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ABSTRACT 

Maximal planar graphs embed in the euclidean plane as plane triangulations. Two such plane 
triangulations are equivalent if there is a homeomorphism of the plane which maps the vertices, edges and 
faces of one onto the corresponding elements of the other. A diagonal operation on a plane triangulation 
deletes an appropriate edge and inserts a related edge. We prove constructively that, given any two plane 
embeddings of maximal planar graphs of order n, which need not be isomorphic. there is a sequence of 
diagonal operations which transforms the fIrst into one equivalent to the second. This result was fIrst 
conjectured by Foulds and Robinson (1979), who made substantial progress towards its demonstration. 
Lehel (1980) claimed a proof, but unfortunately his argument is erroneous. Ning (1987) fIrst completed 
the proof with a result which fIlls the gap in the original work of Foulds and Robinson. The present 
paper gives a new self-contained proof, from a more geometrical viewpoint. 

1. Introduction 

Infonnally, a planar graph is an abstract graph which can be realized (drawn) in 

the euclidean plane without any pair of edges crossing. such drawing is a plane 

embedding of the graph. (A more fonnal treatment of the tenninology is given in [1].) 

Plane embeddings of planar graphs are of considerable importance for applications, such 

as in printed circuits and in plans for the layout of facilities. (See [4] and [6], for 

example.) 

A planar graph is maximal if it has a plane embedding in which every face is 

triangular, that is, bounded by a simple closed curve comprising three vertices and three 

edges. By inserting an appropriate number of additional edges in any plane embedding 

of a planar graph we can "refine" the embedding to a plane triangulation, that is, an 

embedding of a maximal planar graph. (We use these two telTIlS synonymously in the 

present paper.) Two plane triangulations are equivalent if there is a homeomorphism of 

the plane onto itself which maps the first triangulation onto the second. In this paper we 

describe a simple operation, called a diagonal operation, which can be perfonned on any 
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mamgUlatlOll1, amd trams forms it into another We shall show 

that, up to emUVl3Uenlce. all can 

derived from anyone of them by an aPl:Jropriate sequence 

In work which arose connection with the facility problem, Foulds and 

Robinson [3J considered am abstract structure cruled a deltahedron which es~;enctuilly 

corresponds to an IVUlUV,;U"l.l\.,,, class of sphericru emlbe<idill1gs of a maximal 

introduced two types of operation, called amd and 

proved that these suffice to tramsform amy deltahedron of order n into 

any other. alone suffice to achieve such 

transformations: this was by who showed that amy !j-(Jperation can be 

suitable sequence of The main result of the present paper 

correSpOl:10S to this of Foulds and Robinson. (At aPl)roprtate 

points in the paper we shall further discuss details of the work of Foulds amd RobinlSOlt1, 

of and of Lehel [7], whose claimed of the of Foulds and 

Robinson contains a serious error which, to our Knc)wJledge. has not nrF'''',nn,~I" been 

2. 

Let Tbe amy m(1mgU12luoln of order n; let be its set its set of 

and F its set It follows from Euler's lJ"I"I"I'''£1 .... .,1 Formula that lEI 3n-6 

amd IFI 2n-4. If T has an which has the vertices a amd bits em1polints, we shall 

denote it ab, amd write abe E. If no of T is incident with these two vertices we 

shall write ab~ 

specify 

particular, a 

vertices and k 

note that in this ab does not represent am arc in the We 

in T by the sequence of vertices encountered. In 

order kin T is a simple closed curve ala2 ... akal 

ofT. 

k 

abe E is incident with precisely two bounded by the ......... ·vrIP<;: 

abca and abda, say. may suppose n ~ 4, so these two are This 

distinguishes the vertices c and d among all those which are to both a amd b. Let 

y(2) denote the set of all 2-sets of vertices; we define a map {c,d}. 
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Ine eage aDEl!- IS Dracea II CaEl!-, ana ca IS lile eage wnu.;n Draces aD; II cafl:l!- lilt:: c:::agc::: 

abE E is unbraced. Up to equivalence, there is only one triangulation of order 4, 

and all of its are braced (Figure 1), However, this is an exceptional case, as 

shown by the following theorem (corresponding to the flrst part of Theorem 8 of [3]), 

3 2 

FIGURE 1. A plane embedding of K41 in which every edge is braced. 

THEOREM 1. is a plane triangulation of order n ;;?; 5, each edge is either unbraced 

or the edge which braces it is unbraced. 

Proof. Let abeE and {c,d}:= e(ab). If ab is unbraced, it satisfies the theorem. Now 

suppose ab is braced. Then the 4-cyde C:= acbda separates the ab and cd, one in 

its interior and the other in its exterior, by the Jordan Curve since no edges 

cross in T and the sets of endpoints {a,b} and {c ,d} separate each other on C (Figure 2). 

d c 
a b 

FIGURE 2. Two possible subdrawings in which ab is braced by cd. 
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may suppose without The _r-l.V"l<' C':=acda separates 

the two incident cd, so x and lie on orrDo~ate sides of C'. the Jordan 

Curve Theorem, any arc the with x and y as en(1p()ints would cross C', so 

xye E. Hence cd is unbraced. 

COROLLARY 1. plane triangulation of order n ~ has at least one unbraced 

COROLLARY 2. n ~ 5 has an induced f:liI110Y/lnJ1 

Let G be maximal planar of order n ~ and let T be a 

the C!l1lv""-'''UI1,nn induced by the 

is an embeCldulg of K 1,1,2' Hence the corre:spcmdmg vertices of G 

of T, and {c,d}:= of G. If ab an unbraced 

vertex set 

span an induced subgraph of G. l:I 

The results from K4 by deleting one Because of its shape 

when embedded in the we call it the elementary theta graph. (Subdivisions of it 

have been called theta graphs; for example, see [4, p.66].) Thus, Corollary 2 

may be paraphrased: Every maximal planar graph of order n ~ contains an induced 

elementary theta graph. 

A single edge can brace more than one edge of a plane triangulation T. For example, 

Figure 3(i) shows an order 6 triangulation in which 7 edges are braced, three of them 

braced by the single edge abo It is also possible for a triangulation to have no braced 

edges, as shown by Figure 3(ii). 

96 



u 

c o----O----~r_--D d 

FIGURE 3. Two plane triangulations of order 6, one with 7 braced edges and one 

with no braced 

3. 

Suppose the abe is unbraced in the "'-L ... J.AE;'u .... 'LV .. T. Let {c,d}:= 

£(ab). The 4-cycle C:= acbda is the boundary of a '1U< ........ l.A<J. .. ,U:U R which contains 

R may be the interior or the exterior of C: it de,(:)enclS on T which the edge abo In 

of these two possible regions actually contains abo 

The diagonal 8(ab) applied to T deletes the ab and inserts an arc with 

endpoints c and d in the region R 4), pn)dulCirlg a Ul"U'5'CU<l,.AVU T. (Note 

that it is necessary for ab to be unbraced, otherwise 8(ab) would an embedding 

of a multigraph having two edges incident with c and d.) We the arcs ab and cd as 

the two possible diagonals of R. Any diagonal operation one induced 

elementary theta graph by another. 

8(ab) 
a ll'-----------'n b b 

8(cd) 

d 

FIGURE 4. A diagonal operation and its inverse. 
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the cd 

deleted in the n'1C'C'1crp' 

transforms it back to T 

b T', 

is 

the inverse of a 

... UU,F,'/Jl!4U om~ratlOn is another oWLgonaJ. opl;;:ratlo:n. 

is 

in 

of the u-;ope:ratlon 

the seQluellce 

the 

to 

which 

which tria,nglllla:tiOIls 

unIDraCe(l) of many 

can be 

COITes:polnds to the first 

of their 

based on 

op~~ral1orls more 

one unbraced 

derived from it by iteratiI1ig omgon:aJ. 

We shall prove the (co,rreSPC,ndJlngto 20f 

THEOREM 2. Let A and B any two triangulations of order n ;;;;: 5. There 

exists a sequence 

equivalent to B. 

,,,"'unr,,,, operations which t .. n'M0,f,H'·""''' A into a triangulation 

In other words, if we take any two maximal of order n, whether or 

not are isomorphic, and take any two of them, suitable sequence 

of Ola,gonal operations will transform the first vUJLV'-" .......... "F, into embedding to 

the second. 

For example, consider the plane triangulations A and B of order 6 shown in 

5. If the sequence of four diagonal operations 

~:= 0(25), 0(35), 0(34), 0(16) 
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to ,also can 

B, so the sequence /j. achieves the desired result. 

1 

3 2 

A 

FIGURE S. Two 

1 

3 2 

A' 

be seen that B' to 

2O---~----~---D3 

6. 

3 

1 

B 

B' 

2 

FIGURE 6. Two equivalent plane triangulations. 

In order to prove Theorem 2 we need to develop some machinery. This is done 

in the next two sections, and the proof of Theorem 2 is then given in Section 7. 

99 



Let 

in 

elements of 

C-interior elements of T; 

is of 0,1,2 or 

let 

the interior of C 

elements of T ~ln"ll"irl" 

are contained 

A C--interior 

We further 

incident with if it 

C-interior 

vertices of 

otherwise it which it incident with 

is 

and U 1 u2" ,um be the rim 

of 

with 1 

not w). Let be the 

that is, (C 

vertex, so and uk-2 

and let U,V,w three C0I1seicutlve vertices of C. The 

all C-interior Let Ul,U2,. .. ,urn be 

that urn:= 

in the C-interior fan at v. rim of the fan is the 

letP 

deri ved from C 

la. 

Um:=w. Since ul 

uk, with 1 such that each ui 

distinct C, there are 

which COlrltams the vertex U 

A'-"I)'A"",'UJ;:, the P by the 

Then Uk is C'-interior vertex and uk-2 is a C'-exterior 

be aC11aC(~nt in T (Figure 7). Hence the vUk-l is 

unbraced we can pertorJm the l .. uaE,v.uaJ. operation o(vuk_l)' It transforms two 

C-interior faces, deletes the C-interior vUk_l and inserts a new C-interior edge 

ukuk-2' In the resulting triangulation the C-interior fan at v has rim ulu2",uk-2uk",um 

and Uk is its first C-interior vertex. Iterating, we can perform the diagonal operations 
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8(VUk_2), 8(vUk_3),"" 8(VU2), resulting in a triangulation T'. This is identical with T 

outside and on C, and has a C-interior face bounded by uvuku, so is of type la, as 

required. a 

v 

FIGURE 7. The C-interior fan at v. 

LEMMA 2. Let C be a cycle in a plane triangulation T with at least one C-interior 

face of type la. There is a sequence of diagonal operations which transforms only 

C-interior and faces and yields a triangulation T' in which a C-interior face of type 

1 a is inCident with a prescribed edge of C. 

Proof. Let U,V,W be consecutive vertices of C such that the edge vw is incident with a 

C-interior face F of type la, with boundary aF:=vwxv. Then the C-interior fan at v has 

a C-interior vertex x in its rim, and the proof of Lemma 1 shows that a sequence of 

diagonal operations on C-interior edges of this fan will produce a triangulation T* in 

which the C-interior face incident with uv is of type la. (Note that x is not necessarily 

one of its vertices.) Moreover T and T* are identical outside and on C. In transforming 

T into T*, we have arranged for the property of being incident with a C-interior face of 

type la to "migrate" from the edge vw of C to the adjacent edge uv of C. Iterating, we 

can arrive at a triangulation T' in which any chosen edge of C has this property. a 

Lemmas 1 and 2 will be useful successively to modify two given plane 

triangulations by diagonal operations so that they correspond outside and on cycles of 

increasing order, with fewer and fewer interior vertices. In the next section we develop 

similar machinery for the case of cycles with no interior vertices. 
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6, without Interior Vertices 

LEMMA 3. Let C be a cycle of order c> 3 in a plane triangulation T with no 

C-exterior vertices. If uvw is any path of two consecutive edges of C, and uw is not a 

C-exterior ofT, there is a sequence of diagonal operations which transforms only 

C-interior and faces and yields a triangulation T' in which a C-interior face of type 

2 is incident with uvw. 

Let ulu2 ... um be the rim of the C-interior fan at v, with ul:=u and um:=w. (In 

this case the rim are vertices of C, consecutive rim vertices are not 

ne<:::essarlly consecutive vertices of If m=2 then T already has the desired property, 

because the fan at which is of type 2 and incident 

with uvw. So suppose m> 2. 

\.UIe,E,V .. <U oPe~ration 8(VUm_l) transforms two C-interior 

deletes the C-interior vUm-l and inserts a new C-interior umum-2' In 

the the C --interior fan at v has a rim of lower order, 

nrr'''1r1prI none of the 

Av,"",u,-"UAE, UAleU'E, ..... A .. ' .... "' .. T' has a C-interior face 

vUi (1 

2 incident with uvw. 

and the 

The possible obstacle to these dWlgonal op(~ratlorls is that one of the radial 

of the fan is braced. without loss of ;;;.,"'.,,,., .... '" suppose vUm-l braced 

Then wUm_2 must be a C-exterior by this cannot be uw, 

so m>3. Consider the in T. The vertex um-l is separated from all of 

ul,u2,'''' um-3 by C' (though whether um-l is a C'-interior or C'-exterior vertex 

delperlds on the location of the It follows that um-l is not adl,lCelrlt in T to 

any of ul,u2,"" um-3' Hence vUm_2 is unbraced, and we can pe'rtorm suc:cesstvely the 

diagonal operations 8(VUm_2), '~ncl-"'/'"'' 8(VU2)' In the resultant tria,ngl11at:ion T* the 

faces incident with vUm-l are the C-interior faces with boundaries vwum_lv and 

uvum_lu. The edge vUm_l is unbraced in T*. because by hypothesis there is no 

C-exterior edge UW, and a C-interior edge uw would have to cross vUm_l' The diagonal 

operation 8(VUm_l) yields a triangulation T' containing a C-interior face with boundary 
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this of only 

modified C--interior 

FIGURE The v VUm-l braced. 

will be useful suc:ces~sively to two trial1gulations by 

dec:re'l.SlfH! order, U"'''"MVJlHU opl::ral~iOfls so COfTesporld outside and on 

7. Proof of the Main Result 

As first 

(clockwise) boundary 

result, formullated in 4. 

There 

We shall 

UiUj:';VUUA nperatIcms, and 

sequence 

tmln~;U1,:mcm derived from 

correspcmdmg face from 

sequence of Q1~lgona1 A-n,"r<l"t1Al'" 

be the external face of A, with 

cOITespolndlngly let F I' be the external of B, with 

there is a homeomorphism 91: 
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As second step, choose to be the Cl-interior face of A incident with allal2-

Its (clockwise) boundary is a21a22a23a21, where a21=all. a22=a12 and a23 is 

necessarily a C1-interior vertex because n > 3 (Figure 9), Let F2' be the corresponding 

face of B, with (clockwise) boundary b21b22b23b2b where b2r::::bll, b22=bl2 and 

b23 is a CI'-interior vertex. It is clear there is a homeomorphism 82: F2~F2' such that 

F 
1 

FIGURE 9. Faces FI and F2 oftriangulationA. 

Moreover, 82 can be chosen to agree with 81 on the 

is the 4-cycle aR2=C2. and the C2-exterior faces of A are and F2. Similarly the 

region R2':= F 1'uF2' has boundary C2':: aR2' in B, and the C2'-exterior faces of B are 

FI' and F2'. There is a homeomorphism 8 2:R2-tR 2', coinciding with 8 1 on Fl and 

with 82 on F 2, which maps the C2-exterior elements of A onto the C2'-exterior elements 

of B, and the elements of C2 onto the elements of C2'. 
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Now suppose we have just cornpJ"etea m 2 steps. Then we have specified 

(possibly sequences 01 Or(m) and °1' o's(m) of diagonal 

operations, and order n A, AI, Ar(m) and 

B, B sCm)' such that for 1 i< r(m), and 

< sCm). rem) and sCm) are appropriate nonnegative 

functions of m.) Further, we may suppose that for 

1 ::; k m we have a sequence of m faces F k' where each belongs to some 

Ai, and has (clockwise) boundary aklak2Qk3akl; a sequence of m faces Fk', where 

each to some and has bklbk2bk3bkl; and a 

sequence of m h01meoIIlorphLslllS 8 k: 

have the lOllm:vmg pJroperttes: 

The union of the faces 

which is a 

faces of Ar(m)' 

We also suppose that these sequences 

k is a with boundary 

and the m faces Fk are all the Cm-exterior 

the union of the faces is a region Rm' 

with boundary , which is a in B sCm); the m faces F k' are all the 

The horneclmc,rpl1dsnls 

It follows that there exists a homeomorphism . Rm~Rm' such that 

8 mlFk=8k (1 ::; k ::; m) and 8 m maps the elements of Ar(m) comprising Cm and its 

exterior onto the corresponding elements of B sCm)' which comprise em' and its exterior. 

ASSmmrlg m<2n-4, we now show how to take the next step. (For notational 

convenience, let M:= m+ 1.) If Cm has any interior vertices, so also does em'. Let uv be 

any of em' and let u'v' := 8 m(uv) be the corresponding edge of em', By Lemmas 

1 and 2, there is a sequence 0r(m)+ 1 , ... , 0r(M) of diagonal operations which transforms 
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mto 

and 

vertex. 

transforms into a 

'-internal elements, and 

Select this 

and 

be 

If has 

whIcn 

mC:la(~nt with uv. its 

s(m)+b"" O's(M) rualgonru op<~raltiorls which 

'-interior face of type 

on 

incident with u'v', 

and 

have 

of such that 

-Huer10r face 2. Select this 

'-interior and 

of Ar(m)' Hence Lemma 3 

diagonal op(~ra'tlOlls which 

lnl,'.rlAnt with uvw. 

a 

has a 

is 

and 

(em \uvw) U uw and 
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, \ u'v'w') u u'w' which are 



M()fe:over. these have no interior vertices and have smaller order than 

and clear that there is a homeorrlof]phlsm such that 8 M(F M) = 

, and as before. 

has no interior vertices and has order k=3, UVWU, there 

and one can remain 

C m'-interior face of 

faces are of type 

Now 

which we select as 

and 

such that 

is the whole euclidean 

as before. Now 

any sequence of COJITeSPC)n<ilng 

u.Hu.E,uu ....... JU'" will still be 

O's(2n-4)-i+l. performing the operations for 

into B; let A * result from A' by the same sequence 

for 1 + transforms A into 

equivalent to B, as reqlurred. 

8. 

as 

Hence M 2n--4. These two 

It clear that there is a 

. Define 

which shows that 

Hence, if we perform 

on A and B', the resulting 

is the inverse of 

in tum transforms B' back 

Then the sequence 0i ' 

and we have noted that this is 

Foulds and Robinson [3] essentially showed up to '-'I..l'UJ.vcU\.,U,,",'IJ. any plane 

triangulation can be transformed into any other of the same order by sequence of 

a--'-'op<:~ra1:10Ils and ~~perations. The ~~peration can be rej;l~arCLea as uUUIE,uu«,U"f', one 

W. ...... lE, .... "'" face and the of another face. notes 

that if the two triangular faces are adjacent, the ~~peration can be achieved as a second 

case a-opl~rat1OJt1; furthermore, the dual graph of a triclllgu12lticin is connected, so a 

suitable sequence of a~perations will achieve the same transformation as any 
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which to 
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FIGURE 10. Two trzan;(u:latt~a with one interior vertex which do 

ab, so Lehel's can be rescued 

with additional ma.chlnel~ from Section 5. 

of the attractive ideas in Lehel's program is the transformation of any 

triamgulalio,n of order 5 to canonical with two vertices of n-l, 

two vertices have avoided 

a pre:scflbed 

sake of a constructive argument which to a "..,.,..''' .... t1f'Q 

nl"r,f""hlu fewer steps needed to the transformation. 

10. 

a pralcucal context it would be transform one triangulation 

into another as few U10,I6V!HU opercltlcms as to discuss in a 

sut)selqm~nt paper the of Ch()Osmg efficient sequences of operations. 

Another matter which arises from the present paper concerns the 

detailed structure of braced and unbraced in a For example: 

How a can be braced? What restrictions exist on the 

relative locations of braced QUestioflS in a tQ]:th(~ormnlg paper 
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