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Abstract. A symmetric graph ¥ has a group G of autormorphisms which
acts transitively on incident vertex-edge pairs. The question of whether
such a graph can be embedded in & 2-dimensional surface with the action

of @ extending to isometries or homeomorphisms of the whole surface is
investigated here. It is answered in terms of presentations of ¢ and six
different types of embeddings are found.

The context of this paper is the study of symmetry. Every object, concrete or
abstract, real or imaginary, has a certain amount of symmetry which is measured
by a group. Since the days of Cayley (1], a group has been a mathematical object
obeying certain axioms and the question arises: given an abstract group, of what is
it a group of symmetries?

A very general answer, described in more detail in Section 1, is: groups tend
to act as groups of automorphisms of symmetric graphs. Such a graph is formed,
for example, by the vertices and edges of a cube (or any of the regular solids),
and the Euclidean group of motions of the cube acts on it as a group of graph
automorphisms.

Alternatively, this graph can be formed from the surface of a cﬁbe by removing
the interiors of its 6 faces. The opposite procedure will be investigated here: given
a graph on which a group acts symmetrically, how can some of its cycles be filled
in to form a surface on which the action of the members of the group extend to
isometries or homeomorphisms? Even for the graph of a cube the answer is not
obvious: certainly, six of its 4-cycles can be filled in to give the ordinary cube,
but it is also possible to fill in the four 6-cycles obtained by leaving out pairs of

opposite vertices and their incident edges, to get a torus. In other words, the graph
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of vertices and edges of a cube can be embedded m poth a sphere and a torus n
such a way that its group of automorphisms (of order 48), extends to a group of
isometries of the surface. The metric is the usual one on the sphere and is Euclidean
on the torus.

Consider a 2-dimensional surface 5, regarded as a topological manifold, a graph
% embedded in 5 and a group, @, of homeomorphisms of § which acts on ¥ as
a group of automorphisms. Suppose that G acts symmetrically on £, ie. any
incident vertex-edge pair of & can be mapped on to any other by some element of
. Then all vertices of & have the same degree, say p, and the stabilizer in G of any
vertex acts transitively on the p edges incident with it. As they are embedded in
the surface the action of this stabilizer on the edges is as a dihedral group of order
2p, a cyclic group of order p or, when p is even, as a dihedral group of order p. As
the graph is embedded in the surface, its complement in S is a union of open discs,
called faces, which are moved among themselves by the members of G. It is easy
to see that G has just one or two orbits on these faces.

The considerations in the last paragraph lead to six types of embeddings. In
Section 2, these are analysed in terms of a presentation for the group G. For
examnple, if ¢ acts as a dihedral group of order 2p then it has just one orbit on the

faces and it is generated by «, b, ¢ which satisfy
a? =0 =c* = (ab) = (ac)’ = (be)? = 1,

where ¢ is the number of edges around each face. The subgroup generated by a and
b is the stabilizer of a vertex, that generated by a and ¢ is the stabilizer of an edge
and that generated by b and ¢ is the stabilizer of a face.

Section 3 contains the converse of this result: given one of the presentations
referred to, it is shown how to comstruct an appropriate graph and surface. In all
cases but one, the construction provides the surface with a metric, relative to which
the edges of the graph become geodesics and the members of G' become isometries.

Part of the motivation for this paper comes from the use of computers in studying

groups and graphs. In particular, the low index subgroups algorithm of a group
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theory package like John Cannon’s CAYLILY accepts presentations like the ones
described here and lists homomorphic images of them. The conditions listed in the
theorems describe when the corresponding graph gives rise to a tessellation of some
surface.

Some examples of the embeddings described in this paper are given in Section 4.

1. Definitions and notaticns.

All graphs will be without loops or multiple edges. An edge is said to be incident
with each of its end points, which are said to be adjacent. An automorphism of a
graph is a permutation of its vertices which maps adjacent vertices onto adjacent
vertices. Each automorphism induces a permutation of the edges of the graph
on which it acts and a permutation of its incident vertex-edge pairs. A group of
automorphisms which acts transitively on the incident vertex-edge pairs of a graph
is said to act symmetrically on it and the graph is called a symmetric graph.

Let A be a group of automorphisms acting symmetrically on a graph . A
homomorphism ¢ from a group G onto A is called a symmetric action of ¢
and G is said to act symmetrically on £. Usually the homomorphism ¢ will be
suppressed and the members of G will be regarded as automorphisms of 2. At
first reading it does no harm to think of the group G as actually being a group of
automorphisms of the graph.

A surface will always be a 2-dimensional surface without boundary. When a
graph is embedded in a surface each of its vertices becomes a different point, each
of its edges becomes an open arc joining its two endpoints and the complement of
the graph in the surface will be a disjoint union of open discs called faces, each of
which has a finite cycle of the graph as its boundary. Thus no vertex can lie on an
edge, pairs of edges are disjoint and the graph has no vertices of valency less than
two. A flag of the embedding of a graph in a surface is a triple «,f, v consisting
of a vertex «, an edge § and a face v with a being a vertex of f and both o and S
being in the boundary of +.

All notations for groups are standard. The brackets { ) will indicate the group

1

generated by whatever is between them; z¥ stands for y™ zy and HY stands for
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Yy Ty
2. Surfaces with graphs embedded in them.

Consider a cube embedded in the surface of a sphere and let «, 8,y be one of its
flags. Then there are reflections a, &, ¢ of the sphere which leave the cube invariant
and are determined uniquely by the following requirements: a fixes @ and 8 but not
~; b fixes o and «v but not 3; ¢ fixes B and v but not a. The following turn out to

be true:

a? = b = ¢* = (ab)® = (be)* = (ac)® = 1.

In fact, these equations are a presentation of the group G of symmetries of the cube.
This group of order 48 has 2 subgroups of index 2 which also act symmetrically
on the cube, namely (ab,c) and (ab,ac) and these can be described, in terms of

presentations, as the group generated by z and ¢ with the relations

and the group generated by z and y with the relations
=yt = (y)? =1,

where ¢ = ab, y = ac.

Let $ be a 2-dimensional surface without boundary in which a connected graph
¥ is embedded. Let G be a group of homeomorphisms of S which maps £ onto
itself and acts symmetrically on £. The action of G on & will be described in terms

of presentations.
PROPOSITION 2.1.
G has at most two orbits among the flags, «,§,7 of & and any member of G
which fixes one such flag fixes them all.
PROOF:

As G acts symmetrically on ¥ it has just one orbit on incident vertex-edge pairs
of . As each edge of T lies in at most two faces, G has at most two orbits among

the flags o, 8,7 of Zin S.
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flag fixed by g. Then g fixes the vertex a, the edge 8 at o and the face v having
a and f in its boundary. Now, the edges and faces at a are arranged around it in
cyclic order: consequently, g fixes every flag having « as its vertex. A

Let o) be a vertex adjacent to a, suppose that it is joined to a by the edge 5,
and that f; is in the boundary of the face v;. Then «, 1,7 is a flag which must
be fixed by g. Hence the flag a1, 81,11 is also fixed by g.

Thus, by assumption g fixes some flag; if ¢ fixes one flag with a given vertex it
fixes all flags with that vertex and it fixes at least one flag at each adjacent vertex.
As ¥ is connected, it follows that g fixes every flag of 3.

That proves Proposition 2.1.

In that G acts on X, there is a homomorphism ¢ from G to the group of graph
automorphisms of I; the image ¢(G) acts symmetrically on £ and it will be the
task of the rest of this section to describe the possibilities for ¢(G). The case that
#(G) has just one orbit on flags is covered in Theorem 2.3. Otherwise ¢(G) has two
orbits on flags. The case that ¢(G) has two orbits on faces is covered in Theorem
2.4. Otherwise the stabilizer of a vertex has one or two orbits on the faces incident
with it and these cases are covered in Theorems 2.5 and 2.6, respectively.

Let @o,B0,70 be a fixed flag of = in S and let V,E, F, be the stabilizers of
ag, Bo, Y0, respectively, in ¢(G). Because T is connected it is easy to show that
G = (V, E) (see [6]). The analysis of ¢(G) is given in terms of these subgroups.

Although, strictly speaking, ¢(G) is not a group of homeomorphisms of S, it still
makes sense to think of the action of ¢(G) on faces: in this context a face can be
considered as the cycle in ¥ which forms its boundary.

The interpretation of Proposition 2.1 for the automorphism group ¢(G) is:
PROPOSITION 2.2.

(a) The only member of ¢(G) which fixes a flag a, 8,7 of ¥ is the identity.

(b) VAENF =1.

(c) V acts faithfully on the edges incident with ag and on the faces having ap

in their boundary.
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(d) F acts faithfully on the vertices and on the edges in the boundary of vo .

PRrOOF:

(a) follows directly from Proposition 2.1.

(b) is true because V N E N F contains all members of ¢(G) fixing the flag
@, Bo,Y0-

(¢) I a member v of V fixes all the edges incident with ag, it also fixes all
the faces having ap in their boundary. Thus v fixes a flag and must be the
identity. Similarly, V acts faithfully on the faces having ag in their boundary.

(d) is proved in a similar manner to (c).

That completes the proof of Proposition 2.2.

Here is the first characterization theorem.
THEOREM 2.3.

Suppose that G has just one orbit on the flags of £ in S. Then ¢(G) = (a,b,¢)
where

a =t =c" =(ac) =1

and V = (a,8), F = {a,¢), F = {b,¢), VNV = VNE = {a), VNF = (b), ENF = (c).
Proor:

The flag o, Bo, 7o is given. Examination of the embedding of & in S shows that
there are a uniquely defined vertex ai, edge 81 and face 1, different from g, Po,
o, respectively, such that aq, fo, y1 and ao, 1,70 and az,fo,70 are flags. As G
acts transitively on flags, ¢(G) contains members @, b, ¢ which map @, 0,70 onto
these flags in the order given. As the only member of ¢(G) fixing a flag is 1, these
elements, a,b and ¢ are uniquely determined.

As a{ag) = ag,a(fs) = Bo and a(vyo) = 71, it follows that a must interchange the
two faces o and 741 having fo in their boundary. Hence a® fixes the flag o, Bo, Yo
so that a? = 1. Similarly b* = ¢? = (ac)? = L.

The group V contains both a and b. The element a fixes the edge B¢ and in-

terchanges the two faces on either side of fo. As a acts on flags, its action on the
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cycle of edges and faces around the vertex oy must be as a reflection fixing the
edge fy. Similarly b must be a reflection fixing the face 7p. Thus, a and b gen-
erate the full group of automorphisms of this cycle, which is a dihedral group of
order twice the valency of ag. As V acts faithfully on the edges and faces around
ao,V =(a,b),VNE = (a) and VN F = (b).

As E is the stabilizer of the edge fo at @ and ¢(G) acts symmetrically on the
graph ¥, V' N E has index 2 in E. Hence E has order 4. As E contains a and ¢ and
a#¢,E = (a,c). Clearly ENF = {c).

As the graph ¥ is connected, ¢(G) is generated by V and E. Hence #(G) =
{a,b,c). As the subgroup V N V¢ contains all members of & fixing ag and (),
and V' N E contains all members of G fixing ag and the edge By joining ag and
c(a), it follows that VN V* =V N E.

That completes the proof of Theorem 2.3 and completes the description of the
group G when it has just one orbit on the flags of £ in S. Next, the possibility that

G has two orbits on the faces of ¥ is considered.
THEOREM 2.4,

Suppose that G has two orbits on the faces of S determined by X. Then ¢(G) =
(b, ¢, d) where

B=c?=d®=1

and V = (b,d), E = (c),F = (b,c), VNV =VNE=1VNF = (6, ENF = (c).
The graph X has even valency, the stabilizer in #(G) of the other face having f;
in its boundary is F' = (d, ¢) which is not conjugate to F in #(G) and VNEF' = (d),
ENF = ().
ProoF: The flag ag, fo, 70 is given. As in the proof of Theorem 2.3, let ao, Bo, 1,
and ap, f1,70 and a1, By, 70 be flags different from ag, S, Yo-
Consider the action of G on the faces having &g in their boundary. As G acts
transitively on the incident vertex-edge pairs of & but has two orbits on its faces,
G has two orbits on the faces around «g. This implies that & has even valency and

that consecutive faces around ag are in different orbits.
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As ¢(G) acts symmetrically on I, ¢(G) contains an element b with b(ag) =
@0, b(Bo) = B1. As By and Py are consecutive edges around ag,b(y0) = 0. Thus
b € F. Then b fixes the boundary of 7o and, as b(as ) = ao, b acts as a reflection on
this cycle. Thus b? fixes the flag ag, B0, 70 and b = 1.

As 40,71 are consecutive faces at ag, they are in different orbits of . Conse-
quently, any member of ¢(G) which fixes both @ and Sy also fixes v and v and,
hence, is the identity. Thus VN E = 1. As G acts symmetrically on 2,V N E has
index 2 in E so that E = (c) where ¢? = 1.

As both b and ¢ fix 7y, (b,c) € F. As F acts faithfully on the cycle in its
boundary and b fixes aq, ¢ fixes fo, both b and ¢ must act as reflections on the cycle
and F = (b,c). Also, VN F = (b) and ENF = {c).

As ag, fo,m1 is a flag there is an edge B2 at aq such that ag,f2,m1 is another
flag. Hence, ¢(G) contains an element d such that d(ao) = ap and d(Bo) = P2. In
analogy with b, it follows that d* = 1 and d(71) = 1. As for 7o it follows that {c, d)
is the stabilizer of 7;.

The involutions b and d fix consecutive faces at ag and, as VN E =1,V = {(b,d).

As F and (d,c) are the stabilizers in ¢(G) of 7o and 71, which lie in different
orbits, they are not conjugate. As I is connected, ¢(G) = (V, E) = (b, c,d}.

As in Theorem 2.3,V N V¢ =V NE. That VNF' = (d) and ENF" = (c} follows
because of the symmetry between F' and F'.

That proves Theorem 2.4.

In all the remaining cases, G has two orbits on flags but only one orbit on faces.
THEOREM 2.5.

Suppose that G has two orbits on the flags, &, 8,y of = and one orbit on the faces
and that V has one orbit on the faces in which aq lies. Then ¢(G) = (v, c) where

2 =1

and either
(1) V=0),E=(c),F={lc,VNVe=VNE=VNF=ENF =1, o0r
(2) V:(v),E:(c),F:(c,c”),VﬂV"=VﬂExVﬂF"—“1,EﬂF=(c).
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As (G has two orbits on the flags, o, 8,7 of £ and G acts symmetrically on X,
V cannot act traositively on the flags of £ in S which contain ag. However, V
does act transitively on the edges and on the faces at ay. The only possibility is
that V' = (v) is a cyclic group acting transitively on these edges and vertices. Then
VNE=VnNF =1 Without loss of generality, suppose that v(+yg) = 71 where 11
is the other face having fy as an edge.

AsVNE=1and VNE hasindex 2 in E, E = (c) where ¢? = 1.

There are now two cases, depending on whether ¢ fixes vq.

1. Suppose ¢(y0) # 7o Then ¢(79) = 71 and v ¢(y0) = 70. Now, if oy is the
other vertex of the edge f1, then v™!¢(a1) = ap. Thus v~ 1¢ fixes the face vo
and maps one of its vertices a; onto an adjacent one. As v~!¢ does not fix
the edge B, joining these two vertices, {v™!¢) acts cyclically and transitively
on the vertices and edges on the boundary of vo. As V' (1 F' = 1 this implies
that F = (v™!¢). Cleartly ENF = 1.

o

Suppose ¢(7p) = 7o so that ¢ € F. Then, alsc ¢(71) = ;1 and, as v(y) =
71,¢"(70) = 0 and ¢ € F. Now ¢” fixes the edge v~!(f) which is adjacent
to the edge Fy fixed by ¢ in the boundary of vo. Hence {c,c”) is a dihedral
group acting transitively on the vertices in the boundary of . As VNF =
1,{c,c”) = F. Clearly EN F = (c).

As the graph T is connected, ¢(G) is generated by V' and E. Hence ¢(G) = (v, c).
As in Theorem 2.3,V NV¢=VNE.

Finally, there remains just one case.
THEOREM 2.6.

Suppose that G has two orbits on the flags of ¥ in S and one orbit on the faces
and that V has two orbits on the faces which have ag in their boundary. Then

¢(G) = (b,c,d) where

V=d=d=1
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and either
() V={(bd),E={(c)F=(bd), VNV =VNE=ENF=1VNF=(b),
or
(2) V={(bd),E=(c),F={(bc),VNV =VNE=1, VNF = (b),ENF = (c},
each face has an even number of vertices in its boundary and the subgroups

F and {d,c) are conjugate in ¢(G) by an element k with ck = ke.

Proor:

Suppose that +; is the other face having f in its boundary.

As V has one orbit on the edges at @y and two on the faces that have ag in their
boundary, V' is generated by two involutions, b and d which act as reflections in o
and 7; respectively. Thus V = (b,d) where VN F = (b) and VN E = 1.

As VN E =1and VN E has index 2 in E, E = {c) where ¢? = 1.

There are now two cases depending on whether ¢ fixes vg.

(1) Suppose that o{yp) # 0 ie. ¢ ¢ Fand ENF =1, As ¢(fo) = fo and fo is
the edge between yo and 1, ¢(v0) = 71. Hence d*(w) = 70 and d° € F. Thus
F contains b and d° acting on the boundary of 7 as reflections in adjacent
vertices. As ENF = 1 it follows that F' = (b,d°}. This is case (1) of the
theorem.

(2) Suppose that ¢(yo) = vo. Then, also, ¢(71) = 71. As F contains b and ¢
acting on the boundary of 79 as reflections in an incident vertex and edge
respectively, it follows that F = (b, ¢). Similarly the stabilizer of v is F* =
(d,c). By assumption, ¢(G) contains a member ¢ with g(v0) = y1. Then ¢?
fixes o so that ¢ € F. But ¢f fixes the edge g7 (Bo) of 7o so that c and ¢¥ are
conjugate in F. Thus ¢ = ¢* where k = ¢f, f € F. Then k(y0) = g(70) =
and, as F, F* are the stabilizers in ¢(G) of 70,71, respectively, they are
conjugate under k. This is case (2) of the Theorem.

In either case, because v is a connected graph, ¢(G) = (V, E) = {b,¢,d).
As in Theorem 2.3,V NV =V N E in both cases.

3. Orbit spaces of 2-dimensional tessellations.
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1Loection 2, Iour types ol embeddings ol symmetric graphs in surfaces were
identified and described in terms of six types of groups and their subgroups. The
presentations given for these groups will now be investigated and surfaces in which
symmetric graphs are embedded will be constructed from each of them.

This geometrical study begins with the three simply connected 2-dimensional
geometries, the sphere, the Euclidean plane and the hyperbolic plane. The existence
of the regular solids show that the surface of the sphere can be tessellated by
equilateral triangles with 3, 4 or 5 at a vertex, regular quadrilaterals (i.e squares)
with 3 at a vertex and regular pentagons with 3 at a vertex. The Euclidean plane
can be tessellated by equilateral triangles with six at a vertex, squares with four at
a vertex and hexagons with three at a vertex. In other words, these two geometries
can be tessellated by regular p-gons with ¢ at a vertex for some restricted values of
p and ¢. It turns out that, for every other value of p and ¢ with p > 3,4 > 3, such
a tessellation can be achieved in the hyperbolic plane.

Suppose that p > 3, ¢ > 3 and that 7T is a tessellation like this in the appropriate
geometry. Let a, B, 7 be a flag of the tessellation. Then there are uniquely defined
symmetries a, b, ¢ of T' which are reflections in lines of the geometry, and have the
properties:

a fixes & and 2 but not v,

b fixes « and 74 but not £,

¢ fixes # and v but not «.
These three elements satisfy the relations

a’ =b% = ¢? = (ac)? = (ab)? = (bc)! = 1.

In fact, ab is a rotation around «, ac is a rotation around the midpoint of 8 and be
is a rotation around the centre of «. It turns out that these relations, which define
the Coxeter group [p, ¢, describe the full group of symmetries of this tessellation
exactly: they are a presentation of it. For further information on these things see
[3, Chapter §].

In the group [p, ], with this interpretation, the stabilizers of , 3,7 are (a,b),
(a, ¢}, (b, c), respectively.
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independent ol the value oI p and g, the reiations tnat all tnese groups nave 11

COMINON are

a? = b? = ¢? r»‘(a(:)2 = 1.

As the group generated by a, b, ¢ subject to these defining relations is a sort of
universal group for them all, denote it by U.

The derived group, U', of U has index 8 and is generated by (ab)?, (bc)?, abcbea,
all of which are commutators (because a, b, ¢ are all involutions). The quotient
group U/U' is elementary abelian, which implies that U has seven subgroups of

index 2, namely:

ab, ¢},
U, = {ab, ac),
b,b% ¢},

Us = (a, b, be),

Us = {a, c,ab,c"),

=
(
=
Us = (b,b", ac),
(
{
{

U7 = {a, bC)

Notice that each of these, interpreted as a subgroup of [p, ¢, has index 2 in [p, q],
though some pairs of them may be identical in some cases. (The derived subgroup
of [p,q] has index 2 when p and ¢ are both odd, index 4 when one of p and ¢
is odd and index 8 if both are even). Of these subgroups, Us contains (a,b), Us
contains {a,c) and U does not contain ¢ or ac. Hence, the subgroup (a, b, b®) does
not act transitively on the vertices of the corresponding tessellation; (a,c,a’.c?)
does not act transitively on its edges; {a,bc) does not contain an element which
interchanges the vertices of the edge . Consequently, in these circumstances, none
of these subgroups can act symmetrically on the graph of vertices and edges of
the tessellation. On the other hand, U;(a) = G for each 7 = 1, ...4 and U; acts

symmetrically on the graph of the tessellation.

i~
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Next, some presentations for the groups Uy to Uy will be given.

o

Ui = {z;y ; y> =1),where z =ab, y=c¢;
Uy = (z,y ; y*=1),where z = ab, y = ac;
Us = (z,y,2 ; 2> =y* =22=1), where 2=b, y=b®, z=c;

Us={z,y,z ; e =y =22=1), where z=b, y =b® z=ac.
’y’

Groups with the presentations of U; to Uy and U will now be investigated using
the interpretation suggested by the above. They will be treated separately, in

subsections.

3.1 The group U.

In this subsection, G is a group generated by a, b, ¢ satisfying, among other rela-

tions,
(D) a®> = b2 = c? = (ac)® = 1.
Let V = {a,b), E = (a,c), F = (b, c) and suppose that

(I1) ab has order p > 3 and bc has order ¢ > 3,
(IIH) VnVe=VNE={(a),VNF={),ENF = {c).

Because of these relations, there is a homomorphism ¢ : [p, g] — G which satisfies

¢(a) =a, ¢(b)=1b, ¢(c)=c.

The group [p, g] is the full group of symmetries of a tessellation 7' of one of the
three simply connected 2-dimensional geometries into regular p-gons with ¢ faces
around each vertex. It is clear that [p, ] acts transitively on the vertices, edges and
faces of this tessellation. Hence, those can be identified with the left cosets in [p, q]
of the subgroups V = (a,b), E = (a,c), F = (b,c), respectively. The following is

easily verified.
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ProrosiTION 3.1.

(a) The vertex xV and the edge yE are incident if and only if xV C yEV or,
equivalently, yE C xVE.

(b) The vertex xV lies on the boundary of the face zF if and only if xV C zFV
or, equivalently, zF C xVF.

(¢) The edge yE lies in the boundary of the face zF if and only if yE C 2FE
or, equivalently, zF C yEF.

(d) The action of [p, q] as a group of symmetries of the tessellation T is given by
g:xV — gxV, yE — gyE, zF — gzF,

for each g C [p, q].

The proof is omitted.

Denote this geometry by X and the tessellation by T. Let IN be the kernel of ¢
and let X* be the orbit space of N, i.e. the points of X* are the orbits of points
of X under the action of N. As [p, q] is a group of symmetrics of X it moves the
vertices, edges and faces of 7" around among themselves and, hence, N induces a
set of orbits on the vertices, on the edges and on the faces of 7. These orbits will
be called the vertices, edges and faces of X* and it will be shown that they form a
tessellation 7™ of X* of the same type as 7.

This is best done in terms of the characterization of T given in Proposition 3.1.
In terms of it, the vertices of T* can be identified with the left cosets of VIN in
[p.q]/IN, the edges can be identified with the left cosets of EN and the faces with
the left cosets of FIN. The incidences become: xVN is incident with yEIN if and
only if xVN € yEVN or yEN C xVEN, with similar expressions for the other
incidences. Using the homomorphism theorems, this transfers to an identification
of the vertices of T* with the left cosets of V in G, the edges of T* with the left
cosets of E in G.and the faces of T with the left cosets of F in G. Correspending

to Proposition 3.1 is:

PROPOSITION 3.2.
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(&) Lne vertex zV and the edge yL are incident if and only if 2V C yEV or,
equivalently, yE C zV E.

(b) The vertex zV lies on the boundary of the face 2 F if and only if zV C zFV
or, equivalently, zF' C zV F.

(¢c) The edge yE lies in the boundary of the face zF if and only if yE C zFE
or, equivalently, zF C yEF.

(d) X* is a manifold having the same geometric structure, spherical, Euclidean
or hyperbolic, as X and G acts on it as a group of isometries which fixes the

tessellation T under the action
g:2V — gV, yE — gyE, zF — g2 F

As such G acts symmetrically on the graph formed by the vertices and edges
of T™.
PROOF:
(a), (b) and (c) follow directly from the same property in [p, ¢]/IN.
(d) It will first be shown that the vertices and edges of of T* form a graph without
loops or multiple edges.
A loop corresponds to a coset yE having identical endpoints yV and ycV, which
cannot happen as ¢ ¢ V. A multiple edge corresponds to two edges 1 E and y E

having the same endpoints. The conditions for this are
Y1V =1V and yicV = ycV,

or 1V =1V and yicV =y V.

In the first case, y{lyl € VNV® C E, by hypothesis, and y; E = y; E. In the
second case,.yflyl €cVNVe=V NV CE and, again, y; E = y, F.

The assumptions made about the group G imply that the group N acts freely
on the tessellation 7', i.e. no member of T, except the identity, fixes a point of
the manifold X. Thus, following [8, Introduction], the manifold X* inherits the

geometric structure of X.
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Finally, to relate this back to Section 2, particularly Proposition 2.2, the following

is proved.

PRroOPOSITION 3.3.

(a) In the tessellation T™* the vertex, edge and face corresponding to the subgroup
V, E, F form a flag and their stabilizers in G are V, E, F respectively.
(b) G acts sharply transitively on the flags of 7.

PROOF.

{(a) is clear.

(b) As the vertices of T correspond to the left cosets of V in G, G acts transi-
tively on the vertices of T*. The edges incident with the vertex correspond-
ing to V correspond to the left cosets of E in VE; thus V acts transitively
on these vertices. The stabilizer of the incident vertex-edge pair V, E is
VNE = {a). As ¢® = 1 and the two faces incident with E are F and oF, it

follows that & acts sharply transitively on the flags of X*.

3.2 The group U;.
Section 3.1 dealt with the surfaces associated with the group U. As the same
methods apply to the group Uy, their consequences will be described here without

justification.

In this subsection, G is a group generated by z and y satisfying, among other

relations,
(D) y* =1
Rewrite z as ab and y as c¢. Let V = (ab), E = (c), F = (¢, ) and suppose that
(I1) ab has finite order p > 3 and cc®® has finite order s > 2,
(I vnve=vnE=VNF=1,ENF=/{c).
Put q=2s.
Let K be the subgroup of [p, ¢] generated by ab and ¢ and let ¢ : K — G be the
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nomomorphism determined Dy tne equations,
¢(ab) = ab, ¢(c)=c.

Let IN be the kernel of ¢.

In the tessellation T of the appropriate manifold M, let M* be the orbit space of
N. Then M* has the same geometric structure as M and G acts on it as a group
of symmetries acting symmetrically on the tessellation induced by T. The vertices,
edges and faces of the tessellation can be identified with the left cosets of V', E and
F, respectively and the group G has two orbits on the flags of T and one orbit on
its faces. The stabilizer of a vertex has two orbits on the faces incident with that
vertex.

This corresponds to the second case of Theorem 2.5.

3.3 The group U;.

In this subsection, G is a group generated by z and y satisfying, among other
relations, (I) y? = 1.

Rewrite z as ab and y as ac. Let V = (ab),E = (ac),F = {bc), where bc =
(ab)~lac, and suppose that

(IT) V has finite order p > 3 and F has finite order ¢ > 3.

I VnVe=VNE=VNF=EnF=1.

Let K be the subgroup of [p, g] generated by ab and ac and let ¢ : K — G be the

homomorphism determined by the equations
¢(ab) = ab, ¢(ac) = ac.

Let N be the kernel of ¢.

The same general conclusions hold in this case as in the previous subsection. G
has two orbits on the flags of the manifold M* and one on the faces. The stabilizer

of a vertex has one orbit on the faces incident with that vertex.

This corresponds to the first case of Theorem 2.5.
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3.3 The group Us.

In this subsection, G is a group generated by z,y,z satisfying, among other
relations,

DH2?=y?=22=1.

Rewrite z as b, y as b* and z as ¢. Let V = (0,8%), E = (c),F = (b,¢), and
suppose that

(II) bb* has finite order r > 2 and be has finite order ¢ > 3,

A VvNnVe=VNE=1VNF=(),ENF ={c.

Put p = 2r.

Let K be the subgroup of [p, q] generated by b,b® ¢ and let ¢ : K — G be the

homomorphism determined by the equations
#(b) = b, ¢(b*)=1% ¢(c)=rc.

The same general conclusions hold as in the previous subsections. G has two orbits
on the flags of the tessellation and one orbit on the faces. The stabilizer of each
vertex has two orbits on the faces incident with it.

This corresponds to the first case of Theorem 2.6.

3.4 The group Us.

In this subsection, G is a group generated by z,y,z satisfying, among other
relations, (I} 2? =y? =2*=1.

Rewrite = as b, y as b® and z as ac. Let V = (b,b%), E = {ac), F' = (b,b°), where
b° == (b*)*°, and suppose that

(I1) bb* has order r > 2 and bb° has order s 2 2,

() VNVe=VNE=ENF=1VNF={).

Put p = 2r, ¢ = 2s.

Let K be the subgroup of [p, q] generated by b, b%, ac and let ¢ : K — G be the

homomorphism determined by the equations
$(b) =b, ¢(b%) =4", 4(ac) = ac.
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1he same general conclusions hold as in the previous subsections. G has two orbits
on the flags of the tessellation, one orbit on the faces and the stabilizer of each
vertex has two orbits on the faces incident with it. ‘

This corresponds to the second case of Theorem 2.6.

3.5 The remaining case.

Among the possibilities in Section 2, just one remains, that of Theorem 2.4 where
the group had two orbits on the faces. While the other results were proved in terms
of geometric manifolds and their isometries, the converse result can only be proved
in terms of topological manifolds and homecmorphisms.

In this subsection, G is a group generated by b, ¢, d satisfying, among other rela-
tions,

D= =d=1.
Let V = (b,d), E = (¢}, F = (b,c}), F' = (d,¢) and suppose that
(II) bd has finite order p > 3, bc has finite order ¢ > 3 and cd has finite order
q' 23,

D VAVE=VNE=LVNF=(H),VNF =(d),ENF =EnF = (c).
A graph % is defined as follows: its vertices are the left cosets of V in G, its edges
are the left cosets of E in G and the vertices of the edge yE are the two left cosets,
yV and ycV, of V in yEV. Thus, the vertex 2V and the edge yE are incident if
and only if 2V C yEV or, equivalently, yE C 2V E. The group G acts faithfully as

a group of automorphisms of & by the action
g2V — g2V, yE - gyE

for each g € G.
The aim now is to embed I in a surface S. This is done by identifying the cycles
of & which will be the boundaries of the faces of S.

LEMMA 3.4.

For each coset 2 F, the edges in zF and the vertices in zF'V form a cycle. Each

edge of the graph lies in exactly one of these cycles.
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PROOF:

Notice, first, that £ C F' so that zF = zFE and zF is a union of edges of .

As F = {b,c) and E = (c), the cosets of E in F can be written as (bc)'E,i =
1,...,q. As VNF = (b), the cosets of V in F'V can be written as (be)'V,i = 1,...,q.
The endpoints of the edge (be)'E are (be)'V and (be)'eV = (be)tbecV = (be) 'V
as ¢ = 1 and b € V. Hence, the edges in F and the vertices in FV form a cycle, a
typical section of which is

o (be) TVE, (be) TV, (be) EL (b)Y
If z € G, the automorphism of ¥ induced by z shows that the same is true of the
edges in zF" and the vertices in zFV. Also, each edge yF lies in just one of these
cycles, the one defined by the coset yF.

Now, consider each vertex 'V as a point and each edge as a Euclidean line segment
of length 1 joining its endpoints. A eycle formed from a coset is then a cycle of
Euclidean line segmenets of length 1 and can be regarded as being the boundary
of & regular Buclidean g-gon. Consider a member g of . Its action on the graph
can be regarded as & mapping of the vertices among themselves which extends to a
Euclidean isometry of the edges and to a Euclidean isometry of all the faces.

This extends T to a union of regular Euclidean g-gons which meet only at their
vertices. The g-gon corresponding to the coset zF will be called the face z F.

Now, as the properties of 7 are symmetric with respect to F and F', it is also
possible to extend ¥ to a union of regular Euclidean ¢'-gons which meet only at
their vertices.

Taking both these extensions together gives a covering of T by regular g-gons and
¢'-gons on which G acts as a group of isometrics and each edge lies in the boundary
of one polygon from each family. Thus, each point in the interior of an edge, has a
neighbourhood which is isometric to the interior of a Euclidean circle. As the same
is obviously true for the points in the interiors of the faces, it remains to investigate
the vertices.

Consider the vertex V. As V = (b,d) and V N E = 1 the edges incident with V

can be written as 2F,z € V and there are 2p of them. Consider an edge 2 £ with
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z € V. ine eage roL is also mcident with the vertex V and zE, zbE are thus
consecutive edges of the face zF. Similarly, the edges 2F and zdE are consecutive
edges of the face 2 F' The members of the dihedral group V can be written, in order,

as

1,b, bd, bdb, bdbd, . ..

and, consequently, the faces

F,bF' bdF,bdbF",. ..

form a cycle of faces around the vertex V. Consequently the vertex V, and every
other vertex, has a neighbourhood homeomorphic to the interior of a Euclidean
circle. As the sum of the angles around this vertex may very well not be 360°,

it can only be claimed now that the construction is a 2-dimensional topological

manifold.

The action of G on this manifold is described by

g:2V — gzV, yE — gyE, zF — gzF, zF' — gzF'.
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4. >ome exampies.
ExXAMPLE 1:

The Coxeter groups [p, ¢}, with presentation
a? =0 = c* = (ab) = (be)? = (ac)* =1

are finite when [p, q] = [3,3],[3,4],[4, 3], [3, 5] and [5, 3] coresponding to the tessel-
lation of the sphere by a tetrahedron, cube, octahedron, dodecahedron and icosa-
hedron. The classical dualities among these objects come by interchanging p and ¢.

Also, the symmetry between ¢ and ac in the equations
=t =c=(c) =1

leads to another duality. Writing e for ac gives the equations,
aZ:bzzezx(ae)Qr:l

In the five groups [p, ¢] mentioned above, the orders of be are 4,4,4,10,10 respec-
tively. Thus, these groups are homomorphic images of the Coxeter groups [3,4],
[3,6], [4,6], [3,10], [5, 10] respectively. In this context, Coxeter and Moser, [3], call
the corresponding 4-cycle, 6-cycle or 10-cycle a Petrie polygon: it has the property
that all consecutive pairs of edges but no consecutive triples lie together in the
boundary of one of the original faces. The corresponding embeddings are of the
graph of a tetrahedron into a projective plane, of the graph of a cube intc a torus,
of the graph of an octahedron into a non-orientable surface of Euler characteristic
-2, of the graph of a dodecahedron into an orientable surface of Euler character-
istic -4 and of the graph of an icosahedron into a non-orientable surface of Euler
characteristic -12.

EXAMPLE 2:

The permutations a = (12)(45), b = (13)(45), c= (14)(25) generate the group

As and they satisfy the relations for the Coxeter group [3, 5]. The resulting graph is
the Petersen graph and it is embedded in the projective plane. This shows As to be
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a homomorphic image of [3, 5] (which is, in fact, isomorphic to A5 x Cy), the Petersen
graph to be an orbit space or quotient graph of the graph of the dodecahedron and
the sphere to be a 2-fold covering of the projective plane.

If e = ac then be = (14253) and the construction above leads to another pro-
jective plane. The boundaries of the faces of the resulting tessellations in each of
these projective planes are six 5-cycles and the two are interchanged by the auto-
morphisms of the Petersen graph which lie in S5 ~ As. The 5-cycles from one plane

are homotopic to a projective line in the other.
EXAMPLE 3:

The permutations o = (35)(46),b = (23)(57),¢ = (12)(34)(56)(78) generate a
Sylow subgroup G of A4y having order 64. As ab and be both have order 4, the
resulting graph has order 8 and valency 4 and the faces are quadrilaterals: it is a
complete bipartite graph. The surface arising by interpreting G as satisfying the
relations a? = b? = ¢ = (ac)? = 1 is a torus.

If € = ac then be = (1362)(4785) which is not a conjugate of bc = (1342)(5678) in
G. The result is two embeddings of the complete bipartite graph with 8 vertices into
the torus. In each embedding the faces are squares and the boundaries of the faces
of the other one form loops not homotopic to the identity. However, be and bc are
conjugate under (23)(46)(57) which lies in an extension of G to a Sylow 2-subgroup
of G in Ss.

This group G is notable because its generators satisfy a? = b? = ¢? = (ac)? =1
and each of the subgroup U; to Uz, defined as in Section 3, has index 2 in G. This
need not happen, as is shown in the case of the group [3,5] of the dodecahedron,
which has just one subgroup of index 2.

I'am indebted to the University of Auckland, the New Zealand Universities Grants
Committee and the New Zealand Lotteries Board for research grants that made this

paper possible.
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