2-COLOURING $K_{4}-e$ DESIGNS

M. GIONFRIDDO ${ }^{1}$

Dipartimento di Matematica, Universita di Catania 95125 Catania, Italia

C. C. LINDNER ${ }^{2}$ and C. A. RODGER ${ }^{3}$

Department of Algebra, Combinatorics and Analysis Auburn University, Auburn, Alabama 36849, U.S.A.

Abstract

In this paper, necessary and sufficient conditions are found for the existence of a 2 -colourable $K_{4}-e$ design of λK_{3}.

1. Introduction.

Let G be a simple graph; i.e., a subgraph of K_{n} (the complete undirected graph on n vertices). A λ-fold G-design (of order n) is a pair (P, B), where B is an edgedisjoint decomposition of $\lambda K_{n}\left(\lambda\right.$ copies of $\left.K_{n}\right)$ with vertex set P into copies of the graph G. The number n is called the order of the G-design (P, B) and, of course, $|B|=\lambda\binom{n}{2} /|E(G)|$ where $|E(G)|$ is the number of edges belonging to G. When $\lambda=1$

[^0]triple system is a K_{3}-design and a block design with block size 4 is a K_{4}-design.

Now let (P, B) be a λ-fold G-design. The subset X of P is called a 2 -colouring of (P, B) if and only if for each $g \in B, V(g) \cap X \neq \emptyset$ and $V(g) \cap(P \backslash X) \neq \emptyset$, where $V(g)$ is the vertex set of the graph g. (The subset X is also called a blocking set. However, in what follows we will stick with calling X a 2 -colouring rather than a blocking set.)

It is quite easy to see that the only λ-fold K_{3}-designs admitting a 2 -colouring have orders 3 or 4 (regardless of λ). See [6] for example. Things are considerably different for λ-fold K_{4}-designs. In a series of two papers [4, 5] D. G. Hoffman, C. C. Lindner, and K. T. Phelps gave a complete solution (modulo a handful of possible exceptions) of the problem of constructing λ-fold K_{4}-designs which can be 2 coloured. In particular, the combined work in [4, 5] guarantees the existence of a λ-fold K_{4}-design of order n which can be 2 -coloured for every admissible (n, λ) except possibly for $(n \in\{37,40,73\}, \lambda=1),(n=37, \lambda \equiv 1$ or $5(\bmod 6) \geq 5)$, and $(n \in\{19,34,37,46,58\}, \lambda \equiv 2$ or $4(\bmod 6))$. In a forthcoming paper, necessary and sufficient conditions are found for the existence of a 2-colourable G-design of K_{n} for all connected, simple graphs G with at most 5 edges, $G \neq K_{4}-e[2]$.

The purpose of this paper is to give a complete solution of the existence problem of λ-fold $K_{4}-e$ designs which admit a 2 -colouring, where

Clearly the spectrum for λ-fold $K_{4}-e$ designs is contained in the set of all (i) $n \equiv 0$ or $1(\bmod 5) \geq 6$ for $\lambda=1$, (ii) $n \equiv 0$ or $1(\bmod 5)$ for $\lambda \equiv 1,2,3$, or $4(\bmod 5) \geq 2$, and (iii) $n \geq 4$ for $\lambda \equiv 0(\bmod 5)$. We show that these necessary conditions are not only sufficient for the existence of a λ-fold $K_{4}-e$ design but for the existence of a λ-fold $K_{4}-e$ design which can be 2 -coloured as well. Here goes!

In what follows we will denote

by any one of $(a, b, c, d),(a, b, d, c),(b, a, c, d)$, or (b, a, d, c).

To begin with it is trivial to see that there does not exist a $K_{4}-e$ design of order 5. Now for some necessary examples.

Example 2.1. The following are examples of $K_{4}-e$ designs $(\lambda=1)$, which can be 2 -coloured.

$$
n=6
$$

1	4	2	5
2	5	3	6
3	6	1	4

2 colouring $\{1,2,3\}$

$$
\underline{n}=11
$$

1	10	2	5	5	7	8	11
2	11	3	6	6	8	1	9
1	3	4	7	7	9	2	10
2	4	5	8	8	10	3	11
3	5	6	9	9	11	1	4
6	4	7	10				

2 -colouring $\{1,2,3,4,5,6\}$

2	3	1	4	5	8	13	14	2	15	12	13
1	4	5	6	5	9	10	15	3	13	7	11
5	6	2	3	6	11	8	14	3	12	8	9
1	14	13	15	6	7	9	15	3	10	14	15
1	11	10	12	6	12	10	13	4	15	8	11
1	8	7	9	2	10	7	8	4	14	7	12
5	7	11	12	2	9	11	14	4	13	9	10

2 -colouring $\{2,3,4,7,10,14\}$
$n=15$ (with hole $=\{11,12,13,14,15\}=$ decomposition of $K_{15} \backslash K_{5}$ into copies of $K_{4}-e$, with K_{5} based on $\{11,12,13,14,15\}$).

\[

\]

$n=20$.

2	12	1	11	2	13	4	14	15	9	20	10	20	18	7	17
3	13	6	16	2	16	8	18	16	7	14	4	2	3	5	15
4	14	10	20	4	18	9	19	17	9	12	2	2	6	10	20
5	15	4	14	5	19	10	20	18	10	13	3	4	8	1	11
6	16	1	11	6	17	4	14	13	12	5	15	5	9	1	11
7	17	1	11	7	19	2	12	16	12	10	20	6	7	5	15
8	18	5	15	8	20	3	13	18	14	1	11	7	9	3	13
9	19	6	16	12	3	14	4	19	15	1	11	8	10	7	17
10	20	1	11	12	6	18	8	17	16	5	15				
1	11	3	13	14	8	19	9	19	17	3	13				

2 -colouring $\{1,2,3,4,5,6,7,8,9,10\}$
$n=21$.

$i, 8+i, 5+i, 7+i$
$10+i, 12+i, i, 6+i$
$i \in Z_{21}(\bmod 21)$

2 -colouring $\{1,2,4,7,10,11,14,15,18,19\}$.
$\underline{n=25}$. Let (∞, B) be the $K_{4}-e$ design of order 11 (in this example) where

$$
\infty=\left\{\infty_{0}, \infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}, \infty_{6}, \infty_{7}, \infty_{8}, \infty_{9}, \infty_{10}\right\}
$$

with 2-colouring $\left\{\infty_{0}, \infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right\}$.

B		
$(0, i),(0,1+i),(1,4+i),(1,6+i)$ $(0, i),(1,2+i),(1,1+i), \infty_{0}$		
$i \in Z_{7}(\bmod 7)$		
$(j, 0),(j, 2), \infty_{1}, \infty_{6}$	$(j, 3),(j, 6), \infty_{3}, \infty_{8}$	
$(j, 4),(j, 6), \infty_{1}, \infty_{6}$	$(j, 2),(j, 5), \infty_{3}, \infty_{8}$	
$(j, 1),(j, 3), \infty_{1}, \infty_{6}$	$(j, 0),(j, 3), \infty_{4}, \infty_{9}$	
$(j, 2),(j, 4), \infty_{2}, \infty_{7}$	$(j, 2),(j, 6), \infty_{4}, \infty_{9}$	
$(j, 1),(j, 6), \infty_{2}, \infty_{7}$	$(j, 1),(j, 5), \infty_{4}, \infty_{9}$	
$(j, 3),(j, 5), \infty_{2}, \infty_{7}$	$(j, 0),(j, 5), \infty_{5}, \infty_{10}$	
$(j, 0),(j, 4), \infty_{3}, \infty_{8}$	$(j, 1),(j, 4), \infty_{5}, \infty_{10}$	
$j \in Z_{2}(\bmod 2)$		
$(0,5),(1,5), \infty_{1}, \infty_{6}$	$(0,2),(1,2), \infty_{5}, \infty_{10}$	
$(0,0),(1,0), \infty_{2}, \infty_{7}$	$(0,3),(1,3), \infty_{5}, \infty_{10}$	
$(0,1),(1,1), \infty_{3}, \infty_{8}$	$(0,6),(1,6), \infty_{5}, \infty_{10}$	
$(0,4),(1,4), \infty_{4}, \infty_{9}$		

2 -colouring $\left\{\infty_{0}, \infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right\} \cup\left\{(0, i) \mid i \in Z_{7}\right\}$
With the above examples in hand we proceed to the main constructions for $K_{4}-e$ designs.

The $10 k$ Construction. Let (X, \circ) be a quasigroup and $H=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$ a partition of X. The subsets $h_{i} \in H$ are called holes. If for each hole $h_{i} \in H,\left(h_{i}, 0\right)$ is a subquasigroup of $(X, 0)$, then $(X, 0)$ is called a quasigroup with holes H. Let (X, \circ) be a commutative quasigroup of order $2 k$ with holes H all of size 2 . Set $P=X \times\{1,2,3,4,5\}$ and define a collection of graphs B as follows: (1) For each hole $h \in H$, let $\left(h \times\{1,2,3,4,5\}, h^{*}\right)$ be the $K_{4}-e$ design order 10 in Example 2.1 with 2 -colouring $h \times\{1,2\}$ and place the graphs of h^{*} in B, and
(2) if x and y belong to different holes of H, place the 5 graphs

$$
\begin{aligned}
& ((x, 1),(y, 1),(x \circ y, 2),(x \circ y, 4)), \\
& ((x, 2),(y, 2),(x \circ y, 3),(x \circ y, 5)), \\
& ((x, 3),(y, 3),(x \circ y, 4),(x \circ y, 1)), \\
& ((x, 4),(y, 4),(x \circ y, 5),(x \circ y, 2)) \text {, and } \\
& ((x, 5),(y, 5),(x \circ y, 1),(x \circ y, 3)) \text { in } B .
\end{aligned}
$$

Then (P, B) is a $K_{4}-e$ design of order $10 k$ and $X \times\{1,2\}$ is a 2 -colouring.

The $10 k+1$ Construction. In the $10 k$ Construction set $P=\{\infty\} \cup(X \times$ $\{1,2,3,4,5\}$) and replace (1) by: For each hole $h_{i} \in H$, let

$$
\left(\{\infty\} \cup\left(h_{i} \times\{1,2,3,4,5\}\right), h_{\boldsymbol{i}}^{*}\right)
$$

be the $K_{4}-e$ design of order 11 in Example 2.1 with 2 -colouring $h_{i} \times\{1,2,3\}$, and place the graphs of h_{i}^{*} in B.

Then (P, B) is a $K_{4}-e$ design of order $10 k+1$ and $X \times\{1,2,3\}$ is a 2 -colouring.

The $10 k+5$ Construction. In the $10 k$ Construction set

$$
P=\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right\} \cup(X \times\{1,2,3,4,5\})
$$

and replace (1) by: (i) for the hole h_{1}, let
be the $K_{4}-e$ design of order 15 in Example 2.1 with the 2 -colouring $h_{1} \times\{1,2,3\}$ and place the graphs of h_{1}^{*} in B, and (ii) for each of the holes $h_{2}, h_{3}, \ldots, h_{k}$, let $\left(\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right\} \cup\left(h_{i} \times\{1,2,3,4,5\}\right), h_{i}^{*}\right)$ be the $K_{4}-e$ design of order 15 with hole $=\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right\}$ in Example 2.1 with 2 -colouring $h_{i} \times\{1,2,3\}$ and place the graphs of h_{i}^{*} in B.

Then (P, B) is a $K_{4}-e$ design of order $10 k+5$ and $X \times\{1,2,3\}$ is a 2-colouring.

The $10 k+6$ Construction. Let $(X, 0)$ be an idempotent $\left(x^{2}=x\right)$ and commutative quasigroup of order $2 k+1$, set $P=\{\infty\} \cup(X \times\{1,2,3,4,5\})$, and define a collection of graphs B as follows:
(1) For each $a \in X$, let $\left(\{\infty\} \cup(\{a\} \times\{1,2,3,4,5\}), a^{*}\right)$ be the $K_{4}-e$ design of order 6 in Example 2.1 with 2 -colouring $\{a\} \times\{1,2,3\}$, and place the 6 graphs of a^{*} in B, and
(2) the same as the $10 k$ Construction.

Then (P, B) is a $K_{4}-e$ design of order $10 k+6$ and $X \times\{1,2,3\}$ is a 2 -colouring.
We can now combine the examples in Example 2.1 and the above four constructions to determine the spectrum of $K_{4}-e$ designs which can be 2-coloured.

Theorem 2.2. The spectrum of $K_{4}-e$ designs which can be 2-coloured is precisely the set of all $n=0$ or $1(\bmod 5) \geq 6$.

Proof: It is well-known (see [3, 7], for example) that the spectrum for commutative quasigroups of order $2 k$ with holes all of size 2 is precisely the set of all $2 k \geq 6$. Hence if $n=10 k, 10 k+1$, or $10 k+5 \geq 30$, the $10 k, 10 k+1$, and $10 k+5$ Constructions produce a $K_{4}-e$ design which can be 2 -coloured. If $n=10 k+6 \geq 16$, the $10 k+6$ Construction produces a $K_{4}-e$ design which can be 2 -coloured. The cases $n=6,10,11,15,20,21$ and 25 are taken care of in Example 2.1.
3. $\lambda \equiv 1,2,3$ or $4(\bmod 5)$.

As noted in Section 1, it is obvious that the spectrum for λ-fold $K_{4}-e$ designs for $\lambda \equiv 1,2,3$ or $4(\bmod 5) \geq 2$ is contained in the set of all $n \equiv 0$ or $1(\bmod 5)$. Hence to settle the existence problem for λ-fold $K_{4}-e$ designs when $\lambda \equiv 1,2,3$, or $4(\bmod$ 5) ≥ 2 we need to take care of the case $n=5$ only, since we can just take λ copies of a $K_{4}-e$ design of order $n \geq 6$ (admitting a 2 -colouring) in every other case. The following two examples dispose of λ-fold $K_{4}-e$ designs of order 5 (which can be 2 -coloured) for all $\lambda \equiv 1,2,3$ or $4(\bmod 5) \geq 2$.

Example 3.1.

$$
\begin{array}{lc}
n=5 \text { and } \lambda=2 . & n=5 \text { and } \lambda=3 . \\
\begin{array}{|cccc}
1 & 2 & 3 & 4 \\
3 & 5 & 2 & 4 \\
1 & 2 & 4 & 5 \\
3 & 5 & 1 & 4 \\
\hline
\end{array} & \begin{array}{|cccc}
5 & 1 & 2 & 3 \\
5 & 2 & 3 & 4 \\
5 & 3 & 4 & 1 \\
5 & 4 & 1 & 2 \\
1 & 3 & 2 & 4 \\
2 & 4 & 1 & 3 \\
\hline
\end{array} \\
\text { 2-colouring }\{1,2\}
\end{array}
$$

Theorem 3.2. The spectrum of λ-fold $K_{4}-e$ designs with $\lambda \equiv 1,2,3$ or $4(\bmod 5)$ ≥ 2 which can be 2 -coloured is precisely the set of all $n \equiv 0$ or $1(\bmod 5)$.
4. $\lambda \equiv 0(\bmod 5)$.

The spectrum for λ-fold $K_{4}-e$ designs for $\lambda \equiv 0(\bmod 5)$ is precisely the set of all $n \geq 4$. The following Folk Construction packs the spectrum.

Folk Construction. Let (P, \circ) be an idempotent anti-symmetric ($a \circ b \neq b \circ a, a \neq$ $b \in P)$ quasigroup of order $n \geq 4$. Let $B=\{(a, b, a \circ b, b \circ a) \mid$ all $a \neq b \in P\}$. Then (P, B) is a 5 -fold $K_{4}-e$ design. Taking k copies of (P, B) produces a $5 k$-fold $K_{4}-e$ design of order n.
galore, it is not apparent (at least not to the authors) how to 2 -colour such designs. So, in order to pack the spectrum with λ-fold $K_{4}-e$ designs, $\lambda \equiv 0(\bmod 5)$, which can be 2 -coloured we take the following tack. We 2 -colour a handful of idempotent anti-symmetric quasigroups of small orders, and use these 5 -fold $K_{4}-e$ designs in five different recursive constructions: $n \equiv 0,1,2,3$, and $4(\bmod 5)$, with $\lambda=5$.

The cases $n \equiv 0$ or $1(\bmod 5)$ are taken care of by Theorem 2.2 (just take 5 copies of a $K_{4}-e$ design), with the exception of $n=5$. It is less than trivial to 2 -colour an idempotent anti-symmetric quasigroup of order 5 . So much for $n \equiv 0$ or $1(\bmod 5)$. We now move on to the cases $n=2,3$, and $4(\bmod 6), \lambda=5$.

Example 4.1. The following four examples are necessary for the $n \equiv 2(\bmod 5)$ constructions.
$n=7$.

o_{1}	1	2	3	4	5	6	7
1	1	6	4	2	7	5	3
2	4	2	7	5	3	1	6
3	7	5	3	1	6	4	2
4	3	1	6	4	2	7	5
5	6	4	2	7	5	3	1
6	2	7	5	3	1	6	4
7	5	3	1	6	4	2	7

2-colouring $\{1,2,3,5\}$
$n=7($ with hole $=\{1,2\})$.

\circ_{2}	1	2	3	4	5	6	7
1	1	2	4	5	6	7	3
2	2	1	5	6	7	3	4
3	5	7	3	1	2	4	6
4	6	3	7	4	1	2	5
5	7	4	6	3	5	1	2
6	3	5	2	7	4	6	1
7	4	6	1	2	3	5	7

2-colouring $\{1,2,3,5\}$
$n=12$.

o_{3}	1	2	3	4	5	6	7	8	9	10	11	12
1	1	3	2	7	9	8	10	12	11	4	5	5
2	12	2	1	3	8	7	6	11	10	9	5	4
3	11	10	3	2	1	9	5	4	12	8	7	6
4	10	12	11	4	6	5	1	3	2	7	9	8
5	6	11	10	9	5	4	12	2	1	3	8	7
6	5	4	12	8	7	6	11	10	3	2	1	9
7	4	6	5	10	12	11	7	9	8	1	3	2
8	9	5	4	6	11	10	3	8	7	12	2	1
9	8	7	6	5	4	12	2	1	9	11	10	3
10	7	9	8	1	3	2	4	6	5	10	12	11
11	3	8	7	12	2	1	9	5	4	6	11	10
12	2	1	9	11	10	3	8	7	6	5	4	12

$\underline{n}=12$ (with hole $=\{1,2\}$).

\circ_{4}	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	10	7	4	12	9	6	3	11	8	5
2	2	1	6	10	3	7	11	4	8	12	5	9
3	7	10	3	2	11	4	8	12	5	9	1	6
4	12	7	11	4	8	2	5	9	1	6	10	3
5	6	4	8	12	5	9	1	2	10	3	7	11
6	11	12	5	9	1	6	10	3	7	2	4	8
7	5	9	1	6	10	3	7	11	4	8	12	2
8	10	6	2	3	7	11	4	8	12	5	9	1
9	4	3	7	11	2	8	12	5	9	1	6	10
10	9	11	4	8	12	5	2	1	6	10	3	7
11	3	8	12	5	9	1	6	10	2	7	11	4
12	8	5	9	1	6	10	3	7	11	4	2	12

The $10 k+7$ Construction. Let $(X, 0)$ be an idempotent commutative quasigroup of order $2 k+1, \operatorname{set} P=\left\{\infty_{1}, \infty_{2}\right\} \cup(X \times\{1,2,3,4,5\})$, and define a collection of graphs B as follows :
(1) Let $a \in X$, and let $\left(\left\{\infty_{1}, \infty_{2}\right\} \cup(\{a\} \times\{1,2,3,4,5\}), a^{*}\right)$ be the 5 -fold $K_{4}-e$ design of order 7 defined by o_{1} in Example 4.1 with 2 -colouring $\left\{\infty_{1}, \infty_{2}\right\} \cup(\{a\} \times$ $\{1,2\}$), and place the 21 graphs of a^{*} in B;
(2) for each $b \in X \backslash\{a\}$, let $\left(\left\{\infty_{1}, \infty_{2}\right\} \cup\left(\{b\} \times\{1,2,3,4,5\}, b^{*}\right)\right.$ be the 5 -fold $K_{4}-e$ design of order 7 with hole $\left\{\infty_{1}, \infty_{2}\right\}$ defined by o_{2} in Example 4.1 with 2 -colouring $\left\{\infty_{1}, \infty_{2}\right\} \cup(\{b\} \times\{1,2\})$ and place the 20 graphs in b^{*} in B; and
(3) if $x \neq y \in X$, place 5 copies of each of the graphs

$$
\begin{aligned}
& ((x, 1),(y, 1),(x \circ y, 2),(x \circ y, 4)), \\
& ((x, 2),(y, 2),(x \circ y, 3),(x \circ y, 5)), \\
& ((x, 3),(y, 3),(x \circ y, 4),(x \circ y, 1)), \\
& ((x, 4),(y, 4),(x \circ y, 5),(x \circ y, 2)), \text { and } \\
& ((x, 5),(y, 5),(x \circ y, 1),(x \circ y, 3)) \text { in } B .
\end{aligned}
$$

Then (P, B) is a 5 -fold K_{4}-e design of order $10 k+7$ and $\left\{\infty_{1}, \infty_{2}\right\} \cup(X \times\{1,2\})$ is a 2 -colouring.

The $10 k+2$ Construction. Let (X, o) be a commutative quasigroup of order $2 k$ with holes $H=\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}$ all of size 2 , set $P=\left\{\infty_{1}, \infty_{2}\right\} \cup(X \times\{1,2,3,4,5\})$, and define a collection of graphs B as follows:
(1) For the hole h_{1}, let $\left(\left\{\infty_{1}, \infty_{2}\right\} \cup\left(h_{1} \times\{1,2,3,4,5\}\right), h_{1}^{*}\right)$ be the 5 -fold $K_{4}-e$ design of order 12 defined by o_{3} in Example 4.1 with 2 -colouring $h_{1} \times\{1,2,3\}$, an d place the 66 graphs of h_{1}^{*} in B;
(2) for each of the remaining holes $h_{2}, h_{3}, h_{4}, \ldots, h_{k}$, let

$$
\left(\left\{\infty_{1}, \infty_{2}\right\} \cup\left(h_{i} \times\{1,2,3,4,5\}\right), h_{i}^{*}\right)
$$

be the 5 -fold K_{4}-e design of order 12 with hole $\left\{\infty_{1}, \infty_{2}\right\}$ defined by o_{4} in Example 4.1 with 2 -colouring $h_{i} \times\{1,2,3\}$ and place the 65 graphs in h_{i}^{*} in B; and
(3) the same as (3) in the $10 k+7$ Construction.

Then (P, B) is a 5 -fold $K_{4}-e$ design of order $10 k+2$ and $X \times\{1,2,3\}$ is a 2-colouring.
Example 4.2. The following examples are necessary for the $n \equiv 3(\bmod 5)$ constructions.

$\underline{n}=$										=8	(w	th	ole		\{1,		
0_{1}	1	2	3	4	5	6	7	8	o_{2}	1	2	3	4	5	6	7	8
1	1	6	7	8	2	3	4	5	1	1	3	2	5	6	7	8	4
2	7	2	1	5	3	8	6	4	2	3	2	1	6	7	8	4	5
3	8	5	3	1	6	4	2	7	3	2	1	3	7	8	4	5	6
4	2	8	6	4	1	7	5	3	4	6	8	5	4	1	2	3	7
5	3	4	2	7	5	1	8	6	5	7	4	6	8	5	1	2	3
6	4	7	5	3	8	6	1	2	6	8	5	7	3	4	6	1	2
7	5	3	8	6	4	2	7	1	7	4	6	8	2	3	5	7	1
8	6	1	4	2	7	5	3	8	8	5	7	4	1	2	3	6	8
	,	rin	\{	, 2	4,					ur	rin	\{	, 2	4			

$\underline{n}=13$.

\circ_{3}	1	2	3	4	5	6	7	8	9	10	11	12	13
1	1	5	6	7	11	12	13	2	3	4	8	9	10
2	11	2	4	3	8	10	9	1	13	12	5	7	6
3	12	13	3	2	4	9	8	7	1	11	10	6	5
4	13	12	11	4	3	2	10	6	5	1	9	8	7
5	8	1	13	12	5	7	6	11	4	3	2	10	9
6	9	7	1	11	10	6	5	13	12	2	4	3	8
7	10	6	5	1	9	8	7	12	11	13	3	2	4
8	5	11	7	6	2	13	12	8	10	9	1	4	3
9	6	10	12	5	7	3	11	4	9	8	13	1	2
10	7	9	8	13	6	5	4	3	2	10	12	11	1
11	2	8	10	9	1	4	3	5	7	6	11	13	12
12	3	4	9	8	13	1	2	10	6	5	7	12	11
13	4	3	2	10	12	11	1	9	8	7	6	5	13

$n=13($ with hole $=\{1,2,3\})$.

0_{4}	1	2	3	4	5	6	7	8	9	10	11	12	13
1	1	3	2	5	6	4	10	12	13	9	7	11	8
2	3	2	1	13	7	5	9	6	12	4	10	8	11
3	2	1	3	8	11	10	12	13	6	5	9	4	7
4	6	12	7	4	10	9	11	5	1	13	8	2	3
5	11	8	4	3	5	2	13	9	10	7	1	6	12
6	9	10	12	7	3	6	2	4	8	11	5	13	1
7	4	13	5	1	8	12	7	11	2	6	3	9	10
8	7	5	9	11	13	1	3	8	4	2	12	10	6
9	10	7	8	6	2	11	4	1	9	12	13	3	5
10	13	6	11	12	9	7	8	3	5	10	2	1	4
11	8	4	6	9	12	13	5	10	3	1	11	7	2
12	5	11	13	10	1	8	6	2	7	3	4	12	9
13	12	9	10	2	4	3	1	7	11	8	6	5	13

2-colouring $\{4,5,6,8,9,10\}$
The $10 k+8$ Construction. In the $10 k+7$ Construction, set

$$
P=\left\{\infty_{1}, \infty_{2}, \infty_{3}\right\} \cup(X \times\{1,2,3,4,5\})
$$

and use the quasigroups of order 8 defned by o_{1} and o_{2} in Example 4.2 with 2 colourings $\left\{\infty_{1}, \infty_{2}\right\} \cup(\{a\} \times\{1,2\})$ and $\left\{\infty_{1}, \infty_{2}\right\} \cup(\{b\} \times\{1,2\})$.

Then (P, B) is a 5 -fold $K_{4}-e$ design of order $10 k+8$ and $\left\{\infty_{1}, \infty_{2}\right\} \cup(X \times\{1,2\})$ is a 2 -colouring.

The $10 k+3$ Construction. In the $10 k+2$ Construction, set

$$
P=\left\{\infty_{1}, \infty_{2}, \infty_{3}\right\} \cup(X \times\{1,2,3,4,5\})
$$

and use the quasigroups of order 13 defined by o_{3} and o_{4} in Example 4.2 with 2 colourings $h_{1} \times\{1,2,3\}$ and $h_{i} \times\{1,2,3\}(i \geq 2)$.

Then (P, B) is a 5 -fold $K_{4}-e$ design of order $10 k+3$ and $X \times\{1,2,3\}$ is a 2-colouring.

Example 4.3. The following examples are necessary for the tollowing $n \equiv 4$ (mod
5) constructions.
$\underline{n}=9$ (and $\mathrm{n}=9$ with hole $=\{1,2,3,4\}$).

\circ_{1}	1	2	3	4	5	6	7	8	9
1	1	3	4	2	6	7	8	9	5
2	4	2	1	3	7	8	9	5	6
3	2	4	3	1	8	9	5	6	7
4	3	1	2	4	9	5	6	7	8
5	7	9	6	8	5	1	2	4	3
6	8	5	7	9	3	6	1	2	4
7	9	6	8	5	4	3	7	1	2
8	5	7	9	6	2	4	3	8	1
9	6	8	5	7	1	2	4	3	9
						2 -colouring $\{3,5,6,9\}$			

$\mathrm{n}=14$ (and $\mathrm{n}=14$ with hole $=\{1,2,3,4\}$).

\circ_{2}	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1	4	2	3	9	10	12	7	11	13	5	8	14	6
2	3	2	4	1	7	5	14	13	6	12	10	11	8	9
3	4	1	3	2	14	13	6	10	12	11	8	9	7	5
4	2	3	1	4	6	9	10	11	13	5	7	14	12	8
5	10	12	9	11	5	2	8	1	3	14	13	6	4	7
6	8	7	11	5	12	6	13	14	1	4	9	2	3	10
7	14	13	10	12	3	4	7	9	8	1	2	5	6	11
8	13	5	7	9	2	11	3	8	4	6	14	10	1	12
9	6	10	5	8	13	14	1	12	9	7	3	4	11	2
10	9	6	14	7	8	1	11	3	2	10	12	13	5	4
11	12	8	13	14	10	3	4	6	5	2	11	7	9	1
12	11	14	8	6	4	-7	9	5	10	3	1	12	2	13
13	7	9	6	10	11	12	5	2	14	8	4	1	13	3
14	5	11	12	13	1	8	2	4	7	9	6	3	10	14

The $10 k+9$ Construction. In the $10 k+7$ Construction set $P=\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\right\} \cup$ ($X \times\{1,2,3,4,5\}$) and use the quasigroup of order 9 defined by o_{1} in Example 4.3 with 2-colourings $\left\{\infty_{1}\right\} \cup(\{a\} \times\{1,2,3\})$ and $\left\{\infty_{1}\right\} \cup(\{b\} \times\{1,2,3\})$.

Then (P, B) is a 5 -fold $K_{4}-e$ design of order $10 k+9$ and $\left\{\infty_{1}\right\} \cup(X \times\{1,2,3\})$ is a 2 -colouring.

The $10 k+4$ Construction. In the $10 k+2$ Construction set $P=\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\right\} \cup$ $(X \times\{1,2,3,4,5\})$ and use the quasigroup of order 14 defined by o_{2} in Example 4.3 with 2-colouring $\left\{\infty_{1}\right\} \cup\left(h_{1} \times\{1,2,3\}\right)$ and $\left\{\infty_{1}\right\} \cup\left(h_{i} \times\{1,2,3\}\right)(i \geq 2)$.

Then (P, B) is a 5 -fold $K_{4}-e$ design of order $10 k+4$ and $\left\{\infty_{1}\right\} \cup(X \times\{1,2,3\})$ is a 2 -colouring .

Lemma 4.4. There exists a 5-fold $K_{4}-e$ design which can be 2 -coloured of every order $n \geq 4$, except possibly $n=22,23$, and 24 .

Proof: The cases $n \equiv 0$ or $1(\bmod 5)$ are taken care of at the beginning of this section. Since there exists an idempotent cornmutative quasigroup of every odd order and a commutative quasigroup with holes of size 2 of every even order ≥ 6, the above six constructions produce a 5 -fold $K_{4}-e$ design which can be 2 -coloured of every order $n \equiv 2,3$, or $4(\bmod 5)$, except $4,22,23$, and 24 . The case $n=4$ is trivial, leaving only 22,23 , and 24 .

5. The Cases $n=22,23$, and 24 .

In this section we eliminate the three possible exceptions in the statement of Lemma 4.4.

$$
n=\text { 24. Let } T=\{(1,1,1,4),(1,2,3,1),(1,3,4,2),(1,4,2,3),(2,1,4,2),(2,2,2,3) \text {, }
$$

$$
(2,3,1,4),(2,4,3,1),(3,1,2,3),(3,2,4,2),(3,3,3,1),(3,4,1,4),(4,1,3,1),(4,2,1,4)
$$ $(4,3,2,3),(4,4,4,2)\}$. Let $(X, 0)$ be an idempotent anti-symmetric quasigroup of order 6 , set $P=X \times\{1,2,3,4\}$, and define a collection of graphs B, as follows:

(1) For each $a \in X$, let $\left(\{a\} \times\{1,2,3,4\}, a^{*}\right)$ be a 5 -fold $K_{4}-e$ design of order 4 and place the 6 graphs belonging to a^{*} in B, and
(2) for all $x \neq y \in X$ and $(i, j, s, t) \in T$ place the graph $((x, i),(y, j),(x \circ y, s),(y \circ$ $x, t))$ in B. Then (P, B) is a 5 -fold $K_{4}-e$ design and $X \times\{1,2\}$ is a 2 -colouring.
$n=22$. Let $\left(Q, O_{1}\right)$ and $\left(Q, o_{2}\right)$ be the following two quasigroups.

\circ_{1}	1	2	3	4	5	6
1	1	3	4	5	6	2
2	4	2	1	6	3	5
3	5	6	3	1	2	4
4	6	5	2	4	1	3
5	2	4	6	3	5	1
6	3	1	5	2	4	6

2-colouring $\{1,3,4\}$

\circ_{2}	1	2	3	4	5	6
1	1	2	4	3	6	5
2	2	1	5	6	3	4
3	6	4	3	5	1	2
4	5	3	6	4	2	1
5	4	6	2	1	5	3
6	3	5	1	2	4	6

2 -colouring $\{1,3,4\}($ hole $=\{1,2\})$

Let (X, \circ) be an idempotent anti-symmetric quasigroup of order $6, \operatorname{set} P=X \times$ $\{1,2,3,4\}$ and define a collection of graphs B as follows:
(1) Let $a \in X$ and let $\left(\infty_{1}, \infty_{2}\right\} \cup\left(\{a\} \times\{1,2,3,4\}, a^{*}\right)$ be the 5 -fold $K_{4}-e$ design of order 6 defined by $(Q, 0)$ with 2 -colouring $\left\{\infty_{1}\right\} \cup(\{a\} \times\{1,2\})$ and place these graphs in B,
(2) for each $b \subset X \backslash\{a\}$, let $\left(\left\{\infty_{1}, \infty_{2}\right\} \cup\left(\{b\} \times\{1,2,3,4\}, b^{*}\right)\right.$ be the 5 -fold $K_{4}-e$ design of order 6 with hole $\left\{\infty_{1}, \infty_{2}\right\}$ defined by $\left(Q, \infty_{2}\right)$ with 2-colouring $\left\{\infty_{1}\right\} \cup$ $(\{b\} \times\{1,2\})$ and place the graphs of b^{*} in B, and
(3) the same as (2) in the construction for $n=24$.

Then (P, B) is a 5 -fold $K_{4}-e$ design of order 22 and $\left\{\infty_{1}\right\} \cup(X \times\{1,2\})$ is a 2-colouring.
$n=$ 23. Unfortunately (for technical reasons) the above two constructions cannot be used to construct a 5 -fold $K_{4}-e$ design of order 23 . We content ourselves with an ad hoc example.

$$
\begin{array}{l|lllllllllllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\
\hline 1 & 1 & 21 & 22 & 3 & 2 & 11 & 8 & 10 & 12 & 14 & 16 & 13 & 15 & 17 & 19 & 6 & 18 & 20 & 7 & 9 & 23 & 4 & 5 \\
2 & 4 & 2 & 23 & 21 & 3 & 15 & 12 & 9 & 6 & 13 & 20 & 17 & 14 & 11 & 18 & 10 & 7 & 19 & 16 & 8 & 22 & 5 & 1 \\
3 & 5 & 4 & 3 & 22 & 23 & 14 & 11 & 13 & 10 & 7 & 19 & 16 & 18 & 15 & 12 & 9 & 6 & 8 & 20 & 17 & 1 & 2 & 21 \\
4 & 22 & 1 & 5 & 4 & 21 & 8 & 15 & 12 & 14 & 6 & 13 & 20 & 17 & 19 & 11 & 18 & 10 & 7 & 9 & 16 & 2 & 23 & 3 \\
5 & 23 & 22 & 1 & 2 & 5 & 7 & 9 & 11 & 13 & 15 & 12 & 14 & 16 & 18 & 20 & 17 & 19 & 6 & 8 & 10 & 3 & 21 & 4 \\
6 & 16 & 7 & 9 & 17 & 19 & 6 & 21 & 22 & 3 & 5 & 1 & 18 & 20 & 2 & 4 & 23 & 8 & 10 & 12 & 14 & 11 & 13 & 15 \\
7 & 20 & 17 & 8 & 10 & 18 & 1 & 7 & 21 & 22 & 4 & 5 & 2 & 19 & 16 & 3 & 15 & 23 & 9 & 6 & 13 & 12 & 14 & 11 \\
8 & 19 & 16 & 18 & 9 & 6 & 5 & 2 & 8 & 21 & 22 & 4 & 1 & 3 & 20 & 17 & 14 & 11 & 23 & 10 & 7 & 13 & 15 & 12 \\
9 & 7 & 20 & 17 & 19 & 10 & 22 & 1 & 3 & 9 & 21 & 18 & 5 & 2 & 4 & 16 & 8 & 15 & 12 & 23 & 6 & 14 & 11 & 13 \\
10 & 6 & 8 & 16 & 18 & 20 & 21 & 22 & 2 & 4 & 10 & 17 & 19 & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 23 & 15 & 12 & 14 \\
11 & 10 & 18 & 20 & 6 & 8 & 23 & 13 & 15 & 7 & 9 & 11 & 3 & 5 & 12 & 14 & 1 & 21 & 22 & 2 & 4 & 10 & 17 & 19 \\
12 & 9 & 6 & 19 & 16 & 7 & 10 & 23 & 14 & 11 & 8 & 15 & 12 & 4 & 1 & 13 & 5 & 2 & 21 & 22 & 3 & 17 & 18 & 20 \\
13 & 8 & 10 & 7 & 20 & 17 & 9 & 6 & 23 & 15 & 12 & 14 & 11 & 13 & 5 & 2 & 4 & 1 & 3 & 21 & 22 & 18 & 19 & 16 \\
14 & 19 & 9 & 6 & 8 & 16 & 13 & 10 & 7 & 23 & 11 & 3 & 15 & 12 & 14 & 1 & 22 & 5 & 2 & 4 & 21 & 19 & 20 & 17 \\
15 & 17 & 19 & 10 & 7 & 9 & 12 & 14 & 6 & 8 & 23 & 2 & 4 & 11 & 13 & 15 & 21 & 22 & 1 & 3 & 5 & 20 & 16 & 18 \\
16 & 11 & 13 & 15 & 12 & 14 & 2 & 4 & 1 & 18 & 20 & 23 & 21 & 22 & 7 & 9 & 16 & 3 & 5 & 17 & 19 & 6 & 8 & 10 \\
17 & 15 & 12 & 14 & 11 & 13 & 16 & 3 & 5 & 2 & 19 & 10 & 23 & 21 & 22 & 8 & 20 & 17 & 4 & 1 & 18 & 7 & 9 & 6 \\
18 & 14 & 11 & 13 & 15 & 12 & 20 & 17 & 4 & 1 & 3 & 9 & 6 & 23 & 21 & 22 & 19 & 16 & 18 & 5 & 2 & 8 & 10 & 7 \\
19 & 13 & 15 & 12 & 14 & 11 & 4 & 16 & 18 & 5 & 2 & 22 & 10 & 7 & 23 & 21 & 3 & 20 & 17 & 19 & 1 & 9 & 6 & 8 \\
20 & 12 & 14 & 11 & 13 & 15 & 3 & 5 & 17 & 19 & 1 & 21 & 22 & 6 & 8 & 23 & 2 & 4 & 16 & 18 & 20 & 10 & 7 & 9 \\
21 & 2 & 5 & 4 & 23 & 1 & 18 & 19 & 20 & 16 & 17 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 21 & 3 & 22 \\
22 & 3 & 23 & 21 & 1 & 4 & 19 & 20 & 16 & 17 & 18 & 7 & 8 & 9 & 10 & 6 & 12 & 13 & 14 & 15 & 11 & 5 & 22 & 2 \\
23 & 21 & 3 & 2 & 5 & 22 & 17 & 18 & 19 & 20 & 16 & 8 & 9 & 10 & 6 & 7 & 13 & 14 & 15 & 11 & 12 & 4 & 1 & 23 \\
\hline
\end{array}
$$

With the above three examples in hand we can now plug the holes in Lemma 4.4.

Lemma 5.1. There exists a 5-fold $K_{4}-e$ design which can be 2-coloured of every order $n \geq 4$.

Theorem 5.2. The spectrum for λ-fold $K_{4}-e$ designs with $\lambda \equiv 0(\bmod 5)$ which can be 2 -coloured is precisely the set of all $n \geq 4$.

Proof: Write $\lambda=5 k$ and take k copies of Lemma 5.1.

6. The main result.

As mentioned in the introduction, the spectrum for λ-fold $K_{4}-e$ designs is precisely: (i) all $n \equiv 0$ or $1(\bmod 5) \geq 6$ for $\lambda=1$, (ii) all $n \equiv 0$ or $1(\bmod 5)$ for $\lambda \equiv 1,2,3$, or $4(\bmod 5) \geq 2$, and $($ iii $)$ all $n \geq 4$ for $\lambda \equiv 0(\bmod 5)$. Theorems $2.2,3.2$, and 5.2 combine to show that these necessary conditions for the existence of a λ-fold $K_{4}-e$ design are, in fact, sufficient for the existence of a λ-fold $K_{4}-e$ design which can be 2-coloured.

Theorem 6.1. The spectrum for λ-fold $K_{4}-e$ designs which can be 2-coloured is precisely: (i) all $n \equiv 0$ or $1(\bmod 5) \geq 6$ for $\lambda=1$, (ii) all $n \equiv 0$ or $1(\bmod 5)$ for $\lambda \equiv 1,2,3$, or $4(\bmod 5) \geq 2$, and $(i i i)$ all $n \geq 4$ for $\lambda \equiv 0(\bmod 5)$.

References

[1] J. C. Bermond and J. Schönheim, G-decomposition of K_{n} where G has four vertices or less, Discrete Math., 19 (1977), 113-120.
[2] S. I. El-Zanati and C. A. Rodger, Blocking sets in G-designs, submitted.
[3] C. Fu, The intersection problem for pentagon systems, Ph.D. thesis, Auburn University, 1987.
[4] D. G. Hoffman, C. C. Lindner, and K. T. Phelps, Blocking sets in designs with block size four, European Journal of Combinatorics, (to appear).
[0] D. G. Horman, C. U. Lindner, and A. 1. Phelps, Dlocking sets in aesigns with block size four II, Discrete Math., (to appear).
[6] C. C. Lindner, How to construct a block design with block size four admitting a blocking set, Invited lecture, Fifteenth Australasian Conference on Combinatorial Mathematics and Combinatorial Computing, University of Queensland, Brisbane, Australia, July 10-14; 1989, Australasian Journal of Combinatorics, 1 (1990), 101-125.
[7] Luc Teirlinck, Generalized idempotent orthogonal arrays, I.M.A. proceedings, to appear.

[^0]: ${ }^{1}$ Lavoro eseguito nell'ambito del GNSAGA (CNR) e con contributo del MPI
 ${ }^{2}$ Research Supported by NSF grant DMS-8913576 and NSA grant MDA 904-89-H2016
 ${ }^{3}$ Research supported by NSF grant DMS-8805475 and NSA grant MDA 904-89-H2016

