Almost regular c-partite tournaments with $c \geq 8$ contain an n-cycle through a given arc for

LUTZ VOLKMANN

STEFAN WINZEN

 $Lehrstuhl\ II\ f\"{u}r\ Mathematik$ $RWTH\ Aachen$ Germany $\{ \verb"volkm", \verb"winzen" \} @math2.rwth-aachen.de$

Abstract

If x is a vertex of a digraph D, then we denote by $d^+(x)$ and $d^-(x)$ the outdegree and the indegree of x, respectively. The global irregularity of a digraph D is defined by $i_g(D) = \max\{d^+(x), d^-(x)\} - \min\{d^+(y), d^-(y)\}$ over all vertices x and y of D (including x = y). If $i_g(D) = 0$, then D is regular and if $i_g(D) \le 1$, then D is almost regular.

A c-partite tournament is an orientation of a complete c-partite graph. In a recent article, the authors proved that in an almost regular c-partite tournament with $c \geq 7$ and at least two vertices in each partite set, every arc of D is contained in a directed cycle of length n for each $n \in \{4, 5, \ldots, c\}$.

Now, the aim is to extend this result to those almost regular multipartite tournaments with only one vertex in the smallest partite set. In the case that c=7, the above mentioned result does not rest valid, if there is only one vertex in the partite set of the smallest cardinality. But for $c \ge 8$ it does, as we will show in this paper.

1 Terminology and introduction

In this paper all digraphs are finite without loops and multiple arcs. The vertex set and arc set of a digraph D is denoted by V(D) and E(D), respectively. If xy is an arc of a digraph D, then we write $x \to y$ and say x dominates y, and if X and Y are two disjoint vertex sets or subdigraphs of D such that every vertex of X dominates every vertex of Y, then we say that X dominates Y, denoted by $X \to Y$. Furthermore, $X \leadsto Y$ denotes the fact that there is no arc leading from Y to X. For the number of arcs from X to Y we write d(X,Y). If D is a digraph, then the outneighborhood $N_D^+(x) = N^+(x)$ of a vertex x is the set of vertices dominated by x and the in-neighborhood $N_D^-(x) = N^-(x)$ is the set of vertices dominating x. Therefore, if there is the arc $xy \in E(D)$, then y is an outer neighbor of x and x is an inner

neighbor of y. The numbers $d_D^+(x) = d^+(x) = |N^+(x)|$ and $d_D^-(x) = d^-(x) = |N^-(x)|$ are called the outdegree and indegree of x, respectively. For a vertex set X of D, we define D[X] as the subdigraph induced by X. If we speak of a cycle, then we mean a directed cycle, and a cycle of length n is called an n-cycle. If we replace in a digraph D every arc xy by yx, then we call the resulting digraph the converse of D, denoted by D^{-1} .

There are several measures of how much a digraph differs from being regular. In [13], Yeo defines the global irregularity of a digraph D by

$$i_g(D) = \max_{x \in V(D)} \{d^+(x), d^-(x)\} - \min_{y \in V(D)} \{d^+(y), d^-(y)\}.$$

If $i_q(D) = 0$, then D is regular and if $i_q(D) \leq 1$, then D is called almost regular.

A c-partite or multipartite tournament is an orientation of a complete c-partite graph. A tournament is a c-partite tournament with exactly c vertices. If V_1, V_2, \ldots, V_c are the partite sets of a c-partite tournament D and the vertex x of D belongs to the partite set V_i , then we define $V(x) = V_i$. If D is a c-partite tournament with the partite sets V_1, V_2, \ldots, V_c such that $|V_1| \leq |V_2| \leq \ldots \leq |V_c|$, then $|V_c| = \alpha(D)$ is the independence number of D, and we define $\gamma(D) = |V_1|$.

It is very easy to see that every arc of a regular tournament belongs to a 3-cycle. The next example shows that this is not valid for regular multipartite tournaments in general.

Example 1.1 Let C, C', and C'' be three induced cycles of length 4 such that $C \to C' \to C'' \to C$. The resulting 6-partite tournament D_1 is 5-regular, but no arc of the three cycles C, C', C'' is contained in a 3-cycle.

Let H, H_1 , and H_2 be three copies of D_1 such that $H \to H_1 \to H_2 \to H$. The resulting 18-partite tournament is 17-regular, but no arc of the cycles corresponding to the cycles C, C', and C'' is contained in a 3-cycle.

If we continue this process, we arrive at regular c-partite tournaments with arbitrary large c which contain arcs that do not belong to any 3-cycle.

In 1998, Guo [3] proved the following generalization of Alspach's classical result [1] that every regular tournament is arc pancyclic.

Theorem 1.2 (Guo [3]) Let D be a regular c-partite tournament with $c \geq 3$. If every arc of D is contained in a 3-cycle, then every arc of D is contained in an n-cycle for each $n \in \{4, 5, \ldots, c\}$.

Now, the aim was to carry this result forward to almost regular multipartite tournaments, however without the strong hypothesis that every arc is contained in a 3-cycle. To reach this, Volkmann [8] started with the following theorem.

Theorem 1.3 (Volkmann [8]) Let D be an almost regular c-partite tournament with the partite sets V_1, V_2, \ldots, V_c such that $|V_1| = |V_2| = \ldots = |V_c| = r \ge 2$. If $c \ge 6$, then every arc of D is contained in an n-cycle for each $n \in \{4, 5, \ldots, c\}$.

However, not all almost regular c-partite tournaments were considered in this theorem. According to an article of Tewes, Volkmann and Yeo [7], the following lemma holds:

Lemma 1.4 (Tewes, Volkmann, Yeo [7]) If $V_1, V_2, ..., V_c$ are the partite sets of an almost regular c-partite tournament, then $||V_i| - |V_j|| \le 2$ for $1 \le i, j \le n$.

Using this lemma, Volkmann and Winzen [11] extended Theorem 1.3 to the following result.

Theorem 1.5 (Volkmann, Winzen [11]) Let D be an almost regular c-partite tournament with at least two vertices in every partite set. If $c \geq 7$, then every arc of D is contained in an n-cycle for each $n \in \{4, 5, \ldots, c\}$.

Now, the aim is to carry this result over to those almost regular multipartite tournaments, which also contain partite sets consisting of only one vertex. If V_1, V_2, \ldots, V_c are the partite sets of the almost regular multipartite tournament D such that $c \geq 8$ and $|V_1| = |V_2| = \ldots = |V_c| = 1$, then D is a tournament and a theorem of Jakobsen [5] yields the desired result.

Theorem 1.6 (Jacobson [5]) Let D be an almost regular tournament with $c \geq 8$ vertices. Then every arc of D is contained in an n-cycle for each $n \in \{4, 5, \ldots, c\}$.

A first result for all almost regular c-partite tournaments with $c \geq 8$, was presented by Volkmann [10].

Theorem 1.7 (Volkmann [10]) Let D be an almost regular c-partite tournament. If $c \geq 8$, then every arc of D is contained in a 4-cycle.

If c=7 and there are at least two vertices in every partite set, then every arc of D is contained in a 4-cycle.

In this paper, we show that in all almost regular c-partite tournaments with $c \geq 8$, every arc is contained in an n-cycle for each $n \in \{4, 5, \ldots, c\}$. Because of the Theorems 1.5, 1.6, and Lemma 1.4, we have to investigate the case that $1 = |V_1| \leq |V_2| \leq \ldots \leq |V_c| \leq 3$ and $|V_c| \geq 2$.

For more information on multipartite tournaments see [2, 3, 4, 6, 9, 12].

2 Preliminary results

The following results play an important role in our investigations:

Lemma 2.1 (Tewes, Volkmann, Yeo [7]) If D is an almost regular multipartite tournament, then for every vertex x of D we have

$$\frac{|V(D)| - \alpha(D) - 1}{2} \le d^+(x), d^-(x) \le \frac{|V(D)| - \gamma(D) + 1}{2}$$

If we know the cardinality of the partite set V(x), then we can specialize the previous lemma:

Lemma 2.2 (Volkmann, Winzen [11]) If D is an almost regular multipartite tournament and x a vertex of D with |V(x)| = p, then

$$\frac{|V(D)| - p - 1}{2} \le d^+(x), d^-(x) \le \frac{|V(D)| - p + 1}{2}$$

In this article we treat the case of an almost regular multipartite tournament D with $\alpha(D) = 2$ or $\alpha(D) = 3$ and $\gamma(D) = 1$. Therefore, we note that the digraphs of this paper cannot be regular. Furthermore, we can remark the following.

Remark 2.3 If $\alpha(D) = 3$, $\gamma(D) = 1$ and $i_g(D) \le 1$, then the value of |V(D)| - 1 has to be even. So the bounds in Lemma 2.2 can be improved by

$$d^+(x), d^-(x) = \frac{|V(D)| - 3}{2}$$
 if $|V(x)| = 3$

or

$$d^+(x), d^-(x) = \frac{|V(D)| - 1}{2}$$
 if $|V(x)| = 1$.

Now let us summarize some results of Lemma 2.2 and Remark 2.3.

Corollary 2.4 Let V_1, V_2, \ldots, V_c be the partite sets of an almost regular c-partite tournament D. If $1 = |V_1| \le |V_2| \le \ldots \le |V_c| \le 3$, then for every vertex x of D we have

$$\frac{|V(D)| - 3}{2} \le d^+(x), d^-(x).$$

3 Main results

Theorem 3.1 Let D be an almost regular c-partite tournament with the partite sets V_1, V_2, \ldots, V_c such that $1 = |V_1| \le |V_2| \le \ldots \le |V_c| \le 3$ and $|V_c| \ge 2$. If $c \ge 8$, then every arc of D is contained in an n-cycle for each $n \in \{4, \ldots, c\}$.

Proof. We prove the theorem by induction on n. For n=4, the result follows from Theorem 1.7. Now let e be an arc of D and assume that e is contained in an n-cycle $C=a_na_1a_2\ldots a_n$ with $e=a_na_1$ and $4\leq n\leq c-1$. Suppose that $e=a_na_1$ is not contained in any (n+1)-cycle.

Obviously, |V(D)| = c + k with $1 \le k \le c - 1$, if $|V_c| = 2$ and $2 \le k \le 2c - 2$, if $|V_c| = 3$. Firstly, we observe that, if n = 4 and $|V_c| = 2$ or $n \le 5$ and $|V_c| = 3$, then $N^+(v) - V(C) \ne \emptyset$ for each $v \in V(C)$, because otherwise Corollary 2.4, the fact that $k \ge 1$ (respectively, $k \ge 2$) and $c \ge 8$ yield the contradiction

$$4 = |V(C)| \ge d^+(v) + 2 \ge \frac{c+k-3}{2} + 2 \ge 5$$

or

$$5 \ge |V(C)| \ge d^+(v) + 2 \ge \frac{c+k-3}{2} + 2 > 5.$$

Analogously, one can show that $N^-(v) - V(C) \neq \emptyset$ for each $v \in V(C)$, in these cases.

Next, let S be the set of vertices that belong to partite sets not represented on C and define

$$X = \{x \in S | C \to x\}, \qquad Y = \{y \in S | y \to C\}.$$

Assume that $X \neq \emptyset$ and let $x \in X$. It follows that $N^-(v) - V(C)$, $N^+(v) - V(C) \neq \emptyset$ for each $v \in V(C)$, because otherwise, we have $d^-(v)$, $d^+(v) \leq n-2$ and $d^-(x) \geq n$, a contradiction to $i_g(D) \leq 1$. If there is a vertex $w \in N^-(a_n) - V(C)$ such that $x \to w$, then $a_n a_1 a_2 \ldots a_{n-2} x w a_n$ is an (n+1)-cycle through $a_n a_1$, a contradiction. If $(N^-(a_n) - V(C)) \to x$, then $|N^-(x)| \geq |N^-(a_n) - V(C)| + |V(C)| \geq |N^-(a_n)| + 2$, a contradiction to the hypothesis that $i_g(D) \leq 1$. If there exists a vertex $b \in (N^-(a_n) - V(C))$ such that V(b) = V(x), then b is adjacent with all vertices of C. In the case that $N^-(b) \cap V(C) \neq \emptyset$, let $l = \max_{1 \leq i \leq n-1} \{i | a_i \to b\}$. Then $a_n a_1 \ldots a_l b a_{l+1} \ldots a_n$ is an (n+1)-cycle through $a_n a_1$, a contradiction. It remains to consider the case that $N^-(b) \cap V(C) = \emptyset$. If there is a vertex $u \in (N^-(b) - V(C)) = N^-(b)$ such that $x \to u$, then $a_n a_1 a_2 \ldots a_{n-3} x u b a_n$ is an (n+1)-cycle through $a_n a_1$, a contradiction. Otherwise, $N^-(b) \to x$, and we arrive at the contradiction $d^-(x) \geq d^-(b) + |V(C)|$. Altogether, we have seen that $X \neq \emptyset$ is not possible, and analogously we find that $Y \neq \emptyset$ is impossible. Consequently, from now on we shall assume that $X = Y = \emptyset$.

By the definition of S, every vertex of V(C) is adjacent to every vertex of S, and since $n \leq c-1$, we deduce that $S \neq \emptyset$. Now we distinguish different cases.

Case 1. There exists a vertex $v \in S$ with $v \to a_n$. Since $Y = \emptyset$, there is a vertex $a_i \in V(C)$ such that $a_i \to v$. If $l = \max_{1 \le i \le n-1} \{i | a_i \to v\}$, then $a_n a_1 \dots a_l v a_{l+1} \dots a_n$ is an (n+1)-cycle through $a_n a_1$, a contradiction. This implies $a_n \to S$.

Case 2. There exists a vertex $v \in S$ with $a_1 \to v$. Since $X = \emptyset$, there is a vertex $a_i \in V(C)$ such that $v \to a_i$. If $l = \min_{2 \le i \le n-1} \{i | v \to a_i\}$, then $a_n a_1 \dots a_{l-1} v a_l \dots a_n$ is an (n+1)-cycle through $a_n a_1$, a contradiction. This implies $S \to a_1$.

Case 3. There exists a vertex $v \in S$ such that $v \to a_{n-1}$. If there is a vertex $a_i \in V(C)$ with $2 \le i \le n-2$ such that $a_i \to v$, then we obtain as above an (n+1)-cycle through a_na_1 , a contradiction. Thus, we investigate now the case that $v \to \{a_1, a_2, \ldots, a_{n-1}\}$. Because of $S \to a_1$, we note that every vertex of $N^+(a_1)$ is adjacent to v. If there is a vertex $x \in (N^+(a_1) - V(C))$ such that $x \to v$, then $a_na_1xva_3a_4\ldots a_n$ is an (n+1)-cycle through a_na_1 , a contradiction. Therefore we assume now that $v \to (N^+(a_1) - V(C))$. This leads to $d^+(v) \ge d^+(a_1) + 1$, and thus, because of $i_g(D) \le 1$, it follows that $N^+(v) = N^+(a_1) \cup \{a_1\}$ and $a_1 \to \{a_2, a_3, \ldots, a_{n-1}\}$.

If we define $H = N^+(a_1) - V(C)$ and $Q = N^-(v) - \{a_n\}$, then $H \cap Q = \emptyset$, $S \cap H = \emptyset$, and $R = V(D) - (H \cup Q \cup V(v) \cup V(C)) = \emptyset$.

If there is an arc xa_2 with $x \in H$, then $a_n a_1 x a_2 a_3 \dots a_n$ is an (n+1)-cycle through $a_n a_1$, a contradiction. Thus, we assume in the following that $a_2 \rightsquigarrow H$.

Subcase 3.1. Let n=4. At first, let $|V_c|=2$. If C consists of at most 3 partite sets, then it has to be $|S| \geq 5$ and thus, it follows that $d^+(a_4) \geq 6$. On the other hand, we see that $d^-(a_4) \leq |V(D)| - |S| - |V(a_4)| - |\{a_1\}| \leq 3$, a contradiction to $i_g(D) \leq 1$. Therefore, D[V(C)] has to be a tournament.

Now, let $|V_c|=3$. If V(C) is 2-partite, then we observe that $d^+(a_4)\geq |S|+1\geq 7$ and $d^-(a_4)\leq |V(a_3)-\{a_1\}|\leq 2$, a contradiction to $i_g(D)\leq 1$. So, let C contain vertices of only 3 partite sets. If $|S|\geq 6$, then we see that $d^+(a_4)\geq 7$ and $d^-(a_4)\leq 5$, a contradiction. Consequently, it remains to investigate the case that |S|=5, c=8, $2\leq k\leq 6$ and $10\leq |V(D)|\leq 14$. Since $d^+(a_4)\geq 6$, it follows that $12\leq |V(D)|\leq 14$. In view of Remark 2.3, it remains to treat the case that |V(D)|=13. If $|V(a_4)|=3$, then $d^+(a_4)=d^-(a_4)=5$, a contradiction to $d^+(a_4)\geq 6$. If $|V(a_1)|=3$, then $d^+(a_1)=d^-(a_1)=5$, a contradiction to $d^-(a_1)\geq 6$. This implies $|V(a_1)|, |V(a_4)|\leq 2$ and thus $|V(D)|\leq 12$, a contradiction.

Consequently, if n=4, then it is sufficient to investigate the case that D[V(C)] is a tournament. We remind that we have shown above that $H \neq \emptyset$.

Subcase 3.1.1. Suppose that |H|=1. This implies $d^+(v)=d^+(a_1)+1=4$. On the other hand, we see that $d^+(a_4)\geq |S|+1\geq 5$, a contradiction to $i_q(D)\leq 1$.

Subcase 3.1.2. Let $|H| \geq 2$.

Subcase 3.1.2.1. Assume that |H|=2 and $E(D[H])=\emptyset$, which means that $|V_c|=|V(h)|=3$. Then, it follows that $d^+(v)=d^+(a_1)+1=5$, which yields

$$4 = d^{+}(a_1) \le d^{-}(v) = |Q| + 1 \le d^{+}(v) = 5,$$

and hence $3 \leq |Q| \leq 4$. Because of $d^+(a_4) \geq |S| + 1 \geq 5$, it remains to consider the case that |S| = 4, $d^+(a_4) = 5$, c = 8 and $a_2 \to a_4$. Since |S| = 4 and $S = V(v) \cup (Q \cap S)$, we see that we have to investigate the case $|Q - S| \leq 1$. If $H \subseteq V(a_4)$, then $d^-(a_4) \leq |\{a_2, a_3\}| + |Q - S| \leq 3$, a contradiction to $i_g(D) \leq 1$. Consequently, it has to be $H \to a_4$ and therefore also $H \to a_3$, since otherwise $a_4a_1a_2a_3ha_4$ is a 5-cycle, if $h \in H$, a contradiction. Since |V(v)| = 1, at least three vertices of Q have to belong to $N^+(a_3)$, because otherwise, we arrive at the contradiction $d^+(a_3) \leq 3$. If there are vertices $q \in N^+(a_3) \cap Q$ and $h \in H$ such that $q \to h$, then $a_4a_1a_3qha_4$ is a 5-cycle, a contradiction. It remains to consider the case that $H \to (N^+(a_3) \cap Q)$. If $q \in Q \cap N^+(a_3)$ such that $q \to a_2$, then $a_4a_1hqa_2a_4$ is a 5-cycle, a contradiction. Let $q_1 \in N^+(a_3) \cap Q \cap S \neq \emptyset$ be a vertex such that $|N^-(q_1) \cap Q \cap S| \geq 1$. Then we arrive at $d^-(q_1) \geq |H| + 1 + |\{a_2, a_3, a_4\}| = 6$, a contradiction to $i_g(D) \leq 1$.

Subcase 3.1.2.2. Suppose now that $|H| \geq 2$ and $E(D[H]) \neq \emptyset$. Hence, there is an arc $p \to q$ in E(D[H]). If $q \to a_3$, then $a_4a_1pqa_3a_4$ is a 5-cycle, a contradiction. Hence, let $a_3 \leadsto q$. If $x \in N^+(q)$, then $a_4 \leadsto x$, because otherwise, $a_4a_1pqxa_4$ is a 5-cycle, a contradiction.

Firstly, let $a_4 \rightarrow a_2$. Then, we have

$$N^+(a_4) \supseteq (N^+(q) - (V(C) \cup (V(a_4) - \{a_4\}))) \cup (N^-(q) \cap S) \cup \{v, a_1, a_2\}$$
 and $N^+(q) \subseteq (N^+(q) - V(C)) \cup \{a_4\}.$

If there is a vertex $x \in Q \cap S$ such that $x \to q$, then $|N^-(q) \cap S| \ge 1$ and we deduce that

$$d^+(a_4) \ge \begin{cases} d^+(q) + 1, & \text{if } |V(a_4)| = 3\\ d^+(q) + 2, & \text{if } |V(a_4)| \le 2 \end{cases}$$

in both cases a contradiction either to Remark 2.3 or to $i_g(D) \leq 1$. Therefore, let $q \to Q \cap S$. If $a_4 \to q$, then similarly, we arrive at a contradiction, and if $q \in V(a_4)$,

then we observe that $N^+(a_4)\supseteq (N^+(q)-(V(C)\cup (V(a_4)-\{a_4,q\})))\cup \{v,a_1,a_2\}$ and we get the same contradiction as above. Hence, let $q\to a_4$. Furthermore, $p\in V(a_2)$, since otherwise, $a_4a_1a_2pqa_4$ is a 5-cycle, a contradiction. If there is a vertex $x\in Q\cap S$ such that $x\to a_3$, then $a_4a_1qxa_3a_4$ is a 5-cycle, a contradiction. Hence $Q\cap S\subseteq N^+(a_3)$. If there are vertices $x\in N^+(a_3)$ and $y\in N^-(a_4)$ such that $x\to y$, then $a_4a_1a_3xya_4$ is a 5-cycle, a contradiction. Consequently, we conclude that $N^-(a_4)\leadsto N^+(a_3)$. Let $v_1\to v_2$ be an arc in $E(D[Q\cap S])$. Then, we observe that $d^+(v_2)\le d^+(a_4)-2+|V(a_4)-\{a_4\}|$, and thus $|V(a_4)|\ge 2$. If $(V(a_4)-\{a_4\})\to v_2$, then we see that $d^+(a_4)\ge d^+(v_2)+2$, a contradiction. If $|V(a_4)|=3$ and $|N^+(v_2)\cap (V(a_4)-\{a_4\})|=1$, then it follows that $d^+(a_4)\ge d^+(v_2)+1$, a contradiction to Remark 2.3. Hence, let $v_2\to (V(a_4)-\{a_4\})$. Analogously, we conclude that there is no vertex $w\in Q\cap S$ such that $|N^-(w)\cap Q\cap S|\ge 2$. Let x_1,x_2,x_3 be three vertices of $Q\cap S$ belonging to three different partite sets, then they have to form a 3-cycle and $\{x_1,x_2,x_3\}\to (V(a_4)-\{a_4\})$. Furthermore, we see that $a_3\to (V(a_4)-\{a_4\})$, because otherwise, if $d\in V(a_4)-\{a_4\}$ such that $d\to a_3$, then

$$N^+(a_4) \supseteq (N^+(a_3) - (V(C) \cup (V(a_4) - \{a_4, d\}))) \cup \{v, a_1, a_2\}$$
 and $N^+(a_3) \subseteq (N^+(a_3) - V(C)) \cup \{a_4\}.$

If $|V(a_4)|=3$, then this implies $d^+(a_4)\geq d^+(a_3)+1$, a contradiction to Remark 2.3. If $|V(a_4)|=2$, then $d^+(a_4)\geq d^+(a_3)+2$, also a contradiction. Let $f\in V(a_4)-\{a_4\}$. Since $N^-(a_4) \leadsto N^+(a_3)$ and $f\in N^+(a_3)$, f has outer neighbors only in $N^+(a_4)-\{x_1,x_2,x_3\}$, a contradiction to $i_q(D)\leq 1$.

Secondly, let $a_2 \to a_4$. As above, we observe that $a_4 \leadsto (N^+(q) - V(C))$. If especially $V(q) \neq V(a_3)$, then $a_4 \leadsto q$ and thus

$$N^+(a_4) \supseteq (N^+(q) \cup \{q\} - (V(C) \cup (V(a_4) - \{a_4\}))) \cup \{v, a_1\}$$
 and $N^+(q) = N^+(q) - V(C)$.

This implies

$$d^+(a_4) \ge \begin{cases} d^+(q) + 1, & \text{if } |V(a_4)| = 3\\ d^+(q) + 2, & \text{if } |V(a_4)| \le 2 \end{cases}$$

The first case is a contradiction to Remark 2.3, and the second case is a contradiction to $i_g(D) \leq 1$. Analogously, we arrive at a contradiction, if $V(q) = V(a_3)$ and $a_4 \to q$.

Let $A \subseteq H$ be the set of vertices having an inner neighbor in H. Then, it remains to treat the case that $V(q) = V(a_3)$ for all $q \in A$, $A \to a_4$ ($|A| \le 2$) and $2 \le |H| \le 4$. If B = H - A, then we conclude that $B \subseteq V(a_2)$, because otherwise, if $p \in B - V(a_2)$ and $q \in A$, then $a_4a_1a_2pqa_4$ is a 5-cycle, a contradiction.

If |H|=2, then $d^+(v)=d^+(a_1)+1=5$. Since $a_4 \to (V(v) \cup (Q \cap S) \cup \{a_1\})$ and thus $d^+(a_4) \geq 5$, this implies that $d^+(a_4) = 5$, |V(v)|=1, $|Q \cap S|=3$ and $H \to a_4$. If there is a vertex $v_1 \in Q \cap S$ such that $v_1 \to a_3$, then, as for the vertex v, it follows that $v_1 \to H \cup \{a_2\}$. Hence, we deduce that $d^+(v_1) \geq |H| + |\{v, a_1, a_2, a_3\}| = 6$, a contradiction. Thus, let $a_3 \to Q \cap S$. If there is a vertex $v_1 \in Q \cap S$ such that $v_1 \to x$ with $x \in \{p, q\}$, then $a_4a_1a_3v_1xa_4$ is a 5-cycle through e, a contradiction. If there is a vertex $v_1 \in Q \cap S$ such that $v_1 \to a_2$, then $a_4a_1a_3v_1a_2a_4$ is a 5-cycle, also

a contradiction. Let $v_1, v_2 \in Q \cap S$ such that $v_1 \to v_2$. Summarizing our results, we observe that $d^-(v_2) \ge |H| + |\{a_2, a_3, a_4, v_1\}| = 6$, a contradiction.

Let |H| = 4, $H = \{p_1, p_2, q_1, q_2\}$ such that $p_i \to q_j$ with $i, j \in \{1, 2\}$. Then $d^+(v) = d^+(a_1) + 1 = 7$, $|V(a_2)| = |V(a_3)| = 3$ and because of Remark 2.3 $d^+(a_2) = d^-(q_1) = 6$. Since $d^-(v) = |Q| + 1 \ge 6$, we arrive at $|Q| \ge 5$. Furthermore, we see that $N^-(q_1) \supseteq \{p_1, p_2, v, a_1, a_2\}$. This implies $|N^-(q_1) \cap Q| \le 1$, which means that $|N^+(q_1) \cap Q| \ge |Q| - 1 \ge 4$. If there exists a vertex $w \in N^+(q_1) \cap Q$ such that $w \to a_2$, then $a_4a_1q_1wa_2a_4$ is a 5-cycle, a contradiction. Therefore, we have

$$d^+(a_2) \ge |N^+(q_1) \cap Q| + |\{a_3, a_4, q_1, q_2\}| \ge 8,$$

a contradiction.

Assume now that |H|=3, $H=\{p_1,p_2,q\}$ such that $p_i\to q$ for i=1,2. Then $d^+(v)=d^+(a_1)+1=6$, $|V(a_2)|=3$ and $d^+(a_2)=5$. Since $d^-(v)=|Q|+1\geq 5$, we arrive at $|Q|\geq 4$. Furthermore, we see that $N^-(q)\supseteq\{p_1,p_2,v,a_1,a_2\}$. Since $d^-(q)=5$, if |V(q)|=3, and $d^-(q)\leq 6$, if |V(q)|=2, we conclude that $|N^+(q)\cap Q|\geq |Q|-1\geq 3$. As above, we see that $a_2\to N^+(q)\cap Q$. Therefore, we have

$$d^+(a_2) \ge |N^+(q) \cap Q| + |\{a_3, a_4, q\}| \ge 6,$$

a contradiction.

Consequently, it remains to treat the case that |H|=3 and $H=\{p,q_1,q_2\}$ such that $p \to q_i$ for i = 1, 2. Then $d^+(v) = d^+(a_1) + 1 = 6$ and because of Lemma 2.2 and Remark 2.3 we observe that $|V(v)| \leq 2$ and |V(D)| = 13. Suppose that there is a vertex $x \in \{q_1, q_2\}$ such that $a_4 \to x$. This implies that $N^-(x) \supseteq \{a_1, a_2, a_4, p, v\}$. Since |V(x)| = 3, Remark 2.3 yields that $d^-(x) = 5$ and $x \to Q$. If $|V(v)| \ge 2$, then we conclude that $|S| \geq 5$ and thus $d^+(a_4) \geq 7$, a contradiction. Hence, let |V(v)| = 1and therefore |Q| = |V(D)| - |V(C)| - |H| - |V(v)| = 5. If there is a vertex $y \in Q$ such that $y \to a_2$, then $a_4a_1xya_2a_4$ is a 5-cycle containing the arc e, a contradiction. Summarizing our results, we observe that $a_2 \to (Q \cup \{a_3, a_4, q_1, q_2\})$ and thus $d^+(a_2) \ge$ 9, a contradiction. Hence, let $\{q_1,q_2\} \rightarrow a_4$. If $a_4 \rightarrow p$, then we define the cycle $C' = b_4 b_1 b_2 b_3 b_4 := a_4 a_1 p q_1 a_4$. We observe that $v \to (\{b_1, b_2, b_3\} \cup (N^+(b_1) - V(C)))$, $|N^+(b_1)-V(C)|=3$, $b_1\to b_3$ and $b_4\to b_2$ and as above we find a 5-cycle containing the arc $b_4b_1=a_4a_1$, a contradiction. Hence, let $p\to a_4$. Let us take three vertices of $Q \cap S$ belonging to three different partite sets. Then, since $a_4 \rightsquigarrow N^+(a_3) - V(C)$, at least two of them have to be outer neighbors of a_3 , because otherwise, there are vertices $v_1, v_2 \in Q \cap S$ such that $a_4 \to \{v_1, v_2\} \to a_3$, and thus, it follows that

$$N^+(a_4) \supseteq (N^+(a_3) - (V(C) \cup (V(a_4) - \{a_4\}))) \cup \{v, v_1, v_2, a_1\}$$
 and $N^+(a_3) = (N^+(a_3) - V(C)) \cup \{a_4\}.$

This implies that

$$d^{+}(a_4) \ge \begin{cases} d^{+}(a_3) + 1, & \text{if } |V(a_4)| = 3\\ d^{+}(a_3) + 2, & \text{if } |V(a_4)| \le 2 \end{cases},$$

in both cases a contradiction.

Consequently, let $N^+(a_3) \cap Q \cap S \supseteq \{x,y\}$ such that $x \to y$. If $y \to a_2$, then $a_4a_1a_3ya_2a_4$ is a 5-cycle, a contradiction. Hence, we have $a_2 \to y$. If $y \to u$ with $u \in \{p,q_1,q_2\}$, then $a_4a_1a_3yua_4$ is a 5-cycle, a contradiction. Hence, let $\{p,q_1,q_2\} \to y$. Altogether, we have that $N^-(y) \supseteq \{p,q_1,q_2,x,a_2,a_3,a_4\}$, a contradiction to $i_g(D) \le 1$.

Subcase 3.2. Let $n \geq 5$. If there are vertices $x \in H$ and $y \in Q$ such that $x \to y$, then $a_n a_1 x y v a_4 \dots a_n$ is an (n+1)-cycle, a contradiction. Hence, let $Q \leadsto H$.

Subcase 3.2.1. Assume that $|H| \geq 2$. At first, let there be an arc $p \to q$ in E(D[H]). If $q \to a_3$, then $a_n a_1 p q a_3 \dots a_n$ is an (n+1)-cycle through the arc $a_n a_1$, a contradiction. Altogether, we observe that $d^-(q) \geq |\{p, v, a_1, a_2, a_3\}| + |Q| - |V(q) - \{q\}| \geq |Q| + 3 = d^-(v) + 2$, a contradiction to $i_q(D) \leq 1$.

Consequently it remains to consider the case that $E(D[H]) = \emptyset$, which means that |H| = 2 and thus $d^+(v) = d^+(a_1) + 1 = n + 1$. According to Lemma 2.2 and Remark 2.3, we have $|V(v)| \le 2$. If $h \in H$, then we see that $d^+(h) \le |V(v) - \{v\}| + |\{a_3, \ldots, a_n\}| \le n - 1$, a contradiction to $i_n(D) \le 1$.

Subcase 3.2.2. Suppose that |H|=1 and $h\in H$. In this case, we observe that $d^+(v) = d^+(a_1) + 1 = n$. According to Lemma 2.2 and Remark 2.3, we have $|V(v)| \le$ 2. Since $d^+(h) \leq |V(v) - \{v\}| + |\{a_3, \dots, a_n\}| \leq n - 1$, it follows that $d^+(h) = n - 1$, $h \in V(a_2)$ and |V(v)| = 2. Let $q \in Q - V(h) \neq \emptyset$. Because of $H \cap Q = \emptyset$, we conclude that $Q \rightsquigarrow a_1$. If $a_2 \rightarrow q$, then $a_n a_1 a_2 q h a_4 a_5 \dots a_n$ is an (n+1)-cycle, a contradiction. If $a_i \to q$ with $3 \le i \le n-1$, then $a_n a_1 a_3 \dots a_i q h a_{i+1} \dots a_n$ is an (n+1)-cycle, also a contradiction. This implies that $Q \cap S \to \{v, h, a_1, a_2, \dots, a_{n-1}\}$, which means that $d^+(p) \geq n+1$, if $p \in Q \cap S$, a contradiction. Hence, we have $Q \cap S = \emptyset$ and thus S = V(v), n = c - 1 and D[V(C)] is a tournament. Let x be a vertex with $V(x) = \{x\}$. Obviously, we have $x \in V(C)$. If $x = a_i$ with $i \in \{3, ..., n-1\}$, then it follows that $d^{-}(a_i) \geq |Q - V(h)| + |\{a_{i-1}, a_1, v, h\}| = |Q| + 3 = d^{-}(v) + 2$, a contradiction to $i_g(D) \leq 1$. If $|V(a_1)| = 1$, then we conclude that $d^-(a_1) \geq 1$ $|Q|+|V(v)|+|\{a_n\}|=d^-(v)+2$, a contradiction. Because of $h\in V(a_2)$, we observe that $|V(a_n)| = 1$ and at least n-1 of the *n* vertices of V(C) belong to partite sets with at least two vertices. If $|V_c|=3$, then we have $|Q|\geq |V(a_1)\cup V(a_2)\cup \ldots V(a_{n-1})|$ $|\{a_1, a_2, \dots, a_{n-1}\}| - |H| \ge n - 1$ and $d^-(v) \ge n$. Together with Remark 2.3, this implies the contradiction

$$2n+1 = |V(D)| = d^+(v) + d^-(v) + 2 \ge 2n+2.$$

Hence, let $|V_c| = 2$. But now, for every $q \in Q$ we have that $q \notin V(h)$. Let there be a vertex $q \in Q$ such that $d^+_{D[Q]}(q) \ge 1$, then we see that $d^+(q) \ge d^+_{D[Q]}(q) + |\{v, h, a_1, \ldots, a_{n-1}\}| - |V(q) - \{q\}| \ge n + 1$, a contradiction to $i_q(D) \le 1$.

Subcase 3.2.3. Assume that |H| = 0. This yields $d^+(v) = d^+(a_1) + 1 = n - 1$. Because of $i_g(D) \le 1$, it follows that $n - 1 \ge d^-(v) = |Q| + 1 \ge n - 2$, which means that $n - 3 \le |Q| \le n - 2$. As above we see that $Q \leadsto a_1$. If there is a vertex $q \in Q$ such that $a_2 \to q$, then $a_n a_1 a_2 q v a_4 \dots a_n$ is an (n + 1)-cycle containing the arc e, a contradiction. If there are vertices $q \in Q$ and $a_i \in V(C)$ with $a_i \to q$ for $3 \le i \le n - 2$, then $a_n a_1 a_3 \dots a_i q v a_{i+1} \dots a_n$ is an (n + 1)-cycle, also a contradiction. Summarizing our results, we observe that $Q \leadsto \{a_1, a_2, \dots, a_{n-2}, v\}$. Let L_1 be the

set of vertices of $Q \cap S$ having an outer neighbor in Q. If $L_1 \neq \emptyset$ and $q_1 \in L_1$, then it follows that $d^+(q_1) \geq n$, a contradiction to $i_g(D) \leq 1$. Hence, let $L_1 = \emptyset$. Let L_2 be the set of vertices of Q having an outer neighbor in Q. Since $|Q| \geq n-3$ and $|H| \neq 0$, if $|V_c| = 3$ and n = 5 (cf. the beginning of the proof of this theorem), we conclude that either $L_2 \neq \emptyset$ or $Q - S = \emptyset$ and $Q \cap S$ consists of vertices of only one partite set. At first let $Q - S = \emptyset$ and let $Q \cap S = S - V(v)$ be one partite set. If $q \in Q \cap S$, then we conclude that $d^+(q) \geq n-1$, and thus $d^+(q) = n-1$ and $|Q| = |V(q)| \leq 2$. Since S consists of only two partite sets, we see that $n = c - 2 \geq 6$ and thus $|Q| \geq n - 3 \geq 3$, a contradiction. Hence, let $L_2 \neq \emptyset$. If $q_2 \in Q_2$ and $q_2 \to q_1$ with $q_1 \in Q$, then we arrive at

$$d^{+}(q_{2}) \ge |\{a_{1}, a_{2}, \dots, a_{n-2}, v, q_{1}\}| - |V(q_{2}) - \{q_{2}\}| \ge \begin{cases} n-2, & \text{if } |V(q_{2})| = 3\\ n-1, & \text{if } |V(q_{2})| = 2 \end{cases} . (1)$$

To get no contradiction to $i_g(D) \leq 1$ or to Remark 2.3, it follows that we have equality in (1), $d^+_{D[Q]}(q_2) = 1$ and $|V(q_2) \cap Q| = 1$ for all $q_2 \in L_2$, since otherwise, if there is a vertex $q_3 \in Q - \{q_1, q_2\}$ such that $q_2 \leadsto q_3$, then we observe that $N^+(q_2) \supseteq (\{a_1, a_2, \ldots, a_{n-2}, v, q_1, q_3\} - (V(q_2) - \{q_2\})$ and the right hand side of (1) enlarges by one, a contradiction. If S consists of vertices of at least three partite sets, then, because of $R = \emptyset$ and thus $S - V(v) \subseteq Q$, we conclude that $Q \cap S$ contains vertices of at least two partite sets, a contradiction to $L_1 = \emptyset$. Consequently, it remains to treat the case that S consists of vertices of at most two partite sets.

Firstly, let S consist of vertices of one partite set. This yields n=c-1, $Q \cap S = \emptyset$ and Q is a tournament with $|Q| \leq 3$. But now, we see that $n-3 \leq |Q| \leq 3$, which means that $n=c-1 \leq 6$, a contradiction to $c \geq 8$.

Secondly, let S consist of vertices of two partite sets. This implies that $n \ge c - 2$. To get no contradiction in (1), we deduce that $|Q \cap S| = 1$ and $q_2 \to Q \cap S$ for all $q_2 \in L_2$. Since $|V(q_2) \cap Q| = 1$, it follows that $|Q| \le 2$, and thus $n - 3 \le |Q| \le 2$, which means that $c - 2 \le n \le 5$, a contradiction to $c \ge 8$.

Summarizing the investigations of Case 3, we see that there remains to consider the case that $a_{n-1} \to S$.

Case 4. There exists a vertex $v \in S$ such that $a_2 \to v$. If we consider the converse of D, then, analogously to Case 3, it remains to treat the case that $S \to a_2$.

If $C = a_n a_1 a_2 \dots a_n$ and $v \in S$, then the following three sets play an important role in our investigations

$$H = N^{+}(a_1) - V(C), \qquad F = N^{-}(a_n) - V(C), \qquad Q = N^{-}(v) - V(C).$$

Summarizing the investigations in the Cases 1 - 4, we can assume in the following, usually without saying so, that

$$\{a_{n-1}, a_n\} \to S \to \{a_1, a_2\} \leadsto H \tag{2}$$

Case 5. Let n=4. Because of (2), we see that $\{a_3, a_4\} \to S \to \{a_1, a_2\}$. Hence, we conclude that $N^+(a_4) \supseteq S \cup \{a_1\}$. Analogously as in Subcase 3.1, we observe that D[V(C)] is a tournament.

Subcase 5.1. Let $a_1 \to a_3$. If $a_2 \to a_4$ and $v \in S$, then $a_4a_1a_3va_2a_4$ is a 5-cycle, a contradiction. Consequently, let $a_4 \to a_2$. If there are vertices $v \in S$ and $x \in F$ such that $v \to x$, then $a_4a_1a_3vxa_4$ is a 5-cycle, a contradiction. Hence, let $F \to S$. If we take vertices $v, w \in S$ such that $v \to w$, then we have $N^-(a_4) = F \cup \{a_3\}$ and $N^-(w) \supseteq F \cup \{a_3, a_4, v\}$, a contradiction to $i_q(D) \le 1$.

Subcase 5.2. Let $a_3 \to a_1$ and assume that $a_2 \to a_4$. If there are vertices $v \in S$ and $x \in H$ such that $x \to v$, then $a_4a_1xva_2a_4$ is a 5-cycle, a contradiction. Otherwise, we have $S \to H$. If we take two vertices $v, w \in S$ such that $v \to w$, then we observe that $N^+(a_1) = H \cup \{a_2\}$ and $N^+(v) \supseteq \{a_1, a_2, w\} \cup H$, a contradiction to $i_g(D) \le 1$.

Finally, let $a_4 \rightarrow a_2$. Because of Corollary 2.4, it follows that

$$\begin{array}{ll} c+k = |V(D)| & \geq & |H| + |F| + |S| + |V(C)| - |H \cap F| \\ & \geq & \frac{c+k-3}{2} - 1 + \frac{c+k-3}{2} - 1 + 4 + 4 - |H \cap F| \\ & = & c+k+3 - |H \cap F|, \end{array}$$

which leads to $|H \cap F| \geq 3$. Thus, $H \cap F$ contains vertices of at least two partite sets. Now, we take two vertices $u_2, u_3 \in H \cap F$ such that $u_2 \to u_3$. Then, $C' = a_4 a_1 u_2 u_3 a_4$ is a cycle through $a_4 a_1$ such that $a_1 \to u_3$ and $u_2 \to a_4$. Analogously to Subcase 5.1 with $a_2 \to a_4$, this yields a contradiction.

Therefore, we have seen that every arc of D is contained in a 5-cycle. From now on, let us suppose that $n \geq 5$.

Case 6. Let $n \geq 5$ and assume that there exists a vertex $v \in S$ such that $v \to a_{n-2}$. If there is a vertex $a_i \in V(C)$ with $3 \leq i \leq n-3$ such that $a_i \to v$, then we obtain, as in Case 1, an (n+1)-cycle through $a_n a_1$, a contradiction. Thus, we investigate now the case that $v \to \{a_1, a_2, \ldots, a_{n-2}\}$. If there is a vertex $h \in H$ such that $h \to v$, then $a_n a_1 h v a_3 a_4 \ldots a_n$ is an (n+1)-cycle through $a_n a_1$, a contradiction. Therefore, we assume now that $v \to H$. This leads to $d^+(v) \geq d^+(a_1)$, and thus, because of $i_g(D) \leq 1$, it follows that $a_1 \to \{a_2, a_3, \ldots, a_{n-1}\}$ or $a_1 \to \{a_2, a_3, \ldots, a_{n-1}\} - \{a_j\}$ for some $j \in \{3, 4, \ldots, n-1\}$ and $a_j \to a_1$ or $V(a_1) = V(a_j)$.

Subcase 6.1. Assume that $a_1 \to \{a_2, a_3, \dots, a_{n-1}\}$. If there is a vertex $h \in H$ such that $h \to a_n$, then $a_n a_1 a_3 a_4 \dots a_{n-1} v h a_n$ is an (n+1)-cycle, a contradiction. Therefore, we may assume now that $a_n \to (H-V(a_n))$. If $a_{i-1} \to a_n$ for $3 \le i \le n-1$, then $a_n a_1 a_i a_{i+1} \dots a_{n-1} v a_2 a_3 \dots a_{i-1} a_n$ is an (n+1)-cycle, a contradiction. Hence, it remains to treat the case that $a_n \to a_{i-1}$ or $a_{i-1} \in V(a_n)$ for $2 \le i \le n-1$. If there is a vertex $x \in H \cap F$, then $a_n a_1 a_3 \dots a_{n-1} v x a_n$ is an (n+1)-cycle, a contradiction. Let $R = V(D) - (H \cup F \cup S \cup V(C))$. Since $a_n \to \{a_1, \dots, a_{n-2}\}$, Corollary 2.4 leads to

$$|R| \le c + k - \left\{ \frac{c+k-3}{2} - (n-2) + \frac{c+k-3}{2} - 1 + 1 + n \right\} = 1,$$

if |S|=1, $|R|\leq 0$, if |S|=2 and the contradiction $|R|\leq -1$, if $|S|\geq 3$. Hence, it follows that $|S|\leq 2$, and thus $n\geq 6$. If there are vertices $h\in H$ and $y\in F$ such that $h\to y$, then $a_na_1a_4\ldots a_{n-1}vhya_n$ is an (n+1)-cycle containing the arc e, a contradiction. Consequently, let $F\leadsto H$.

Subcase 6.1.1. Suppose that $|H| \geq 2$. This implies that there are vertices $h_1, h_2 \in H$ such that $h_1 \leadsto h_2$. On the one hand, we have $d^+(v) \geq n-2+|H|$ and on the other hand, since $|S|+|R| \leq 2$, we conclude that $d^+(h_2) \leq |H-\{h_1,h_2\}|+|\{a_3,\ldots,a_{n-1}\}|+|S-\{v\}|+|R| \leq |H|-2+n-3+1=|H|+n-4$. Combining these results we arrive at $d^+(v)-d^+(h_2) \geq 2$, a contradiction to $i_q(D) \leq 1$.

Subcase 6.1.2. Let |H| = 1 and $h \in H$. In this case, we have

$$d^{-}(h) \ge |F| + |\{v, a_n, a_1, a_2\}| - |V(h) - \{h\}| \ge \begin{cases} |F| + 2, & \text{if} \quad |V(h)| = 3\\ |F| + 3, & \text{if} \quad |V(h)| = 2 \end{cases},$$

whereas $d^-(a_n) \leq |F| + |\{a_{n-1}\}| = |F| + 1$, which means that $d^-(h) - d^-(a_n) \geq 1$, if |V(h)| = 3 and $d^-(h) - d^-(a_n) \geq 2$, if |V(h)| = 2, in both cases a contradiction.

Subcase 6.1.3. Assume that $H = \emptyset$. This implies that $d^+(a_1) = n-2$ and $d^+(v) \ge n-2$. If there are vertices $w \in S$ and $f \in F$ such that $w \to f$, then $a_n a_1 a_3 \ldots a_{n-1} w f a_n$ is an (n+1)-cycle, a contradiction. Hence, we have $F \to S$. Since $n-3 \le d^-(a_n) \le |F|+1$, we conclude that $|F| \ge n-4 \ge 2$, and thus $F \ne \emptyset$. Furthermore, we observe that

$$n-1 \ge d^-(v) \ge |F| + 2 \implies |F| \le n-3.$$
 (3)

Since $H=\emptyset$, we see that $F\leadsto a_1$. If there is a vertex $f\in F$ such that $a_{n-1}\to f$, then $a_na_1\dots a_{n-1}fa_n$ is an (n+1)-cycle containing the arc e, a contradiction. If there is a vertex $f\in F$ such that $a_i\to f$ with $3\le i\le n-3$, then $a_na_1a_3\dots a_ifva_{i+1}\dots a_n$ is an (n+1)-cycle, also a contradiction. Summarizing our results we observe that $F\leadsto (S\cup\{a_1,a_3,a_4,\dots,a_{n-3},a_{n-1},a_n\})$. Let $f\in F$ with $d_{D[F]}^-(f)\le \frac{|F|-1}{2}$. This yields

$$d^{-}(f) \le d^{-}_{D[F]}(f) + |\{a_2, a_{n-2}\}| + |R| \le \frac{|F| - 1}{2} + 2 + |R|. \tag{4}$$

Subcase 6.1.3.1. Suppose that $d^-(f) = n-3$. In this case, the bound in (3) can be improved by $|F| + 2 \le d^-(v) \le n-2$, which means that $|F| \le n-4$ and thus |F| = n-4. Combining this with (4) we arrive at $n-3 \le \frac{n-5}{2} + 2 + |R| \le \frac{n+1}{2} \Rightarrow n \le 7$.

Firstly let n=6. Because of $|S| \le 2$, it follows that $n \ge c-2$, and thus c=8, |S|=2 and |R|=0. But now, with (4) yields $n-3 \le \frac{n-5}{2}+2 = \frac{n-1}{2} \Rightarrow n \le 5$, a contradiction.

Secondly let n = 7. If |R| = 0, then we arrive at a contradiction as above. Hence, let |R| = 1. Since $d^-(f) = n - 3$ we conclude that $d^+(v) = n - 2$ and $d^-(v) \ge |F| + 2 = n - 2$ and thus $d^-(v) = n - 2$. If $x \in R$, then x is adjacent to v, a contradiction to $d^-(v) = d^+(v) = n - 2$.

Subcase 6.1.3.2. Assume that $d^-(f) \ge n-2$. Combining (3) and (4) we see that

$$n-2 \le \frac{n-4}{2} + 2 + |R| \le \frac{n+2}{2} \Rightarrow n \le 6.$$

This implies that n=6 and the inequalities in the last inequality-chain have to be equalities, which especially means that |R|=1 and thus |S|=1. This yields the contradiction $6=n=c-1\geq 7$.

Subcase 6.2. Assume that n=5 and there is exactly one $j \in \{3,4\}$ such that $a_1 \to (\{a_2, a_3, a_4\} - \{a_j\})$ and $a_j \to a_1$ or $V(a_j) = V(a_1)$. In this case, we observe that $d^+(v) \ge d^+(a_1) + 1$.

Subcase 6.2.1. Let $a_1 \to \{a_2, a_3\}$ and $a_4 \to a_1$ or $V(a_4) = V(a_1)$. If there is a vertex $h \in H$ such that $h \to a_5$, then $a_5a_1a_3a_4vha_5$ is a 6-cycle, a contradiction. Therefore, we may assume that $a_5 \to (H - V(a_5))$. If $a_2 \to a_5$, then $a_5a_1a_3a_4va_2a_5$ is a 6-cycle, a contradiction. Hence, it remains to consider the case that $a_5 \to a_2$ or $V(a_5) = V(a_2)$. Let $\{a_1, a_2\} = A \cup B$ such that $a_5 \to A$ and $B \subseteq V(a_5)$. Then $N^+(a_1) = H \cup \{a_2, a_3\}$ and $N^+(a_5) \supseteq A \cup S \cup (H - (V(a_5) - (B \cup \{a_5\})))$. This leads to

$$d^{+}(a_{5}) \ge |A| + |S| + |H| - (3 - (|B| + 1)) = d^{+}(a_{1}) + |S| - 2.$$

This implies $|S| \leq 3$ and thus c = 8 and |S| = 3. Then we see that $d^+(a_5) \geq d^+(a_1) + 1$ such that we have equality in the last inequality chain. Especially, we observe that $|V(a_5)| = 3$, a contradiction to Lemma 2.2 and Remark 2.3.

Subcase 6.2.2. Let $a_1 \to \{a_2, a_4\}$ and $a_3 \to a_1$ or $V(a_3) = V(a_1)$. Since $N^+(v) = H \cup \{a_1, a_2, a_3\}$, we observe that $R = V(D) - (H \cup Q \cup V(v) \cup V(C)) = \emptyset$. If $a_3 \to a_5$, then $a_5a_1a_4va_2a_3a_5$ is a 6-cycle, a contradiction. If there exists a vertex $h \in H$ such that $h \to a_5$ and if $q \in Q \cap S \neq \emptyset$, then $a_5a_1a_4qvha_5$ is a 6-cycle, a contradiction. Let $A \cup B = \{a_1, a_3\}$ such that $a_5 \to A$ and $B \subseteq V(a_5)$, then it follows that $N^+(a_1) = H \cup \{a_2, a_4\}$ and $N^+(a_5) \supseteq S \cup A \cup (H - (V(a_5) - (B \cup \{a_5\})))$, and thus, we have

$$d^{+}(a_{5}) \ge |A| + |H| + |S| - (3 - (|B| + 1)) = d^{+}(a_{1}) + |S| - 2.$$

This implies $|S| \leq 3$ and thus c = 8 and |S| = 3. Then we see that $d^+(a_5) \geq d^+(a_1) + 1$ such that we have equality in the last inequality chain. Especially, we observe that $|V(a_5)| = 3$, because of Lemma 2.2 and Remark 2.3 a contradiction.

Subcase 6.3. Suppose that $n \geq 6$ and there exists exactly one $j \in \{3, \ldots, n-1\}$ such that $a_1 \to (\{a_2, a_3, \ldots, a_{n-1}\} - \{a_j\})$ and $a_j \to a_1$ or $V(a_1) = V(a_j)$. In this case, we observe that $d^+(v) \geq d^+(a_1) + 1$ and thus $d^+(v) = d^+(a_1) + 1$. Since $Q \to v \to H$, it follows that $Q \cap H = \emptyset$. If $R = V(D) - (H \cup Q \cup V(v) \cup V(C))$, then obviously $R = \emptyset$. If there are vertices $x \in H$ and $y \in Q$ such that $x \to y$, then $a_n a_1 x y v a_4 \ldots a_n$ is an (n+1)-cycle through e, a contradiction. Summarizing our results, we see that

$$(Q \cup \{a_1, a_2, v\}) \rightsquigarrow H.$$

Subcase 6.3.1. Let $|H| \ge 2$. If there are vertices $h_1, h_2 \in H$ such that $h_1 \to h_2$, then it follows that $a_3 \leadsto h_2$, since otherwise $a_n a_1 h_1 h_2 a_3 \ldots a_n$ is an (n+1)-cycle, a contradiction. Hence we have

$$\begin{array}{ll} d^-(h_2) & \geq & |Q| + |\{v,h_1,a_1,a_2,a_3\}| - |V(h_2) - \{h_2\}| \\ \\ & \geq & \left\{ \begin{array}{ll} |Q| + 3 = d^-(v) + 1, & \text{if} & |V(h_2)| = 3 \\ |Q| + 4 = d^-(v) + 2, & \text{if} & |V(h_2)| = 2 \end{array}, \right. \end{array}$$

in both cases a contradiction, either to $i_g(D) \leq 1$ or to Remark 2.3.

Consequently it remains to consider the case that $E(D[H]) = \emptyset$, which means that $H = \{h_1, h_2\}$ such that $h_1 \in V(h_2)$. If there are vertices $a_i \in V(C)$ with $i \in \{3, 4, ..., n\}$ and $h \in H$ such that $a_i \rightsquigarrow h$, then analogously as above we arrive at a contradiction. Hence let $H \to \{a_3, a_4, ..., a_n\}$. This yields that $a_n a_1 h_1 a_4 ... a_{n-1} v h_2 a_n$ is an (n+1)-cycle containing the arc e, a contradiction.

Subcase 6.3.2. Assume that |H|=1 and $h\in H$. If there is a vertex $a_i\in N^+(h)$ with $3\leq i\leq n$, then we conclude that $(Q-V(h))\leadsto a_{i-2}$, since otherwise, if $q\in Q-V(h)$ such that $a_{i-2}\to q$, then $a_na_1\ldots a_{i-2}qha_i\ldots a_n$ is an (n+1)-cycle, a contradiction. If $N^+(h)\cap V(C)=\{a_{i_1},a_{i_2},\ldots,a_{i_g}\}$, then we define $M=\{a_{i_1-2},a_{i_2-2},\ldots,a_{i_g-2}\}$. Furthermore we observe that $d^+(v)=n-1=d^+(a_1)+1$. According to Remark 2.3, we have $|V(v)|\leq 2$. Because of $|Q|=d^-(v)-2\geq n-4\geq 2$, we see that there are vertices $q_1,q_2\in Q$ such that $q_1\leadsto q_2$.

Firstly, let $q_1 \notin V(h)$. This implies that

$$|N^{+}(h)| \le |M| + |V(v) - \{v\}| \le |M| + 1 \tag{5}$$

and

$$|N^{+}(q_{1})| \geq |M| + |\{q_{2}, v, h\}| - |V(q_{1}) - \{q_{1}\}|$$

$$\geq \begin{cases} d^{+}(h), & \text{if } |V(q_{1})| = 3\\ d^{+}(h) + 1, & \text{if } |V(q_{1})| = 2 \end{cases}$$
(6)

To get no contradiction, all inequalities in the inequality-chain of (5) and (6) have to be equalities, which especially means that |V(v)| = 2. If $a_3 \notin N^+(h)$, then, noticing that $q_1 \rightsquigarrow a_1$, we conclude that $a_1 \notin M$ and thus $N^+(q_1) \supseteq ((M \cup \{q_2, v, h, a_1\}) (V(q_1) - \{q_1\})$). Then similarly to (6), we arrive at a contradiction. Therefore, let $h \to a_3$. If $V(h) \neq V(a_2)$, then $a_n a_1 a_2 h a_3 \dots a_n$ is an (n+1)-cycle, a contradiction. Consequently, let $V(h) = V(a_2)$. Let $v' \in V(v) - \{v\}$. Because of (5) and (6), it follows that $h \to v'$ and thus $a_3 \to v'$ since otherwise $a_n a_1 h v' a_3 \dots a_n$ is an (n+1)cycle through e, a contradiction. This implies $\{a_3,\ldots,a_n,h\}\to v'$ and thus $d^-(v')\geq$ n-1. Since $i_q(D) \leq 1$ we conclude that $d^-(v') = n-1$ and $v' \to Q$. If $n \geq 7$, then $a_n a_1 h v' q v a_5 \dots a_n$ is an (n+1)-cycle for any $q \in Q$, a contradiction. Hence, let n=6, and thus $|S|\geq 3$ and $Q\cap S\neq\emptyset$. If there are vertices $s_1\in Q\cap S$ and $\hat{q}_2 \in Q$ such that $s_1 \to \hat{q}_2$, then similarly as in (6), we arrive at the contradiction $d^+(s_1) \geq d^+(h) + 2$. This implies $Q \cap S$ consists of vertices of only one partite set, and thus we conclude that c = 8 and D[V(C)] is a tournament. If there is a vertex a_i with $2 \le i \le 4$ such that $a_i \to a_6$, then $a_6 a_1 h v' q v a_i a_6$ is a 7-cycle for every $q \in Q$, a contradiction. This yields $d^+(a_6) \geq |\{a_1, a_2, a_3, a_4\}| + |S| \geq 7 = d^+(a_1) + 3$, a contradiction to $i_q(D) \leq 1$.

Secondly, let $q_1 \in V(h)$. If $|Q| \geq 3$, then there are vertices $q_1', q_2' \in Q$ such that $q_1' \leadsto q_2'$ and $q_1' \notin V(h)$ and as above this leads to a contradiction. Hence, let |Q| = 2 and thus, because of $|Q| \geq n - 4 \geq 2$, let n = 6. Since $c \geq 8$, we conclude that $Q \cap S \neq \emptyset$, $\{q_2\} = Q \cap S$ which implies that c = 8 and D[V(C)] is a tournament. Furthermore we observe that

$$d^+(q_2) \ge |N^+(h) \cap V(C)| + |\{v,h\}| \ge d^+(h) + 1.$$

To get no contradiction to $i_g(D) \leq 1$, the equalities in the last inequality-chain and in (5) have to be equalities, which means that |V(v)| = 2, $h \to (V(v) - \{v\})$, and because of $q_2 \to \{a_1, a_2\}$, similarly as above it follows that $h \to \{a_3, a_4\}$, and thus $V(h) = \{h, a_2, q_1\}$. Let $v' \in V(v) - \{v\}$. If $v' \to a_3$, then $a_6a_1hv'a_3a_4a_5a_6$ is a 7-cycle, a contradiction. Consequently, we have $a_3 \to v'$ and analogously as in Case 2, we arrive at $\{a_3, a_4, a_5, a_6, h\} \to v'$. Since $d^+(a_1) = 4$, this implies that $d^-(v') = 5$ and $v' \to Q$. If $h \to a_6$, then either $a_6a_1a_3a_4a_5q_2ha_6$ or $a_6a_1a_4a_5q_2vha_6$ is a 7-cycle, a contradiction. It follows that $a_6 \to \{h, a_1, v, v', q_2\}$ and thus $a_3 \to a_6$. But now $a_6a_1hv'q_2a_2a_3a_6$ is a 7-cycle, a contradiction.

Subcase 6.3.3. Suppose that |H|=0. If $a_1 \to a_i$ for some $i \in \{3,\ldots,n-1\}$ and $a_{i-1} \to a_n$, then $a_n a_1 a_i a_{i+1} \ldots a_{n-1} v a_2 a_3 \ldots a_{i-1} a_n$ is an (n+1)-cycle, a contradiction. Let $N^+(a_1)=\{a_{i_1},\ldots,a_{i_{n-3}}\}$ and $A \cup B=\{a_{i_1-1},\ldots,a_{i_{n-3}-1}\}$ such that $a_n \to A$ and $B \subseteq V(a_n)$. Then $|B| \le 2$, $|S| \ge |B|+1$, $N^+(a_n) \supseteq A \cup S$ and thus

$$d^{+}(a_n) \ge |A| + |S| = d^{+}(a_1) - |B| + |S| \ge d^{+}(a_1) + 1, \tag{7}$$

which means that |S|=1, if |B|=0, |S|=2, if |B|=1, and |S|=3, if |B|=2. According to Remark 2.3, the combination |B|=2 and $d^+(a_n) \geq d^+(a_1)+1$ is impossible. Hence let $|B| \leq 1$ and $|S|=|B|+1 \leq 2$.

Since |H| = 0, we conclude that $d^+(a_1) = n - 3$, $d^+(v) = n - 2$ and $1 \le n - 5 \le |Q| = d^-(v) - 2 \le n - 4$.

Firstly, let |Q| = 1. In this case we have $d^+(v) = n - 2 \ge 4$ and $d^-(v) = 3$ which implies that $n = 6 \le c - 2$. Hence, we see that $|S| \ge 2$ and (7) yields |S| = 2, |S| = 2, |S| = 3 and |S| = 3, a contradiction to |S| = 3.

Secondly, let |Q|=2 and $|V_c|=3$. Then $d^+(v)=n-2$ and $d^-(v)=4$ and thus n=6 or n=7. If $n=6 \le c-2$, then we conclude that $|S| \ge 2$ and (7) yields that |S|=2 and D[V(C)] is a tournament, which means that |B|=0, a contradiction to |S|=2. Consequently, let n=7. In this case we have $d^+(v)=5$ and $d^-(v)=4$ and Remark 2.3 yields that |V(v)|=2. Since $|S| \le 2$ and $c \ge 8$ we obtain that |S|=2, c=8=n+1 and D[V(C)] is a tournament and thus |B|=0, also a contradiction to |S|=2.

Thirdly, let $|Q| \geq 3$ or |Q| = 2 and $|V_c| = 2$. This implies that there are vertices $q_1, q_2 \in Q$ such that $q_1 \to q_2$. Because of (7), we have $N^+(a_n) \cap (Q - S) = \emptyset$. Let $q \in Q$ be arbitrary. Since $H = \emptyset$ we conclude that $q \leadsto a_1$. If $a_2 \to q$, then $a_n a_1 a_2 q v a_4 \ldots a_n$ is an (n+1)-cycle containing the arc e, a contradiction.

Assume that $a_1 \to a_3$. If $a_i \to q$ with $3 \le i \le n-3$, then $a_n a_1 a_3 \dots a_i q v a_{i+1} \dots a_n$ is an (n+1)-cycle, a contradiction. Altogether, we see that $q_1 \leadsto \{v, a_1, \dots, a_{n-3}, a_n, q_2\}$, if $q_1 \in Q - S$ and $q_1 \to \{v, a_1, \dots, a_{n-3}, q_2\}$, if $q_1 \in Q \cap S$. It follows that

$$d^{+}(q_1) \ge \begin{cases} n-1 = d^{+}(a_1) + 2, & \text{if} \quad |V(q_1)| = 2\\ n-2 = d^{+}(a_1) + 1, & \text{if} \quad |V(q_1)| = 3 \end{cases},$$

if $q_1 \in Q - S$ and $d^+(q_1) \ge n - 1$, if $q_1 \in Q \cap S$, in all cases a contradiction either to $i_g(D) \le 1$ or to Remark 2.3.

Consequently, it remains to consider the case that $a_3 \to a_1$ or $V(a_3) = V(a_1)$ and $a_1 \to \{a_2, a_4, \ldots, a_{n-1}\}$. If n=6, then we deduce that |S|=2 and |B|=0, a contradiction to (7). Consequently, let $n \ge 7$. If $a_i \to q_1$ for $i \in \{4, \ldots, n-3\}$, then $a_n a_1 a_4 \ldots a_i q_1 q_2 v a_{i+1} \ldots a_n$ is an (n+1)-cycle containing the arc $a_n a_1$, a contradiction. At first let $q_1 \in Q \cap S$. This implies that $q_1 \to \{v, a_1, a_2, a_3, \ldots, a_{n-3}, q_2\}$ and thus $d^+(q_1) \ge n-1 = d^+(a_1)+2$, a contradiction to $i_g(D) \le 1$. Hence, we have $q_1 \in Q - S$ and $q_1 \leadsto \{v, a_1, a_2, a_4, \ldots, a_{n-3}, a_n, q_2\}$, which means that

$$d^+(q_1) \geq \left\{ \begin{array}{ll} n-2, & \text{if} & |V(q_1)| = 2 \\ n-3, & \text{if} & |V(q_1)| = 3 \end{array} \right..$$

To get no contradiction to $i_g(D) \leq 1$, it has to be equality. This implies that $V(q_1) \neq V(a_{n-2})$ and $V(q_1) \neq V(a_{n-1})$ and $V(q_1) \neq V(a_3)$ and thus $\{a_3, a_{n-2}, a_{n-1}\} \rightarrow q_1$. The inequality-chain (7) yields that $|V(a_n)| \leq 2$. If $V(q_1) \neq V(a_n)$, then $a_n a_1 \dots a_{n-1} q_1 a_n$ is an (n+1)-cycle, a contradiction. Consequently, let $V(q_1) = V(a_n)$ and thus $a_4 \notin V(q_1)$. This implies that $a_n a_1 a_2 a_3 q_1 a_4 \dots a_n$ is an (n+1)-cycle through e, a contradiction.

Summarizing the investigations of Case 6, we see that there remains to treat the case that $a_{n-2} \to S$.

Case 7. Let n = 5. If we consider the cycle $C^{-1} = a_1a_5a_4a_3a_2a_1 = b_5b_1b_2b_3b_4b_5$ in the converse D^{-1} of D, then $\{b_4, b_5\} \to S \to \{b_1, b_2, b_3\}$. Since this is exactly the situation of Case 6, there exists in D^{-1} a 6-cycle, containing the arc $b_5b_1 = a_1a_5$, and hence there exists in D a 6-cycle through a_5a_1 .

Case 8. Let $n \geq 6$. Assume that there exists a vertex $v \in S$ such that $a_3 \to v$. If we consider the converse of D, then in view of Case 6, it remains to consider the case that $S \to a_3$.

Case 9. Let $c>n\geq 6$. If there are vertices $v\in S$ and $x\in H$ such that $x\to v$, then $a_na_1xva_3a_4\dots a_n$ is an (n+1)-cycle through e, a contradiction. Consequently, we have $S\to H$. If there is a vertex $x\in H$ such that $x\to a_n$, then $a_na_1a_2\dots a_{n-2}vxa_n$ is an (n+1)-cycle, also a contradiction. Summarizing our results, we see that $(S\cup\{a_1,a_2,a_n\})\to H$. If $a_1\to a_i$ with $3\leq i\leq n-1$ and $a_{i-1}\to a_n$, then $a_na_1a_i\dots a_{n-1}va_2\dots a_{i-1}a_n$ is an (n+1)-cycle containing the arc e, a contradiction. Let $N=\{a_{i_1},a_{i_2},\dots,a_{i_k}\}$ be exactly the subset of $V(C)-\{a_2\}$ such that $a_1\to N$. Then we define $A\cup B=\{a_{i_1-1},a_{i_2-1},\dots,a_{i_{k-1}}\}$ such that $a_n\to A$ and $B\subseteq V(a_n)$. Obviously $|B|\leq 2$. Since $a_n\to (H-V(a_n))$, we deduce that $N^+(a_1)=\{a_2\}\cup N\cup H$ and $N^+(a_n)\supseteq\{a_1\}\cup A\cup S\cup (H-(V(a_n)-(B\cup\{a_n\})))$, and thus

$$d^{+}(a_{n}) \geq \begin{cases} |A| + |S| + 1 + |H| - (3 - (|B| + 1)) = d^{+}(a_{1}) + |S| - 2, & \text{if} \quad |V(a_{n})| = 3 \\ |A| + |S| + 1 + |H| - (2 - (|B| + 1)) = d^{+}(a_{1}) + |S| - 1, & \text{if} \quad |V(a_{n})| \leq 2 \end{cases}$$
(8)

This implies that |S| = 1 or |S| = 2 and thus $|B| \le 1$. Let $R_2 = V(D) - (H \cup F \cup S \cup V(C))$. Since $F \to a_n \leadsto H$, it follows that $H \cap F = \emptyset$. If there are vertices $\tilde{v} \in S$ and $f \in F$ such that $\tilde{v} \to f$, then $a_n a_1 \ldots a_{n-2} \tilde{v} f a_n$ is an (n+1)-cycle, a contradiction.

Hence, let $F \to S$. Because of $F \cap H = \emptyset$, we observe that $F \leadsto a_1$. If there is a vertex $f \in F$ such that $a_{n-1} \to f$, then $a_n a_1 \dots a_{n-1} f a_n$ is an (n+1)-cycle through e, a contradiction. Let $f \in F$ be arbitrary. If there is an index $i \in \{3, 4, \dots, n-2\}$ such that $a_1 \to a_i$ and $a_{i-1} \to f$, then $a_n a_1 a_i \dots a_{n-2} v a_2 \dots a_{i-1} f a_n$ is an (n+1)-cycle containing the arc e, a contradiction. If $a_1 \to a_{n-1}$ and $a_{n-2} \to f$, then $a_n a_1 a_{n-1} v a_3 \dots a_{n-2} f a_n$ is an (n+1)-cycle, also a contradiction. Summarizing our results, we observe that

$$F \leadsto (S \cup A \cup B \cup \{a_1, a_n, a_{n-1}\}). \tag{9}$$

Subcase 9.1. Assume that there is a vertex $v \in S$ such that $v \to a_{n-3}$. As in Case 1, we see that $v \to \{a_1, a_2, \ldots, a_{n-3}\}$.

Subcase 9.1.1. Let $H = \emptyset$. If there is a vertex $f \in F$, then (9) implies

$$\begin{array}{ll} d^+(f) & \geq & |N| + |\{a_1,a_n,a_{n-1}\}| + |S| - |V(f) - \{f\}| \\ \\ & \geq & \left\{ \begin{array}{ll} |N| + 1 + |S| = d^+(a_1) + |S| \geq d^+(a_1) + 1, & \text{if} & |V(f)| = 3 \\ |N| + 2 + |S| = d^+(a_1) + 1 + |S| \geq d^+(a_1) + 2, & \text{if} & |V(f)| = 2 \end{array} \right., \end{array}$$

in both cases a contradiction either to Remark 2.3 or to $i_g(D) \leq 1$. Hence, it remains to consider the case that $F = \emptyset$. According to (8), we have

$$d^{+}(a_n) \ge |A| + |S| + 1 \ge |A| + |S| + |B| = d^{+}(a_1) - 1 + |S|,$$

which means that there remain to treat the two following cases:

- i) |S| = 2, $d^+(a_n) = d^+(a_1) + 1$, |B| = 1, n = c 1, |V(v)| = 1 and $|V(a_n)| \le 2$. If $|V_c| = 3$, then we have $|V(a_1)| \ge 2$.
- ii) |S| = 1 and thus |B| = 0, n = c 1, D[V(C)] is a tournament, $d^+(a_n) = d^+(a_1) + 1$ and $|V(a_n)| \le 2$. If $|V_c| = 3$, then we have $|V(a_1)| \ge 2$.

Let $a'_1 \in V(a_1) - \{a_1\}$. If $a'_1 \in V(C)$, then, because of n = c - 1, we conclude that $|S| \ge 2$ and |B| = 0 or $|B| \ge 1$ and $|S| \ge 3$, in both cases a contradiction to i) and ii). Since $F = \emptyset$, it follows that $a_n \to a'_1$, and similarly as in i) and ii) we deduce that $d^+(a_n) \ge d^+(a_1) + 2$, a contradiction to $i_q(D) \le 1$.

Hence, let $V(a_1) = \{a_1\}$ and thus $|V_c| = 2$. We observe that

$$\begin{aligned} |V(D)| &= d^+(a_n) + d^-(a_n) + |V(a_n)| = d^+(a_1) + 1 + d^-(a_n) + |V(a_n)| \\ &\geq d^+(a_1) + d^-(a_1) + |V(a_n)| = d^+(a_1) + d^-(a_1) + 1 + |V(a_n)| - 1 \\ &= |V(D)| + |V(a_n)| - 1. \end{aligned}$$

It follows that $|V(a_n)|=1$ and thus |B|=0, which means that it remains to treat the Case ii). If $R_2 \neq \emptyset$ and $x \in R_2$, then, because of $|V(a_n)|=1$ we have $x \notin V(a_n)$. If $x \to a_n$, then $x \in F$, a contradiction to $F=\emptyset$. If $a_n \to x$, then as in ii) we conclude that $d^+(a_n) \geq d^+(a_1) + 2$, a contradiction to $i_g(D) \leq 1$. Consequently, it remains to investigate the case that $R_2 = \emptyset$. Since the Case ii) yields that D[V(C)] is

a tournament and |S| = 1, we conclude that k = 0, a contradiction to the hypothesis of this theorem.

Subcase 9.1.2. Suppose that H consists of vertices of only one partite set, which means that $|H| \leq 2$.

Subcase 9.1.2.1. Let $H \subseteq V(a_n) - \{a_n\}$.

Firstly, let |B| = 0. This yields that $\{a_2, a_3, \ldots, a_{n-1}\} \to H$, since otherwise for $l = \min\{2 \le i \le n-1 | \exists h \in H \text{ with } h \to a_i\}$, we have the (n+1)-cycle $a_n a_1 \ldots a_{l-1} h a_l \ldots a_n$, a contradiction. If there are vertices $h \in H$ and $f \in F$ such that $h \to f$, then $a_n a_1 a_2 \ldots a_{n-2} h f a_n$ is an (n+1)-cycle containing the arc e, a contradiction. Summarizing our results, we observe that $(S \cup F \cup \{a_1, a_2, \ldots a_{n-1}\}) \leadsto H$. If $h \in H$, then, because of $|N| \ge 1$, we have $d^-(a_n) \le |F| + n - 3$ and thus

$$d^{-}(h) \ge \begin{cases} |S| + d^{-}(a_n) \ge d^{-}(a_n) + 1, & \text{if} \quad |V(h)| = 3\\ |S| + d^{-}(a_n) + 1 \ge d^{-}(a_n) + 2, & \text{if} \quad |V(h)| = 2 \end{cases},$$

in both cases a contradiction either to Remark 2.3 or to $i_q(D) \leq 1$.

Secondly, let |B|=1 and thus |H|=1, $|V(a_n)|=3$, |S|=2 and n=c-1. To get no contradiction using (8), we have $(Q-S)\to a_n$. If $n=6\le c-2$, then it follows that |S|=2 and D[V(C)] is a tournament, a contradiction to |B|=1. Hence let $n\ge 7$. If there are vertices $q\in Q$ and $h\in H$ such that $h\to q$, then $a_na_1hqva_4\ldots a_n$ is an (n+1)-cycle, a contradiction. This yields $Q\to H$. If $B\ne \{a_2\}$, then it follows that $d^-(h)\ge |Q|+|S|+|\{a_1,a_2\}|=|Q|+4\ge d^-(v)+1$, a contradiction to Remark 2.3, since |V(h)|=3. Consequently, it remains to consider the case that $B=\{a_2\}$, which means that $V(h)=\{a_n,a_2,h\}$, if $h\in H$, and $a_1\to a_3$. Analogously we see that $h\to\{a_3,a_4,\ldots,a_{n-1}\}$. But now $a_na_1a_3\ldots a_{n-2}vha_{n-1}a_n$ is an (n+1)-cycle containing the arc e, a contradiction.

Subcase 9.1.2.2. Assume that $H \cap V(a_n) = \emptyset$. It follows that

$$d^{+}(a_{n}) \ge |A| + |S| + 1 + |H| \ge |A| + |B| + |S| + |H| = d^{+}(a_{1}) - 1 + |S|,$$

and there remain to treat the same two Cases i) and ii) as in Subcase 9.1.1.

Firstly, let $F=\emptyset$. If $|V_c|=3$, then we arrive at a contradiction following the same lines as in Subcase 9.1.1. Hence let $|V_c|=2$. Similarly as in Subcase 9.1.1 we conclude that it is sufficient to treat the Case ii) with $|V(a_n)|=1$, |B|=0 and $|R_2|=0$ and thus $N^-(v)=\{a_{n-2},a_{n-1},a_n\}$. The fact that $4=d^-(v)+1\geq d^+(v)\geq |\{a_1,a_2,\ldots,a_{n-3},h\}|=n-2$ yields $n\leq 6\leq c-2$ and thus $|S|\geq 2$, a contradiction to the Case ii).

Secondly, let $F \neq \emptyset$. If there is a vertex $f \in F$ such that $d_{D[F]}^-(f) \geq 3$, then there is a vertex $\tilde{f} \in F$ with $d_{D[F]}^+(\tilde{f}) \geq 2$ and (9) implies that

$$d^{+}(\tilde{f}) \geq |N| + |\{a_{1}, a_{n}, a_{n-1}\}| + 2 + |S| - |V(\tilde{f}) - \{\tilde{f}\}|$$

$$\geq \begin{cases} |N| + 4 \geq d^{+}(a_{1}) + 1, & \text{if } |V(\tilde{f})| = 3\\ |N| + 5 \geq d^{+}(a_{1}) + 2, & \text{if } |V(\tilde{f})| = 2 \end{cases},$$

in both cases a contradiction either to Remark 2.3 or to $i_g(D) \leq 1$. Hence, let $d_{D[F]}^-(f) \leq 2$ for all $f \in F$.

Suppose that there is a vertex $a_1' \in V(a_1) - \{a_1\}$. If $a_1' \in V(C)$, then the fact that $n \leq c-1$ leads to $|S| \geq 2$ and |B| = 0 or $|S| \geq 3$ and $|B| \geq 1$, in both cases a contradiction to the Cases i) and ii). If $a_n \to a_1'$, then as in i) and ii) we see that $d^+(a_n) \geq d^+(a_1) + 2$, a contradiction. Hence, let $a_1' \to a_n$ and thus $a_1' \in F$. It follows that $a_1' \to \{a_2, a_3, \ldots, a_n\}$ and since $F \to S$, we observe that $d^+(a_1') \geq n-1+|S|$. If there is a vertex $x \in R_2 - V(a_n)$, then $x \notin (F \cup V(C) \cup H)$ and thus $a_n \to x \to a_1$ and we arrive at the contradiction $d^+(a_n) \geq d^+(a_1) + 2$. Consequently, let $R_2 \subseteq V(a_n) - \{a_n\}$, and $|V(a_n)| \leq 2$ implies that $|R_2| \leq 1$. Altogether, it follows that

$$6 \ge |H| + |R_2| + d_{D[F]}^-(a_1') + 1 \ge d^-(a_1') + 1 \ge d^+(a_1') \ge n - 1 + |S|,$$

which means that either |S|=1 and $n \leq 6$ or |S|=2 and $n \leq 5$, in both cases a contradiction.

Consequently, it remains to consider the case that $V(a_1) = \{a_1\}$ and thus, because of i) and ii), $|V_c| = 2$. Let $f \in F$ be an arbitrary vertex. If |S| = 2 (Case i)), then (9) implies that

$$d^{+}(f) \ge |N| + |\{a_1, a_n, a_{n-1}\}| + |S| - |V(f) - \{f\}| \ge |N| + 4 = d^{-}(a_1) + 2,$$

a contradiction to $i_g(D) \leq 1$. Hence, let |S| = 1 (Case ii)). To get no contradiction as in the case |S| = 2, we deduce that |F| = 1 and $d^+(f) = d^+(a_1) + 1$. This leads to

$$|V(D)| \ge d^+(f) + d^-(f) + 2 = d^+(a_1) + d^-(f) + 3 \ge d^+(a_1) + d^-(a_1) + 2 = |V(D)| + 1,$$

Subcase 9.1.3. Assume that H contains vertices of at least two partite sets, which means that there exist two vertices $p, q \in H$ such that $p \to q$. If $q \to a_3$, then $a_n a_1 p q a_3 \ldots a_n$ is an (n+1)-cycle containing the arc $a_n a_1$, a contradiction. Hence, let $a_3 \leadsto q$.

Subcase 9.1.3.1. Suppose that $n \geq 7$. If there are vertices $x \in Q$ and $h \in H$ such that $h \to x$, then $a_n a_1 h x v a_4 \dots a_n$ is an (n+1)-cycle, a contradiction. Consequently, let $Q \leadsto H$. Let $q \in H$ with $d_{D[H]}^-(q) \geq \max\{1, \left\lceil \frac{|H|-2}{2} \right\rceil \}$. It follows that

$$\begin{array}{ll} d^-(q) & \geq & |Q| + |S| + d^-_{D[H]}(q) + |\{a_1, a_2, a_3\}| - |V(q) - \{q\}| \\ \\ & \geq & \left\{ \begin{array}{ll} |Q| + |S| + 1 + d^-_{D[H]}(q), & \text{if} & |V(q)| = 3 \\ |Q| + |S| + 2 + d^-_{D[H]}(q), & \text{if} & |V(q)| = 2 \end{array} \right. \end{array}$$

and $d^-(v) \leq |Q| + 3$. Summarizing these results, we arrive at

$$d^{-}(q) - d^{-}(v) \ge \begin{cases} |S| - 2 + d_{D[H]}^{-}(q), & \text{if} \quad |V(q)| = 3\\ |S| - 1 + d_{D[H]}^{-}(q), & \text{if} \quad |V(q)| = 2 \end{cases}$$
 (10)

If $|H| \ge 5$, then (10) yields

a contradiction.

$$d^-(q) - d^-(v) \ge \left\{ \begin{array}{ll} 1, & \text{if} & |V(q)| = 3 \\ 2, & \text{if} & |V(q)| = 2 \end{array}, \right.$$

in both cases a contradiction either to Remark 2.3 or to $i_g(D) \leq 1$. Hence, let $|H| \leq 4$.

Firstly, let |H|=4. If H consists of vertices of 3 or 4 partite sets, then there is a vertex $\tilde{q} \in H$ such that $d_{D[H]}^-(\tilde{q}) \geq 2$ and (10) yields a contradiction, if we replace q by \tilde{q} . If H consists of vertices of only two partite sets, then it follows that D[H] is a 4-cycle $h_1h_2h_3h_4h_1$ without any chord since otherwise (10) leads to a contradiction. This implies that

$$d^{-}(h_1) \ge |Q| + |S| + 1 + |\{a_1, a_2, a_3\}| - 1 = |Q| + |S| + 3$$
 and $|V(q)| = 3$

and $d^-(v) \le |Q| + 3$. Combining these results we arrive at $d^-(h_1) - d^-(v) \ge |S| \ge 1$ and |V(h)| = 3, a contradiction to Remark 2.3.

Secondly, let |H|=3. If H contains vertices of 3 partite sets, then, to get no contradiction with (10), we deduce that D[H] is a 3-cycle $h_1h_2h_3h_1$. If without loss of generality $h_1 \notin V(a_4)$, then we observe that $a_4 \to h_1$, since otherwise $a_n a_1 h_2 h_3 h_1 a_4 \dots a_n$ is an (n+1)-cycle, a contradiction. But together with (10), this leads to a contradiction to $i_g(D) \le 1$ or to Remark 2.3. If H contains vertices of only 2 partite sets, then either there is a vertex $q \in H$ with $d_{D[H]}^-(q) \ge 2$ or there are two vertices $h_1, h_2 \in H$ such that $h_1 \in V(h_2)$ and $d_{D[H]}^-(h_1) \ge 1$. Using (10), we arrive at a contradiction in both cases.

Finally, let |H|=2 with the vertices $p,q\in H$ such that $p\to q$. This implies

$$d^{-}(q) \ge \left\{ \begin{array}{ll} |Q| + |S| + 2, & \text{if} \quad |V(q)| = 3 \\ |Q| + |S| + 3, & \text{if} \quad |V(q)| = 2 \end{array} \right.,$$

and thus

$$d^-(q) - d^-(v) \geq \left\{ \begin{array}{ll} |S| - 1, & \text{if} & |V(q)| = 3 \\ |S|, & \text{if} & |V(q)| = 2 \end{array} \right..$$

This leads to |S| = 1, n = c - 1, D[V(C)] is a tournament, |B| = 0 and $Q \cap S = \emptyset$. If $q \notin V(a_3)$, then it follows that $a_3 \to q$, and thus $a_4 \leadsto q$, and as above this yields a contradiction either to $i_g(D) \le 1$ or to Remark 2.3. Hence, let $q \in V(a_3)$ and $q \to a_4$. If $p \notin V(a_2)$, then $a_n a_1 a_2 p q a_4 \ldots a_n$ is an (n+1)-cycle containing the arc e, a contradiction. Consequently, we deduce that $p \in V(a_2)$ and $V(a_n) \cap H = \emptyset$. Analogously as in (8), reminding that |B| = 0, we arrive at

$$d^{+}(a_{n}) \ge |A| + |S| + 1 + |H| + |B| = d^{+}(a_{1}) + 1, \tag{11}$$

which implies that $d^+(a_n) = d^+(a_1) + 1$ and $|V(a_n)| \le 2$. Since $F \to S$, it follows that $F \subseteq Q$ and thus $F \leadsto H$. If $f \in F$, then with (9), we conclude that

$$d^{+}(f) \geq |N| + |\{a_{1}, a_{n}, a_{n-1}\}| + |S| + |H| - |V(f) - \{f\}|$$

$$\geq \begin{cases} |N| + 2 + |H| = d^{+}(a_{1}) + 1, & \text{if} \quad |V(f)| = 3\\ |N| + 3 + |H| = d^{+}(a_{1}) + 2, & \text{if} \quad |V(f)| = 2 \end{cases},$$

in both cases a contradiction. Consequently, it remains to consider the case that $F = \emptyset$. Since |S| = 1, this implies that $a_n \rightsquigarrow Q \rightsquigarrow a_1$ and, because of (11), we have

 $Q \subseteq V(a_n) - \{a_n\}$, which means that $|Q| \le 1$, and thus $d^-(v) \le 4$. Summarizing our results, we arrive at

$$5 \ge d^+(v) \ge |\{p, q, a_1, \dots, a_{n-3}\}| = n - 1 \implies n \le 6,$$

a contradiction to the assumption of this subcase.

Subcase 9.1.3.2. Suppose that $n=6 \le c-2$. In this case, we observe that $|S| \ge 2$. To get no contradiction to (8), it follows that |S|=2, |V(v)|=1, |B|=0, D[V(C)] is a tournament and $V(a_n)-\{a_n\}\subseteq H$. Since $F\to a_6 \leadsto H$, it follows that $H\cap F=\emptyset$. Since |B|=0 and $a_6\to a_{i-1}$, if $a_1\to a_i$ with $1\le i\le n-1$ we conclude that $|V^+(a_1)\cap V(C)|+|V^-(a_6)\cap V(C)|\le l+5-l=5$, if $|V^+(a_1)\cap V(C)|=l$, and thus

$$|R_2| \le c + k - \left\{ \frac{c+k-3}{2} + \frac{c+k-3}{2} - 5 + |S| + n \right\} = 0.$$

Summarizing the results of the Cases 1-8, we observe that $\{a_4, a_5, a_6\} \to S \to \{a_1, a_2, a_3\}$. Without loss of generality let $S = \{v, w\}$ such that $v \to w$. Since $v \to (H \cup \{w, a_1, a_2, a_3\})$ and $a_1 \to (H \cup (N^+(a_1) \cap V(C)))$, the fact that $i_g(D) \le 1$ implies that $|N^+(a_1) \cap V(C)| \ge 3$ and thus $|N^-(a_6) \cap V(C)| \le 2$ and $a_1 \to a_3$ or $a_1 \to a_4$. If there are vertices $h \in H$ and $f \in F$ such that $h \to f$, then $a_6a_1a_3a_4vhfa_6$ or $a_6a_1a_4a_5vhfa_6$ is a 7-cycle, a contradiction. Hence, let $F \to H$. Let $p, q \in H$ such that $p \to q$. Then we see that

$$d^-(q) \geq |F| + |S| + |\{p, a_1, a_2, a_3\}| - |V(q) - \{q\}| \geq |F| + |S| + 2 = |F| + 4,$$

whereas $d^-(a_6) \leq |F| + 2$. This implies that $d^-(q) - d^-(a_6) \geq 2$, a contradiction to $i_g(D) \leq 1$.

Subcase 9.2. Assume that $a_{n-3} \to S$. Since $S \to a_3$, we conclude that $n \ge 7$. Let $v \in S$. If there is a vertex $w \in H \cap F$, then $a_n a_1 a_2 \dots a_{n-2} vw a_n$ is an (n+1)-cycle containing the arc e, a contradiction. Hence, let $H \cap F = \emptyset$. If there are vertices $x \in H$ and $y \in F$ such that $x \to y$, then $a_n a_1 a_2 \dots a_{n-3} vxy a_n$ is an (n+1)-cycle through e, a contradiction. Consequently, let $F \leadsto H$. If $f \in F$, then together with (9), we arrive at

$$d^{+}(f) \geq |N| + |\{a_{1}, a_{n}, a_{n-1}\}| + |S| + |H| - |V(f) - \{f\}|$$

$$\geq \begin{cases} |N| + |H| + 2 = d^{+}(a_{1}) + 1, & \text{if} \quad |V(f)| = 3\\ |N| + |H| + 3 = d^{+}(a_{1}) + 2, & \text{if} \quad |V(f)| = 2 \end{cases},$$

in both cases a contradiction either to Remark 2.3 or to $i_g(D) \leq 1$. Consequently it remains to treat the case that $F = \emptyset$. If there is a vertex $x \in H$ such that $x \to a_{n-1}$, then $a_n a_1 a_2 \ldots a_{n-3} v x a_{n-1} a_n$ is an (n+1)-cycle, a contradiction. Hence, let $a_{n-1} \leadsto H$. Let $h \in H$. If $a_i \to a_n$ and $h \to a_{i+1}$ for some $i \in \{3, 4, \ldots, n-2\}$, then $a_n a_1 h a_{i+1} \ldots a_{n-1} v a_3 \ldots a_i a_n$ is an (n+1)-cycle containing the arc e, a contradiction. If $a_2 \to a_n$ and $h \to a_3$, then $a_n a_1 h a_3 \ldots a_{n-2} v a_2 a_n$ is an (n+1)-cycle, also a contradiction. Let $N^-(a_n) \cap V(C) = N^-(a_4) = \{a_{j_1}, a_{j_2}, \ldots, a_{j_l}\}$ and

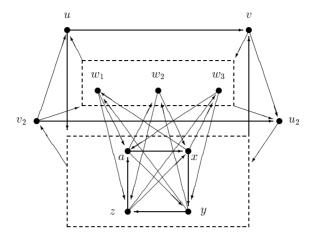


Figure 1: An almost regular 7-partite tournament with the property that the arc uv is not contained in a 4-cycle

 $\tilde{N} = \{a_{j_1+1}, a_{j_2+1}, \dots, a_{j_l+1}\}$. Summarzing our results, we observe that $(S \cup \{a_1, a_2\} \cup \tilde{N}) \rightsquigarrow H$ and thus

$$d^{-}(h) \geq |\tilde{N}| + |S| + 2 - |V(h) - \{h\}|$$

$$\geq \begin{cases} |\tilde{N}| + |S| \geq d^{-}(a_n) + 1, & \text{if } |V(h)| = 3\\ |\tilde{N}| + |S| + 1 \geq d^{-}(a_n) + 2, & \text{if } |V(h)| = 2 \end{cases},$$

in both cases a contradiction either to Remark 2.3 or to $i_g(D) \le 1$. Hence, let $H = \emptyset$. This leads to a contradiction analogously as in Subcase 9.1.1.

This completes the proof of this theorem.

Combining this result with the Theorems 1.5 and 1.6 we arrive at the following corollary.

Corollary 3.2 If D is an almost regular c-partite tournament and $e \in E(D)$ is an arbitrary arc of D, then the following holds.

- a) If $c \geq 8$, then e is contained in an n-cycle for each $n \in \{4, 5, \dots, c\}$.
- b) If c=7 and there are at least two vertices in every partite set, then e is contained in an n-cycle for each $n \in \{4, 5, \ldots, c\}$.

The bound $c \geq 8$ in Theorem 3.1 and Corollary 3.2 a) is best possible as the following example (cf. [10]) demonstrates.

Example 3.3 Let $V_1 = \{u, u_2\}$, $V_2 = \{v, v_2\}$, $V_3 = \{w_1, w_2, w_3\}$, $V_4 = \{x\}$, $V_5 = \{y\}$, $V_6 = \{z\}$, and $V_7 = \{a\}$ be the partite sets of a 7-partite tournament such that $u \to v \to u_2 \to \{a, x, y, z\} \to v_2 \to u \to \{a, x, y, z\} \to v \to V_3 \to u$, $v_2 \to u_2$, $v_2 \to V_3 \to u_2$, $w_1 \to a \to x \to y \to z \to a \to y \to w_1 \to z \to x \to w_1$, $w_2 \to z \to w_3 \to a \to w_2 \to x \to w_3 \to y \to w_2$ (see Figure 1). The resulting 7-partite tournament is almost regular, however, the arc uv is not contained in a 4-cycle. Consequently, the condition $c \geq 8$ in Theorem 3.1 and Corollary 3.2 a) is best possible.

A further example by Volkmann [10] shows that c=7 in Corollary 3.2 b) is also best possible.

References

- B. Alspach, Cycles of each length in regular tournaments, Canad. Math. Bull. 10 (1967), 283-286.
- [2] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2000.
- [3] Y. Guo, Semicomplete Multipartite Digraphs: A Generalization of Tournaments, *Habilitation thesis*, RWTH Aachen (1998), 102 p.
- [4] G. Gutin, Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: a survey, J. Graph Theory 19 (1995), 481-505.
- [5] O. S. Jakobsen, Cycles and paths in tournaments, Ph. D. Thesis, Aarhus University (1972).
- [6] M. Tewes, In-tournaments and semicomplete multipartite digraphs, Ph. D. Thesis, RWTH Aachen, Germany, (1999).
- [7] M. Tewes, L. Volkmann, A. Yeo, Almost all almost regular c-partite tournaments with $c \geq 5$ are vertex pancyclic, Discrete Math. 242 (2002), 201-228.
- [8] L. Volkmann, Cycles through a given arc in certain almost multipartite tournaments, Australas. J. Combin. 26 (2002), 121-133.
- [9] L. Volkmann, Cycles in multipartite tournaments: results and problems, *Discrete Math.* **245** (2002), 19-53.
- [10] L. Volkmann, Cycles of length four through a given arc in almost regular multipartite tournaments, Ars Combin. 68 (2003), 181–192.
- [11] L. Volkmann, S. Winzen, Cycles through a given arc in almost regular multipartite tournaments, Australas. J. Combin. 27 (2003), 223-245.
- [12] A. Yeo, Semicomplete Multipartite Digraphs, Ph. D. Thesis, Odense University, (1998).

[13] A. Yeo, How close to regular must a semicomplete multipartite digraph be to secure Hamiltonicity? *Graphs Combin.* **15** (1999), 481-493.

(Received 29 Mar 2003)