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Abstract

If z is a vertex of a digraph D, then we denote by d*(z) and d~(z) the
outdegree and the indegree of x, respectively. The global irregularity of a
digraph D is defined by i4(D) = max{d*(z),d” (z)} —min{d*(y),d (y)}
over all vertices  and y of D (including z = y). If i,(D) = 0, then D is
regular and if i,(D) < 1, then D is almost regular.

A c-partite tournament is an orientation of a complete c-partite graph.
In a recent article, the authors proved that in an almost regular c-partite
tournament with ¢ > 7 and at least two vertices in each partite set,
every arc of D is contained in a directed cycle of length n for each n €
{4,5,...,c}.

Now, the aim is to extend this result to those almost regular multi-
partite tournaments with only one vertex in the smallest partite set. In
the case that ¢ = 7, the above mentioned result does not rest valid, if
there is only one vertex in the partite set of the smallest cardinality. But
for ¢ > 8 it does, as we will show in this paper.

1 Terminology and introduction

In this paper all digraphs are finite without loops and multiple arcs. The vertex
set and arc set of a digraph D is denoted by V(D) and E(D), respectively. If zy
is an arc of a digraph D, then we write x — y and say x dominates y, and if X
and Y are two disjoint vertex sets or subdigraphs of D such that every vertex of X
dominates every vertex of Y, then we say that X dominates Y, denoted by X — Y.
Furthermore, X ~» Y denotes the fact that there is no arc leading from Y to X. For
the number of arcs from X to Y we write d(X,Y). If D is a digraph, then the out-
neighborhood Nj;(z) = NT(z) of a vertex z is the set of vertices dominated by z and
the in-neighborhood Np,(x) = N~ (z) is the set of vertices dominating z. Therefore,
if there is the arc xy € E(D), then y is an outer neighbor of & and x is an inner
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neighbor of y. The numbers d},(x) = d*(x) = |[NT(z)| and d(z) = d~(z) = [N~ ()]
are called the outdegree and indegree of x, respectively. For a vertex set X of D, we
define D[X] as the subdigraph induced by X. If we speak of a cycle, then we mean a
directed cycle, and a cycle of length n is called an n-cycle. If we replace in a digraph
D every arc zy by yz, then we call the resulting digraph the converse of D, denoted
by D7L.

There are several measures of how much a digraph differs from being regular. In
[13], Yeo defines the global irregularity of a digraph D by

io(D) = max {d"(o).d"(0)} = win {d"(s).d"(0)}
If iy(D) = 0, then D is regular and if iy(D) < 1, then D is called almost regular.

A c-partite or multipartite tournament is an orientation of a complete c-partite
graph. A tournament is a c-partite tournament with exactly ¢ vertices. If V1, V5, ..., V,
are the partite sets of a c-partite tournament D and the vertex x of D belongs to
the partite set V;, then we define V() = V;. If D is a c-partite tournament with the
partite sets Vi, Vs, ..., V. such that |Vi| < Vo] < ... < |V[, then |V.| = a(D) is the
independence number of D, and we define y(D) = |V4|.

It is very easy to see that every arc of a regular tournament belongs to a 3-cycle.
The next example shows that this is not valid for regular multipartite tournaments
in general.

Example 1.1 Let C,C’, and C" be three induced cycles of length 4 such that C —
C'" — C" = C. The resulting 6-partite tournament Dy 1s 5-reqular, but no arc of the
three cycles C,C',C" is contained in a 3-cycle.

Let H, Hy, and Hs be three copies of Dy such that H — Hy — Hy — H. The
resulting 18-partite tournament is 17-regular, but no arc of the cycles corresponding
to the cycles C,C", and C" is contained in a 3-cycle.

If we continue this process, we arrive at regular c-partite tournaments with arbi-
trary large ¢ which contain arcs that do not belong to any 3-cycle.

In 1998, Guo [3] proved the following generalization of Alspach’s classical result
[1] that every regular tournament is arc pancyclic.

Theorem 1.2 (Guo [3]) Let D be a regular c-partite tournament with ¢ > 3. If
every arc of D is contained in a 3-cycle, then every arc of D is contained in an
n-cycle for each n € {4,5,...,c}.

Now, the aim was to carry this result forward to almost regular multipartite
tournaments, however without the strong hypothesis that every arc is contained in
a 3-cycle. To reach this, Volkmann [8] started with the following theorem.

Theorem 1.3 (Volkmann [8]) Let D be an almost regular c-partite tournament
with the partite sets Vi,Va,..., Ve such that V1| = |Va| = ... = V| =r > 2. If
¢ > 6, then every arc of D is contained in an n-cycle for each n € {4,5,...,c}.
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However, not all almost regular c-partite tournaments were considered in this
theorem. According to an article of Tewes, Volkmann and Yeo [7], the following
lemma holds:

Lemma 1.4 (Tewes, Volkmann, Yeo [7]) IfVi,Vs,...,V. are the partite sets of
an almost regular c-partite tournament, then ||Vi| —|V;|| < 2 for 1 <i,j < n.

Using this lemma, Volkmann and Winzen [11] extended Theorem 1.3 to the fol-
lowing result.

Theorem 1.5 (Volkmann, Winzen [11]) Let D be an almost regular c-partite
tournament with at least two vertices in every partite set. If ¢ > 7, then every
arc of D is contained in an n-cycle for each n € {4,5,...,c}.

Now, the aim is to carry this result over to those almost regular multipartite tour-
naments, which also contain partite sets consisting of only one vertex. If V1, V5, ..., V,
are the partite sets of the almost regular multpartite tournament D such that ¢ > 8
and |V1| = [Vo] = ... =|V,| = 1, then D is a tournament and a theorem of Jakobsen
[5] yields the desired result.

Theorem 1.6 (Jacobson [5]) Let D be an almost regular tournament with ¢ > 8
vertices. Then every arc of D is contained in an n-cycle for each n € {4,5,...,c}.

A first result for all almost regular c-partite tournaments with ¢ > 8, was pre-
sented by Volkmann [10].

Theorem 1.7 (Volkmann [10]) Let D be an almost regular c-partite tournament.
If ¢ > 8, then every arc of D is contained in a 4-cycle.
If c =7 and there are at least two vertices in every partite set, then every arc of
D is contained in a 4-cycle.

In this paper, we show that in all almost regular c-partite tournaments with
¢ > 8, every arc is contained in an n-cycle for each n € {4,5,...,c}. Because
of the Theorems 1.5, 1.6, and Lemma 1.4, we have to investigate the case that
1= Vi < V3l < .. < Vi < 3 and V| > 2.

For more information on multipartite tournaments see [2, 3, 4, 6, 9, 12].

2 Preliminary results

The following results play an important role in our investigations:

Lemma 2.1 (Tewes, Volkmann, Yeo [7]) If D is an almost regular multipartite
tournament, then for every vertex x of D we have

VD) —a(D) -1 _

5 <

UIESTEES

d*(z),d"(x)
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If we know the cardinality of the partite set V(z), then we can specialize the
previous lemma:

Lemma 2.2 (Volkmann, Winzen [11]) If D is an almost regular multipartite tour-
nament and « a vertez of D with |V (z)| = p, then

VD)|-p—-1 V(D)| - 1
2 2
In this article we treat the case of an almost regular multipartite tournament D
with a(D) =2 or a(D) = 3 and (D) = 1. Therefore, we note that the digraphs of

this paper cannot be regular. Furthermore, we can remark the following.

Remark 2.3 If a(D) = 3, 7(D) = 1 and i,(D) < 1, then the value of |V(D)| — 1
has to be even. So the bounds in Lemma 2.2 can be improved by

ar(@).d (@)= I3 i ) =
a*(@).d-(@) = COIZL i vy =1,

Now let us summarize some results of Lemma 2.2 and Remark 2.3.

Corollary 2.4 Let Vi,Va,..., V. be the partite sets of an almost regular c-partite
tournament D. If 1 = |V1| < |Va| < ... < |Ve| < 3, then for every vertex x of D we
have V(D 3

% < df(z),d (x).

3 Main results

Theorem 3.1 Let D be an almost regular c-partite tournament with the partite sets
Vi, Vay oo, Ve such that 1 = |Vi| < V| < ... <|Vo| €3 and |V,| > 2. If ¢ > 8, then
every arc of D is contained in an n-cycle for each n € {4,...,c}.

Proof. We prove the theorem by induction on n. For n = 4, the result follows
from Theorem 1.7. Now let e be an arc of D and assume that e is contained in an
n-cycle C' = aqaias .. .a, with e = a,a; and 4 < n < ¢ — 1. Suppose that e = a,a,
is not contained in any (n + 1)-cycle.

Obviously, |V(D)| =c+kwith1 <k <c—-1,if |[V]=2and 2 <k < 2c—2,if
|Vz| = 3. Firstly, we observe that, if n =4 and |V,| =2 or n < 5 and |V,| = 3, then
Nt (v)=V(C) # 0 for each v € V(C), because otherwise Corollary 2.4, the fact that
E > 1 (respectively, k > 2) and ¢ > 8 yield the contradiction

k —
1= VO] 2 d ) +2> T s

or L 3
52 VO] 2 dHw) +2> T 2,

2
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Analogously, one can show that N~ (v) —V(C) # 0 for each v € V(C), in these cases.

Next, let S be the set of vertices that belong to partite sets not represented on
C and define

X ={z € S|C — z}, Y={yeSly— C}

Assume that X # 0 and let 2 € X. It follows that N~ (v) =V (C), Nt(v)=V(C) # 0
for each v € V(C), because otherwise, we have d~(v),d"(v) <n —2and d™(z) > n,
a contradiction to i,(D) < 1. If there is a vertex w € N~ (a,) — V(C) such that
x — w, then aya1ay ... ap_2xway, is an (n+1)-cycle through a,a, a contradiction. If
(N~ (az) — V(C)) = 2, then [N~ (2)] 2 [N~(r) — V(C)| +V(C)| > IN~(az)] +2, a
contradiction to the hypothesis that i,(D) < 1. If there exists a vertex b € (N~ (a,)—
V(C)) such that V(b) = V(z), then b is adjacent with all vertices of C'. In the case
that N=(b) N V(C) # 0, let | = maxj<i<p—1{ila; = b}. Then aya;...abajs; .. .an
is an (n 4 1)-cycle through a,ai, a contradiction. It remains to consider the case
that N~ (b) NV(C) = 0. If there is a vertex u € (N~ (b) — V(C)) = N~ (b) such that
x — u, then anaias . .. ap_3zuba, is an (n + 1)-cycle through ana;, a contradiction.
Otherwise, N™(b) — z, and we arrive at the contradiction d~(z) > d~(b) + |V(C)|.
Altogether, we have seen that X # () is not possible, and analogously we find that
Y # () is impossible. Consequently, from now on we shall assume that X =Y = ().

By the definition of S, every vertex of V(C) is adjacent to every vertex of S, and
since n < ¢ — 1, we deduce that S # (). Now we distinguish different cases.

Case 1. There exists a vertex v € S with v — a,. Since Y = 0, there is a vertex
a; € V(C) such that a; — v. If | = max;<;<,—1{f|a; = v}, then a,ay ... qay; ... a,
is an (n 4 1)-cycle through a,a;, a contradiction. This implies a, — S.

Case 2. There exists a vertex v € S with a; — v. Since X = 0, there is a vertex
a; € V(C) such that v — a;. If | = minsci<p—1{ilv = a;}, then aza; ... q_1vq; ... ay
is an (n + 1)-cycle through anaq, a contradiction. This implies S — a;.

Case 3. There exists a vertex v € S such that v — a,_;. If there is a vertex
a; € V(C) with 2 < i < n — 2 such that a¢; — v, then we obtain as above an
(n + 1)-cycle through a,a;, a contradiction. Thus, we investigate now the case that
v = {ai,as,...,a,_1}. Because of S — a1, we note that every vertex of N*(a;)
is adjacent to v. If there is a vertex « € (N (a;) — V(C)) such that « — v, then
ana17TVa304 . . . Gy 1s an (n 4 1)-cycle through a,a;, a contradiction. Therefore we
assume now that v — (N*(a;) — V(C)). This leads to d*(v) > d*(a;) + 1, and
thus, because of i,(D) < 1, it follows that N*(v) = N*t(a;) U {a;} and a; —
{as,as,...,an 1}.

If we define H = N*(a;) — V(C) and Q = N~ (v) — {an}, then HN Q = 0,
SNH=0,and R=V(D)— (HUQUV(v)UV(C)) =0.

If there is an arc wa, with © € H, then a,a1zasa;3 . . . a, is an (n+1)-cycle through
anai, a contradiction. Thus, we assume in the following that ay ~ H.

Subcase 3.1. Let n = 4. At first, let |V,| = 2. If C consists of at most 3 partite
sets, then it has to be |S| > 5 and thus, it follows that d*(as) > 6. On the other
hand, we see that d~(as) < |V(D)| — |S| — [V (as)| — |[{a1}| < 3, a contradiction to
ig(D) < 1. Therefore, D[V(C')] has to be a tournament.
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Now, let |V;| = 3. If V(C) is 2-partite, then we observe that d™(as) > |S|+
1> 7and d (as) < |V(az) — {a1}| < 2, a contradiction to i,(D) < 1. So, let
C contain vertices of only 3 partite sets. If |S| > 6, then we see that d*(as) > 7
and d~(as) < 5, a contradiction. Consequently, it remains to investigate the case
that |S] = 5,¢ = 8,2 < k < 6 and 10 < |V(D)| < 14. Since d(as) > 6, it
follows that 12 < |V(D)| < 14. In view of Remark 2.3, it remains to treat the case
that [V(D)| = 13. If [V(a4)| = 3, then d*(as) = d (aq) = 5, a contradiction to
d*(as) > 6. If |V (ay)| = 3, then d*(a;) = d~(a1) = 5, a contradiction to d~(a;) > 6.
This implies |V (a1)|,|V (as)| < 2 and thus |V(D)| < 12, a contradiction.

Consequently, if n = 4, then it is sufficient to investigate the case that D[V (C)]
is a tournament. We remind that we have shown above that H # (.

Subcase 3.1.1. Suppose that |H| = 1. This implies d*(v) = d*(a;) +1=4. On
the other hand, we see that d*(aq) > |S|+ 1 > 5, a contradiction to i,(D) < 1.

Subcase 3.1.2. Let |H| > 2.

Subcase 3.1.2.1. Assume that |H| = 2 and E(D[H]) = 0, which means that
[Ve| = |V(h)| = 3. Then, it follows that d*(v) = d™(a;) + 1 = 5, which yields

4=d*a) <d (v) = Q| +1< d*(v) =5,

and hence 3 < |Q] < 4. Because of d"(ay) > S|+ 1 > 5, it remains to consider
the case that |S| = 4, d*(as) = 5, ¢ = 8 and ay — a4. Since |S| = 4 and S =
V(v)u(@QNS), we see that we have to investigate the case |Q—S| < 1. It H C V(ay),
then d~(as) < {a2, as}| +|Q — S| < 3, a contradiction to i4(D) < 1. Consequently,
it has to be H — a4 and therefore also H ~» a3, since otherwise ajayasazhay is a
5-cycle, if h € H, a contradiction. Since |V (v)| = 1, at least three vertices of ) have
to belong to NT(a3), because otherwise, we arrive at the contradiction d*(as) < 3.
If there are vertices ¢ € N*(a3) NQ and h € H such that ¢ — h, then ajajasghay is
a b-cycle, a contradiction. It remains to consider the case that H — (Nt (a3) N Q).
If g € QN N*(a3) such that ¢ — as, then asa;hgasaq is a 5-cycle, a contradiction.
Let ¢; € Nt(a3) N QNS # 0 be a vertex such that [N™(¢;) N QN S| > 1. Then we
arrive at d”(q1) > |H| 4+ 1 + |[{as, a3, a4}| = 6, a contradiction to i4(D) < 1.

Subcase 3.1.2.2. Suppose now that |H| > 2 and E(D[H]) # (0. Hence, there is
an arc p — ¢ in E(D[H]). If ¢ — a3, then asa;pgazas is a 5-cycle, a contradiction.
Hence, let a3 ~ ¢. If © € NT(q), then ay ~ x, because otherwise, aja;pgray is a
5-cycle, a contradiction.

Firstly, let ay — ay. Then, we have

N'(as) 2 (N"(q) = (V(C)U (V(as) = {as}))) U (N (¢) N S) U{v,a1,a2} and
N*(q) S (N*(q) = V(C)) U{as}.
If there is a vertex € QN S such that z — ¢, then [N~ (¢) N S| > 1 and we deduce
that
T d*(q) + 1, if |[V(ay)| =3
oz { 0T <

in both cases a contradiction either to Remark 2.3 or to i,(D) < 1. Therefore, let
g — QnNS. If ay — ¢, then similarly, we arrive at a contradiction, and if ¢ € V(a4),
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then we observe that Nt (as) 2 (NT(¢q) — (V(C) U (V(aa) — {as,q}))) U {v,a1,a2}
and we get the same contradiction as above. Hence, let ¢ — a4. Furthermore,
p € V(as), since otherwise, asajaspgas is a 5-cycle, a contradiction. If there is a
vertex £ € @ NS such that © — a3, then asaiqraszay is a b-cycle, a contradiction.
Hence QNS C NT(a3). If there are vertices € N*(a3) and y € N~ (ay) such that
xr — y, then agajaszyay is a 5-cycle, a contradiction. Consequently, we conclude
that N~ (as) ~ NT(a3). Let v; — vy be an arc in E(D[Q N S]). Then, we observe
that d*(vy) < d*(as) — 24|V (as) — {as}|, and thus |V (aq)| > 2. If (V(as) — {as}) =
v, then we see that dt(as) > d*(vs) + 2, a contradiction. If |V(as)] = 3 and
|NT(vg)N(V (as)—{as})| = 1, then it follows that d*(as) > d*(v2)+1, a contradiction
to Remark 2.3. Hence, let vy — (V(as) —{as}). Analogously, we conclude that there
is no vertex w € QNS such that [N~ (w)NQNS| > 2. Let x4, z9, z3 be three vertices
of @ N S belonging to three different partite sets, then they have to form a 3-cycle
and {z1, 2,23} = (V(as) — {as}). Furthermore, we see that a3 — (V(as) — {as}),
because otherwise, if d € V(as4) — {as} such that d — a3, then

(N*(a3) — (V(C)U (V(aq) — {a4,d}))) U{v,a1,a3} and
(N*(as) = V(C)) U {as}.

If |V(as)| = 3, then this implies d*(as) > d*(az) + 1, a contradiction to Remark
2.3. If |[V(as)| = 2, then d¥(as) > d*(az) + 2, also a contradiction. Let f €
V(ag) — {as}. Since N (as) ~ N*(a3) and f € N*(a3), f has outer neighbors only
in N*(as) — {21, 22, 23}, a contradiction to iy(D) < 1.

Secondly, let ay — as. As above, we observe that as ~ (Nt(¢) — V(C)). If
especially V(g) # V(a3), then as ~ ¢ and thus

N*(as) 2 (N*(g)U{g} — (V(C)U(V(as) = {as}))) U{v,a1} and
N*(q) = N*(q)-V(O).

N 1y

This implies
dHq)+1, i [V(as)] =3
+ b
d(as) 2 { A (q)+2. i [V{ay)] <2

The first case is a contradiction to Remark 2.3, and the second case is a contradiction
t0 i4(D) < 1. Analogously, we arrive at a contradiction, if V(¢) = V(a3) and as — ¢.

Let A C H be the set of vertices having an inner neighbor in H. Then, it remains
to treat the case that V(q) = V(as) forallg € A, A — a4 (JA] <2)and 2 < |H| < 4.
If B = H — A, then we conclude that B C V(as), because otherwise, if p € B—V (as)
and q € A, then asa;aspqay is a 5-cycle, a contradiction.

If |[H| = 2, then d*(v) = d*(a;) +1 = 5. Since ag = (V(v)U(QNS)U{a;:}) and
thus d*(as) > 5, this implies that d*(as) =5, [V(v)| =1, |QN S| =3 and H — aq.
If there is a vertex v; € @ NS such that v; — a3, then, as for the vertex v, it follows
that v; — H U {a2}. Hence, we deduce that dt(vy) > |H| + [{v,a1,a2,a3}| = 6,
a contradiction. Thus, let a3 — Q@ N S. If there is a vertex v; € @ N S such that
vy — ¢ with = € {p, ¢}, then asajasvizay is a 5-cycle through e, a contradiction. If
there is a vertex v; € Q@ NS such that vy — a9, then asaiazviasay is a 5-cycle, also
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a contradiction. Let vy,vs € @ N S such that v; = v9. Summarizing our results, we
observe that d~(vs) > |H| + |[{as, as, as,v1}| = 6, a contradiction.

Let |H| = 4, H = {p1,p2,q1,¢2} such that p; — ¢; with 4,5 € {1,2}. Then
dt(v) =d*(a1)+1 =17, |V(az)| = |V(as)| = 3 and because of Remark 2.3 d*(a,) =
d~(gq1) = 6. Since d~(v) = |Q| + 1 > 6, we arrive at || > 5. Furthermore, we see
that N7 (q1) 2 {p1,p2,v,a1,as} . This implies [N~ (g;) N Q| < 1, which means that
INT(g1) N Q| > |Q] — 1 > 4. If there exists a vertex w € N*(g;) N @ such that
w — as, then asa;quwasay is a 5-cycle, a contradiction. Therefore, we have

d+(a2) Z |N+((I1) N Q| + |{a37a‘47q17q2}| Z 87

a contradiction.

Assume now that |H| = 3, H = {p1,ps,q} such that p; — g for i = 1,2. Then
dt(v) = d*(a1) + 1 =6, |V(az)| = 3 and d*(az) = 5. Since d~(v) = |Q] + 1 > 5,
we arrive at |Q| > 4. Furthermore, we see that N~(q) 2 {p1,p2,v,a1,a2}. Since
d (q) =5,if |[V(q)| = 3,and d"(¢q) < 6,if |[V(q)| = 2, we conclude that |[N*t(¢)NQ| >
|Q] — 1 > 3. As above, we see that a; — N*(¢) N Q. Therefore, we have

d™(az) > [N"(q) N Q|+ {as, as, ¢} > 6,

a contradiction.

Consequently, it remains to treat the case that |H| =3 and H = {p, q1, g2} such
that p — ¢; for ¢ = 1,2. Then d*(v) = d*(a;) +1 = 6 and because of Lemma 2.2
and Remark 2.3 we observe that [V (v)| < 2 and |V(D)| = 13. Suppose that there is
a vertex z € {qi,¢2} such that ay — 2. This implies that N~ (z) D {a1, a2, as,p, v}.
Since |V (z)| = 3, Remark 2.3 yields that d~(z) =5 and z — Q. If |V(v)| > 2, then
we conclude that |S| > 5 and thus d*(as) > 7, a contradiction. Hence, let |V (v)| =1
and therefore |Q| = |V/(D)| — |[V(C)| — |H| — |V (v)| = 5. If there is a vertex y € Q
such that y — a9, then asaizyasay is a 5-cycle containing the arc e, a contradiction.
Summarizing our results, we observe that ay — (QU{as, a4, ¢1, ¢2}) and thus d*(as) >
9, a contradiction. Hence, let {q1,q2} — a4. If as — p, then we define the cycle
C’ = 6461626364 = Q401Pg104. We observe that v — ({bl, bZ, bg} @] (N+(bl) - V(C))),
[NT(b1) = V(C)| =3, by — b3 and by — by and as above we find a 5-cycle containing
the arc byb; = asa,, a contradiction. Hence, let p — a4. Let us take three vertices
of @ N S belonging to three different partite sets. Then, since as ~ N*(a3) — V(C),
at least two of them have to be outer neighbors of ajz, because otherwise, there are
vertices vy, vs € @ N S such that as — {v1,v2} — a3, and thus, it follows that

(V(C)U (V(aq) — {as}))) U{v,v1,v9,a1} and
V(C)) U {as}.

N*(as) 2 (N*(az) -
N*(as) = (N¥(as)—
This implies that
X d*(az)+1, if [V(ay)|
d"(as) > { d*(as) +2, it [V(a)|

IA I
o W

in both cases a contradiction.
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Consequently, let Nt(a3) NQ NS D {z,y} such that z — y. If y — aa, then
asaiazyasay is a b-cycle, a contradiction. Hence, we have ay, — y. If y — u with
u € {p,q1,q2}, then asaiazyuay is a 5-cycle, a contradiction. Hence, let {p,q1,q2} —
y. Altogether, we have that N~ (y) 2 {p,q1,q2,¢,a2,a3,as}, a contradiction to
iy(D) < 1.

Subcase 3.2. Let n > 5. If there are vertices © € H and y € @ such that z — y,
then azaizyvay . .. a, is an (n + 1)-cycle, a contradiction. Hence, let Q ~ H.

Subcase 3.2.1. Assume that |H| > 2. At first, let there be an arc p — ¢ in
E(D[H)]). If ¢ — a3, then ayaipgas . ..a, is an (n + 1)-cycle through the arc ayai, a
contradiction. Altogether, we observe that d=(¢q) > |{p,v, a1, a2, a3}| +|Q| — |V (q) —
{g¢}| > |Q| +3 =d (v) + 2, a contradiction to i,(D) < 1.

Consequently it remains to consider the case that E(D[H|) = 0, which means
that |H| = 2 and thus d*(v) = d*(a;) +1 = n 4+ 1. According to Lemma 2.2 and
Remark 2.3, we have |V (v)| < 2. If h € H, then we see that d*(h) < |V(v) — {v}]|+
{as,...,a,}| <n—1, a contradiction to i,(D) < 1.

Subcase 3.2.2. Suppose that |[H| = 1 and h € H. In this case, we observe that
d*(v) = d*(a1)+1 = n. According to Lemma 2.2 and Remark 2.3, we have |V (v)| <
2. Since d*(h) < [V(v) = {v}|+ {as, ..., a,}] < n—1, it follows that d*(h) =n—1,
h € V(az) and |V (v)| = 2. Let ¢ € Q—V(h) # 0. Because of HNQ = (), we conclude
that Q ~ ay. If ay — ¢, then ayaiasghasas . .. a, is an (n+1)-cycle, a contradiction.
If a; » ¢ with 3 < i < n —1, then aya1a3...a;qha;y1...a, is an (n + 1)-cycle,
also a contradiction. This implies that QNS — {v, h, a1, as,...,a,_1}, which means
that d*(p) > n+1,if p € QN S, a contradiction. Hence, we have QN S = @ and
thus S = V(v), n = ¢ — 1 and D[V(C)] is a tournament. Let z be a vertex with
V(z) = {z}. Obviously, we have z € V(C). If ¢ = a; with i € {3,...,n — 1},
then it follows that d=(a;) > |Q — V(h)| + [{ai—1,a1,v,h}| = |Q|+3 =d (v) + 2,
a contradiction to i,(D) < 1. If |[V(ay)| = 1, then we conclude that d~(a;) >
Q]+ |V (v)] + [{an}| = d™(v) + 2, a contradiction. Because of h € V(ay), we observe
that |V (a,)| = 1 and at least n—1 of the n vertices of V(C') belong to partite sets with
at least two vertices. If V| = 3, then we have |Q| > |V (a1) UV (as) U... V(ap_1)| —
{ai,as,...,an—1}| — |H| > n — 1 and d~(v) > n. Together with Remark 2.3, this
implies the contradiction

2n+1=|V(D)|=d*(v)+d (v) +2 > 2n+2.

Hence, let |V,| = 2. But now, for every ¢ € Q we have that ¢ ¢ V(h). Let
there be a vertex ¢ € @ such that dj, () > 1, then we see that d*(q) > dj, 4 (q) +
{v,h,a1,...,an-1} — |V(q) — {¢}| > n+ 1, a contradiction to iy(D) < 1.

Subcase 3.2.3. Assume that |[H| = 0. This yields d*(v) = d™(a;) +1 =n — 1.
Because of i,(D) < 1, it follows that n —1 > d~(v) = |Q| + 1 > n — 2, which means
that n — 3 < |Q] < n — 2. As above we see that @ ~» a;. If there is a vertex
q € Q such that ay — ¢, then a,aias:quay . ..a, is an (n + 1)-cycle containing the
arc e, a contradiction. If there are vertices ¢ € @ and a; € V(C) with a; — ¢ for
3 <i<n-—2, then ayaia;3...a;qua;+; . ..a, is an (n + 1)-cycle, also a contradiction.
Summarizing our results, we observe that @ ~ {ai,as,...,a, 2,v}. Let Ly be the
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set of vertices of @ N S having an outer neighbor in Q. If L, # 0 and ¢; € Ly, then
it follows that d*(g1) > n, a contradiction to i,(D) < 1. Hence, let L; = 0. Let L,
be the set of vertices of @ having an outer neighbor in @. Since |Q| > n — 3 and
|H| # 0, if |Vz| =3 and n = 5 (cf. the beginning of the proof of this theorem), we
conclude that either Ly # ) or Q@ — S = ) and Q NS consists of vertices of only one
partite set. At first let @ — S = @ and let QNS = S — V(v) be one partite set.
If g € QN S, then we conclude that d*(¢) > n — 1, and thus d*(¢) = n — 1 and
|Q] = |V (q)] < 2. Since S consists of only two partite sets, we see that n =c—2 > 6
and thus |Q| > n—3 > 3, a contradiction. Hence, let Ly # 0. If go € Q5 and ¢y — ¢
with ¢q; € @, then we arrive at

I
R

()

2, if |V(g)]
1, if |V(g)|

To get no contradiction to i,(D) < 1 or to Remark 2.3, it follows that we have
equality in (1), djg[Q](qz) =1 and |V(g) N Q| = 1 for all g; € Ly, since otherwise,
if there is a vertex g3 € @ — {q1, g2} such that go ~ g3, then we observe that
N™(q) 2 ({a1,a2, .- an_2,v,q1,q3} — (V(g2) — {¢2}) and the right hand side of (1)
enlarges by one, a contradiction. If S consists of vertices of at least three partite sets,
then, because of R = ) and thus S — V(v) C @, we conclude that @ NS contains
vertices of at least two partite sets, a contradiction to L; = (). Consequently, it
remains to treat the case that S consists of vertices of at most two partite sets.

Firstly, let S consist of vertices of one partite set. This yieldsn = c—1, QNS =0
and @ is a tournament with |@Q| < 3. But now, we see that n — 3 < |Q| < 3, which
means that n = ¢ — 1 < 6, a contradiction to ¢ > 8.

Secondly, let S consist of vertices of two partite sets. This implies that n > ¢ —2.
To get no contradiction in (1), we deduce that [Q NS| =1 and g0 — Q@ NS for all
g2 € Ly. Since |V(g2) N Q| = 1, it follows that |Q| < 2, and thus n — 3 < |Q] < 2,
which means that ¢ — 2 < n <5, a contradiction to ¢ > 8.

Summarizing the investigations of Case 3, we see that there remains to consider
the case that a,_; — S.

Case 4. There exists a vertex v € S such that ay — v. If we consider the
converse of D, then, analogously to Case 3, it remains to treat the case that S — a,.

If C =ayaqas...a, and v € S, then the following three sets play an important
role in our investigations

#a0) 2 Honan a1V ()l 2

H = NT(a,) = V(C), F =N"(a,) —V(C), Q=N"(v)—-V(C).

Summarizing the investigations in the Cases 1 - 4, we can assume in the following,
usually without saying so, that

{an-1,a,} = S = {a1,a2} ~ H (2)

Case 5. Let n = 4. Because of (2), we see that {as,as} = S — {a1,a,}. Hence,
we conclude that N*(as) 2 S U {a;}. Analogously as in Subcase 3.1, we observe
that D[V (C)] is a tournament.
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Subcase 5.1. Let a; — az. If aa — a4 and v € §, then aqaiasvasay is a 5-cycle,
a contradiction. Consequently, let ay — ay. If there are vertices v € S and « € F
such that v — z, then asaiazvras is a b-cycle, a contradiction. Hence, let FF — S.
If we take vertices v,w € S such that v — w, then we have N~ (as) = F U {a3} and
N~ (w) D FU{as,a4,v}, a contradiction to i,(D) < 1.

Subcase 5.2. Let a3 — a; and assume that a; — a4. If there are vertices v € S
and x € H such that x — v, then aga1xvasa4 is a 5-cycle, a contradiction. Otherwise,
we have S — H. If we take two vertices v, w € S such that v — w, then we observe
that N*(a;) = HU{as} and N*(v) D {a1,as,w} U H, a contradiction to i4(D) < 1.

Finally, let a4 — as. Because of Corollary 2.4, it follows that

c+k=V(D) > [H[+|F|+|S|+|V(C)|-|HNF]|
> C+l;_3—1+C+Z_3—1+4+4—|H0F|

c+k+3—-|HNF]|,

which leads to |[HNF| > 3. Thus, HNF contains vertices of at least two partite sets.
Now, we take two vertices us,us € HNF such that uy — uz. Then, C' = asa;usuzay
is a cycle through asa; such that a; — uz and us — a4. Analogously to Subcase 5.1
with as — a4, this yields a contradiction.

Therefore, we have seen that every arc of D is contained in a 5-cycle. From now
on, let us suppose that n > 5.

Case 6. Let n > 5 and assume that there exists a vertex v € S such that
v — ay_o. If there is a vertex a; € V(C) with 3 < ¢ < n — 3 such that a; —
v, then we obtain, as in Case 1, an (n + 1)-cycle through a,a;, a contradiction.
Thus, we investigate now the case that v — {ai,as,...,an—2}. If there is a vertex
h € H such that h — v, then a,aihvasay .. .a, is an (n + 1)-cycle through a,a,
a contradiction. Therefore, we assume now that v — H. This leads to d*(v) >
d*(a;), and thus, because of i,(D) < 1, it follows that a; — {as,as,...,a,_1}

or a1 — {az,as,...,an—1} — {a;} for some j € {3,4,...,n — 1} and a; — a; or
V(ar) = V(a;).
Subcase 6.1. Assume that a; — {as,as,...,a,_1}. If there is a vertex h € H

such that h — a,, then a,aiasa4...an—1vha, is an (n + 1)-cycle, a contradiction.
Therefore, we may assume now that a, = (H—V(a,)). If a;—1 = a, for3 <i <n-1,
then a,a10;0;+1 .. .an_1va2a3 . ..a;—1a, is an (n + 1)-cycle, a contradiction. Hence, it
remains to treat the case that a, — a;_1 or a;—1 € V(ay,) for 2 <i <n — 1. If there
is a vertex © € H N F, then ayaias. .. ap—1vza, is an (n + 1)-cycle, a contradiction.
Let R=V(D)—- (HUFUSUV(C)). Since a, ~ {ai,...,a,_2}, Corollary 2.4 leads

to L L

c+k-3 c+k—-3

Y (n=2 v 2
5 (n—=2)+——

it |S| =1, |R| <0, if |S| =2 and the contradiction |R| < —1, if |S| > 3. Hence, it
follows that |S| < 2, and thus n > 6. If there are vertices h € H and y € F such
that h — y, then anaias...an—1vhya, is an (n + 1)-cycle containing the arc e, a
contradiction. Consequently, let F'~» H.

|R|§c+k—{ —1+1+n}:1,
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Subcase 6.1.1. Suppose that |H| > 2. This implies that there are vertices hy, hy €
H such that hy ~> hs. On the one hand, we have d*(v) > n—2+|H| and on the other
hand, since |S|+|R| < 2, we conclude that dt(hs) < |[H—{hy, ho}|+|{as, .., an-1}+
|S —{v}+|R| < |H|-24+n—-3+41=|H|+n—4. Combining these results we
arrive at dt(v) — d*(h2) > 2, a contradiction to i4(D) < 1.

Subcase 6.1.2. Let |H| =1 and h € H. In this case, we have

\F|+2, if [V(h)|=3
\F|+3, if |[V(h)|=2

whereas d™(a,) < |F| + |[{an-1}| = |F| + 1, which means that d~(h) — d (a,) > 1,
it |V(h)| =3 and d~(h) —d (a,) > 2, if [V(h)| = 2, in both cases a contradiction.

Subcase 6.1.3. Assume that H = (. This implies that d*(a;) = n — 2 and
dt(v) > n — 2. If there are vertices w € S and f € F such that w — f, then
(103 . . . Gp_qW fay, is an (n + 1)-cycle, a contradiction. Hence, we have F — S.
Since n — 3 < d (a,) < |F|+ 1, we conclude that |F| > n —4 > 2, and thus F # (.
Furthermore, we observe that

7

d-(h) > |F| + o, anar,az}| — V(1) — (h)] > {

n—1>d"(v)>|F|+2 = |F|<n-3. (3)

Since H = (), we see that F' ~» a;. If there is a vertex f € F such that a,_, — f,
then anay . .. an—1 fa, is an (n+1)-cycle containing the arc e, a contradiction. If there
is a vertex f € F such that a; — f with 3 <i < n—3, then ayaias...a;fva;; ... a,
is an (n + 1)-cycle, also a contradiction. Summarizing our results we observe that
F ~ (SU{a1,as,a4,...,an-3,an-1,a,}). Let f € F with dB[F](f) < |F|2_1. This
yields

d (f) < dpp(f) +{a2, a2} +|R| <

Subcase 6.1.3.1. Suppose that d=(f) =n — 3. In this case, the bound in (3) can
be improved by |F|+ 2 < d™(v) < n — 2, which means that |F| < n — 4 and thus
|F| = n—4. Combining this with (4) we arrive at n—3 < ";°+2+|R| < "' = n < 7.

Firstly let n = 6. Because of |S| < 2, it follows that n > ¢ — 2, and thus ¢ = 8,
|S| =2 and |R| = 0. But now, with (4) yields n -3 < 25 4+2=221=n<5 a
contradiction.

Secondly let n = 7. If |R| = 0, then we arrive at a contradiction as above.
Hence, let |R| = 1. Since d (f) = n — 3 we conclude that d*(v) = n — 2 and
d=(v) > |F|+2=n-—2 and thus d~(v) =n — 2. If z € R, then z is adjacent to v,
a contradiction to d~(v) = d*(v) =n — 2.

Subcase 6.1.3.2. Assume that d~(f) > n — 2. Combining (3) and (4) we see that

Fl—-1
%+2+|R|. (4)

—4 2
n—zgnT+2+|R|g%:>ng6.

This implies that n = 6 and the inequalities in the last inequality-chain have to be
equalities, which especially means that |R| = 1 and thus |S| = 1. This yields the
contradiction 6 =n=c—12> 7.
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Subcase 6.2. Assume that n = 5 and there is exactly one j € {3,4} such that
a1 — ({a2,as,as} — {a;}) and a; — a; or V(aj) = V(a1). In this case, we observe
that d¥(v) > d*(a1) + 1.

Subcase 6.2.1. Let a1 — {as, a3} and aqs — a1 or V(as) = V(a1). If there is a
vertex h € H such that h — a5, then asaiazasvhas is a 6-cycle, a contradiction.
Therefore, we may assume that a5 — (H — V(as)). If as — a5, then asajasasvasas
is a 6-cycle, a contradiction. Hence, it remains to consider the case that a5 — as
or V(as) = V(az). Let {a1,a2} = AU B such that a5 - A and B C V(as). Then
N*(a;) = HU{as,a3} and N*(a5) D AUSU(H —(V(as) — (BU{as}))). This leads
to

0*(as) 2 |A|+ || + |H| - (3 = (1B + 1)) = d*(a) +15| - 2.

This implies |S| < 3 and thus ¢ = 8 and |S| = 3. Then we see that d*(as) > d*(a;1)+1
such that we have equality in the last inequality chain. Especially, we observe that
|V (as)] = 3, a contradiction to Lemma 2.2 and Remark 2.3.

Subcase 6.2.2. Let a; — {az,as} and az — a; or V(az) = V(a1). Since N*(v) =
H U {ay,ay,a3}, we observe that R = V(D) — (HUQU V(v) UV(C)) = 0. If
az — as, then asajaqvasasas is a 6-cycle, a contradiction. If there exists a vertex
h € H such that h — a5 and if ¢ € QNS # 0, then asa;asquhas is a 6-cycle, a
contradiction. Let AUB = {ay, a3} such that a5 — A and B C V(as), then it follows
that N*(a;) = HU{az,as} and NT(as) 2 SUAU(H — (V(as) — (BU{as}))), and
thus, we have

d*(as) 2 [Al+|H[+]S] = (3= (IB| +1)) = d"(ar) + |S] - 2.

This implies S| < 3 and thus ¢ = 8 and |.S| = 3. Then we see that d*(az) > dt(a;)+1
such that we have equality in the last inequality chain. Especially, we observe that
|V (as)] = 3, because of Lemma 2.2 and Remark 2.3 a contradiction.

Subcase 6.3. Suppose that n > 6 and there exists exactly one j € {3,...,n — 1}
such that a1 — ({as,a3,..., 4,1} — {a;}) and a; = a1 or V(a1) = V(a;). In this
case, we observe that d*(v) > d*(a1) + 1 and thus d*(v) = d¥(a;) + 1. Since
Q — v — H, it follows that QN H = 0. If R = V(D) — (HUQUV(v) UV (C)),
then obviously R = (. If there are vertices x € H and y € @ such that z — y,
then aya1zyvay...a, is an (n + 1)-cycle through e, a contradiction. Summarizing
our results, we see that

(QU{ay,az,v})~ H.

Subcase 6.3.1. Let |H| > 2. If there are vertices hy, hy € H such that hy — ha,
then it follows that az ~» hs, since otherwise ayaihihsas .. . a, is an (n + 1)-cycle, a
contradiction. Hence we have

d” (h2)

v

Q| + {v, h1, a1, a2, a3}] — |V(h2) = {h2}|
|Ql+3=d (v)+1, if |V(hy)| =3
Q| +4=d (v)+2, if [V(h)|=2"

v

in both cases a contradiction, either to i,(D) < 1 or to Remark 2.3.
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Consequently it remains to consider the case that E(D[H]) = (), which means
that H = {hy, ha} such that h; € V(hy). If there are vertices a; € V/(C) with i €
{3,4,...,n} and h € H such that a; ~ h, then analogously as above we arrive at a
contradiction. Hence let H — {as, a4, .. .,a,}. This yields that a,a1hiaq . . . ay_10haay,
is an (n 4 1)-cycle containing the arc e, a contradiction.

Subcase 6.3.2. Assume that |[H| = 1 and h € H. If there is a vertex a; €
N7T(h) with 3 < i < n, then we conclude that (Q — V(h)) ~ a;_2, since otherwise,
it ¢ € @ — V(h) such that a;_o — ¢, then aya;...a;—2gha;...a, is an (n + 1)-
cycle, a contradiction. If N*(h) N V(C) = {a,as,,...,ai,}, then we define M =
{ai,—2,ai,-2,...,a;i,—2}. Furthermore we observe that d*(v) = n —1 = d*(a1) + 1.
According to Remark 2.3, we have |V (v)| < 2. Because of |Q]| = d™(v)—2 > n—4 > 2,
we see that there are vertices qi,¢a € @ such that g; ~ gs.

Firstly, let ¢; ¢ V(h). This implies that

INF(R)] < [M] +[V(v) = {v}| < [M]+1 (5)
and
INHa)l > [M]+ H{az,v, kY = [V(a) = {ai}]
N {d+<h>, it |V(g)| =3 (6)
Z a4+, it Vi)l =2

To get no contradiction, all inequalities in the inequality-chain of (5) and (6) have to
be equalities, which especially means that |V (v)| = 2. If a3 ¢ N7 (h), then, noticing
that ¢; ~ a;, we conclude that a; ¢ M and thus N*(g;) 2 (M U{gz,v,h,a1}) —
(V(q1) — {¢:1})). Then similarly to (6), we arrive at a contradiction. Therefore, let
h = as. X V(h) # V(as), then ayajashas. .. a, is an (n + 1)-cycle, a contradiction.
Consequently, let V(h) = V(az). Let v € V(v) — {v}. Because of (5) and (6), it
follows that h — v' and thus a3 — v’ since otherwise apaihv'a; .. .a, is an (n + 1)-
cycle through e, a contradiction. This implies {as,...,a,, h} — v' and thus d~(v') >
n — 1. Since i,(D) < 1 we conclude that d~(v') = n —1and v' - Q. If n > 7,
then aya;hv'quas. .. a, is an (n + 1)-cycle for any ¢ € @, a contradiction. Hence,
let n = 6, and thus S| > 3 and QNS # 0. If there are vertices s; € Q@ N S and
d» € @ such that s; — §o, then similarly as in (6), we arrive at the contradiction
d*(s1) > d*(h) + 2. This implies Q N S consists of vertices of only one partite set,
and thus we conclude that ¢ = 8 and D[V(C)] is a tournament. If there is a vertex
a; with 2 <4 < 4 such that a; — ag, then aga, hv'qua;ag is a T-cycle for every ¢ € Q,
a contradiction. This yields d*(ag) > |{a1,a2,a3,a4}| + S| > 7 = d™(a;) + 3, a
contradiction to i4(D) < 1.

Secondly, let ¢; € V(h). If |Q| > 3, then there are vertices ¢}, ¢} € @ such that
¢y ~ ¢y and ¢} ¢ V(h) and as above this leads to a contradiction. Hence, let |Q| = 2
and thus, because of |@Q| > n —4 > 2, let n = 6. Since ¢ > 8, we conclude that
QNS #0, {g:} = QNS which implies that ¢ = 8 and D[V(C)] is a tournament.
Furthermore we observe that

d*(g2) 2 INT(h) N V(C)| + {v, h}| = d¥(h) + 1.
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To get no contradiction to i,(D) < 1, the equalities in the last inequality-chain and
in (5) have to be equalities, which means that |V(v)| =2, h = (V(v) — {v}), and
because of go — {a1,a»}, similarly as above it follows that h — {a3, a4}, and thus
V(h) = {h,as,q¢1}. Let v' € V(v) — {v}. If v' = a3, then agaihv’azasasas is a
7-cycle, a contradiction. Consequently, we have a3 — v’ and analogously as in Case
2, we arrive at {a3,as,as, a6, h} — v'. Since d*(a;) = 4, this implies that d~(v') =5
and v' = Q. If h — ag, then either agajasasasqahag or agayasasqavhag is a 7-cycle,
a contradiction. It follows that ag — {h,a1,v,v',¢2} and thus a3 — ag. But now
aga1hv'qguazasag is a 7-cycle, a contradiction.

Subcase 6.3.3. Suppose that |[H| = 0. If a; — a; for some i € {3,...,n — 1} and
@j—1 = Qp, then a,a1a;a;11 - . . Ap_10a2a3 . . . a;—1a, is an (n+1)-cycle, a contradiction.
Let N*(a;) = {as,...,a;,_5} and AUB = {a;;_1,...,a;,_s—1} such that a,, - A
and B C V(a,). Then |B| <2, |S| > |B|+1, Nt(a,) 2 AUS and thus

d¥(a) > A+ 18] = d* (ar) = | B + 18] > d* () + 1, (@)

which means that |S| = 1, if |[B| =0, |S| =2, if |B| =1, and |S| = 3, if |B|] = 2.
According to Remark 2.3, the combination |B| = 2 and d™(a,) > dt(a;) + 1 is
impossible. Hence let |B| < 1 and |S|=|B|+1 < 2.

Since |H| = 0, we conclude that d*(a;) =n —3,d"(v)=n—-2and1<n-5<
QI =d (v) ~2<n—4

Firstly, let |Q| = 1. In this case we have d*(v) = n -2 > 4 and d (v) = 3
which implies that n = 6 < ¢ — 2. Hence, we see that |S| > 2 and (7) yields
S| =2, Q=S — {v} and D[V(C)] is a tournament, which means that |B| = 0, a
contradiction to |S| = 2.

Secondly, let |Q| = 2 and |V,| = 3. Then d*(v) =n — 2 and d~(v) = 4 and thus
n=6orn="7 If n=06<c—2, then we conclude that |S| > 2 and (7) yields that
|S| = 2 and D[V(C)] is a tournament, which means that |B| = 0, a contradiction to
|S| = 2. Consequently, let n = 7. In this case we have d*(v) =5 and d”(v) = 4 and
Remark 2.3 yields that |V (v)| = 2. Since |S| < 2 and ¢ > 8 we obtain that |S| = 2,
¢ =8=mn+1and D[V(C)] is a tournament and thus |B| = 0, also a contradiction
to |S] = 2.

Thirdly, let |@Q| > 3 or |Q| = 2 and |V,| = 2. This implies that there are vertices
q1,q2 € Q such that ¢g — ¢». Because of (7), we have N*(a,) N (Q — S) = 0.
Let ¢ € Q be arbitrary. Since H = () we conclude that ¢ ~ a;. If az — ¢, then
ApQ1a3qUa4 . . . ay 1s an (n + 1)-cycle containing the arc e, a contradiction.

Assume that a; — a3z. If a; — ¢ with 3 < ¢ < n—3, then a,a;1as3...a;qva;; ... ay
is an (n + 1)-cycle, a contradiction. Altogether, we see that ¢; ~ {v,a1,...,an_3,
an,qa},if 1 € Q — S and q1 = {v,a1,...,an-3,¢}, if 1 € QN S. It follows that

. n—1=d"(a)+2, if V() =2
o) 2 { n—2=d"(a)+1, if [V(q)=3"

ifg e @Q@—Sandd"(q) >n—1,if ¢ € QNS, in all cases a contradiction either to
ig(D) < 1 or to Remark 2.3.
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Consequently, it remains to consider the case that a3 — a; or V(az) = V(a1)
and a; — {as,a4,...,an—1}. If n = 6, then we deduce that |S| =2 and |B| =0, a
contradiction to (7). Consequently, let n > 7. If a; — ¢ for i € {4,...,n — 3}, then
ApQ1Q4 - . . Q4120011 - - - Gy 18 an (n+1)-cycle containing the arc a,a;, a contradiction.
At first let ¢; € @ N'S. This implies that ¢; = {v,a1,a2,0a3,...,a,-3,¢2} and thus
dt(q1) > n—1=d"(a1)+2, a contradiction to i,(D) < 1. Hence, we have ¢ € Q— S
and ¢; ~ {v,a1,0a2,a4,...,0,—3,0n, g2}, which means that

" n—2, if |V(g) =2
d <q1)2{n_3, it |Vig)| =3

To get no contradiction to 4,(D) < 1, it has to be equality. This implies that V(q1) #
V(ay—2) and V(q1) # V(a,—1) and V(q1) # V(as) and thus {as,a,—2,a,—1} —
¢1. The inequality-chain (7) yields that |V(a,)| < 2. If V(q1) # V(a,), then
AnQy .. .Aan_1q1Gy s an (n+1)-cycle, a contradiction. Consequently, let V(q;) = V(ay)
and thus a4 ¢ V(g¢1). This implies that a,aiasazqias . . . a, is an (n+1)-cycle through
e, a contradiction.

Summarizing the investigations of Case 6, we see that there remains to treat the
case that a, » — S.

Case 7. Let n = 5. If we consider the cycle C™! = a1a5a4a3a2a1 = bsbibabsbybs
in the converse D~! of D, then {by,bs} — S — {by,bs,b3}. Since this is exactly the
situation of Case 6, there exists in D~! a 6-cycle, containing the arc bsb; = aas, and
hence there exists in D a 6-cycle through asa .

Case 8. Let n > 6. Assume that there exists a vertex v € S such that as — v.
If we consider the converse of D, then in view of Case 6, it remains to consider the
case that S — as.

Case 9. Let ¢ > n > 6. If there are vertices v € S and x € H such that
x — v, then aya;zvasas .. .a, is an (n 4 1)-cycle through e, a contradiction. Con-
sequently, we have S — H. If there is a vertex x € H such that + — a,, then
1Ay . . . Ap_yvTay, is an (n + 1)-cycle, also a contradiction. Summarizing our re-
sults, we see that (S U {ai,as,a,}) ~ H. If a3 = a; with 3 < i < n—1 and
Qi1 = Qp, then a,a1a; ... ay_10as ... a;_1a, is an (n + 1)-cycle containing the arc e,
a contradiction. Let N = {a;,, aj,, ..., a; } be exactly the subset of V(C)—{a2} such
that a3 — N. Then we define AU B = {aj,—1,ai,-1,--.,a;,-1} such that a, - A
and B C V(a,). Obviously |B| < 2. Since a, — (H — V(a,)), we deduce that
N*(a;) ={ax} UNUH and N*(a,) 2 {1} UAUSU(H — (V(a,) — (BU{a,}))),
and thus

d*(a,) >

{|A|+|5|+1+IH|—(3—(|B|+1))—d+(a1)+|5|—27 it |V(an)| =
[A[+1SI+1+[H| = 2= (IB]+1)) =d"(a) +[S| = 1, if [V(an)| <

This implies that |S| =1 or |S| = 2 and thus |B| < 1. Let Ry = V(D) - (HUFUSU
V(C)). Since F — a, ~ H, it follows that HNF = (). If there are vertices ¢ € S and
f € F such that ¥ — f, then a,a; . ..a,-20fa, is an (n + 1)-cycle, a contradiction.
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Hence, let F — S. Because of F N H = (), we observe that F ~» a;. If there is a
vertex f € F such that a,_; — f, then ana; ...an—1fa, is an (n + 1)-cycle through
e, a contradiction. Let f € F be arbitrary. If there is an index ¢ € {3,4,...,n — 2}
such that a; — a; and a;; — f, then a,a1a;...ap—2vas...a;—1fa, is an (n + 1)-
cycle containing the arc e, a contradiction. If ¢y — a,_; and a,_y — f, then
A Q10y—10a3 . . . An_afa, is an (n + 1)-cycle, also a contradiction. Summarizing our
results, we observe that

F~ (SUAUBU({ay,an,an1}). (9)

Subcase 9.1. Assume that there is a vertex v € S such that v — a,_3. As in Case
1, we see that v = {a1,as,...,a,_3}.
Subcase 9.1.1. Let H = (). If there is a vertex f € F, then (9) implies

dt(f) > [N+ a1, an an1}|+ S| = [V(f) = {f}
s J NI+ 1415 =d"(a1) +[5] =2 d™(a1) + 1, it [V(f)|=3
= IN|+2+|S]|=d"(a)) +1+|S| >dt(a;) +2, if [V(f)]=2"

in both cases a contradiction either to Remark 2.3 or to i,(D) < 1. Hence, it remains
to consider the case that F' = (. According to (8), we have

d™(a,) > |A|+|S]+ 1> |A] +|S|+|B| = d"(a1) — 1+ |S],
which means that there remain to treat the two following cases:

) |S| =2, d(an) =dt (@) +1,|Bl=1,n=c—1,|V(v)] =1 and |V(a,)| < 2.
If |V,.| = 3, then we have [V(a;)| > 2.

ii) |S] = 1 and thus |B] = 0, n = ¢ — 1, D[V(C)] is a tournament, d*(a,) =
d*(a1) + 1 and |V(a,)| < 2. If |V.| = 3, then we have |V (a;)| > 2.

Let a} € V(a1) — {a1}. If a} € V(C), then, because of n = ¢ — 1, we conclude that
|S| > 2 and |B| =0 or |B] > 1 and |S| > 3, in both cases a contradiction to i) and
ii). Since F = @, it follows that a, — a}, and similarly as in i) and ii) we deduce
that d*(a,) > d*(a;) + 2, a contradiction to iy(D) < 1.

Hence, let V(a;) = {a;} and thus |V,| = 2. We observe that

|V (D) dt(ay) +d (ay) +|V(an)| = dt(ar) + 1+ d (an) + |V (an)]
d*(a1) +d~(a1) + [V(a)| = d*(a1) + d™(a1) + 1+ [V(an)] - 1

V(D) + [V(an)| = 1.

\Y

It follows that |V(a,)| = 1 and thus |B| = 0, which means that it remains to treat
the Case ii). If Ry # 0 and 2 € Ry, then, because of |V (a,)| = 1 we have = ¢ V(ay,).
If © — a,, then © € F, a contradiction to F = (. If a, — z, then as in ii) we
conclude that d*(a,) > d*(a;) + 2, a contradiction to i,(D) < 1. Consequently, it
remains to investigate the case that Ry = (). Since the Case ii) yields that D[V (C)] is
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a tournament and |S| = 1, we conclude that k& = 0, a contradiction to the hypothesis
of this theorem.

Subcase 9.1.2. Suppose that H consists of vertices of only one partite set, which
means that |H| < 2.

Subcase 9.1.2.1. Let H C V(a,) — {a,}.

Firstly, let |B| = 0. This yields that {a2,a3,...,a,—1} — H, since otherwise
for | = min{2 < ¢ < n—13h € H with h — a;}, we have the (n + 1)-cycle
Qnay ...a;_1ha;...a,, a contradiction. If there are vertices h € H and f € F such
that h — f, then ayaias...a,—shfa, is an (n + 1)-cycle containing the arc e, a
contradiction. Summarizing our results, we observe that (SUFU{ay, az,...a,_1}) ~>
H. If h € H, then, because of |[N| > 1, we have d~(a,) < |F| 4+ n — 3 and thus

) S|4+ d(an) > d~(an) +1,  if [V(h)| =3
d (h)—{ |S|+d‘§ang+12(d‘)(an)+2, it |v§h§|:2

in both cases a contradiction either to Remark 2.3 or to ¢,(D) < 1.

Secondly, let |B| = 1 and thus |H| =1, [V(a,)| = 3, |S| =2 and n = ¢—1. To get
no contradiction using (8), we have (Q — S) = a,. If n =6 < ¢ — 2, then it follows
that |S| = 2 and D[V(C)] is a tournament, a contradiction to |B| = 1. Hence let
n > 7. If there are vertices ¢ € @ and h € H such that h — ¢, then a,a1hquay ... a,
is an (n 4 1)-cycle, a contradiction. This yields @ — H. If B # {a»}, then it follows
that d=(h) > |Q| +|S|+ [{a1,a2}| = |Q| +4 > d~(v) + 1, a contradiction to Remark
2.3, since |V(h)| = 3. Consequently, it remains to consider the case that B = {a»},
which means that V(h) = {a,,as2,h}, if h € H, and a; — a3. Analogously we see
that b — {as,as,...,a,_1}. But now ayaias...a,_2vhay_1a, is an (n + 1)-cycle
containing the arc e, a contradiction.

Subcase 9.1.2.2. Assume that H NV (a,) = 0. It follows that

d™(an) 2 |Al+|S| + 14 |H| 2 |A| +|B| + S| + [H| = d"(a1) — 1 + 5],

and there remain to treat the same two Cases 1) and ii) as in Subcase 9.1.1.

Firstly, let ' = (. If |V,| = 3, then we arrive at a contradiction following the
same lines as in Subcase 9.1.1. Hence let |V,.| = 2. Similarly as in Subcase 9.1.1
we conclude that it is sufficient to treat the Case ii) with |V(a,)| = 1, |B| = 0 and
|Ry| =0 and thus N~ (v) = {an—2, @n—1,a,}. The fact that 4 =d (v)+1 > d*(v) >
[{ai,as,...,an_3,h}| =n—2yields n < 6 < c¢— 2 and thus |S| > 2, a contradiction
to the Case ii).

Secondly, let F # (). If there is a vertex f € F such that dB[F](f) > 3, then there

is a vertex f € F with dE[F](f) > 2 and (9) implies that

d(f)

v

N1+ {ar, an, an-i} + 2+ 1S = |V (f) = {F}]
IN|+4>d"(a) +1, if |[V(f)|=3
INI+52>d*(a) +2, if |[V(f)l=2"

v

in both cases a contradiction either to Remark 2.3 or to i,(D) < 1. Hence, let
dppp)(f) < 2forall f € F.
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Suppose that there is a vertex a} € V(ay) — {a1}. If a} € V(C), then the fact
that n < ¢ — 1 leads to |S| > 2 and |B| = 0 or |S| > 3 and |B| > 1, in both
cases a contradiction to the Cases i) and ii). If a, — af, then as in i) and ii)
we see that d*(a,) > d¥(a1) + 2, a contradiction. Hence, let af — a, and thus
a) € F. It follows that a| — {as,as,...,a,} and since F — S, we observe that
d*(a}) > n—1+|S|. If there is a vertex € Ry — V(a,), then z ¢ (FUV(C)U H)
and thus a, — = — a; and we arrive at the contradiction d*(a,) > d*(a;) + 2.
Consequently, let Ry C V(a,) — {a,}, and |V(a,)| < 2 implies that |Ry| < 1.
Altogether, it follows that

6 2 |H| + |Ra| + dppy(ar) + 12 d7(a}) +1 2 d7(d)) 2 n—1+18],

which means that either |[S| =1 and n < 6 or |S| = 2 and n < 5, in both cases a
contradiction.

Consequently, it remains to consider the case that V(a;) = {a,} and thus, because
of i) and ii), |V,| = 2. Let f € F be an arbitrary vertex. If |[S| = 2 (Case i)), then
(9) implies that

d*(f) 2 [N+ Ha1, an, a1} +1S] = V() = {f} 2 IN| + 4 =d"(a1) + 2,

a contradiction to i,(D) < 1. Hence, let |S| = 1 (Case ii)). To get no contradiction
as in the case |S| = 2, we deduce that |F| = 1 and d*(f) = d(a;) + 1. This leads to

V(D) 2 d*(f)+d"(f)+2 = d*(a1) +d"(f)+3 2 d"(a1) +d"(a1)+2 = [V(D)| +1,

a contradiction.

Subcase 9.1.3. Assume that H contains vertices of at least two partite sets,
which means that there exist two vertices p,q € H such that p — ¢. If ¢ — ag, then
ana1pqag . .. a, is an (n + 1)-cycle containing the arc a,a;, a contradiction. Hence,
let az ~ q.

Subcase 9.1.3.1. Suppose that n > 7. If there are vertices x € (Q and h € H such
that h — x, then aya;havay .. . a, is an (n+ 1)-cycle, a contradiction. Consequently,
let Q~» H. Let g € H with dp(g) > max{1, [XI=2]}. Tt follows that

d~(q)

\Y

QI+ IS] + dp(9) + Har, az, as}| = [V(g) — {g}]
{ QI+ 151+ 1+ dppy(a), i [V(g)l =3
QI+ S+ 2+ dpy(a), i V()] =2

and d~(v) < |Q|+ 3. Summarizing these results, we arrive at

S| =2+ dp(e), i |V(g)

o |
(g = d “’)—{ 1] = 1+ dp(a), i [V(g)| = (10)

If |[H| > 5, then (10) yields
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in both cases a contradiction either to Remark 2.3 or to i,(D) < 1. Hence, let
H| < 4.

Firstly, let |[H| = 4. If H consists of vertices of 3 or 4 partite sets, then there is a
vertex ¢ € H such that dB[H](d) > 2 and (10) yields a contradiction, if we replace ¢
by ¢. If H consists of vertices of only two partite sets, then it follows that D[H] is a
4-cycle hihahshshy without any chord since otherwise (10) leads to a contradiction.
This implies that

d™(h1) 2 |QI+ |S[+ 1+ [{ay, a5, a5} = 1 = [Q| + [S] +3 and [V(¢)| =3

and d~(v) < |Q| 4+ 3. Combining these results we arrive at d=(hy) —d~(v) > |S| > 1
and |V (k)| = 3, a contradiction to Remark 2.3.

Secondly, let |H| = 3. If H contains vertices of 3 partite sets, then, to get
no contradiction with (10), we deduce that D[H] is a 3-cycle hihyhshy. If with-
out loss of generality hy ¢ V(as), then we observe that as — hy, since otherwise
anaihahshiay . .. a, is an (n + 1)-cycle, a contradiction. But together with (10), this
leads to a contradiction to i,(D) < 1 or to Remark 2.3. If H contains vertices of
only 2 partite sets, then either there is a vertex ¢ € H with dB[H](q) > 2 or there
are two vertices i, hy € H such that hy € V(hy) and dpp(h1) > 1. Using (10), we
arrive at a contradiction in both cases.

Finally, let |H| = 2 with the vertices p,q € H such that p — ¢. This implies

_ QI+ 15 +2, i [V(g) =3
d (‘1)2{ QI+ IS|+3. if [V(g)] =2

and thus

- - S|—1, if |V(g)|=3

d —d (v) > | T .
CREUES Rr R e

This leads to |S| =1, n = ¢ — 1, D[V(C)] is a tournament, |B| =0 and QNS = 0.
If ¢ ¢ V(as), then it follows that a3 — ¢, and thus as ~ ¢, and as above this yields
a contradiction either to i,(D) < 1 or to Remark 2.3. Hence, let ¢ € V(a3) and
q — ag. If p ¢ V(ay), then anaiaspgay. .. a, is an (n + 1)-cycle containing the arc
e, a contradiction. Consequently, we deduce that p € V(ay) and V(a,) N H = §.
Analogously as in (8), reminding that |B| = 0, we arrive at

d™(an) > |A|+|S| + 1+ |H| + |B] = d(a1) + 1, (11)

which implies that d*(a,) = d*(a;) +1 and |V (a,)| < 2. Since F — S, it follows
that F C @ and thus F ~ H. If f € F, then with (9), we conclude that

d*(f) = NI+ Hay,an, an-1} + 1S+ |H] = [V(f) = {f}]
s JINI+2+|H]=d(a) +1, if |[V(f)] =3
= L IN[+3 4 [H =d(a) +2, if [V(f)]=2

in both cases a contradiction. Consequently, it remains to consider the case that
F = 0. Since |S| = 1, this implies that a, ~ Q ~» a; and, because of (11), we have
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@ C V(a,) — {a,}, which means that |Q| < 1, and thus d~(v) < 4. Summarizing
our results, we arrive at

5>dt(v) > |{p,q,a1,. a3} =n—-1 = n <6,

a contradiction to the assumption of this subcase.

Subcase 9.1.3.2. Suppose that n = 6 < ¢ — 2. In this case, we observe that
|S] > 2. To get no contradiction to (8), it follows that |S| =2, |V (v)| =1, |B| =0,
D[V(C)] is a tournament and V(a,)— {a,} C H. Since F — ag ~ H, it follows that
HNF =0. Since |B] =0 and ag — a;_1, if a; — a; with 2 < i < n — 1 we conclude
that [N*(a;) N V(C)|+ [N (as) NV(C)| <1+5—-1=5,if [NT(a)) N V(C)| = [,
and thus

c+k—-3 c+k-3
2 + 2

|R2|§c+k—{ —5+|S|+n}—0.

Summarizing the results of the Cases 1-8, we observe that {as,as,as} — S —
{a1,as,a3}. Without loss of generality let S = {v,w} such that v — w. Since
v— (HU{w,a1,as,a3}) and a1 — (H U (N7 (a1) NV(C))), the fact that iy(D) <1
implies that |[N*(a;) N V(C)| > 3 and thus [N~ (ag) N V(C)| < 2 and a; — a3 or
ay; — ay. If there are vertices h € H and f € F such that h — f, then agajasasvh fag
or agajasasvhfag is a 7-cycle, a contradiction. Hence, let F ~ H. Let p,q € H such
that p — ¢. Then we see that

d~(q) 2 [F|+ S|+ {p, a1, a9, a3} = V(@) = {a}| 2 |[F|+|S[+2 = [F| + 4,

whereas d~(ag) < |F| 4+ 2. This implies that d~(¢) — d”(as) > 2, a contradiction to
ig(D) < 1.

Subcase 9.2. Assume that a,_3 — S. Since S — a3, we conclude that n > 7. Let
v € S. If there is a vertex w € H N F, then ayaas ... ap—svwa, is an (n + 1)-cycle
containing the arc e, a contradiction. Hence, let H N F = (). If there are vertices
x € H and y € F such that © — y, then ayaias...a,_svzya, is an (n + 1)-cycle
through e, a contradiction. Consequently, let F'~» H. If f € F, then together with
(9), we arrive at

d*(f) = NI+ Hay,an, an-1} + 1S+ H] = [V(f) = {f}]
s JINI+H[+2=d(a) +1, if |[V(f)|=3
= L INI+ A3 =d (@) + 2, i V()] =2

in both cases a contradiction either to Remark 2.3 or to iy(D) < 1. Consequently
it remains to treat the case that F = (). If there is a vertex x € H such that
T = ap_1, then azajas. .. ay_zvra,_1a, is an (n + 1)-cycle, a contradiction. Hence,
let ay—y ~ H. Let h € H. If a; = a, and h — a;4; for some i € {3,4,...,n —
2}, then anaiha;ty...an—1vas...aa, is an (n + 1)-cycle containing the arc e, a
contradiction. If as — a, and h — ag, then ajaihas...a,—svasa, is an (n + 1)-
cycle, also a contradiction. Let N~ (a,) N V(C) = N~ (as) = {aj,,qj,,-..,a;} and
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Uz

Figure 1: An almost regular 7-partite tournament with the property
that the arc uv is not contained in a 4-cycle

]Sf = {aj,4+1,js41, - - -, Qj,41}. Summarzing our results, we observe that (SU{a1,as}U
N) ~» H and thus

d~(h) > |IN|+|S|+2—|V(h) - {h}]
N {|f§|+|5|2d-<an>+1, it [V(h) =3
= VN +1S|+1>d(a,)+2, if [V(h)|=2

in both cases a contradiction either to Remark 2.3 or to i4(D) < 1. Hence, let H = §.
This leads to a contradiction analogously as in Subcase 9.1.1.
This completes the proof of this theorem. a

Combining this result with the Theorems 1.5 and 1.6 we arrive at the following
corollary.

Corollary 3.2 If D is an almost regular c-partite tournament and e € E(D) is an
arbitrary arc of D, then the following holds.

a) If ¢ > 8, then e is contained in an n-cycle for each n € {4,5,...,c}.

b) If ¢ = 7 and there are at least two wvertices in every partite set, then e is
contained in an n-cycle for each n € {4,5,...,c}.

The bound ¢ > 8 in Theorem 3.1 and Corollary 3.2 a) is best possible as the
following example (cf. [10]) demonstrates.
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Example 3.3 Let Vi = {u,uz}, Vo = {v,va}, V3 = {wy,we, w3}, Vi = {z}, Vs =
{y}, Vs = {z}, and V7 = {a} be the partite sets of a T-partite tournament such that
u—=v—=uy = {a,z,y,2} = v > u— {a,z,y,2} > v— V32 u, vy = uy,
vy > Vi o> Uy, wp a2 Y >z >a Y W — 2T — W,
Wy = Z = W3 = a = Wy = T = w3 — Yy —> we (see Figure 1). The resulting
T-partite tournament is almost reqular, however, the arc uv is not contained in a
4-cycle. Consequently, the condition ¢ > 8 in Theorem 3.1 and Corollary 3.2 a) is
best possible.

A further example by Volkmann [10] shows that ¢ = 7 in Corollary 3.2 b) is also
best possible.
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