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of automorphisms which 
The of whether 

2-dimensional surface with the action 
nom('~orno:rpllls:ms of the whole surface is 

It is answered in pn:sentcLtl()nS of G and six 
of embeddings are found. 

The context of this paper is the study of <::~n'TIrnpl~rv Every object, concrete or 

abstract, real or imaginary, has a certain amount of symmetry which is measured 

by a group. Since the days of Cayley [1), a group has been a mathematical object 

obeying certain a'doms and the question arises: given an abstract group, of what is 

it a group of ""71rnrnpj'.rH'''' 

A very answer, described in more detail in Section 1, is: groups tend 

to act as groups of automorphisms of symmetric Such a graph is formed, 

for example, the vertices and edges of a cube (or any of the regular solids), 

and the Euclidean group of motions of the cube acts on it as a group of graph 

au tomorphisms. 

Alternatively, this graph can be formed from the surface of a cube by removing 

the interiors of its 6 faces. The opposite procedure will be investigated here: given 

a graph on which a group acts symmetrically, how can some of its cycles be filled 

in to form a surface on which the action of the members of the group extend to 

isometries or homeomorphisms? Even for the graph of a cube the answer is not 

obvious: certainly, six of its 4-cycles can be filled in to give the ordinary cube, 

but it is also possible to fill in the four 6-cycles obtained by leaving out pairs of 

opposite vertices and their incident edges, to get a torus. In other words, the graph 
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and that ITP,'1Pl'1,rC'rt 

'CHHJC,U'-.L'CU in both In 

of hOmeOIT10rp11:lSIT1S 

then it 

a 

of 

Euclidean 

elelmelJ.t of 

of order p. 

memlJ,ers of 

of em,be1CiC1],ng,S. In 

the 

one orbit on 

1, 

a 

one of the 

referred to, it is how to construct and surface. In 

cases but one. the construction the surface with a relative to which 

the of the become and members of G become isometries. 

Part of the motivation for this paper comes from the use of computers in studying 

groups and graphs. In particular, the low index subgroups algorithm of a group 
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pU,'vLUC."",", like John Cannon's 

described here and lists homomorphic 

theorems describe when the co]rrespe:Jn.C1n:lg 

surface. 

the 

of them. The conditions listed in the 

rise to a tessellation of some 

'-'A"~J.J.l.p.n"'" of the errlbe:C1C1JIH!S described in this paper are in Section 

1. Definitions and notations. 

All will be without 

with end 

An is said to be incident 

autornOJrptnsln of 

permutation of its vertices which maps aUJlaoem; vertices onto aUllaClem; 

vertices. Each autOIno:rpl11S1m induces a perrrmtatl.on 

on which it acts and a permutation of its incident velrtex-E~d!l'e 

t"'<1,,,,c,h',,,'>lu on the incident UP1~rp·V"_ .. ,,., 

IS on it and the 

Let A be a group of au·tor:001~D 

¢ from a group called a cu·' ...... '.~~rd, 

of the graph 

A group of 

of 

A 

action of G 

and G said to 

onto A 

on 'E. 

SU1)pr'eSE;ed and the members of G will be rpo"<4rr1ori 

the homomorphism ¢ will be 

as of At 

first it does no harm to think of the group G as gToup of 

automorphisms of the graph. 

A surface will always be a 2-dimensional surface without When a 

graph is embedded in a surface each of its vertices becomes a different each 

of its edges becomes an open arc its two endpoints and the complement of 

the graph in the surface will be a disjoint union of open discs called each of 

which has a finite cycle of the graph as its boundary. Thus no vertex can on an 

edge, pairs of edges are disjoint and the graph has no vertices of valency than 

two. A flag of the embedding of a graph in a surface is a triple ex, fJ, / consisting 

of a vertex ex, an edge fJ and a face / with ex being a vertex of fJ and both ex and fJ 

being in the boundary of /. 

All notations for groups are standard. The brackets ( ) will indicate the group 

generated by whatever is between them; x Y stands for y-l xy and HY stands for 
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true: 

on the 

and x 

x y Cle. 

Let 

Hl 

1 

b01UW:1ax:V In a C01:1n~c:'!ctea 

not 

to 

of 

L: is ,;.u.LUCUU"AL nOmeOTIIOr'pnlsnns of which maps 

itself 

of 

The action of G on will described 

PROPOSITION 

G has most two orbits among the 

which one fixes them all. 

PROOF: 

G symmetrically on L: it has 

of L:. As each edge of :E lies in at most two 

the flags 0., (3, I of L: in S. 
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uUpPVbt: L!H1L !J Ib memoer or l:r willcn nxes a nag ot In;:;. Let a, (J, / be a 

flag fixed by g. Then 9 fixes the vertex a, the /3 at a and the face / having 

a and /3 in its UU1U1l4UQJ"Y 

cyclic order: 

Now, the edges and faces at a are ar]rari~eC1 around it in 

9 fixes every flag having a as its vertex. 

Let al be a vertex adjacent to a, suppose that it is joined to a by the edge /31 

and that /31 is in the boundary of the face /1- Then a, /311 /1 a flag which must 

be fixed g. Hence the flag aI, /31 ,/1 is also fixed by g. 

Thus, by 9 fixes some flag; if 9 fixes one with a given vertex it 

fixes all with that vertex and it fixes at least one at each adjacent vertex. 

As is it follows that 9 fixes every flag of Lj. 

That proves Proposition 2.l. 

In that G acts on :E, there is a homomorphism ¢> from G to the group of graph 

aU"toDflor'phlSIT1S of the image ¢>( G) acts symmetrically on L: and it will be the 

task of the rest of this section to describe the possibilities for The case that 

¢( G) has just one orbit on flags is covered in Theorem 2.3. Otherwise ¢>( G) has two 

orbits on The case that ¢>( G) has two orbits on faces is covered in Theorem 

2.4. Otherwise the stabilizer of a vertex has one or two orbits on the faces incident 

with it and these cases are covered in Theorems 2.5 and 2.6, respectively. 

Let ao, /30, /0 be a fixed flag of :E in S and let V, F, be the stabilizers of 

ao, /30, /0, in ¢>( G). Because:E is connected it is easy to show that 

G (V, E) (see [6]). The analysis of ¢>(G) is given in terms of these subgroups. 

Although, strictly speaking, ¢>( G) is not a group of homeomorphisms of S, it still 

makes sense to think of the action of ¢>( G) on faces: in this context a face can be 

considered as the cycle in :E which forms its boundary. 

The interpretation of Proposition 2.1 for the automorphism group ¢>( G) is: 

PROPOSITION 2.2. 

(a) The only member of ¢>( G) which fixes a flag a, /3, / of ~ is the identity. 

(b) V n E n F = 1. 

(c) V acts faithfully on the edges incident with ao and on the faces having ao 

in their boundary. 
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(d) the "'<TPT'T.H',p<= and the bOlmdarv 

PROOF: 

"'~,",,",r"""'~~ 2~1$ 

(b) n F contains all members of 

If member v of V an the incident with 0'0, it all 

the 

(d) 

THEOREM 

where 

and V 

PROOF: 

The 

there 

/0, 

acts 

these 

fixes and must be the 

their bo'unc:1ar 

m<lnIler to 

of t'n)PC)Sltlon 

ch,lra,ct{~n2:at:Lon theorem, 

orbit the of in Then b, c) 

1 

b), E c) F VnV c 

Examination the ernbe1dd],ng of 

0'1, /31 and 

such that ao , /1 and ,/0 G 

on contains members a, b, c which map ao 1/30, /0 onto 

the order the only member ¢>( G) aI, these 

"",n",cd" determined. 

As a( 0'0) 0'0, a(/3o) = and a( /0) = /1, follows that a must ;,.,j-Dr-"h""., the 

two faces /0 and /1 /30 in their boundary. Hence a2 fixes the 0'0, /30, /0 

so that a2 b2 = c2 = (ac)2 1. 

The group V contains both a and b. The element a fixes the edge /30 and in­

terchanges the two faces on either side of /30. As a acts on flags, its action on the 
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cycle of and faces around the vertex ao must be as a reflection fixing the 

Similarly b must reflection the face ,0. Thus, a and b gen-

erate the full group of which dihedral group of 

of and faces around 

a 0, V (a , b), V n = (a) and V n F ( b) 

As stabilizer of the acts SYlnIIletnc:allj on the 

index 2 E. Hence order As E contains a and c and 

En F (c). 

As the by V and E. Hence </>( G) = 
(a,b,c). As the V n VC contains all members of G ao and c(ao), 

and V n E contains all members of G ao and the /30 joining ao and 

c( ao), it follows that V n V C V n E. 

That the of Theorem 2.3 and cOInpletc~s the description of the 

group G when it has just one orbit on the of L:: in S. the possibility that 

G has two orbits on the of is considered. 

THEOREM 2.4. 

Suppose that G has two orbits on the faces of S determined by L::. Then </>( G) = 

(b, d) where 

andV=(b,d),E (c),F (b, vnVc=VnE=l,VnF (b),EnF=(c). 

The L:: has even the stabilizer in </>( G) of the other face having /30 

in its boundary is F' = (d,c) which is not conjugate to F in </>(G) and VnF' = (d), 

En F' (c). 

PROOF: The flag ao,/301'o is given. As in the proof of Theorem 2.3, let ao,/3o"l, 

and ao, /31 ,,0 and al , /30, ,0 be flags different from ao, /30, ,0. 

Consider the action of G on the faces having ao in their boundary. As G acts 

transitively on the incident vertex-edge pairs of L:: but has two orbits on its faces, 

G has two orbits on the faces around ao. This implies that has even valency and 

that consecutive faces around ao are in different orbits. 
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As on contains b 

ao, As f30 and f31 consecutive 

b E F. Then b fixes the boun,ctm:v of /0 

this Thus b2 fixes the 

around ao, 

ao, b acts 

1. 

re1iectIc~n on 

As ~(o, /1 in different orbits of G. Conse-

which both ao and f30 fixes Ato and /1 

Thus V n E 1. As on VnE 

index where L 

both band c fix /0, (b, c) ~ F. F on the In 

b fixes ao, e fixes f30, both band c reflections on the 

and F VnF 

As ao, there is an at aD such that ao, /1 

contains an element d such 

b, it follows that d2 = 1 

is the stabilizer of /1. 

involutions band d fix consecutive 

As and e) the stabilizers in 

at aD 

of /0 

ao 

/0 it 

1, 

, which lie in r"+1f,c,.·.",Y'~ 

are not conjugate. As L; connected, = (b, e, d) 

As in Theorem V n vc = V n E. That V n FI (d) and En 1'" = follows 

because of the "u,..-n,..-"...,oTT'U petween 1" a.nd F'. 

That proves Theorem 2.4. 

In all the cases, G has two orbits on but one orbit on faces. 

THEOREM 2.5. 

Suppose that G has bvo orbits on the a, /3, / of and one orbit on the faces 

and that V has one orbit on the faces in which ao lies. Then </>( G) = (v, e) where 

and either 

(1) V = (v), E = (e), F = (v-Ie), V n vc = V n E V n F = En F = 1, or 

(2) V (v), E = (e), F = (e, C
V

), V n vc = V n E = V n F = 1, En F = (e). 

38 



r.KVV1' ; 

As G has two orbits on the 

V cannot act TV'<:>ne,hu.ol" on the 

(3, / of E and G acts symmetrically on E, 

of in S which contain ao. However, V 

does act transitively on the edges and on the faces at ao. The only possibility is 

that V (v) is a cyclic group acting on these and vertices. Then 

V n E V n F 1. Without loss of suppose that v( /0) = /1 where /1 

is the other face an 

As V n E = 1 and V n E has index 2 in E = (c) where c2 1. 

There are now two cases, depending on whether c fixes /0-

L if a1 the 

other vertex of the edge , then = ao. Thus fixes the face ~(o 

does not fix and maps one of its vertices a1 onto an adjacent one. As 

the these two ·upr·f:H',"'''l 

on the VPY'·t.l('I"';: and 

and transitively 

ouuw::ml'V of /0. As V F 1 this implies 

that F = En 1. 

1'0 that c E Then, also c( 1'1) = /1 and, as v( 1'0) = 

1'1,CV(1'0) 1'0 and E F. Now fixes the edge v-1({30) which is adjacent 

to the 

group 

1,(c,cV
) 

the graph 

in Theorem 

of 1'0. Hence (c,CV
) is a dihedral 

t ... !: • .,.,c,tnrphr on the vertices in the boundary of -Yo. As V n F = 

conneccea, c/J( G) is 

vn V c = vn E. 

V and E. Hence c/J( G) = (v, c). 

Finally, there remains one case. 

THEOREM 2.6. 

Suppose that G has two orbits on the flags of E in S and one orbit on the faces 

and that V has two orbits on the faces which have ao in their boundary. Then 

c/J( G) = (b, c, d) where 
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(1 ) 

the 

(d, c) 

fixes 10 so that cg P. 

,.r.Tlll1rr~·rp In Thus C ck where k 

and, F, P* are the ""CldJHU,CL" m 

'Yo 

L 

1S 

Thus 

of the 

c 

stabilizer of 11 

with g( 10) = 11. Then cg 

of 10 so that c and cg are 

f E F. Then kbo) = g(lo) = /1 

of 10,11, -r",c",p('n1J'plu are 

conjugate under k. This (2) of the Theorem. 

In either case, because I is a connected graph, 4>( G) = 
As in Theorem 2.3, V n V C = V n E in both cases. 

= (b, c, d). 

3. Orbit spaces of 2-dimensional tessellations. 
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In ;::,ectlOn ~, tour types ot embeclclmgs ot symmetric graphs in surfaces were 

identified and described in terms of six of groups and their subgroups. The 

pres(~ntatlOrlS given for these groups will now be investigated and surfaces in which 

are embedded will be constructed from each of them. 

study begins with the three simply connected 2-dimensional 

.e.:e'OITlet:ne:s, the sphere, the Euclidean plane and the hyperbolic plane. The existence 

of the regular solids show that the surface of the sphere can be tessellated by 

Ulva,~C;J.a.L tnan.e.:lE~S with 3, 4 or 5 at a vertex, regular quadrilaterals (i.e squares) 

with 3 at a vertex and pentagons with 3 at a vertex. The Euclidean plane 

can be tessellated by equilateral triangles with six at a vertex, squares with four at 

vertex and with three at a vertex. In other these two geometries 

can be tessellated by regular p-gons with q at a vertex for some restricted values of 

p and q. It turns out that, for every other value of p and q with p > 3, q > 3, such 

a tessellation can be achieved in the hyperbolic plane. 

Suppose that p > 3, q > 3 and that T is a tessellation like this in the appropriate 

geometry. Let a, (3, I be flag of the tessellation. Then there are uniquely defined 

<ou'rnrn"'1'rH~" a, b, e of T which are reflections in lines of the tr'ClOID,etl:V 

properties: 

a fixes a and (3 but not " 

b fixes a and, but not (3, 

e fixes (3 and, but not a. 

These three elements satisfy the relations 

a 2 = b 2 = e2 = (ae)2 = (ab)p = (be)q = 1. 

and have the 

In fact, ab is a rotation around a, ae is a rotation around the midpoint of (3 and be 

is a rotation around the centre of ,. It turns out that these relations, which define 

the Coxeter group [p, qJ, describe the full group of symmetries of this tessellation 

exactly: they are a presentation of it. For further information on these things see 

[3, Chapter 5]. 

In the group [p,q], with this interpretation, the stabilizers of 0',(3" are (a, b), 

(a, c), (b, c), respectively. 
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Independ.ent at the value at p and. q, the rel.at:lOTIlS all these groups have m 

common are 

As the group generated by b, c to these defining relations is sort of 

universal group for them all, denote it [1. 

The derived group, [1', of U has index 8 and is geIler,ate'd. by (ab?, (bc)2, U,"-,LIV'L<JI.. 

all of which are commutators 

grot<p U /U' is elemE~ntaI abelian, which 

b, c are all involutions). The quotient 

that U has seven subgroups of 

index namely: 

Notice that each of has index 2 [p, 

some of them may be identical in some cases. derived uUIJ)<.1..VU.1J 

of q] has index 2 when p and q both index 4 when one of p and q 

is odd and index if both are Of these sut)i!n)UDS. Us contains 

contains and U7 does not contain c or ac. the subgroup does 

not act ",,,,buDI,, on the vertices of the COJrrespc::>nc::llflg tessellation; 

not act f"r!:l,nc1t",'m:>lu on its edges; (a,bc) does not contain an element which 

interchanges the vertices of the edge (3. Consequently, in these circumstances, none 

of these subgroups can act symmetrically on the graph of vertices and edges of 

the tessellation. On the other hand, (a) = G for each i = 1, ... 4 and Ui acts 

symmetrically on the graph of the tessellation. 
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the will 

y 1), where x = y 

Y 1 1), where Y ac; 

U3 
y2 z2 1), where b, y ba , z c· , 

y, y2 1) , where x b, y ba , z ac. 

c:"",;.u.L,,,,v!'JH" of U1 to U4 U will now be lilv'es1t;lg:ate;Ci using 

the above. will be treated ser:>ar,'ttely in 

subsections. 

3.1 The group U. 

a group among other reb· 

Let V (a, b), E = (a, c), F (b, c) and suppose that 

(II) ab has order p 3 and be has order 3, 

(III) V n v c V n (a), V n (b), E n F (c). 

Because of these relations, there is homomorphism ¢; : [p, q] -t G which satisfies 

¢;(a) a, ¢;(b) = b, ¢;(c) = c. 

The group qJ is the full group of symmetries of a tessellation T of one of the 

three simply connected 2-dimensional ,ge()metr'1CS into p-gons with q faces 

around each vertex. It is clear that q] acts transitively on the vertices, edges and 

faces of this tessellation. Hence, those can be identified with the left cosets in [p, q] 

of the subgroups V = (a, b), E = (a, c), F = (b, c), respectively. The following is 

easily verified. 
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and the if 

or, 

in the bOtmdarv 

(d) of ~), q] SVllUIletlnes of the Lc;:,:::;,cuaLHJU T 

of 

be 

be IdentllJed 

of cosets 

the faces of T* with the left 

to t'fCJPC)SltlOn 3.1 is: 

PROPOSITION 3.2. 
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The vertex x V and the yE are incident if and only if x V ~ yEV or, 

xVE. 

(b) The vertex x V lies on the boundary of the face zF if and only if x V ~ zFV 

or, zF ~ xVF. 

(c) The lies in the boundary of the face zF if and only if yE ~ zF E 

or, equivalently, zF ~ yEF. 

(d) X* a manifold having the same geometric structure, spherical, Euclidean 

or hyperbolic, as and G acts on it as a group of isometries which fixes the 

tessellation T* under the action 

9 xV yE -;. zF -;. 

As such G acts sy:mrne1tn<:ally on the 

of T*. 

formed by the vertices and edges 

PROOF: 

( b) and (c) follow from the same property in (p, qJ/N. 
It will first be shown that the vertices and of of T* form a without 

loops or J.HLU.~l!JJ.C-

A cOlTel3PC)IlcLs to a coset identical "'1'"),"Ir",,,,, ..... yV and ycV, which 

cannot HGIJI-!'C-J.J. as c 1/. A mtlitlple COlrre:3PC)Ilcls to .two 

having the same endpoints. The conditions for this are 

= Y2 V and YICV = Y2CV, 

or YI V = Y2CV and YICV = Y2 V. 

In the first case, y;l YI E 1/ n V C ~ by hypothesis, and yiE = Y2E. In the 

second case, y;lYl E cV n V c = c(V n V C
) ~ E and, again, = Y2E. 

The assumptions made about the group G imply that the group N acts freely 

on the tessellation T, i.e. no member of T, except the identity, fixes a point of 

the manifold X. Thus, following [8, Introduction], the manifold X* inherits the 

geometric structure of X. 
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l.lle re~L 01 \ a) Clear. 

to this back to Section particularly I:reJD4osltlOin 2.2, the following 

IS 

PROPOSITION 

In the tessellation T* the vertex, and face corresponding to the subgroup 

V, F form and their stabilizers in are V, F ref'ipectlve.lv 

G sharply transitively on the of 

PROOF. 

IS 

to the left of V in transi-

of the 

to V to the left of 

on The stabilizer of the V, is 

Vn (a). a2 = 1 and the two faces with are and it 

that acts on t.he of X*. 

uV,-"uLVU 3.1 dealt with the surfaces associated with the group the same 

to the group , their consequences will be described here without. 

G is a group x and y ",,,d·,etu1n.o' among other 

(I) y2 = 1. 

Rewrite x ab and y as c. Let 'V = (ab), = (c), F = 

ab has finite order p ~ 3 and ccab has finite order s 2=:: 2, 

vnvc vn =VnF=l, nF=(c). 

Put q = 2s. 

and suppose that 

Let K be the subgroup of (p, q] generated by ab and c and let <p : K -+ G be the 
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homomorphIsm determined by the equations, 

<1>( ab) ab, <1>( c) = c. 

Let N be the kernel of <1>. 

In the tessellation T of the appropriate manifold M, let M* be the orbit space of 

N. Then M* has the same geometric structure as M and G acts on it as a group 

of symmetries acting symmetrically on the tessellation induced by T. The vertices, 

edges and faces of the tessellation can be identified with the left cosets of V, E and 

respectively and the group G has two orbits on the flags of T* and one orbit on 

its faces. The stabilizer of a vertex has two orbits on the faces incident with that 

vertex. 

This corresponds to the second case of Theorem 2.5. 

3.3 The group U2 • 

In this subsection, G is a group 

relations, (I) y2 = 1. 

by x and y satisfying, among other 

Rewrite x as ab and y ae. Let V {ab}, E = (ae), F 

(ab)-lac, and suppose that 

(II) V has finite order p ;::: 3 and F has finite order q ;::: 3. 

(III) V n V C = V n E = V n F = E n F = 1. 

(be), where be = 

Let K be the subgroup of (p, qj generated ab and ac and let <I> : K -4 G be the 

homomorphism determined by the equations 

<1>( ab) = ab, ¢Y( ac) = ae. 

Let N be the kernel of ¢Y. 

The same general conclusions hold in this case as in the previous subsection. G 

has two orbits on the flags of the manifold M* and one on the faces. The stabilizer 

of a vertex has one orbit on the faces incident with that vertex. 

This corresponds to the first case of Theorem 2.5. 
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3.3 The U3-

In this 

relations, 

Rewrite x as b, y 

suppose 

G 

1. 

bba 

(III) V n 

£lni te order r 

vn 

p= 

a group 

ClUIJIZ..".VU.1J of 

nomc)m,oq)hlSm determined 

= b, 

y, among other 

c. Let V (c), F = (b, and 

be q 3, 

(b), En F (e). 

let <p : K -t G be the 

conclusions hold as in the -n,..~>""'"'''' subsections. has t\vo orbits 

on the tessellation and one orbit the faces. The stabilizer each 

faces incident 

This co]~resP()n(1s to the first case of Theorem 2.6. 

3.4 

In this SUI)Sectl1on, IS a group 

= y2 = z2 = 1. 

x,y,z among other 

Rewrite as b, y as ba and z as ae. V E= F 

bC = (ba )ac, and suppose that 

bba order r 2: 2 and bbc has order s 2: 2, 

(III) vnV c =VnE=EnF=l,VnF (b). 

Put P = q = 28. 

Let K be the subgroup of (p, q] generated 

homomorphism determined by the equations 

b, b a
, ac and let <p : K 

where 

be the 



on the 

vertex 

the rvY'c,u",,,c subsections. G has two orbits 

',~i)''''G'"J.u,''!VJ.J, one orbit on the and the stabilizer of each 

orbits on the faces incident with it. 

COJrre:sP()ncls to the second case of Theorem 2.6. 

3.5 The 

one <.:OJ.H<::LIH". that of Theorem where 

the While the other were proved in terms 

of 1!.e()nl~etrlc mmHlI!ol(js their l<U")"lYIptru'q the converse result can only be 

In 

In a group 1!.ellerat(~d b, d among other rela-

=1. 

d),E=(c),F (b, F'= c) suppose that 

order p q 3 and cd has £lni te order 

q' 2:: 3, 

n vc VnE ( d) , E n FEn F' (c) . 

A :E is defined as follows: "",,","hro,",,, are the left cosets of V in its 

are left of E in and ""'rhr,"'" of the are the two left cosets, 

the vertex x V and the are incident if 

and if xV ~ ~ The group G acts faithfully as 

a group of autornorpl11sms of the action 

g:xV yE 

for g E G. 

The aim now is to embed in a surface S. This done by identifying the cycles 

of :E which will be the boundaries of the faces of S. 

LEMMA 3.4. 

For each coset the edges in zF and the vertices in zFV form a cycle. Each 

edge of the graph lies in exactly one of these cycles. 
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that 

1, . ,q. 

as 

of one "",u"rnn each 

neH!:rlb()UI'nCIOd which is isometric to the interior 

IS true for the points in the interiors of the 

the vertices. 

form 

lntC>l",r.r of 

LJl"'~"j,""""UH circle, 

of 

Consider the vertex V. As V = (b, d) and V n E = 1 the incident with V 

can be written as x E V and there are 2p of them. Consider an edge xE with 
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x The xbE incident the and xbE are thus 

consecutive of the the xE and xdE are consecutive 

of the face xF' The members of the dihedral group V can be written, in order, 

as 

1,b,bd,bdb,bdbd, ... 

and, consequently, the faces 

bF' , bdF, bdbFI, ... 

form a of faces around the vertex V. Consequently the vertex and every 

other vertex, has neighbourhood to the interior of Euclidean 

circle. As the sum of the around this vertex may very well not be 360 0
, 

it can only be claimed now that the construction is a 2-dimensional topological 

manifold. 

The action of G on this manifold is described by 

g: xV -7 gxV, yE -7 gyE, zF -+ gzF, zF' -+ gzF'. 

51 



with pn:sel:ltatlon 

1 

qJ mentl',)11("Q 

dodecahedron 

of an icosahedron into of 

The b (13)( 45), uP"P'-;"'P the group 

relations for the Coxeter group The IS 

the Petersen it is embedded in the ...... rr'",.~T''r''''' plane. This shows As to be 
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a homC)In,orphlC of ,,,,r.TY1r,rnh,£O to As X the Petersen 

to be orbit space or quotient of dodecahedron 

the 

If 

a 2-fold cmrenlIlQ" of the ",,..,-,,,,,,,Y,no 

and the construction above leads to another pro-

The boundaries of the of the tessellations in each 

:'_r·~Tl·iP'" and the two are mten:hl3LIl,!!:ed by the auto­

which m A 5 • The :l_r''ITf'IP'" from one 

ho:mclto'DlC to nr'""""£"T1IUP line in the other. 

EXAMPLE 

The pe]~mlltatl0l1s 

relations 

e 

C. The 

the torus. 

of the other one form 

under 

of G in 

b generate 

ab and be both have order 4, the 

it is a 

the 

In 

with 8 vertices into 

squares and the boundaries of the faces 

hornC)toplC to the be and be are 

which lies an extension of G to a 

This group G is notable because its a2 = b2 = e2 = (ae)2 = 1 

and each of the to defined as in Section 3, has index 2 in G. This 

need not happen, as is shown in the case of the group [3,5] of the dodecahedron, 

which has one of index 2. 

I am indebted to the of Auckland, the New Zealand Universities Grants 

Committee and the New Zealand Lotteries Board for research grants that made this 

paper possible. 
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