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Abstract 
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1 Introduction 

A design is a pair B) where X is a finite set of elements and B is a finite collection 
of (not necessarily distinct) subsets (called blocks) of X. A balanced incomplete block 
design, BIBD(v,b,r,k,>.), is a design with v elements and b blocks such that 

(i) each element appears in exactly r blocks 

(ii) each block contains exactly k(~ v) elements 

(iii) each pair of distinct elements appears in exactly>. blocks 

Since r( k - 1) >.( v 1) and vr = bk are well-known necessary conditions for the 
existence of a BI BD( v, b, r, k, >.) we denote this by BI BD( v, k, >.). 

Let G be a finite group with identity e, and let Z( G) be the group ring of Gover 
the ring of integers Z. A generalised Bhaskar Rao design (with one association class) 
with parameters v, b, r, k, >. and G is a v X b matrix with entries from G u {a}, where 
o rJ G, such that 

), 
ww+ = reI + fGT L g( J - I) 

gEG 

(1) 

where VV+ is the transpose of W with the group elements replaced by their inverses, 
and the product WW+ is evaluated in Z( G). 
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Let N be the matrix formed from W by reIlllaCmg its group element entries by 1; 
then (1) 

A)1 + AJ 

that is, N is the incidence matrix of a B 1 B D( v, k, Thus we use the notation 
GBRD('O,k, A; to denote a generalised Bhaskar Rao design with one association 
class. Note that a necessary condition for the existence of a GBRD( v, k, A; G) is IGII A. 

Note that the existence of a GBRD(v,k,A;G) for some v,k and G implies the 
existence of a k, CA; for all c, by concatenation. 

In this paper we are concerned only with the case where G is the group Zn of 
integers modulo n. We will use + to denote the addition in Zn (the 'multiplication' 
of the group and EB to be the addition of the group ring. The zero of the 
group ring will be denoted by *j the identity of Zn by 0 usual. 

We further restrict attention to the case n necessary and sufficient conditions 
for the existence of a GBRD(v,3,A; where is odd are given in [2]. 

2 group Z2t, t E 

Theorem 2.2 below eliminates the possibility of the existence of certain 
GBRD( Vj k, A; 

Lemma 2.1 If there a GBRD(v,k,A; then is a k, A; Zn). 

Proof: Replace by x (mod 
n). Clearly the matrix is a k,A; 0 

Theorem 2.2 A necessar'y condition for the of a k, 2ct; Z2t) with 
t, k and c odd v o or (mod 4). 

Proof: In view of Lemma 2.1 above it sufficient to prove the result for t = 1 only. 
Let k and c be odd and suppose there 2cj denote it B. 

Let B be the set of matrices, of the in the same positions as 
B and elements of Z2 elsewhere. We matrix M E B a G) 
-vector as follows. Let M E B. 

where the ai are given by 

Label the distinct unordered pairs of rows of M by Pl(M),P2(M), .. "pcn(M) (where 

the ordering is the same for all M E B). Define 4(M) by 
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of its group element entries a by the group element a' . This change can only affect 
k - 1 pairs of rows; we have 

!l(M') !l(M) + §. 

where §. is a vector of weight k - 1 if a - a' = 1 and the zero vector otherwise. 
Let A be the matrix in B with every group element entry 0, so that !leA) is the 

zero vector. Since B can be obtained from A by repeatedly replacing occurrences of 
the group element entry 0 by the group element entry 1, it follows that !l(B) lies in 
the span of a set of vectors all of weight k 1. Since k - 1 is even, and the set of even 
weight binary is subspace of the vector space of binary (~)-vectors, !lCB) 
has even weight. 

Now since B is a GBRD over Z2 with A = 2c, c odd, 

ie. !l(B) has every component equal to 1, and so has weight 
Thus G) is even, i.e. v 0 or 1 (mod 4). o 

The rest of the paper gives constructions for GBRDs with k = 3 and with k = 4. 
St will denote the subset {1,2, ... ,t - l,t + 1, ... ,2t -I} of Z2t where tEN. (We 
assume that we add and multiply elements of St as elements of Z2t. 

The fonowing lemma is generalisation of Lemma 3.1 [4J. 

Lemma 2.3 If there exist 

(i) k - 1 permutations 7I"I, 71"2, ... , 7I"k-l of St, tEN, such that for all 
P,qE{I, ... ,k I}, p:::j:.q, 

(ii) a GBRD(v,k,2;Z2) • 

(iii) a BIBD(v,k,I). 

then there exists a GBRD(v,k,2t;Z2t). 

(2) 

Proof: In the replace each 1 by t, to give a matrix A. Let B be 
the incidence matrix of the k, 1), with entries * and O. Form a new incidence 
matrix e from B by, replacing in each column of B, 

(i) each * by a row of2t - 2 *'s. 

(ii) the;th 0 by 7I"j(I), ••• , 7I"j(2t - 1) 

(iii) the kth 0 by a row of 2t 20's. 

(j = 1, ... ,k - 1) • 

Then Bile is a GBRD( v, k, 2t; Z2t) (where II denotes concatenation). o 

Lemma 2.4 For all t 2:: 4 there exist at least two permutations 71"1, 7r2 of St satisfying 
(2) of Lemma 2.3. 
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Proof: consld,er 0~'IYU,'<H""~,.r the four ac:cordlnlF to the congruency modulo 4 
7r1 taken to be the identity, and exhibit construction for 

particular that operations are modulo 

(i) 0 (mod 4) 

(ii) 

Put u and take 

1 (i 
( i 

,u 1) 
u) 
u 1,u+2, ... ,2u 1,2u+ ... ,3u-1) 
3u, 311 + 
;~u+ 3u+3, .. ,4u 1) 

Then 

I} 

I} 

:~u+ 

+ 1, 3u+ l} 

which {i the union of 

{i - 2, ... ,u 
{ i 
{ i + l''''j + 1, ... ,3u I} 

{i -- I =3u,3u+2,3u+ ,4u - 2} 
{ i i =3u + 1, :iu + ... , - 3,4u I} 

which St. 

1 4) 

Put u 1) take 

rU -i + I 
( i 1, ... , u 1) 

u-1 (i 1L) 
7r2 ( i) 4u i + 2 ( i u+1,u+2, ... , 

41L - i-I (i == 3u + 2, 3u + 4, .. 
4u -- i + 3 (i == 3u + 3, 3u + 5, .. 

Then is the union of following sets 

I 

i==1,2, ... ,u-1} 

~ +1,u+2, ... ,2u,2u+2, ... ,3u+l} 

{7r2(~) I ~ :3u + 2, 3u + 4, ... , 4u} 
{7r2(Z) z-3u+3,3u+5, ... ,4u+l} 

8 

+ 1, 

-- I} 

- I} 

+ ., 4u - 2, 
2} 

3, + ... , 4u - I} 
1, +5, ... ,4u-3} 

21L + . ,3u + 1) 

,4u + 1) 

{4u,4u 1, ... ,3u+2} 
{u - I} 
{3u+l,3u, ... 2u+2, 
2u, ... ,u+1} 
{u 3,u-5, .. ,1,4u+l} 
{u, u - 2, ... ,2} 



W1.11~lL 11> 0t, <HiU 1. £ IIZ\ £ ) leotI 11> ~He U.lUVU Vi HIe iVUVWIU5 "e~" 

{i 7r2(i) 1 i=1,2, .. ,u-1} 
{i-7r2(i) i=u} 
{i 7r2(i) i +1,u+2, .,2u,2u+ 

{ i 
{i - I ~ + +4, .. ,4u} 

+ 3u+5, ... ,4u+ 1} 

which again St. 

(iii) t == 2 (mod 4) 

Put u ~(t + and take 

... ,3u +- 1} 

4u - i - 5 
u 1 

( i 
( i 

1, ... ,u-1) 
u) 

{3,5, .. ,2u -1} 
{I} 
{2u + 2u + 4, ... ,4u, 
2,4, ., 2u} 

+ 2u + 9, ... , 4u + I} 
+ 2u + 7, ... , 4u - I} 

4u-
7r2( i) :::: u 

-4 ( i 
( i 

u + 1, u + 2, ... , 2u - 3, 2u - 1, ... , 3u - 5) 
3u 4) 

u-3 ( i 3u - 3) 
4u i 7 
4u - i - 3 

( i 
( i 

3u 2,3u, ... ,4u 6) 
3u-l,3u+1, ... ,4u 5) 

Then 7r2( St) the union of the sets 

{7r2(i) I i =1, .. , u 1} 
{7r2(i) i +1, ... ,2u-3,2u-1, ... ,3u-5} 

{4u-6,4u --7, ... ,3u-4} 
{3u- 5,3u --6, ... ,2u -1, 

-3, .. ,u+1} 

I

. -2,?u, ... ,4u-6} 
z - 1, 3u + 1, ... , 4u 5 } 
i =u, 3u - 3u - 3} 

{u 5,u 7, ... ,1,4u 5} 
{u-2,u 4, ... ,4,2} 
{u 1,u,u -3} 

which is St, and {i 7rz( i) I E Sd the union of the sets 

{i -
{i - I ~ 2, ... ,u--1} 

+1, ... ,2u-3,2u '" ,3u 

{i -
{i -
{i -

I ~ =3u - 2, 3u, ... ,4u 6} 

I 
~ ::::3u - 1, 3u + 1, ... , 4u - 7, 4u"- 5} 
z ::::u,3u -" 4,3u - 3} 

which again is St. 

(iv) t == 3 (mod 4) 

There are two subcases: 

(a) t == 1,2 (mod 3) 
Let 

5} 

(i::::l,2, ... ,t-1) 

5, ... ,2u I} 
+ 2, 2u + 4, ... , 4u - 6, 

... ,2u - 6} 
+ 3, 2u + 7, ... , 4u - 5} 
+ 1, 2u + 5, ... , 4u - 7} 

2u-4,2u} 

( .) { 4i 
7r2 z:::: t _ 2i (i:::: t+ 1,t+2, ... ,2t- 1) 
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tlecause t IS t 42 I t tne 01 

and{t 2il i+l, the St. 
Therefore 1r2 is permutation of St. 
We must show that permutation of Now for 

Since 2t is not by 

-3i 

Similarly, for i,j 

To that 

-3i::J + t ( i 

ie. that 

But this 

(b) t == 0 

-3i 

for 

Put t 12u + 3, 

12'u + 
12u - 1 2i 
24u + 6 2i 
24u+ 5 
121.1 + 4 
241.l +. 6 

{ 
- 4i 

i (t 
-3i 

j) 0 

+ 3j + t 
permutation 

. ,t 

-3i 

( i 
( i 
( i 

+ i) (i 
( i 
( i 
( i 
( i 
( i 
( i 
( i 

+ 3 -- i) (i 

Then is the union of the iVLJ.UYVLLltc 

10 

3i + t 

o 

1) 

j 

+ 
,16u + 

1) 
.,16u 3) 

+5, 7, .. ,18u+1) 
+ 6, 16u + 8, ... ,18u + 2) 

18u + 3) 
+ 4) 

18u + 5, 18u + 6, ... , 24u + 5) 



.. ,6u} 
5, ... , 6u + I} 
+ 2,6u + 3, 12u + 2} 

Ii ::::12u + 4, 12u + 6, ... , 16u + 4} 
i ::-c::12u + 5, 12u + 7, ... , 14u + I} 

::::14u + 3, 14u + 5, ... , 16u + 3} 
i=16u+5,16u+7, ... ,18u+ I} 
i::::16u+6,16u 8, ... ,18u+2} 
i +3,18u+4} 
i =18u + 5, 18u + 6, ... , 24u + 5} 

which is Sf, and {i - liE is the 

{ i 
{i -

{ i 

{ i 

{ i 
{ i 
{i -
{ i 
{ i 
{i 
{i -

I

i ::::l} 
i ... ,6u} 

I i 5, ... , 6u + I} 

Ii =6u + 2, 6u + 3, 12u + 2} 

i =12u + 4, 12u + 6, ... , 16u + 4} 
=12u + 5, 12u + 7, ... , 14u + I} 

i =14u + 3, 14u + 5, .. , 16u + 3} 
=16u + 5, 16u + 7, ... , 18u + I} 

i ::::;:16u + 6, 16u + 8, ... , 18u + 2} 
i::::;:18u+3,18u 4} 
i::::;:18u+ 18u+6, ... ,24u+5} 

which is St. 

Theorem 2.5 ThereexistsaGBRD(v,3,2t;Z2t)!orallt 
12). 

of the folJloWIllrl sets 

+ 
+ 12u + 13, ... , 24u + 1, 

... ,6u 5} 
+ 12u + ... , 24u + 3, 

9, ... , 6u - 3} 
+ 
+ +14, ... ,24u+2} 
+6,6u+ 12, ... ,24u} 

11, .. ,12u+5} 
+ 1,12u+17, ... ,18u-1} 

+1,6u+7, .. ,12u+l} 
+ 10, 12u + 16, ... , 18u - 2} 

12, ... , 6u - 6} 
+ 4, 6u} 
+ 10, 18u + 16, ... , 24u - 2} 

'" ,6u + 2} 
+4,4,10, ... ,12u- 2} 
+ 11, 18u + 17, ... , 24u - I} 

+ 9, 67t + 15, ... , 12u - 3} 
+ 18u + 5} 

o 

and all v == 1 or 9 (mod 

Proof: Let 1) the above condition. From [3], GBRD(v,3,2; exists, and 
the existence of a 
2.3 and 2.4. 

3,1) is well known. The result then follows from Lemmas 
o 
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Proof: In the 

replace: 

It easy 

I,emma 2.7 
of St satisfying 

Proof: Let ?rl 
(a)), and let 

[~ 
of 

0 0 1 
1 1 0 

1 1 0 
0 1 
0 0 

0 0 0 

with k ::.: 4. 

0 0 
0 0 1 
1 0 0 
0 1 0 

1 

at 

The proof of ]~emma remains 
we have that ?r2 and ?r} - ?r2 are permutations of 

so clearlY?r3 a permutation of St. Also 

{ 
-2i 
t + 4i 

(i=l, ... ,t 1) 
(i=t+l, ... , -1) 

so ?rl - ?r3 is permutation of St. Finally 

( i 

so ?r2 - ?r3 is a permutation of St. 

12 

0 

0 

0 

6. 

:) 

3,2t; 

permutations ?rl, ?r2, 

of Lemma 

for all t == 1 or 5 
Now 

=t+ + t) 

so 

o 



Tneorem Z.I:S In,ere exzsts a (jlJ1UJtv,4,"L;h2) Jor all t == lor 5 (mod 6) and v == 1 
(mod 12), v a prime power (or v = 85 or 133). 

Proof: From [1] there exists a G B RD( v, 4, 2t; Z2t) for all v satisfying the above condi
tion, and the exi.stence of a BIBD(v,4, 1) is well-known. The result then follows from 
Lemmas 2.3 and 2.7. 0 
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