The Fine Structure of Threefold Triple Systems: $v \equiv 5(\bmod 6)$

Charles J. Colbourn
Combinatorics and Optimization
University of Waterloo
Waterloo, Ontario
CANADA N2L 3G1

Nabil Shalaby
Mathematics and Statistics
McMaster University
Hamilton, Ontario
CANADA L8S 4K1

Abstract

The fine structure of a threefold triple system is $\left(c_{1}, c_{2}, c_{3}\right)$ where c_{i} is the number of i-times repeated blocks. Necessary conditions for $\left(c_{1}, c_{2}, c_{3}\right)$ to be the fine structure of a threefold triple system with $v \equiv 5(\bmod 6)$ are determined, and shown to be sufficient for all $v \geq 17$.

1 Preliminaries

A triple system of order v and index λ, or $T S(v, \lambda)$, is a v-set V of elements, together with a collection \mathcal{B} of 3 -element subsets of V called triples or blocks; every 2 -subset of V appears in precisely λ of the blocks. A $T S(v, \lambda)$ is permitted to have blocks that are identical as subsets, i.e. repeated blocks. The fine structure of a $T S(v, \lambda)$ is the vector $\left(c_{1}, c_{2}, \ldots, c_{\lambda}\right)$ where c_{i} is the number of blocks repeated exactly i times in the triple system.

In [4], necessary conditions for $\left(c_{1}, c_{2}, c_{3}\right)$ to be the fine structure of a $T S(v, 3)$ with $v \equiv 1,3(\bmod 6)$ are determined, and shown to be sufficient for all $v \geq 19$. We
Australasian Journal of Combinatorics 3(1991) pp 75-92
adopt the same notation as that paper, and assume familiarity with the definitions and results therein. First, we extend the notation of [4]. Since any two of c_{1}, c_{2}, c_{3} determine the third, we denote the fine structure as a pair (t, s) where $t=c_{2}$ and $s=\left\lfloor\frac{v(v-1)}{6}\right\rfloor-c_{3} ;$ for $v \equiv 1,3(\bmod 6), c_{1}=3 s-2 t$, while for $v \equiv 5(\bmod 6)$, $c_{1}=3 s+1-2 t$.

For $v \equiv 1,3(\bmod 6)$, let $A d m(v)=\left\{(t, s): 0 \leq t \leq s \leq \frac{v(v-1)}{6}, s \notin\right.$ $\{1,2,3,5\},(t, s) \notin\{(0,4),(1,4),(2,4),(3,4),(1,6),(2,6),(3,6),(5,6),(2,7),(5,7)$, $(1,8),(3,8),(5,8)\}\}$. Let Fine $(v)=\{(t, s): \exists T S(v, 3)$ with t doubly repeated blocks and $\left\lfloor\frac{v(v-1)}{6}\right\rfloor-s$ triply repeated blocks $\}$. In [4], the following theorem is proved:

Theorem 1.1 For $v \equiv 1,3(\bmod 6), v \geq 19, \operatorname{Fine}(v)=\operatorname{Adm}(v)$.
For $v \leq 15$, extensive partial results are known [4].
What pairs (t, s) can arise as fine structures for $T S(v, 3)$'s with $v \equiv 5(\bmod$ $6)$? We define $A d m(v)$ for $v \equiv 5(\bmod 6)$ to be $\left\{(t, s): 0 \leq t<s \leq\left\lfloor\frac{v(v-1)}{6}\right\rfloor, s \notin\right.$ $\{1,2,4,5\},(t, s) \notin\{(1,3),(2,3),(0,6),(1,6),(2,6),(4,6),(5,6),(0,7),(1,7),(2,7)$, $(3,7),(5,7),(6,7),(0,8),(1,8),(2,8),(6,8),(7,8),(1,9)\}\}$. In this paper, we prove:

Theorem 1.2 For $v \equiv 5(\bmod 6), v \geq 17, \operatorname{Fine}(v)=A d m(v)$.

We first extend the necessary conditions from [4] to the case when $v \equiv 5(\bmod$ 6). In section 2, we then introduce recursive constructions that permit us to determine Fine (v) for large v given the solution for smaller orders. In section 3 , we outline the solution for smaller orders and in section 4 , we apply the recursions from section 2 and from [4] to obtain the main theorem.

First we treat necessary conditions.
Lemma 1. 3 If $(t, s) \in \operatorname{Fine}(v)$, then $0 \leq t<s \leq\left\lfloor\frac{v(v-1)}{6}\right\rfloor$.
Proof: The only nontrivial inequality is $t<s$. To see that $t \leq s$, observe that the number of pairs not appearing in triply repeated blocks is $3 s+1$; since no two doubly repeated blocks share a pair, $3 t \leq 3 s+1$ whence $t \leq s$. Consider the set of all blocks appearing as doubly or triply repeated blocks; these form a partial $T S(v, 1)$, whose leave (graph of uncovered pairs; see, e.g. [1]) must have all vertex degrees even. Thus there are at least four pairs not appearing in doubly or triply repeated blocks; this yields $3 t \leq 3 s-3$, or equivalently $t<s$,

Fine(v) for $v \equiv 5(\bmod 6), s \notin\{1,2,4,5\}$ as a consequence of Milici and Quattrocchi's determination of the possible numbers of triply repeated blocks in $T S(v, 3)$'s [7].

It remains only to eliminate the nineteen sporadic values. We follow the same strategy as [4]. For $(t, s) \in \operatorname{Fine}(v)$, there must exist a graph G on $3 s+1$ edges for which $3 G$ can be partitioned into t doubly repeated triples and $3 s+1-2 t$ singly repeated triples. Moreover, G must be the leave of a $\operatorname{PTS}(v, 1)$ for $v \equiv 5(\bmod 6)$. It follows that G has all vertex degrees even, no vertex of degree two, and that the neighbours of each vertex of G induce a subgraph of minimum degree two (Lemma 2.3 of [4]). To eliminate the nineteen sporadic values, we generate all graphs on $10,19,22,25$, and 28 edges meeting these conditions. For each such graph G, we generate all partitions of $3 G$ into triangles, and determine the number of doubly repeated triangles in the partition.

For $3 s+1=10$, the only admissible graph is K_{5}, the complete graph on five vertices; $3 K_{5}$ can be partitioned only into 10 singly repeated triples, leading to $(0,3) \in \operatorname{Adm}(v)$. For $3 s+1=19$, the only admissible graph is obtained by identifying a triangle of K_{5} with a triangle of $K_{6}-F$, the unique 4 -regular graph on six vertices. The only partition has three doubly repeated blocks, namely those arising from the edges of $K_{6}-F$ omitting those in the triangle identified with K_{5}. For $3 s+1=22$, the candidates are obtained as the disjoint union of K_{5} and $K_{6}-F$, as K_{5} and $K_{6}-F$ identified at a single vertex, and identified at a nonadjacent pair in $K_{6}-F$. A further candidate is the unique graph with degree sequence $6^{6} 4^{2}$ having the degree four vertices nonadjacent. For all candidates, precisely four doubly rcpeated triples are required; in the first three, these are forced for the $K_{6}-F$. For $3 s+1=25$, we generated all candidates by computer, using an orderly algorithm [5]. Identifying K_{5} and $K_{7} \backslash K_{3}$ on a triangle leads to $\{(3,8),(5,8)\} \subset \operatorname{Adm}(v)$. Three candidates lead to $(4,8) \in \operatorname{Adm}(v)$. All candidates lead to 3,4 or 5 doubly repeated blocks.

For $3 s+1=28$, the search for candidates was restricted by an easy observation. If the neighbourhood of a vertex has two or more vertices of degree two within the subgraph induced on the neighbourhood, any partition necessarily includes at least two doubly repeated triples. Hence we need only treat candidates having every neighbourhood inducing a subgraph with at most one degree two vertex in order to eliminate (1,9). It is a tedious computation to verify that no such partition exists.

The computational search undertaken, using the strategy of [4], establishes:

2 Recursive Constructions

The proof of sufficiency proceeds in two stages. Fine(v) is determined for "small" values of v, and then recursive constructions are used to obtain the solution for all $v \equiv 5(\bmod 6)$. We develop the recursive constructions first, in part to determine which small orders must be settled independently, and in part to assist in the determination for small orders.

First, we note that the $2 v+1,2 v+7$ and $2 v+19$ constructions from [4] carry over directly to the case $v \equiv 5$ (mod 6). However, the tripling constructions used are of little value here. Instead, we develop a tripling construction tailored to the case when $v \equiv 5(\bmod 6)$. The tripling construction we develop produces a $T S(3 v-4,3)$ from a $T S(v, 3)$; in addition to the smaller triple system, the construction employs a 3 -factorization of $3 K_{v-2, v-2}$. The type (t, s) of a 3 -factorization $\left\{F_{1}, \ldots, F_{n}\right\}$ of $3 K_{n, n}$ has t equal to the number of edges repeated twice within a factor, and $n^{2}-s$ equal to the number repeated three times within a factor. Colbourn [3] determined the possible types of 3 -factorizations of $3 K_{n, n}$ for all $n \geq 10$, along with substantial partial results for $5 \leq n \leq 9$; we refer to [4] for the quite lengthy statement of these results.

Lemma 2.1 Let $\left(t_{0}, s_{0}\right)$ be integers such that either $s_{0}<(v-2)^{2}$ and $\left(t_{0}, s_{0}\right)$ is the type of a 0 -factorization of $3 K_{v-2, v-2}$ or $t_{0} \geq 0$ and $\left(t_{0}+1, s_{0}+1\right)$ is the type of a 3 -factorization of $3 K_{v-2, v-2}$. For $i=1,2,3$, let $\left(t_{i}, s_{i}\right)$ be integers such that either $s_{i}<\left\lfloor\frac{v(v-1)}{6}\right\rfloor$ and $\left(t_{i}, s_{i}\right) \in \operatorname{Fine}(v)$ or $t_{i} \geq 0$ and $\left(t_{i}+1, s_{i}+1\right) \in$ Fine (v). Then if $v \equiv 1,3(\bmod 6)$,

$$
\left(t_{0}+t_{1}+t_{2}+t_{3}, s_{0}+s_{1}+s_{2}+s_{3}+3\right) \in \text { Fine }(3 v-4)
$$

and if $v \equiv 5(\bmod 6)$,

$$
\left(t_{0}+t_{1}+t_{2}+t_{3}, s_{0}+s_{1}+s_{2}+s_{3}+4\right) \in \operatorname{Fine}(3 v-4)
$$

Proof: We form a $\operatorname{TS}(3 v-4,3)$ on $\left(Z_{v-2} \times\{1,2,3\}\right) \cup\{\alpha, \beta\}$, denoting the element (j, i) as j_{i}. For $i=1,2,3$, if $\left(t_{i}, s_{i}\right) \in \operatorname{Fine}(v)$ and $s_{i}<\left\lfloor\frac{v(v-1)}{6}\right\rfloor$, choose a $T S(v, 3)$ of this type on $\left(Z_{v-2} \times\{\hat{\{ }\}\right) \cup\{\alpha, \beta\}$ with a triply repeated block on $\left\{\alpha, \beta, 0_{i}\right\}$. If instead $t_{i} \geq 0$ and $\left(t_{i}+1, s_{i}+1\right) \in \operatorname{Fine}(v)$, choose a $T S(v, 3)$ of type $\left(t_{i}+1, s_{i}+1\right)$ on the same set with a doubly repeated block on $\left\{\alpha, \beta, O_{i}\right\}$. In either case, omit two copies of the block $\left\{\alpha, \beta, 0_{i}\right\}$.

Now if $\left(t_{0}, s_{0}\right)$ is the type of a 3 -factorization of $3 K_{v-2, v-2}$ and $s_{0}<(v-2)^{2}$, place a 3 -factorization $\left\{F_{0}, \ldots, F_{v-3}\right\}$ of this type on $Z_{v-2} \times\{1,2\}$ so that F_{0} contains $\left\{0_{1}, 0_{2}\right\}$ as a triply repeated edge. If instead $t_{0} \geq 0$ and $\left(t_{0}+1, s_{0}+1\right)$ is the type of such a 3 -factorization, choose $\left\{F_{0}, \ldots, F_{v-3}\right\}$ so that F_{0} contains $\left\{0_{1}, 0_{2}\right\}$ as a doubly repeated edge. In either case, omit two copies of the edge $\left\{0_{1}, 0_{2}\right\}$ from F_{0}. The factors are then used to form triples as follows. For each occurrence of $\left\{x_{1}, y_{2}\right\}$ in factor F_{k}, form a triple $\left\{x_{1}, y_{2}, k_{3}\right\}$.

At this point, every pair is covered exactly three times except for the nine pairs on $\left\{\alpha, \beta, 0_{1}, 0_{2}, 0_{3}\right\}$ excepting $\{\alpha, \beta\}$; these nine pairs are covered once each. To complete the system, take triples $\left\{\alpha, 0_{i}, 0_{j}\right\}$ and $\left\{\beta, 0_{i}, 0_{j}\right\}$ for $i \neq j$.

To determine the fine structure of the resulting system, note that when $v \equiv 1,3$ $(\bmod 6), 3\left(s_{0}+s_{1}+s_{2}+s_{3}\right)+10$ pairs do not appear in triply repeated blocks; for $v \equiv 5(\bmod 6), 3 s_{0}+\left(3 s_{1}+1\right)+\left(3 s_{2}+1\right)+\left(3 s_{3}+1\right)+10$ pairs do not appear in triply repeated blocks. The count of doubly repeated blocks is routine.

When $v \equiv 1,3(\bmod 6)$, Lemma 2.1 never yields a fine structure (t, s) with $s-t \leq 2$, and when $v \equiv 5(\bmod 6)$, it never yields $s-t \leq 6$. Hence we require further constructions that need not produce a subdesign of order 5 .

Lemma 2.2 Let $n \geq 1$. For $i=1,2,3$, let $\left(t_{i}, s_{i}\right)$ be the type of a 3-factorization of $3 K_{2 n+2}$. Let $0 \leq b_{1} \leq a_{1} \leq 2 n+2$ and $\left(b_{1}, a_{1}\right) \notin \mathcal{X}=\{(0,1),(0,2),(1,1),(1,2)$, $(1,3)\}$. Let $0 \leq b_{2} \leq a_{2} \leq 2 n-1$ and $\left(b_{2}, a_{2}\right) \notin \mathcal{X}$. Let $\left(t^{\prime}, s^{\prime}\right) \in \operatorname{Fine}(6 n-1)$. Then
$\left(t_{1}+t_{2}+t_{3}+t^{\prime}+b_{1}(4 n+1)+b_{2}(2 n+2), s_{1}+s_{2}+s_{3}+s^{\prime}+a_{1}(4 n+1)+a_{2}(2 n+2)\right)$
is in Fine $(12 n+5)$.
Proof: We form a $\operatorname{TS}(12 n+5,3)$ on $\left(Z_{4 n+1} \times\{1,2,3\}\right) \cup\{\alpha, \beta\}$. First place a $T S(6 n-1,3)$ of fine structure $\left(t^{\prime}, s^{\prime}\right)$ on $\left(Z_{2 n-1} \times\{1,2,3\}\right) \cup\{\alpha, \beta\}$. For $i=1,2,3$, form a 3 -factorization of $3 K_{2 n+2}$ on $\left(Z_{4 n+1} \backslash Z_{2 n-1}\right) \times\{i\}$. The factorization has type $\left(t_{i}, s_{i}\right)$. Index factors as $F_{\alpha}, F_{\beta}, F_{0}, \ldots, F_{2 n-2}$. For $\left\{x_{i}, y_{i}\right\} \in F_{z}$, if $z \in\{\alpha, \beta\}$, form the triple $\left\{x_{i}, y_{i}, z\right\}$, and if $z \in Z_{2 n-1}$, form instead $\left\{x_{i}, y_{i}, z_{i}\right\}$.

The remaining pairs to appear in triples are all of the form $\left\{x_{i}, y_{j}\right\}$ for $i \neq j$ and $\{x, y\} \not \subset Z_{2 n-1}$. Consider the graph on $Z_{4 n+1} \times\{1,2\}$ formed by these remaining pairs; it can be partitioned into a ($2 n-1$)-regular subgraph H on $\left(Z_{4 n+1} \backslash Z_{2 n-1}\right) \times$ $\{1,2\}$ and a $(2 n+2)$-regular subgraph G on $Z_{4 n+1} \times\{1,2\}$. $3 H$ has a 3 -factorization of type $\left(b_{2}(2 n+2), a_{2}(2 n+2)\right)$ when $0 \leq b_{2} \leq a_{2} \leq 2 n-1,\left(b_{2}, a_{2}\right) \notin \mathcal{X}$ [2]. Call
 $\left(b_{1}(4 n+1), a_{1}(4 n+1)\right)$. Finally, for $\left\{x_{1}, y_{2}\right\} \in C_{k}$, form the triple $\left\{x_{1}, y_{2}, k_{3}\right\}$.

This construction appears to be a $3 v-4$ construction; however, it is better viewed as a $2 v+7$ construction, placing a subdesign of order $6 n-1$ in a design of order $12 n+5$. A variant of this construction follows.

Lemma 2.3 Let $v \equiv 5(\bmod 6), v=3 n+2$. For $\hat{s}=1,2,3$, let $\left(t_{i}, s_{1}\right)$ be the fine structure of a TS $(0,3)$ missing a subdesign of order foe. Let $\left(t_{0}, s_{0}\right) \in$ Fine(11). For $1 \leq i<n^{2}, l^{\frac{t}{t}}\left(b_{i}, a_{i}\right) \in\{(0,0),(0,9),(4,9),(6,6),(6,8),(7,8),(6,9),(7,9)$, $(9,9)$. Then

$$
\left(t_{0}+t_{1}+t_{2}+t_{3}+\sum_{i=1}^{n^{2}-1} b_{1}, s_{0}+s_{1}+s_{2}+s_{3}+\sum_{i=1}^{n^{2}-1} a_{1}\right) \in \operatorname{Finc}(3 v-4)
$$

Proof: We form a $T S(9 n+2,3)$ on $\left(Z_{3 n} \times Z_{3}\right) \cup\{\alpha, \beta\}$. For $i=1,2,3$, place a $T S(3 n+2,3)$ with a hole of size 5 on $\left(Z_{3 n} \times\{i\}\right) \cup\{\alpha, \beta\}$ with the hole on $\left\{\alpha, \beta, 0_{i}, 1_{i}, 2_{i}\right\}$. Place a TS $(1,3)$ with fine structure $\left(t_{0}, s_{0}\right)$ on

$$
\left\{\alpha, \beta, 0_{1}, 0_{2}, 0_{3}, 1_{1}, 1_{2}, 1_{3}, 2_{1}, 2_{2}, 2_{3}\right\}
$$

The pairs that remain form $3\left(K_{3 n, 3 n, 3 n} \backslash K_{3,3,3}\right)$. Use a latin square of order n to partition this graph into $n^{2}-1$ disjoint $K_{3,3,3}{ }^{\prime}$ s. For each such $K_{3,3,3}$, form a 3 . factorization of $K_{3,3}$ of type $\left(b_{i}, a_{i}\right)$; such a 3 -factorization exists [3]. Forn triples on $K_{3,3,3}$ in the usual way.

This $3 v-4$ construction introduces a subsystem of order 11 , and permits $s-t \geq$ 1, however, it has the drawback that it requires the use of fne structures for triple systems with a hole of size 5 .

We also employ a $3 v+2$ construction:
Lemma 2.4. Let $v \geq$ 7. Let $(t, s) \in \operatorname{Fine}(v)$ and $s<\left\lfloor\frac{v(v-1)}{6}\right\rfloor$. Let $\left(t^{\prime}, s^{\prime}\right) \in$ Fine(11). Let $0 \leq \mu \leq \frac{y-3}{2}$. Then for $v \equiv 1,3(\bmod 6)$,

$$
\left(9 t+t^{\prime}+6 \mu, 9 s+s^{\prime}+6 \mu\right) \in \text { Fine }(3 v+2)
$$

and for $v \equiv 5(\bmod 6)$,

$$
\left(9 t+t^{\prime}+6 \mu, 9 s+s^{\prime}+6 \mu+3\right) \in \operatorname{Fine}(3 v+2)
$$

Proof: We form a $T S(3 v+2,3)$ on $\left(Z_{v} \times\{1,2,3\}\right) \cup\{\alpha, \beta\}$. Choose a permutation π on Z_{v} that fixes 0,1 and 2 , and maps $2 i \mapsto 2 i-1$ and $2 i-1 \mapsto 2 i$ for $i \geq 2$.
repeated block on $\{0,1,2\}$. For each $\{x, y, z\}$ in \mathcal{B}, form the nine triples $\left\{x_{1}, y_{1}, z_{2}\right\}$, $\left\{x_{1}, y_{2}, z_{1}\right\},\left\{x_{2}, y_{1}, z_{1}\right\},\left\{x_{2}, y_{2}, \pi(z)_{3}\right\},\left\{x_{2}, \pi(y)_{3}, z_{2}\right\},\left\{\pi(x)_{3}, y_{2}, z_{2}\right\},\left\{x_{3}, y_{3}, z_{1}\right\}$, $\left\{x_{3}, y_{1}, z_{3}\right\}$ and $\left\{x_{1}, y_{3}, z_{3}\right\}$. At this point, all pairs $\left\{x_{i}, y_{j}\right\}$ are covered except when $\{x, y\} \subset\{0,1,2\}$, or $3 \leq x<v$ and $y=x$ if $\{i, j\}=\{1,2\}$ or $\{1,3\}, y=\pi(x)$ if $\{i, j\}=\{2,3\}$.

Place a $T S(11,3)$ of fine structure $\left(t^{\prime}, s^{\prime}\right)$ on $\left(Z_{3} \times\{1,2,3\}\right) \cup\{\alpha, \beta\}$. At this point, the pairs remaining on $Z_{v} \times\{1,2,3\}$ induce $\frac{v-3}{2}$ triplicated hexagons. Each has a 3 -factorization of type $(0,0)$ and one of type (6,6); choose μ of them to be of type $(6,6)$, the remainder of type $(0,0)$. This yields two 3 -factors that are used to form triples with α and β.

Finally, for s small we use an embedding result. Mendelsohn and Rosa [6] establish the existence of a partial triple system with $\lambda=1$ of order v having a hole of order w, provided $v, w \equiv 5(\bmod 6)$ and $v \geq 2 w+1$. Repeating each block of this partial triple system three times, and filling the hole with a $T S(w, 3)$ establishes that

Lemma 2.5 Fine $(w) \subseteq$ Fine (v) for all $v, w \equiv 5(\bmod 6), v \geq 2 w+1$.

3 Small Cases

Lemma 3.1 Fine $(5)=\{(0,3)\}$.
Proof: The trivial design $T S(5,3)$ has fine structure $(0,3)$.
Lemma 3.2 If $(t, s) \in \operatorname{Adm}(11) \backslash\{(4,7)\},(t, s) \in$ Fine(11) except possibly for $(t, s) \in\{(3,8),(5,8),(2,9),(5,9),(7,9),(0,10),(1,10),(2,10),(3,10),(4,10)\}$.

Proof: Milici and Quattrocchi [7] establish that (4,7) is impossible for $v=11$. Now we apply the $2 v+1$ construction, using the complete solution for Fine(5) and the complete solution for types of 3 -factorizations of $3 K_{6}[2]$. For $(t, s) \in \operatorname{Adm}(11)$, this handles all cases with $s-t \geq 3$, except $(3,6),(4,7),(3,8),(4,8),(5,8),(0,9)$, $(2,9),(3,9),(4,9),(5,9),(0,10),(1,10),(2,10),(3,10),(4,10),(5,10),(6,10),(7,10)$, $(0,11),(1,11),(2,11),(3,11),(4,11),(5,11),(1,12),(2,12),(3,12),(5,12),(8,12)$, $(1,13),(2,13),(3,13) ;(4,13),(5,13),(0,14),(1,14),(3,14)$ and $(11,14)$. This is a complete solution for fine structures of $T S(11,3)$'s having a sub-TS(5,3). Hence to obtain further values, we must avoid a subsystem of order 5 .
a subsystem of order 5. A. 3 -factorization of $3 K_{6}$ on $\{0,1,2,3,4,5\}$ has five factors; index them by $\{a, b, c, d, e\}$. Then for $\{i, j\}$ in factor x, we form a triple $\{x, i, j\}$. We form a trade as follows. Let $\{i, j, k\}$ be three distinct elements from $\{0,1,2,3,4,5\}$, and let $\{x, y, z\}$ be three distinct symbols from $\{a, b, c, d, e\}$. Now if $\{i, j\},\{i, k\}$ and $\{j, k\}$ occur in factors x, y and z with multiplicity α, β and γ respectively $(\alpha, \beta, \gamma>$ 0), we can remove the four triples $\{a, i, j\},\{b, i, k\},\{c, j, k\}$ and $\{a, b, c\}$ once from the $T S(11,3)$. Then add the triples $\{i, j, k\},\{i, a, b\},\{j, a, c\}$ and $\{k, b, c\}$. Let n_{i} be the number of $\alpha, \dot{\beta}, \gamma$ equal to \hat{i}. Starting with a triple system of fine structure (t, s), we obtain a triple system with fine structure $\left(t^{\prime}, s^{\prime}\right)$, where $t^{\prime}=t+n_{3}$, and $s^{\prime}=s+n_{3}-n_{2}$. We say that a trade has class $\{\alpha, \beta, \gamma\}$.

Using only the solutions displayed in [2], we list some trades that settle many of the remaining cases:

| Fine Structure of | 3-factorization | Trade Class |
| :--- | :--- | :--- |\quad Fine Structure of

$(0,3)$	$(0,0)$	$3,3,3$
$(6,9)$	$(6,6)$	$3,2,2$
		$3,1,1$
$(6,11)$	$(6,8)$	$2,2,1$
		$3,2,2$
$(7,11)$	$(7,8)$	$3,1,1$
$(8,11)$	$(8,8)$	$2,2,2$
$(0,12)$	$(0,9)$	$3,1,1$
$(4,12)$	$(4,9)$	$2,1,1$
		$3,2,2$
		$3,2,1$
		$3,1,1$
$(9,12)$	$(9,9)$	$3,3,1$
$(2,14)$	$(2,11)$	$2,1,1$
$(4,14)$	$(4,11)$	$2,1,1$

$(3,14)$

It is possible to perform more than one trade, provided each trade performed employs a different subset of $\{a, b, c, d, e\}$ (remark that originally a $T S(5,3)$ resided on these five elements, and one trade on $\{x, y, z\}$ absorbs the singly repeated block
on these three elements). In this way, $(2,13)$ is easily produced from $(3,12)$, and $(0,14)$ from $(1,14)$.

Similarly, a trade of class $3,3,2$ on the $(3,6)$ solution gives $(4,8)$; a subsequent $3,2,2$ trade gives $(3,9)$, while a subsequent $3,3,1$ trade gives $(6,10)$. After this point, it becomes difficult to verify that a suitable sequence of trades exists, so we resort to displaying the required solutions that remain. Each is displayed as a collection of triples on $0-9$, a followed by a T, D, or S to indicate a triply, doubly or singly repeated block.

```
0 9:047T 379T 27aT 136T 567T 178T 469T 026T 68aT 235S 589S 125S
    238S 015S 234S 348S 019S 058S 248S 34aS 14aS 259S 59aS 129S 035S
    089S 09aS 458S 01aS 124S 145S 03aS 19aS 289S 45aS 038S 35aS
4 9: 126T 03aT 456T 234T 359T 067T 69aT 368T 048D 28aD 025D 137T
        14aD 018S 27aS 15aS 019S 279S 479S 029S 289S 149S 015S 47aS 257S
        158S 57aS 789S 049S 58aS 578S 189S 478S
1.11: 579T 289T 023T 25aT 045T 158T 356T 139D 348S 126S 127S 347S
    378S 019S 37aS 124S 147S 07aS 38aS 468S 67aS 469S 017S 13aS 08aS
    48aS 069S 16aS 068S 078S 016S 49aS 247S 14aS 246S 678S 09aS 267S
    349S 69aS
1 12: 256T 36aT 129T 01aT 349T 24aT 689D 59aS 167S 467S 067S 046S
    059S 168S 028S 57aS 138S 045S 023S 79aS 357S 145S 079S 78aS 048S
    137S 158S 478S 458S 238S 035S 038S 579S 89aS 237S 027S 147S 146S
    069S 135S 58aS 278S
2 11: 279T 09aT 078T 023T 016T 248T 045T 256D 12aD 689S 189S 368S
    68aS 359S 149S 567S 467S 138S 159S 147S 35aS 134S 367S 125S 137S
    26aS 589S 37aS 57aS 46aS 58aS 469S 157S 349S 18aS 369S 358S 34aS
    47as
2 12: 238T 13aT 369T 59aT 035T 049D 347T 257D 189S 026S 068S 126S
    24aS 179S 167S 014S 67aS 067S 08aS 089S 48aS 26aS 02aS 156S 158S
    129S 012S 07aS 78aS 245S 468S 456S 578S 148S 145S 568S 249S 46aS
    2795 017S 7895
3 11: 123T 367T 345T 038T 247T 48aT 17aD 39aT 168D 789D 569S 258S
    26aS 06aS 56aS 056S 07aS 269S 469S 289S 017S 15aS 158S 149S 02aS
    025S 578S 029S 268S 25aS 014S 146S 019S 579S 057S 046S 159S 049S
0 11: 014T 129T 13aT 178T 69aT 48aT 156T 238S 345S 27aS 02aS 479S
    247S 068S 237S 089S 367S 079S 579S 026S 05aS 058S 25aS 467S 349S
    357S 389S 368S 07aS 346S 589S 035S 039S 57aS 245S 246S 067S 459S
```

$8 \quad 9: 456 \mathrm{~T} ~ 279 \mathrm{~T}$ 028T 67 aT 48 DD 19 aD 359 D 047T 015T 126D 069T 137 D 234 D 03aT 25 aT 578 D 368 D 134S 49 aS 589 S 18aS $389 \mathrm{~S} \quad 489 \mathrm{~S} \quad 178 \mathrm{~S}$ 357S $124 S 168 S 236 S 149 S$
$910: 18 \mathrm{aT} 248 \mathrm{~T} 068 \mathrm{~T} 389 \mathrm{~T} 025 \mathrm{~T} 578 \mathrm{~T} 59 \mathrm{aT} 129 \mathrm{D} 23 \mathrm{aD} 46 \mathrm{aD} 049 \mathrm{~T}$ 347D
 156 S 26 aS 137 S 1695279 S

10 11: 34aT 16aT 269T 235D 128D 489 D 247D 59aT 379D 046D 058T 368D
 $037 \mathrm{~S} \quad 157 \mathrm{~S} \quad 127 \mathrm{~S} \quad 019 \mathrm{~S} 468 \mathrm{~S} \quad 079 \mathrm{~S}$
$1112: 156 \mathrm{~T} 147 \mathrm{~T} 128 \mathrm{~T} 139 \mathrm{~T} 267 \mathrm{~T}$ 01aT 235 D 037D 069 D 024D 579 D 29aD
 046 S 345 S 038 S 368S 79aS 34 aS 469 S
 025 D 689 T 146 D 56 aT 579 D 045S 046S 47 aS 014 S 159 S 479 S 026S 247 S 578 S 235 S 167S 367 S 13aS 29aS 067S 348S
 08 aD 015 D 357 D 458 D 17 aD 14aS 56 aS 126S 567 S 169 S 018 S 136S 345 S $\begin{array}{lllllllll}3785 & 07 a S & 89 \mathrm{aS} & 125 S & 2595 & 2585 & 127 \mathrm{~S} & 0565 & 4685\end{array}$

14 15: 58aT 01aD 039D 34aD 249D 159D 478D 045T 79aD 356T 137D 238D $26 \mathrm{aD} 146 \mathrm{D} 257 \mathrm{D} \quad 067 \mathrm{D} 689 \mathrm{D} 467 \mathrm{~S} \quad 378 \mathrm{~S}$ 027S 69 aS 24 aS 579 S 349S 028 S 026 S 168 S 123S 129 S 125S 17 aS 018 S 03aS 089S 148 S
 $69 \mathrm{aD} \quad 278 \mathrm{D} \quad 057 \mathrm{~T} \quad 013 \mathrm{D} 47 \mathrm{D} \quad 259 \mathrm{~S} \quad 127 \mathrm{~S} \quad 039 \mathrm{~S} 789 \mathrm{~S} \quad 356 \mathrm{~S} \quad 09 \mathrm{aS} \quad 068 \mathrm{~S} \quad 37 \mathrm{aS}$ 1895458 S 467 S 68 aS 026 S 689S 016S 24 aS 049 S 238S 1345

 148 S 246 S 567 S 349S 129 S 036S 89aS 017S 568 S 069 S 37 aS 078 S
$\begin{array}{lllllllllllllll}17 & 18: & 08 a D & 47 a D & 26 a D & 029 D & 157 D & 35 a D & 037 D & 679 D & 234 D & 046 D & 389 D & 459 D\end{array}$
 $018 \mathrm{~S} 678 \mathrm{~S} 025 \mathrm{~S} 469 \mathrm{~S} 07 \mathrm{aS} 36 \mathrm{aS} 016 \mathrm{~S} 257 \mathrm{~S} 034 \mathrm{~S} 45 \mathrm{~S} \quad 059 \mathrm{~S} 379 \mathrm{~S} 358 \mathrm{~S}$ $810: 019 \mathrm{~T} 267 \mathrm{~T} 357 \mathrm{~T} 24 \mathrm{aT} 479 \mathrm{~T} 125 \mathrm{~T} 07 \mathrm{aT} 036 \mathrm{D} 348 \mathrm{D} 239 \mathrm{D} 59 \mathrm{aD} 13 \mathrm{aD}$
 568 S 69aS 289 S 134S 056S 16 aS
$911: 349 \mathrm{~T} 368 \mathrm{~T} 267 \mathrm{~T} 02 \mathrm{aT} 46 \mathrm{aT} 045 \mathrm{~T} 037 \mathrm{~T} 147 \mathrm{D} 248 \mathrm{D} 79 \mathrm{aD} 069 \mathrm{D}$ 156D 018 D 235D 13aD 58aD 579 S 78 aS 478 S 089S 123 S 157S 578 S 259S 016 S

124 S 289S 19aS 569 S 189S 35aS 129 S

Abstract

10 12: 39aT 124T 01aT 137T 345T 25aT 056D 158D 48aD 038D 236D 579D 023 S 078 S 279 S 047 S 029S 057S 468S 589S

11 13: 478T 579T 169T 568T 07aT 015D 249D 267D 137D 39aD 036D 238D $18 a \mathrm{D} 25 \mathrm{aD} 345 \mathrm{D} 46 \mathrm{aD} 26 \mathrm{aS} 124 \mathrm{~S}$ 018S 089S 025S 89aS 35aS 046S 028S 367 S 029S 127 S 049S 123 S 145S 14 SS 034S 389 S $\begin{array}{llllllllllllll}12 & 14: & 236 T & 457 \mathrm{~T} & 278 \mathrm{~T} & 469 \mathrm{~T} & 358 \mathrm{D} & 156 \mathrm{D} & 034 \mathrm{D} & 124 \mathrm{D} & 068 \mathrm{D} & 02 \mathrm{aD} & 189 \mathrm{D} & 48 \mathrm{aD}\end{array}$ 259 D 137 D 39aD 67aD 015S 16as 25aS 017S 024S 067S 35aS 079S 379S O5aS 348S 79aS 568S 129S 013S 059S 089S 14aS 18aS $\begin{array}{llllllllllllllllllllllll}13 & 15: & 23 \mathrm{aT} & 012 \mathrm{~T} & 258 \mathrm{~T} & 036 \mathrm{D} & 468 \mathrm{D} & 057 \mathrm{D} & 345 \mathrm{D} & 59 \mathrm{aD} & 149 \mathrm{D} & 18 \mathrm{aD} & 269 \mathrm{D} & 247 \mathrm{D}\end{array}$ $\begin{array}{llllllllllllll}67 a D & 04 a D & 156 D & 389 D & 078 S & 279 S & 367 S & 69 \mathrm{aS} & 089 \mathrm{~S} & 17 \mathrm{aS} & 049 \mathrm{~S} & 039 \mathrm{~S} & 246 \mathrm{~S}\end{array}$ 478 S 08aS $579 \mathrm{~S} \quad 134 \mathrm{~S}$ 056S 137 S 45aS 179 S 168S 135 S 378S

14 16: 367T 257 T 56aD 026 D 146D 017 D 24aD 129 D 058D 18 aD 689D 135 D $69 a s$ 23aS 079S 349S 79as 359S 78as 034S 09as 045S 179S 47as $\begin{array}{llllllllllllllllllll}15 & 17: & 12 \mathrm{aT} & 056 \mathrm{D} & 03 \mathrm{aD} & 57 \mathrm{aD} & 49 \mathrm{aD} & 278 \mathrm{D} & 179 \mathrm{D} & 367 \mathrm{D} & 029 \mathrm{D} & 234 \mathrm{D} & 138 \mathrm{D} & 689 \mathrm{D}\end{array}$ 359 D 458 D 047D 146D 36aS 69 aS 235 S 68aS $018 \mathrm{~S} \quad 026 \mathrm{~S}$ 256S 048S 167 S 159 S 246 S 079 S 378 S 015S 257S 08aS 289 S 013S 145 S 349S 47 aS 58 aS $\begin{array}{llllllllllllllllllllll}16 & 18: & 017 \mathrm{D} & 129 \mathrm{D} & 048 \mathrm{D} & 138 \mathrm{D} & 24 \mathrm{aD} & 236 \mathrm{D} & 146 \mathrm{D} & 278 \mathrm{D} & 025 \mathrm{D} & 06 \mathrm{aD} & 345 \mathrm{D} & 59 \mathrm{aD}\end{array}$ $\begin{array}{lllllllllllllllllll}689 \mathrm{D} & 567 \mathrm{D} & 37 \mathrm{aD} & 039 \mathrm{D} & 58 \mathrm{aS} & 18 \mathrm{aS} & 149 \mathrm{~S} & 079 \mathrm{~S} & 347 \mathrm{~S} & 459 \mathrm{~S} & 568 \mathrm{~S} & 27 \mathrm{aS} & 479 \mathrm{~S}\end{array}$ $\begin{array}{lllllllllllllllllllllll} & 058 S & 467 S & 125 S & 135 S & 48 \mathrm{aS} & 16 \mathrm{aS} & 01 \mathrm{SS} & 024 \mathrm{~S} & 238 \mathrm{~S} & 036 \mathrm{~S} & 157 \mathrm{~S} & 269 \mathrm{~S} & 789 \mathrm{~S}\end{array}$ 39aS

These missing values for $v=11$ complicate the recursions, so we eliminate them for higher orders at the outset:

Lemma $3.3\{(4,7),(3,8),(5,8),(2,9),(5,9),(7,9),(0,10),(1,10),(2,10),(3,10)$, $(4,10)\} \subset \operatorname{Fine}(v)$ for $v \equiv 5(\bmod 6), v \geq 17$.

Proof: By Lemma 2.5, we need only treat $v \in\{17,23,29\}$. We give the triples repeated once (S) and twice (D) in the solutions. A suitable set of triply repeated triples can be found easily for $v \in\{17,23,29\}$ using a hill-climbing algorithm based on [8]. To do this, we observe that the pairs covered by the blocks repeated once and twice must form the leave L of a partial triple system of order v and index one. That is, $K_{v}-L$ must have a partition into triangles; when such a partition exists, Stinson's hill-climbing method appears to be very effective in finding one.

The required solutions are:
 $013 S$ 012S 023S 123S $135 S$
$38: 035 \mathrm{D} 025 \mathrm{~S}$ 135S 125D 036S 026 S 016S 024 S 136S 126 S 134S 234 D 236 S 018 S 017S 048S 047S 078S 148 S 147S 178 S 478 S

017 S 048S 047S 078S 148S 147S 178 S 478 S
$29: 057 \mathrm{D} 027 \mathrm{~S}$ 157S 127D 068S 028S 018S 168 S 128S 268 S 145S 135 S $014 \mathrm{~S} \quad 013 \mathrm{~S} \quad 136 \mathrm{~S} \quad 146 \mathrm{~S} \quad 025 \mathrm{~S}$ 036S 034 S 046S $245 \mathrm{~S} \quad 235 \mathrm{~S}$ 345S $236 \mathrm{~S} \quad 234 \mathrm{~S}$ $246 S$

5 9: 057D 027S 157S 127D 068S 028S 018S 168 S 128 S 268S 145D 014S

$\begin{array}{llllllllllllllllllllllllll}7 & 9: & 057 \mathrm{D} & 027 \mathrm{~S} & 157 \mathrm{~S} & 127 \mathrm{D} & 068 \mathrm{~S} & 018 \mathrm{D} & 128 \mathrm{~S} & 268 \mathrm{D} & 145 \mathrm{D} & 016 \mathrm{~S} & 136 \mathrm{D} & 134 \mathrm{~S}\end{array}$ $035 \mathrm{~S} 245 \mathrm{~S} 235 \mathrm{D} \quad 024 \mathrm{~S} \quad 023 \mathrm{~S} 246 \mathrm{~S}$ 034S $046 \mathrm{~S} \quad 346 \mathrm{~S}$
 $036 \mathrm{~S} 126 \mathrm{~S} 236 \mathrm{~S} \quad 259 \mathrm{~S} 249 \mathrm{~S} 239 \mathrm{~S} 359 \mathrm{~S} 349 \mathrm{~S} 459 \mathrm{~S} \quad 015 \mathrm{~S} \quad 025 \mathrm{~S}$ 024S 034 S $045 S \quad 124 S \quad 235 S \quad 135 S 134 S 145 S$
$110: 067 \mathrm{~S} \quad 027 \mathrm{~S} \quad 017 \mathrm{~S}$ 167S $127 \mathrm{~S} \quad 267 \mathrm{~S}$ 068S $038 \mathrm{~S} \quad 018 \mathrm{~S} \quad 168 \mathrm{~S} \quad 138 \mathrm{~S} 368 \mathrm{~S}$
 249 S 259 S 349 S 359 S 45 S

 $125 S \quad 235 S 134 D 145 S$

 349 S 359 S 459 S
$410: 067 \mathrm{D} \quad 017 \mathrm{~S} 127 \mathrm{D} \quad 267 \mathrm{~S}$ 068S 038 S 018S 168 S 138S 368 S 136S 126 S 236 S 015S 134 S 145D 025 S 024D 035 S 034S 239 S 235S 249 S 259S 349 S 35954595

The case $v=17$ is the most difficult, and it is here that Lemma 2.1 is critical.

Lemma 3.4 Fine(17) $=\operatorname{Adm}(17)$.

Proof: Apply Lemma 2.1 using the complete determination of Fine(7) in [4], and the partial determination of types of $3 K_{5,5}$ [3]. This handles all values in $A d m(17)$
except those with $s-t \leq 2$ and the following: $(4,8),(0,10),(1,10),(2,10),(3,10)$, $(4,10),(5,10),(0,11),(1,11),(2,11),(3,11),(4,11),(5,11),(0,12),(1,12),(2,12)$, $(4,12),(0,13),(1,13),(2,13),(0,14),(1,14),(2,14),(4,14),(1,15),(0,16),(1,16)$, $(2,16),(3,16),(4,16),(5,16),(0,17),(1,17),(2,17),(4,17),(5,17),(1,18),(2,18)$, $(2,19)$ and $(0,20)$.

There exists a group divisible design $g d d$ with blocks of size three having one group of size six, one group of size 4 , and three groups of size two. An explicit construction for this $g d d$ on groups $\{\{0,1,2,3,4,5\},\{6,7,8,9\},\{a, b\},\{c, d\},\{e, f\}\}$ is $\{$ ace, bdf, 0ad, 06b, 07c, 08e, 09f, $1 \mathrm{cf}, 16 \mathrm{~d}, 17 \mathrm{e}, 18 \mathrm{a}, 19 \mathrm{~b}, 2 \mathrm{be}, 26 \mathrm{f}, 27 \mathrm{a}, 28 \mathrm{c}$, $29 \mathrm{~d}, 3 \mathrm{bc}, 36 \mathrm{a}, 37 \mathrm{~d}, 38 \mathrm{f}, 39 \mathrm{e}, 4 \mathrm{de}, 46 \mathrm{c}, 47 \mathrm{f}, 48 \mathrm{~b}, 49 \mathrm{a}, 5 \mathrm{af}, 56 \mathrm{e}, 57 \mathrm{~b}, 58 \mathrm{~d}, 59 \mathrm{c}\}$. Replicate each block three times, and add a new element forming a $T S(7,3)$, a $T S(5,3)$ and three $T S(3,3)$'s with the groups. This gives $(t, s+3) \in F i n e(17)$ for $(t, s) \in \operatorname{Fine}(7)$, eliminating $(0,10),(1,10),(3,10)$ and $(4,10)$. Then removing one copy of the triples $08 \mathrm{e}, 09 \mathrm{f}, 38 \mathrm{f}, 39 \mathrm{e}$ and adding instead one copy of $08 \mathrm{f}, 09 \mathrm{e}, 38 \mathrm{e}$, $39 f$ gives $(t+4, s+7) \in$ Fine (17), eliminating $(4,14)$. If we instead consider the triples of the $g d d$ on $0,1,2,7,8, a, c, e$, we find seven triples. Together with 012 , they partition K_{8} minus a 1 -factor. If we choose $(t, s) \in \operatorname{Fine}(7)$ with $s<7$, we align the triply repeated block on 012 . Then we can remove the eight triply repeated triples on $0,1,2,7,8$, a,c,e and replace them with a partial triple system of type $(0,8)$ to eliminate $(0,11),(0,17)$ and $(4,17)$. If we align the $T S(7,3)$ to omit a doubly repeated block on 012, omitting a singly repeated block on 012 in the partial triple system, we obtain $(t, s+11) \in$ Fine (17) for $(t+1, s+1) \in F i n e(7)$. This eliminates $(3,16),(5,16)$ and $(2,17)$.

Next we use a $2 v+3$ construction. On Z_{10}, we take the ten triples from the starter block $\{0,1,2\}$. The graph on differences 3,4 and 5 can be 1 -factored, forming five 1 -factors. Each is triplicated to form a 3 -factor with only triplicated edges. Difference 1 remains once and difference 2 remains twice. This 6-regular multigraph can be partitioned into two simple 3 -factors, or into two 3 -factors containing two double edges in total. Hence for $(t, s) \in$ Fine (7), we have $(t, s+13)$ and $(t+2, s+13)$ in Fine(17). This eliminates $(0,13),(2,13),(2,19)$ and $(0,20)$.

For the remaining cases, we again produce the singly and doubly repeated triples; the triply repeated triples can be found using hill-climbing.

4	$8:$	$137 D$	$037 S$	$078 D$	$178 S$	$048 S$	$148 D$	$035 S$	$025 S$	$015 S$	$135 S$	$125 S$
$034 S$	$234 D$	$016 S$	$012 S$	$026 S$	$046 S$	$126 S$	$146 S$	$246 S$				
5	$10:$	$067 D$	$027 S$	$167 S$	$127 D$	$068 S$	$038 S$	$018 S$	$168 S$	$138 S$	$368 S$	$126 S$
$015 S$	$014 S$	$135 S$	$134 S$	$145 S$	$025 S$	$023 S$	$034 S$	$045 S$	$249 D$	$245 S$	$259 S$	$349 S$

$111: 057 \mathrm{~S} 037 \mathrm{~S} 017 \mathrm{~S}$ 157S 137 S 357 S 068 S 048 S 018 S 168S 148 S 468 S $29 a S$ 249S 239S 24aS 23aS 39aS $349 S$ 34aS 49aS 134S 035S 023S 135S 046 S 024 S 146 S 012S 056 S 126S 125 S 256 D
$211: 057 \mathrm{~S} 037 \mathrm{~S} 017 \mathrm{~S}$ 157S 137 S 357 S 068S 048S 018S 168 S 148S 468S 29 aS 249 S 239S 24aS 23aS 39aS 349 S 34aS 49 aS 134S 035 D 123S 156 S 125 S 256 D 012 S 146 S 026S 024S 046S
$311: 057 \mathrm{D} 017 \mathrm{~S} 137 \mathrm{D} \quad 357 \mathrm{~S}$ 068S 048 S 018S 168 S 148S 468 S 29aS 249 S 239S 24aS 23aS 39aS 349S 34aS 49aS 034S 035S 023S 135S 156S 125S 256 D 012 S 026S 046S 124 S 146S
 239 S 24 aS 23 aS 39 aS 349 S 34aS 49aS 034S 035S 135 S 235 S 156S 256D 012 D 026 S 046S 124 S 146S
$511: 057 \mathrm{D} 017 \mathrm{~S} 137 \mathrm{D} 357 \mathrm{~S} 068 \mathrm{D} 018 \mathrm{~S}$ 148D 468 S 29aS 249 S 239S 24 aS 23 aS 39 aS 349 S 34aS 49 aS 034S 035 S 023S 135 S 156S 125 S 256D 012S 024 S 046S 126S 146S

012 : 09aS 029S 019S 02as 01as 19as 129S 12aS 29aS 236S 136S 036S 237 S 137 S 037S 038S 138S 238S 246 S 146 S 046S 056 S 156S 256 S 247 S 147 S 047 S 048S 148 S 248S $057 \mathrm{~S} 157 \mathrm{~S} 257 \mathrm{~S} \quad 012 \mathrm{~S} 058 \mathrm{~S} \quad 158 \mathrm{~S} 258 \mathrm{~S}$

1 12: 589 D 489 S 359S 057S 037S 017S 157 S 137S 357 S 29aS 249 S 239S 24 aS 23 aS 39 aS 34 aS 49 aS 134 S 034S 035S 1235 246S 026S 025S 012S 125 S 256 S 156 S 568 S 018S 048 S 046S 068S 148 S 146S 168 S
$212: 589 \mathrm{D} 489 \mathrm{~S} 359 \mathrm{~S} 057 \mathrm{~S}$ 037S 017S 157S 137S 357S 29aS 249S 239S 24 aS 23aS 39aS 34aS 49aS 134S 034S 035S 123S 124S 026S 025S 012S $256 \mathrm{D} \quad 158 \mathrm{~S} \quad 156 \mathrm{~S}$ 018S 048 S 046S 068 S 146S 168 S 468 S

412 : 589 D 489 S 359 S 057 D 037 S 157 S 137D 29aS 249 S 239S 24aS 23 aS 39 aS 34aS $49 \mathrm{aS} \quad 134 \mathrm{~S}$ 034S 035S $235 \mathrm{~S} 256 \mathrm{~S} 125 \mathrm{~S} \quad 156 \mathrm{~S}$ 568S $026 \mathrm{~S} \quad 024 \mathrm{~S}$ 012 S 126 S 018D 046S 068S 148 S 146S 468S
$113: 057 \mathrm{~S} 037 \mathrm{~S} 017 \mathrm{~S} 157 \mathrm{~S}$ 137S 357 S 068S $048 \mathrm{~S} \quad 018 \mathrm{~S}$ 168S 148 S 468 S 29 aS 249 S 239S 24aS 23aS 39aS 349S $34 \mathrm{aS} 49 \mathrm{aS} 36 \mathrm{bS} 35 b \mathrm{~S} 34 \mathrm{bS} 56 \mathrm{bS}$
 146S
$\begin{array}{lllllllllllll}0 & 14: & 057 \mathrm{~S} & 037 \mathrm{~S} & 017 \mathrm{~S} & 157 \mathrm{~S} & 137 \mathrm{~S} & 357 \mathrm{~S} & 068 \mathrm{~S} & 048 \mathrm{~S} & 018 \mathrm{~S} & 168 \mathrm{~S} & 148 \mathrm{~S}\end{array} 468 \mathrm{~S}$ $29 a S 249 S$ 239S $39 a S$ 349S 49aS 24aS 12aS 3abS 13aS 4abS 1abs 16bS
 045 S 456 S 236S 256S 356S
$14: 057 \mathrm{~S}$ 037S 017S 157 S 137S 357 S 068S 048S 018S 168 S 148S 468S 29 aS 249 S 239 S 39as 349 S 49 aS 24 aS 23 aS 3 abS 14 aS 1abD 16bS 35bS
 145 S 256S 346S 356S
2. 14: 057D 037S 157S 137D 068S 048S 018S 168 S 148S 468S 29aS 249S $239 S$ 39aS 349S 49aS 24aS 12aS 3abS 13aS 4abS 1abS 16bS 15bS 36bS $35 \mathrm{bS} 46 \mathrm{bS} 45 \mathrm{bS} \quad 016 \mathrm{~S}$ 014S 125 S 124S 026S 025 S 023S 034 S 236S 256 S 345 S 356S 456S
 168 S 468 S 29 aS 249 S 239 S 39aS 49aS 24aS 12aS 3abS 13aS 4abS 1abs 16 bS 15 bS 36 bS 35 bS 46 bS 45 bS 014 S 026S 025S 023 S 034S $056 \mathrm{~S} \quad 126 \mathrm{~S}$ 123 S 134 S 145 S 245S 256 S 346S 356 S
$016: 067 \mathrm{~S} 027 \mathrm{~S}$ 017S 167 S 127 S 267 S 068 S 038S 018 S 168S 138 S 368S 036 S 126 S 236 S 259 S 249 S 239 S 359 S 349 S 459 S 035S 045S 024S 014S 025S 135S 134S 234S 145S 125S OadS OacS Oabs ObdS ObcS OcdS 1adS $1 \mathrm{acS} 1 \mathrm{abS} 1 \mathrm{bdS} 1 \mathrm{bcS} 1 c d S$ 2adS $2 a c S$ 2abS 2bdS 2bcS 2cdS
$116: 067 \mathrm{~S} 027 \mathrm{~S}$ 017S 167 S 127 S 267 S 068S 038 S 018 S 168 S 138S 368 S
 249S 259S 349S 359S 459S 0adS 0acs 0abS ObdS Obcs OcdS 1adS 1acS 1abS 1bdS 1bcS 1cdS 2adS 2acS 2abS 2bdS 2bcS 2cdS
$216: 067 \mathrm{~S} 027 \mathrm{~S}$ 017S 167 S 127 S 267 S 068S $038 \mathrm{~S} \quad 018 \mathrm{~S}$ 168S 138 S 368S 036 S 126 S 236 S 259 S 249 S 239 S 359 S 349 S 459 S 035S 045S 024D 015 S $145 S$ 134D 125S 235S OadS 0acs 0abS ObdS ObcS 0cdS 1adS 1acS 1abs $1 b d S$ 1bcS 1cdS 2adS 2acS 2abS 2bdS 2bcS 2cdS
$416: 067 \mathrm{D} 017 \mathrm{~S} 127 \mathrm{D}$ 267S 068S 038S 018S 168 S 138S 368 S 136S 126 S 236 S 135 S 145 D 014S 035S 034S 024 S 025D $239 \mathrm{~S} \quad 234 \mathrm{~S}$ 249S 259 S 349S 359S 459S 0adS 0acs 0abS 0bdS 0bcS 0cdS 1adS 1acS 1abS 1bdS 1bcS 1cdS 2adS 2acs 2abs 2bdS 2bcs 2cdS
$117: 068 \mathrm{~S} 048 \mathrm{~S} 018 \mathrm{~S}$ 168S 148S 468S 9acD 69CS 4acS 39aS 269S 249S $239 S$ 349S 469S 24aS 23aS 12aS 13aS 14aS 6bcS 4bcS ObcS 16cS 17cS 01 cS 07 cS 47 CS 057 S 047 S 157S 137S 357S 347S 36bS 35bS 34bS 56bS $04 b S \quad 05 \mathrm{bS} 145 \mathrm{~S} \quad 245 \mathrm{~S}$ 456S $013 \mathrm{~S} \quad 126 \mathrm{~S}$ 125S 026 S 025S 023 S 036S 356 S 5 17: 068D 048S 168S 148D 9acD 69cS 4acs 49aS 269S 249S 239S 369 S 349 S 24aS 23aS 12aS 13aD 6bcD ObcS 17cS 14cS 01cS 07cS $47 c S 157 \mathrm{~S}$ 137 S 016 S 015 S 126 S 125 S 025S 024S 023S 256S 047S 037S 03bS 05bS 357 S 457 S 34bS 346 S 35bS 356 S 46bS 456S 45bS

1 18: 468 D 168S 178 S 018 S 489 S 089S 078 S 789 S 79 CS 379 S 9acS 09cs $07 c S$ 06cs $7 b c s$ abcS 6bcS 6acs 057 S 17bs 157 S 37 bS 357 s 49 aS 39 aS 249S 239S 029S 26aS 24aS 23aS 3abS 14aS 1abS 16aS 15bS 34bS 46bS
 136S 256S 356S

2 18: 468D 168S 178S 148S 089D 078S 789S 79CS 379S 9acS 09CS 07cS
 349S 49aS 26aS 24aS 3abS 36aS 13aS 14aS 1abS 15bS 34bS 46bS 45bS 56 bS 045 S 034 S 024 S 145 S 016 S 013 S 012 S 126 S 123 S 025 S 036 S 235 S 256S 356S

It remains to handle the cases when $s-t \leq 2$, for $9 \leq s \leq 45$. All solutions of this type have been found using the hill-climbing algorithm directly to find $T S(17,3)$'s at random. The seventy-four remaining cases have all been found easily using the hill-climbing method; we omit the solutions here.

Lemma 3.5 Fine (23) $=\operatorname{Adm}(23)$.
Proof: Apply Lemma 3.1 of [4], the $2 v+1$ construction, to Fine(11), using the determination of types of 3 -factorizations of $3 K_{12}$ from [2]. This handles all values in $A d m(23)$ except for $(4,7),(3,8),(5,8),(2,9),(5,9),(7,9),(0,10),(1,10),(2,10)$, $(3,10)$ and $(4,10)$. The cases $(3,8)$ and $(5,8)$ are handled by Lemma 2.1. Lemma 3.3 completes the proof.

Lemma 3.6 Fine (29) $=\operatorname{Adm}(29)$.
Proof: Apply Lemma 2.3, observing that the fine structures of $T S(11,3$)'s missing a subdesign of order 5 are precisely the types of 3 -factorizations of $3 K_{6}$. Using Lemma 3.2, we obtain all $(t, s) \in \operatorname{Fine}(29)$ except for $(4,7),(3,8),(5,8),(2,9)$, $(5,9),(7,9),(0,10),(1,10),(2,10),(3,10)$ and $(4,10)$. The cases $(3,8)$ and $(5,8)$ and handled by Lemma 2.1. Lemma 3.3 completes the proof.

Lemma 3.7 Fine (35) $=\operatorname{Adm}(35)$.
Proof: Since Fine $(17)=A d m(17)$, and the solution for 3 -factorizations of $3 K_{18}$ is complete [2], the $2 v+1$ construction (Lemma 3.1 of [4]) suffices.

Lemma 3.8 Fine(41) $=\operatorname{Adm}(41)$.
Proof: We apply Lemma 2.2 with $n=3$. We have Fine(17) $=A d m(17)$. For 3-factorizations of $3 K_{8}$, we use the partial determination in [2].

In this section, we apply the recursions from section 2, using the solution for small orders in section 3 as base cases, to establish sufficiency for the characterization.

For $v \in\{17,23,29,35,41\}$, we have established $\operatorname{Fine}(v)=\operatorname{Adm}(v)$ in section 3. So assume that $v \geq 47$ and $v \equiv 5(\bmod 6)$. Since Fine $(23)=\operatorname{Adm}(23)$ and $v \geq 47$, by Lemma 2.5 we have that if $(t, s) \in \operatorname{Adm}(v)$ and $s \leq 84,(t, s) \in \operatorname{Fine}(v)$. We assume henceforth that $s>84$.

Now set $z=\frac{v+4}{3}$. Since $v \geq 47, z \geq 17$. Hence $\operatorname{Fine}(z)=\operatorname{Adm}(z)$. Apply Lemma 2.1 to form a system of order $v=3 z-4$ using the determination of Fine (z) and the solution for types of 3 -factorizations of $K_{z-2, z-2}$ (which is complete since $z-2 \geq 10[3])$. For $(t, s) \in \operatorname{Adm}(v)$, this gives $(t, s) \in \operatorname{Fine}(v)$ unless $s-t \leq 2$ and $z \equiv 1,3(\bmod 6)$, or $s-t \leq 6$ and $z \equiv 5(\bmod 6)$. To complete the determination, if $v \equiv 11(\bmod 12)$, write $y=\frac{v-1}{2}$. Now $y \equiv 5(\bmod 6)$ and $y \geq 23$; hence $\operatorname{Fine}(y)=\operatorname{Adm}(y)$. Moreover, the solution for types of 3 -factorizations of K_{y+1} is complete [2]. Then the $2 v+1$ construction (Lemma 3.1 of [4]) establishes Fine $(v)=\operatorname{Adm}(v)$. The more complicated case is $v \equiv 5(\bmod 12)$. The $2 v+7$ construction of [4] applies only when $v \equiv 17(\bmod 24)$, and hence we use Lemma 2.2 of this paper instead. Write $y=\frac{v-7}{2}$. Again, since $v \geq 53$, we have $y \geq 23$. It is then easy to verify that $\operatorname{Fine}(v)=\operatorname{Adm}(v)$. We remark that since $s-t \leq 6$ is all that remained, Lemma 2.4 would also suffice in place of Lemma 2.2 here.

This completes the proof of sufficiency.

Acknowledgements

Thanks to Alex Rosa for numerous helpful discussions on this subject. The third author thanks the Mathematics Department, University of Toronto for providing computing support.

References

[1] C. J. Colbourn. Leaves, excesses and neighbourhoods. Acta Univ. Carol. (Math. Phys.), 28:41-47, 1987.
[2] C. J. Colbourn. Repeated edges in 3-factorizations. J. Comb. Math. Comb. Comput., 4:133-154, 1988.
[3] C. J. Colbourn. Concerning 3-tactorizations of $3 K_{n, n}$. Ars Combinatoria, to appear.
[4] C. J. Colbourn, R. A. Mathon, A. Rosa, and N. Shalaby. The fine structure of threefold triple systems: $v \equiv 1,3(\bmod 6)$. Discrete Math., to appear.
[5] C. J. Colbourn and R. C. Read. Orderly algorithms for graph generation. Int. J. Computers and Mathematics, A7:167-172, 1979.
[6] E. Mendelsohn and A. Rosa. Embedding maximal packings of triples. Congressus Numerantium, 40:235-247, 1983.
[7] S. Milici and G. Quattrochi. The spectrum of three-times repeated blocks in an $s_{3}(2,3, v)$. J. Combin. Th. A, 49:117-128, 1988.
[8] D. R. Stinson. Hill-climbing algorithms for the construction of combinatorial designs. Ann. Discrete Math., 26:321-334, 1985.

