise to
L% + 1] permutations with the property (i). In particular 2™ is a power of a prime
so that we can take for N each value from 1 to 2™ — 1, [2], therefore we have
t < [FL +1] = 2™ We can compare our new models to those obtained from
circle geometries, see [7], [11] and [15]. Our models involve 22™ nodes. The same
number 2*™ can be found in the models constructed in [7] starting from a Laguerre
plane of order s, when s = 2™, and in [11, Theorem 7.8]. In some cases our examples
yield better parameters, in fact the models of [7] and [11] both lead to the following
table, see [7, Table 1]:

Ka(s,u,t)
U 2<u<s
t | 2<t<s+1
w u—1
v s?
ﬁ 7fu5|—t1uw)-|
2 n
B | tus* leptea |

If s = 2™ and u = p, where p is the smallest prime factor of m, we can compare the
two models. In M/, the best chioce for ¢ is ¢ = 2! which leads to the storages:

- m m— n m m—1lom n
p=p2m—1)2 1[2%1 — 11 and 8 = p(2™ — 1)2m~12 [mel — 11.
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In the models of [7] and [11] the best choice for ¢ is t = 2™ 4 1 which leads to:
p=(2m+ 1p2n (o] and § = (27 + 1)p2*m [ ],
The total number of subkeys in M/, is less then the total number of subkeys of

Ku(s,u,t). Despite that we take the same n, the length of each subkey in M/ is

greater than the length of each subkey in K4(s,u,t), but a suitable choice for n (for
example take n in such a way that 2[2%] >0 1) leads to smaller storages

in M/,

om=1_1

4 Information rates and resilient functions

Let K = (P,B,Z) be a w—KDP. Let U be the finite set of keys. There will be
some probability distribution associated with each key K;; and f(ij will denote a
random variable defined on ¢/ having that probability distribution. Denote by Up,
the set of all possible secrete subkeys distributed to user P; and Upi denotes a random
variable which assumes values Up, according to a probability distribution. Following
the lines of [16] the efficiency of the KDP can be mesured by the amount of secret
information that is distributed to each user. The information rate is thus defined to

H(K:
be min{ HEU% : P, € P}, where H denotes the entropy function, (for a definition
P;
of the entropy function see [17]). Let ¢ be a prime power and suppose each subkey
of K to be an element of GF(q). The symmetric key K;; of two points P; and P;
is thus the sum of their common subkeys. A key Kj; is equally likely to be any

element of GF(q), in which case H(kK;;) = logq. Furthermore a user P; recives (F;)
values of GF(q), and each value is equally likely to be any element of GF(q), so that
1

H(P;) = (P;)logg. Therefore the information rate of a KDP is

{maz(P;): P, € P}

and the total information rate is [16, Theorem 3.1]. The information rate and

1
. . BI" "
the total information rate of a KDP are in general low values.

In [16] Stinson described a method to improve them, and then to improve the
efficiency of a KDP, using resilient functions. We review this approach. An (n,l,t,q)-
resilient function is a function f : [GF(q)]" = [GF(q)]' which satisfies the property
that if the values of ¢ of the n inputs are fixed, and the remaining n — t inputs
are chosen independently at random from GF(q), then all possible output [—tuple
are equally likely to occur. Resilient functions were introduced in [1] and [3]. As an
example, the function f : [GF(q)]" = GF(q) defined as f(zy,...,z,) = z1+- -+,
is an (n,1,n — 1,¢)-resilient function. (It is used above to determine the key Kj;
when two nodes have n subkeys in common). It can be shown that [ < n — ¢ in
any resilient function. A construction of resilient functions with [ = n — ¢t can be
found in [4], more precisely, if ¢ is a prime power such that ¢ > n — 1, then there
exists a (n,n — t,t,q)-resilient function. For each pair a = (P, P;) of points of K
and for each set {Qy,...,Q,} C P —{P;, P;}, denote by C, the number of subkeys
in (P) N (P;) and by D, the number of subkeys of (P;) N (P;) which contain at
least one point Q;. Define | = min{C, — D,} as a varies in the set of pairs of P.
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Let ¢ be a prime power with ¢ > maz{C,} — 1 as a varies in the set of pairs of
P. Then there exists a (Cy, [, Dy, q)-resilient function f, and the key K;; is thus an
element of [GF(q)]": precisely fu(z1,...,2z¢,) denoting by x; a common subkey of
the pair @ = (P, P;). Now the information rate and the total information rate are

respectively [16, Theorem 3.5]. The value [ improves

az{(P): P € 77} |B|
the efficiency of the KDP and we have chosen [ as large as possible.

Let now go back to M'; and K4(s, u,t). In the first case we obtain C, = p2™~! and
D, = (p—1)2™7 for each pair a. Let ¢ be a prime power with ¢ > 2™~!p—1 and let
f bea (p2m~t,2m~1 (p — 1)2™~1 g)-resilient function. Each subkey is an element of
GF(q) and then it can be represented by an r-bit string with 2" > ¢. Recall that the

length of each subkey must be [ 1, where n denotes the length of each key.

om=1 _1

Therefore we must take n in such a way that | ] > r. An easy calculation

n
gm-1 _
shows that it is possible to take n in such a way that [71 = r. This leads to

the storages: p = p(2™ — 1)2™"!r and 8 = p(2™ — 1)2m 12mr. With r the smallest
value satisfying the relation 2" > ¢. The information and total information rates are:
1

P2 =) and (= 1) respectively. In K4(s,u,t) we obtain C, = p(2™ + 1)

and D, = (p—1)(2™+1). Let g be a prime power with ¢ > (2™ +1)p—1 and let f be
a (p(2™+1),2m+1,(p—1)(2™ + 1), g)-resilient function. Each subkey is an element
of GF(J) and then it can be represented by a 7-bit string with 2" > . As before,

denoting by 7 the length of each key, we must take 7 in such a way that [2%1 > 7.

It is possible to take 1 with [2%1 = 7. This leads to the storages: p = p(2™ + 1)2™F
and 8 = p(2™ + 1)2*™F. With 7 the smallest value satisfying the relation 27 > g.

1
The information and total information rates are : —om d — respectively.
2

The efficiency of M/, is better than the efficiency of IC4(5,u,t). Furthermore
g > ¢ which implies 7 > r so that the storages of M/, are better (smaller) than the
storages of K4(s, u,t).
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