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ABSTRACT

Maximal planar graphs embed in the euclidean plane as plane triangulations. Two such plane
triangulations are equivalent if there is a homeomorphism of the plane which maps the vertices, edges and
faces of one onto the corresponding elements of the other. A diagonal operation on a plane triangulation
deletes an appropriate edge and inserts a related edge. We prove constructively that, given any two plane
embeddings of maximal planar graphs of order n, which need not be isomorphic, there is a sequence of
diagonal operations which transforms the first into one equivalent to the second. This result was first
conjectured by Foulds and Robinson (1979), who made substantial progress towards its demonstration.
Lehel (1980) claimed a proof, but unfortunately his argument is erroneous. Ning (1987) first completed
the proof with a result which fills the gap in the original work of Foulds and Robinson. The present
paper gives a new self-contained proof, from a more geometrical viewpoint.

1. Introduction

Informally, a planar graph is an abstract graph which can be realized (drawn) in
the euclidean plane without any pair of edges crossing. Any such drawing is a plane
embedding of the graph. (A more formal treatment of the terminology is given in [1].)
Plane embeddings of planar graphs are of considerable importance for applications, such
as in printed circuits and in plans for the layout of facilities. (See [4] and [6], for
example.) )

A planar graph is maximal if it has a plane embedding in which every face is
triangular, that is, bounded by a simple closed curve comprising three vertices and three
edges. By inserting an appropriate number of additional edges in any plane embedding
of a planar graph we can "refine" the embedding to a plane triangulation, that is, an
embedding of a maximal planar graph. (We use these two terms synonymously in the
present paper.) Two plane triangulations are equivalent if there is a homeomorphism of
the plane onto itself which maps the first triangulation onto the second. In this paper we
describe a simple operation, called a diagonal operation, which can be performed on any
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plane triangulation, and transforms it into another plane triangulation. We shall show
that, up to equivalence, all plane triangulations of order n (that is, with n vertices) can be
derived from any one of them by an appropriate sequence of diagonalizations.

In work which arose in connection with the facility layout problem, Foulds and
Robinson [3] considered an abstract structure called a deltahedron which essentially
corresponds to an equivalence class of spherical embeddings of a maximal planar graph.

They introduced two types of operation, called a—operations and B-operations, and
proved that together these operations suffice to transform any deltahedron of order # into

any other. They conjectured that a—operations alone suffice to achieve such
transformations: this was proved by Ning [8], who showed that any B-operation can be

replaced by a suitable sequence of c—operations. The main result of the present paper
essentially corresponds to this conjecture of Foulds and Robinson. (At appropriate
points in the paper we shall further discuss details of the work of Foulds and Robinson,
of Ning, and of Lehel [7], whose claimed proof of the conjecture of Foulds and
Robinson contains a serious error which, to our knowledge, has not previously been
reported.)

2. Braced and Unbraced Edges

Let T be any plane triangulation of order n; let V be its set of vertices, E its set of
edges, and F its set of faces. It follows from Euler's Polyhedral Formula that |El = 3n-6
and IFl = 2n-4. If T has an edge which has the vertices a and b as its endpoints, we shall

denote it by ab, and write abe E. If no edge of T is incident with these two vertices we

shall write abe E; note that in this case ab does not represent an arc in the plane. We
specify paths and cycles in T by listing the sequence of vertices encountered. In
particular, a cycle of order kin T is a simple closed curve ajay...apa) comprising &
vertices and k edges of T.

Any edge abe E is incident with precisely two faces, bounded by the 3—cycles
abca and abda, say. (We may suppose n 2 4, so these two 3-cycles are distinct.) This
distinguishes the vertices ¢ and d among all those which are adjacent to both @ and b. Let

V@ denote the set of all 2-sets of vertices; we define a map e:E—V(®) by e(ab):= {c,d}.
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abe E is unbraced. Up to equivalence, there is only one plane triangulation of order 4,
and all of its edges are braced (Figure 1). However, this is an exceptional case, as
shown by the following theorem (corresponding to the first part of Theorem 8 of [3]).

1

3 2 ,
FIGURE 1. A plane embedding of Ky, in which every edge is braced.

THEOREM 1. If T is a plane triangulation of order n 2 5, each edge is either unbraced
or the edge which braces it is unbraced.

Proof. LetabeE and {c¢,d}:= e(ab). If ab is unbraced, it satisfies the theorem. Now
suppose ab is braced. Then the 4—cycle C:= acbda separates the edges ab and cd, one in
its interior and the other in its exterior, by the Jordan Curve Theorem, since no edges
cross in T and the sets of endpoints {a,b} and {c,d} separate each other on C (Figure 2).

@) d

FIGURE 2. Two possible subdrawings in which ab is braced by cd.
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cdyc. Now {x,y} and {a,b} cannot coincide, for that would mean we have located ail
faces of T, contradicting the hypothesis that n 2 5. Consequently {x,y}=#{a,b} so we

may suppose without loss of generality that g € {x,y}. The 3—cycle C:=acda separates
the two faces incident with ¢d, so x and y lie on opposite sides of C’'. By the Jordan
Curve Theorem, any arc in the plane with x and y as endpoints would cross C’, so

xyz E. Hence ¢d is unbraced. o

COROLLARY 1. Every plane triangulation of order n2 5 has at least one unbraced
edge.

COROLLARY 2. Any maximal planar graph of order n 2 5 has an induced subgraph
Ky

Proof. 1et G be a maximal planar graph of order n 2 5, and let T be a planar embedding

of G. If ab is an unbraced edge of T, and {¢,d}:= €(ab), the subdrawing induced by the

vertex set {a,b,c.d} is an embedding of Ky 1 5. Hence the corresponding vertices of G

span K ; 5 as an induced subgraph of G. =

The graph K ; 5 results from K4 by deleting one edge. Because of its shape
when embedded in the plane, we call it the elementary theta graph. (Subdivisions of it

have been called general theta graphs; for example, see [4, p.66].) Thus, Corollary 2
may be paraphrased: Every maximal planar graph of order nz 5 contains an induced
elementary theta graph.

A single edge can brace more than one edge of a plane triangulation T. For example,
Figure 3(i) shows an order 6 triangulation in which 7 edges are braced, three of them
braced by the single edge ab. It is also possible for a triangulation to have no braced
edges, as shown by Figure 3(ii).
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FIGURE 3. Two plane triangulations of order 6, one with 1 braced edges and one
with no braced edges.

3. Diagonal Operations
Suppose the edge abe E is unbraced in the plane triangulation 7". Let {c,d}:=

g(ab). The 4—cycle C:= acbda is the boundary of a quadrilateral region R which contains
the edge ab. In general R may be the interior or the exterior of C: it depends on T which
of these two possible regions actually contains ab.

The diagonal operation 8(ab) applied to T deletes the edge ab and inserts an arc with
endpoints ¢ and 4 in the region R (Figure 4), producing a plane triangulation T". (Note

that it is necessary for ab to be unbraced, otherwise 8(ab) would produce an embedding
of a multigraph having two edges incident with ¢ and d.) We regard the arcs ab and cd as
the two possible diagonals of R. Any diagonal operation replaces one induced
elementary theta graph by another.

c
&ab)
a b P — a b
&cd)
d

FIGURE 4. A diagonal operation and its inverse.
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In T’ the edge cd is unbraced because g and b are not adjacent in T, the edge ab

having been deleted in the passage from T to T". Thus the diagonal operation 8(cd) is
possible on T", and transforms it back to T (Figure 4). In other words, the inverse of a
diagonal operation is another diagonal operation.

A single diagonal operation can alter the status (braced or unbraced) of many
edges in a triangulation. For example, the two triangulations in Figure 3 can be
transformed into each other by a single diagonal operation.

Our diagonal operation, which replaces an unbraced edge, corresponds to the first

case of the ci—operation (¢ty) of Foulds and Robinson [3]. The second case of their
a—operation (0,) corresponds to replacing a braced edge: if abe E, cde E and

g(ab) = {c,d}, the sequence 8(cd), 8(ab) of two diagonal operations corresponds to the

operation o1, on the edge ab. It seems to us that the geometrical viewpoint, based on

identifying braced edges and the edges which brace them, makes these operations more
transparent.

4. Main Result

Because any plane triangulation of order n 2 5 has at least one unbraced edge, it
is natural to consider just which triangulations can be derived from it by iterating diagonal
operations. We shall prove the following (corresponding to Conjecture 2 of [3]).

THEOREM 2. Let A and B be any two plane triangulations of order n 2 5. There
exists a sequence of diagonal operations which iransforms A into a triangulation
equivalent to B.

In other words, if we take any two maximal planar graphs of order n, whether or
not they are isomorphic, and take any two plane embeddings of them, a suitable sequence
of diagonal operations will transform the first embedding into an embedding equivalent to
the second.

For example, consider the plane triangulations A and B of order 6 shown in
Figure 5. If the sequence of four diagonal operations ‘

A= B(25), 8(35), 8(34), 5(16)
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equivalent to B’, also shown in F1gure 6. Itcan readﬁy be seen that B'is cqmvalent to
B, so the sequence A achieves the desired result.

A B

FIGURE 5. Two plane triangulations of order 6.

FIGURE 6. Two equivalent plane triangulations.

In order to prove Theorem 2 we need to develop some machinery. This is done
in the next two sections, and the proof of Theorem 2 is then given in Section 7.
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Let T be any plane triangulation of order n = 4, and let Ci= ayay...qzaq be a
k—cycle in T, that is, a simple closed curve comprising & vertices and k edges of 7. The
elements of T (that is, the vertices, edges and faces) which lie in the interior of C are the
C-interior elements of T; we define the C—exterior elements of T similarly. A C-interior
face is of type ¢t (1 = 0,1,2 or 3) if precisely 1 of its edges are contained in C. We further
distinguish two kinds of type 1 face: such a face is of type Ia if it is incident with a

C—interior vertex, and otherwise it is of rype Ib (in which case it is incident with 3
vertices of ).

Let C be a k—cycle in T, and let u,v,w be three consecutive vertices of C. The
C—interior far at v is the set of all C-interior faces incident with v. Let ujuy,...,1,, be

the sequence of vertices of T such that uy:= u, u,,:= w and v v (where 1 <i <m-1)

is the boundary of one of the faces in the C—interior fan at v. The rim of the fan is the
path uyuy...uy,.

LEMMA 1. Let C be a cycle in a plane triangulation T with at least one C~interior
vertex. There is a sequence of diagonal operations which transforms only C—interior
edges and faces and yields a rriangulation T in which some C—interior face is of type 1a.

Proof. A plane triangulation is necessarily connected, so at least one of the C—interior
vertices must be adjacent to some vertex v of C.  Let u,v,w be consecutive vertices of C

and let uyuy...1,, be the rim of the C—interior fan at v, with uy:=u and u,:=w. Since u;

and u,, are vertices of C, there is a C—interior vertex uy, with 1 < k < m, such that each u;
with 1 i<k is avertex of C. Since uy_; and v are distinct vertices of C, there are two
paths in C with endpoints y_; and v: let P be the path which contains the vertex u (and

not w). Let C’ be the cycle derived from C by replacing the path P by the edge viy,_y,

that is, C:= (C\P)Yuvuyy_;. Then uy is a C'~interior vertex and uy_, is a C'-exterior

vertex, so uy and ug_» cannot be adjacent in T (Figure 7). Hence the edge vuy_q is

unbraced and we can perform the diagonal operation 8(vuy_¢). It transforms two
C—interior faces, deletes the C—interior edge viy_y and inserts a new C-interior edge
W y_o. In the resulting triangulation the C—interior fan at v has rim uquy...uyp_olig... Uy,

and uy, is its first C~interior vertex. Iterating, we can perform the diagonal operations
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S(vug_n), 8(vuy_3),..., 8(vuy), resulting in a triangulation T°. This is identical with T

outside and on C, and has a C—interior face bounded by uvugu, so is of type la, as

required. a

FIGURE 7. The C-interior fan at v.

LEMMA 2. Let C be a cycle in a plane triangulation T with at least one C—~interior
face of type la. There is a sequence of diagonal operations which transforms only
C—interior edges and faces and yields a triangulation T in which a C~interior face of type
la is incident with a prescribed edge of C.

Proof. Let u,v,w be consecutive vertices of C such that the edge vw is incident with a
C-interior face F of type la, with boundary 0F:=vwxv. Then the C—interior fan at v has
a C—interior vertex x in its rim, and the proof of Lemma 1 shows that a sequence of
diagonal operations on C~interior edges of this fan will produce a triangulation T*in
which the C—interior face incident with uv is of type 1a. (Note that x is not necessarily
one of its vertices.) Moreover T and T* are identical outside and on C. In transforming
T into T*, we have arranged for the property of being incident with a C—interior face of
type 1a to "migrate” from the edge vw of C to the adjacent edge uv of C. Iterating, we

can arrive at a triangulation T* in which any chosen edge of C has this property.  ®

Lemmas 1 and 2 will be useful successively to modify two given plane
triangulations by diagonal operations so that they correspond outside and on cycles of
increasing order, with fewer and fewer interior vertices. In the next section we develop
similar machinery for the case of cycles with no interior vertices.
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6. Cycles without Interior Vertices

LEMMA 3. Ler C be a cycle of order ¢>3 in a plane triangulation T with no
C—-exterior vertices. If uvw is any parh of two consecutive edges of C, and uw is not a
C-exterior edge of T, there is a sequence of diagonal operations which transforms only

C-interior edges and faces and yields a triangulation T' in which a C—interior face of type
2 is incident with uvw.

Proof. Let uju;...u,, be the rim of the C—interior fan at v, with uq:=u and u,,;=w. (In
this case all the rim vertices are vertices of C, though consecutive rim vertices are not
necessarily consecutive vertices of C.) If m=2 then T already has the desired property,
because the fan at v comprises just one face, which is necessarily of type 2 and incident
with uvw. So suppose m>2.

If vi,, 1 is unbraced, the diagonal operation 8(vy,,_;) transforms two C~interior
faces, deletes the C—interior edge vu,,_; and inserts a new C~interior edge u,,4,, 5. In
the resulting triangulation the C-—interior fan at v has a rim of lower order,

UqUy...U,, Hi,,. We can iterate this procedure, performing the diagonal operations
142U 2Up £ g p

S(VUp_2),e.., B(viy), provided none of the edges vu; (1 <i <m) is braced, and the

resulting triangulation T" has a C—interior face of type 2 incident with uvw.

The only possible obstacle to these diagonal operations is that one of the radial
edges of the fan is braced. So, without loss of generality, suppose vu,, 1 is braced

(Figure 8). Then wu,, o must be a C-exterior edge; by hypothesis, this cannot be uw,
so m>3. Consider the cycle C':=vwu,, ov in T. The vertex u,, ; is separated from all of
UisUnser U3 by C' (though whether u,, ;is a C'-interior or C'-exterior vertex
depends on the location of the edge wu,,, 5). It follows that u,,,_; is not adjacent in T to

any of Uy,Uy,..., Uy,_3. Hence vu, o is unbraced, and we can perform successively the

diagonal operations 8(Vii,,_2), 6(Viy,_3),..., O(viip). In the resultant triangulation T* the
faces incident with vu,,_; are the C—interior faces with boundaries vwu,, ;v and
uvu,, 1. The edge vu,, ; is unbraced in T*, because by hypothesis there is no

C—exterior edge uw, and a C—interior edge uw would have to cross vuy,_j. The diagonal

operation d(vu,,_1) yields a triangulation 7" containing a C—interior face with boundary
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uvwu: this is the required face of type 2. Moreover, each diagonal operation has only

modified C~interior faces and edges. =

v
FIGURE 8. The C~interior fan at v with vu,,_y braced.

Lemma 3 will be useful successively to modify two given plane triangulations by
diagonal operations so that they correspond outside and on cycles of decreasing order,
with no interior vertices.

7. Proof of the Main Result

We now turn to the proof of the main result, as formulated in Section 4.

THEOREM 2. Ler A and B be any two plane triangulations of order n =2 5. There
exists a sequence of diagonal operations which transforms A into a triangulation
equivalent to B.

Proof. Any plane triangulation of order # has 2n—4 faces. We shall carry out a sequence
of 2n—4 steps, in each of which we select one new face from a triangulation derived from
A by a (possibly empty) sequence of diagonal operations, and a corresponding face from
a triangulation derived from B by a (possibly empty) sequence of diagonal operations.

As first step, let Fy be the external face of A, with (clockwise) boundary oF:=
Cq:= aj1@12a13811, and correspondingly let F' be the external face of B, with

(clockwise) boundary dF y:= Cy"i= by1byybysby . Clearly there is a homeomorphism 8:

F1—F" such that 8,(F)=F ', 8,(9F )=0F ' and 8 (a;)=by, (s=1,2,3).
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As second step, choose F5 to be the C-interior face of 4 incident with a;1aq9.
Its (clockwise) boundary is 0Fy:= ap1a2a93a1, where agy=ay1, agy=ajy and ays is
necessarily a Cy~interior vertex because n > 3 (Figure 9). Let Fy' be the corresponding

face of B, with (clockwise) boundary 0Fy":= by1byobyabyy, where byy=byy, byy=by, and
by3 is a Cy'~interior vertex. It is clear there is a homeomorphism 6,: Fp—F,' such that

92(F2)=F2', 92(8F2)=8F2' and 92((123)=b2s (s=1,2,3).

FIGURE 9. Faces Fyand Fy of triangulation A.
Moreover, 0, can be chosen to agree with 6; on the edge aj1a;y, that is 6,IF|"Fy =

Let Cy:= ayyap3ay0ai3ay;. The (clockwise) boundary of the region Ryi= F{UF;
is the 4-cycle dR,=C5, and the Cy—exterior faces of A are | and F,. Similarly the

region Ry':= F{'UF5' has boundary C5"= dR,' in B, and the Cy'-exterior faces of B are
Fy'and Fy'. There is 2 homeomorphism ®,:Ry— Ry, coinciding with 8 on F; and
with 8, on Fy, which maps the Cp—exterior elements of A onto the Coy'-exterior elements

of B, and the elements of C; onto the elements of Cy'.
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INOW suppose we have just compieted m 2 2 steps. Lhen we have specified
_(possibly empty) sequences 81,9,,..., Sr(m) and 8,",8,",..., S'S(m) of diagonal
operations, and corresponding order # plane triangulations Ag:= A, Ay, As,..., Ay and
Bo:= B, By, By,..., By, such that Ap=84(4; 1) for | <i<r(m), and
B o= Sj '(Bj~1) for 1 £j <s(m). (Here r(m) and s(m) are appropriate nonnegative

increasing integer-valued functions of m.)  Further, we may suppose that for

1 £k < mwe have specified a sequence of m faces Fy, where each Fy, belongs to some
A;, and has (clockwise) boundary 0F = aya3a;3a1; & sequence of m faces Fy, where

each Fy' belongs to some B}, and has (clockwise) boundary 0F":= by byobysbyy; and a
sequence of m homeomorphisms 6,: Fp—F)'. We also suppose that these sequences

have the following properties:

(1) The union of the faces Fy (1 <k <m)is a region R, with boundary C,:=
OR,, which is a cycle in Ay, and the m faces Fy, are all the C,,~exterior
faces of A,(,,). Correspondingly, the union of the faces F}'is a region R,
with boundary C,,' which is a cycle in By, the m faces F}' are all the

Cy~exterior faces of By,
(2) 'The homeomorphisms 8, (1 <k < m) satisfy 0, (Fp=F}, Gk(aFk)=8F P
Op(ar)=bys (s=1,2,3) and 0;IF; "F; = OJF;"Fj for1<i<j<m.
It follows that there exists a homeomorphism 8,,: R,,—R,, such that
©,,F;=0; (1 <k <m) and ©,, maps the elements of Ap(m) comprising C,, and its
exterior onto the corresponding elements of By,;), which comprise C,,,' and its exterior.
Assuming m<2n—4, we now show how to take the next step. (For notational
convenience, let M:=m+1.) If Cy, has any interior vertices, so also does C,,. Let uv be

any edge of Cp,, and let u'v' := 8, (uv) be the corresponding edge of C,,,. By Lemmas

1 and 2, there is a sequence Sr(m) 1o Sr(M) of diagonal operations which transforms
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Ap(m) 1O & plane Wangulalon A,y wWhici 15 deniiCal With A, Outs1ar and on L,
and has C~interior face of type la incident with uv. Select this face as Fyy; its
boundary is OF = apriapaysay . Where app=u, ayn=v and apm is a Cp-interior

vertex. Similarly, there is a sequence &gy 15--s 5’s(M) of diagonal operations which
transforms B () into a plane triangulation B gy, differing from B, only on
C,,—internal elements, and having a C,'~interior face of type la incident with u'v'.

Select this face as Fy'; its boundary is OF pg':= bys1bpsabpysbpyy, where bypi=u’,
byp=v" and by is a Cpy~interior vertex. Clearly there exists a homeomorphism 0,

Fpg— F ' with the properties €3,(Fpp) = Fys', 0),(0F ) = 9F 4, 03,(apg3) = byys and
0 luv=0  luv. Define Rypi= R, WUFy, and Ry'= R, 'OUF /. These regions have

boundaries Cppi= dRyy = (Cp, Nuv) U napv and Cui= 9R " = (Cp)' \u'v) U
u'byysv’ which are cycles. Moreover, Cyy has fewer interior vertices than C,,. We let
©;/: Ryr—R ' be the homeomorphism defined by €, IR, = @, and @y, 1Fy; = 6.

If €y, has no interior vertices, neither does Cy,. - All Cy)'~interior faces of By,
are triangles, incident with three vertices of C,,,;". Let k be the order of C,,,'. Euler's
Polyhedral Formula shows that such a configuration comprises &2 triangles. If k>3,

none of these triangles is of type 3, so at least two of them must be of type 2, by the
Pigeonhole Principle. Let uvw be a path of two consecutive edges of C,,, such that

0, (uvw) = u'v'w’ is incident with a Cp'~interior face of type 2. Select this face as

Fp'. Tts boundary is oF ' = u'v'w'u’.  Since u'w’ is a Cp,'~interior edge, and

8, (R,) =R, ii follows that uw is not a Cy,~exterior edge of Ar(m). Hence Lemma 3

applies. There is a sequence 6,(m) e ST(M) of diagonal operations which yields a
triangulation A, ) that differs from A,y only on Cp~interior clements and has a
C,,—interior face of type 2 incident with uvw. Select this face as Fyy; its boundary is

0Fyy = uvwu. No diagonal operations were required by B g, so we define s(M):

i

s(m). Alsolet Rypi= R, JFy and Ry= R, "UF . These regions have boundaries

Cypi=0Rpy = (Cpp Nuvw) Uuw  and Cps''= 0Ry' = (Cp)/ \u'v'w) U w'w' which are
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.cycles. Moreover, these cycles have no interior vertices and have smaller order than Cp,
- and C,,;". It is clear that there is a homeomorphism 8;, : Fyy—F), such that 8,,(Fy) =

Fup', 834(0F ) = 0F ', and O yduvw = © luvw. Define @, : Ry~>Ry,' as before.
Finally, if C,, has no interior vertices and has order k=3, say C,,;:= uvwu, there

can remain only one C,,~interior face of A,(,), which we select as Fy, and one

C,,~interior face of By, which we sclect as Fj;. Hence M =2n-4. These two

faces are of type 3, and JFy =C,, oFy' =C,'" Itis clear that there is a
homeomorphism 6, : Fjs' such that 8,(Fy) = Fy' and Oyluvwu = O, luwwu.
Now Rpg:= R, UF is the whole euclidean plane E2, as is Rps":= R, UF),". Define

©®,, : E2—E? as before. Now @, = 8, _, is a homeomorphism of E2 which shows that

the triangulations A"= A,(2,4) and B":= By, _4) are equivalent. Hence, if we perform

any sequence of corresponding diagonal operations on A’ and B’, the resulting
triangulations will still be equivalent. In particular, if 8r(2n-—4) +; is the inverse of
8's(2n—4)-i+1> performing the operations for i=1,2,..., s(2n-4) in turn transforms B’ back

into B; let A* result from A’ by the same sequence of operations. Then the sequence §; ,
for 1 <i < r(2n—4) + s(2n-4), ransforms A into A*, and we have just noted that this is

equivalent to B, as required. =

8. Ning's Paper
Foulds and Robinson [3] essentially showed that, up to equivalence, any plane
triangulation can be transformed into any other of the same order by a sequence of

o—operations and B-operations. The f~operation can be regarded as triangulating one
triangular face and deleting the triangulation of another triangulated face. Ning [8] notes

that if the two triangular faces are adjacent, the f~operation can be achieved as a second
case o—operation; furthermore, the dual graph of a plane triangulation is connected, so a

suitable sequence of o—operations will achieve the same transformation as any
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B-operation. This idea fills the gap in the arguments of Foulds and Robinson, so
completes the proof of their Conjecture 2.

9. Lehel's Paper

Lehel published a Communication [7] which claimed to prove Conjecture 2 of

Foulds and Robinson [3]. His definition of an a—operation precisely corresponds to our
diagonal operation, and corresponds to what Foulds and Robinson call the first case of an

o-operation. (4 careful reading of his definition reveals several minor mistakes, but
these are easily corrected.)

Lehel's paper proceeds to outline a proof that a sequence of a—operations
suffices to transform any deltahedron into any other on the same vertex set. However,
the first assertion of the outlined proof is false, and this invalidates the whole proof. To
explain the error, we recast the assertion in terms of the terminology and viewpoint of the
present paper. In a plane triangulation T of order », let C be the cycle spanning the
vertices adjacent to the vertex u, and assume that there is at least one vertex v which is not
adjacent to u. Lehel asserts that for a suitable choice of v there is an edge ab which is
common o 4 face incident with u and a face incident with v, that is, there is an unbraced

edge ab with e(ab) = {u,v}. (The intention is to perform the diagonal operation 8(ab) to
produce a plane triangulation in which v is adjacent to u, so that iteration would yield a
mriangulation in which all vertices are adjacent to u.) However, Figure 10 shows that
such an edge ab need not exist. In fact, one diagonal operation applied to Figure 10(i)
suffices to convert one of the edges of C to the status required for ab, but Figure 10(i)
requires a minimum of two diagonal operations to achieve an appropriate transformation,
and clearly the examples can be extended to show that any finite number of diagonal
operations may be required to achieve a plane triangulation with an appropriate edge ab.
QOur results in Section 5 show that in fact a sequence of diagonal operations will always
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FIGURE 10. Two triangulated cycles with one interior vertex which do

not satisfy Lehel's requirement.

yield a plane triangulation with an appropriate edge ab, so Lehel's ideas can be rescued
with additional machinery from Section 5.

One of the attractive ideas in Lehel's program is the transformation of any plane
triangulation of order n 2 5 10 a canonical triangulation, with two vertices of degree n—1,
two vertices of degree 3, and all others of degree 4. In our proof we have avoided
passing through a prescribed canonical form. This sacrifices some conceptual simplicity
for the sake of a constructive argument which readily adapts to a practical algorithm with
probably fewer steps needed to complete the transformation.

10. Closing Remarks

In a practical context it would be important to transform one plane triangulation
into another by as few diagonal operations as possible. We hope to discuss in a
subsequent paper the problem of choosing efficient sequences of diagonal operations.

Another matter which arises naturally from the present paper concerns the
detailed structure of braced and unbraced edges in a plane triangulation. For example:
- How high a proportion of the edges can be braced? What restrictions exist on the
relative locations of braced edges? We discuss such questions in a forthcoming paper

[2].
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