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Abstract

We construct large sets of £ — (v, k, ) designs for the parameter sets 2 —
(9,4,3), 2 — (10,4,2), 2 — (10,5,4), 2 — (11,5,2), 2 — (12,4, 3), 2 — (12,6,5),
3-—-1(12,6,2),2~(12,5,20) and 3 — {12, 5,6). The existence and non-existence
of all possible large sets of ¢t — (v, k, A) designs is now completely determined
for » < 12.

1 Introduction

At — (v, k, X) design is & pair (X, A) which satisfies the following properties:
1. X is a set of v elements (called points)
2. Ais a family of subsets of X, each of cardinality k (called blocks)
3. every ¢-subset of distinct points occurs in exactly A blocks.

At —{v,k,)) design is called simple if it contains no repeated blocks.
By elementary counting, it can be shown that if s < ¢, a ¢t — (v,k,)) design is
also an s — (v, k, ) design, where
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Since p must be an integer, this equation yields a necessary condition for exis-
tence of the f-design, for any s < f. Given ¢,k and v, there is a smallest positive
integer A*(%,k,v) such that these conditions are satisfied for all 0 < s < £.

If we complement every block of a t — (v,k, ) design with respect to the point
set, we get a £ — (v,v — k, \') design, where

A = A(”tk) .
%
©)
Hence, we shall restrict our attention to the situation where k < v/2.
Let ()f) denote the set of all (Z) k—subsets of a v—set X. Suppose A = A*(¢,k,v).
A large set of t — (v,k,)) designs is = partition of (J,E) into t — (v, k, ) designs.
The number of designs in the partition is N = (:::) /. We shall denote a large set
of t — (v, k, ) designs by LS £ — (v, k, A). Note that all the designs in a large set are
simple and we use the term “large set” only when X = A*(¢, k,v).
If we take all the blocks of a ¢ — (v, k, \) design through a point z, and delete
z, weget a (£ — 1) — (v — 1,k — 1, A) design, called the derived design. Further, if
A*(t,k,v) = A*(t — 1,k — 1,v — 1), then the derived designs of an LS ¢ — (v,k, )
forman LS (¢ — 1) — (v — L,k — 1, A).
Under certain conditions, the process of derivation can be reversed. Suppose
(X, A)is a t — (v,k,)) design, where ¢ is even and v = 2k + 1. Let oo ¢ X, and
denote X* = X U{co}. Define

A ={AU{ooc}: 4 AJU{X\A: 4 € A}.
Then, (X*, A*) isa (t+1) ~ (v + 1,k + 1,1) design [1]. This operation is called

eztension.

It is easy to see that if we have an LS t—(v,k, ) (where ¢ is even and v = 2k-+1),
and form the exiension of every design in the large set, then we obtain an LS
(t+1)— (v +1,k+1,2).

A table of ¢ — (v,k, A) designs has recently been published by Chee, Colbourn
and Kreher [6]. They list parameter sets up to v = 30, and also include information
about the existence of large sets. As well, a survey of large sets of disjoint designs
has been written by Teirlinck [24].

In this paper, we find several new examples of large sets of t — (v, k, A) designs
when v = 9,10,11 and 12. The parameter sets are 2 — (9,4,3), 2 — (10,4,2),
2 —(10,5,4), 2 — (11,5,2), 2 — (12,4,3), 2 — (12,6,5), 3 — (12,6,2), 2 — (12,5, 20)
and 3 — (12,5,6). These large sets and the algorithms used to obtain them are
described in the remainder of the paper. We also provide an updated table of large
sets of £ — (v, k, A) designs for v < 15 in the Appendix.
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« —lnvariant large seis

Let (X, A) be a t — (v,k, ) design, and let = be a permutation of X. If we let =
act on (X, A), then we obtain an isomorphic copy of the design, which we denote
(X, A7), where A" = {4" : A € A} (4™ = {z" : z € A} for 4 € A). Suppose
F={(X,A4):1<i< N}isan LS t — (v,k,X). Then, define 7~ = {(X, A7) :1 <
i < N}. It is clear that ™ is also an LS ¢ — (v, k, ), and F* is isomorphic to F.

Let G be a subgroup of Sym(X), the symmetric group on X, and let F be an
LS t — (v,k, A). We say that F is G—invariant if F* = F for all w € G.

Denote the orbits of (f) under the action of G by € = {I; : 1 <1 < s}.
Similarly, consider the set of all distinet £ — (v,k, A) designs on X, and name the
orbits of designs under the action of G as D = {A; : 1 < i < r}. Next, define the
r X & matrix M = (my;) by the rule my; = |D NTy| x |Ail/|T;], where D is any
t — (v,k,A) design in A;. (Note that the value m;; is independent of the particular
orbit representative D that is chosen.)

‘We have the following easy observation.

Theorem 2.1 There ezists ¢ G—invariant large set of t — (v, k, A} designs if and
only if there exists ¢ 6 — 1 vector U of dimenssion r such that UM = J, where J is
the s—dimensional column vector of 1’s.

We remark that any rows of M that contain entries greater than one can be
deleted, since the corresponding entry of U must be zero in any solution to UM = J.
Suppose that F is a G—invariant LS t — (v,k, ), and let 7 be a permutation
of X. As mentioned above, 7~ is an LS ¢ — (v,k,A), but it is not, in general,
G —invariant. However, if # € N{G) (the normalizer of G in Sym(X)), then F~ is
G —invariant. This observation is of use in determining isomorphism of G—invariant

LS t — (v,k,A).

3 Large sets of 2 — (9,4, 3) designs

In this section, we discuss the parameter set 2 — (9,4,3). There are seven designs
in a large set. It seems reasonable to look for an LS 2 — (9,4, 3) which is obtained
from one “starter design” by applying the seven powers of permutation o = (1 2 3
4 5 6 7)(8)(9); i.e., we take G = (¢). In such a large set, the seven designs will all
be isomorphic.

A solution U to the equation UM = J will have only one non-zero co-ordinate,
s0 it is simpler in this case to proceed as follows. Let (X, A) be a 2—(9,4, 3) design,
and let 7 be a permutation of X. For any such permutation =, it is easy to check
if (X, A") is a starter design for a large set. If so, the resulting large set will be
denoted C(A"). If we repeat this process for each of the non-isomorphic 2 (9,4, 3)
designs, then we will obtain all G—invariant LS 2 — (9,4, 3).

Clearly, C(A") = C(A™). It is also obvious that C(A™) = C(A7")if g € Aut(A),
where Aut(A) = {g : A% = A} is the automorphism group of A. More generally,
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it i1s not difficult to see that C(A") = C(A?) if and only if # = gpo*, for some
g € Aut(A) and for some 1,0 < i < 6.

Define H = Aut(A) and HpG = {hpg: h € H,g € G}. We shall obtain exactly
|HpG| copies of each large set. In fact, it turns out that |HpG| = |H| x |G]|. We
see this as follows. Suppose that hpg = h'pg’, where h,h' ¢ H,g,9' € G. Then,
p A7 hp = g(g')!. Now, p~ A" h'p € H” and g(¢')™* € G. But, it is easy to
see that no non-identity element of G can be an automorphism of any 2 — (9,4, 3)
design. Hence, h = h' and g = ¢, and thus |HpG| = |H| x |G|.

The non-isomorphic 2 — (9,4, 3) designs have been enumerated in [23], [12] and
[3]; there are precisely 11 non-isomorphic designs. We find that only two of the 11
designs admit large sets that are constructed in this fashion, and each of these two
designs gives rise to a unique large set up to isomorphism.

Large Set #1

{1,9,2,5} {1,9,8,3} {1,9,4,6} {1,2,8,3} {1,2,4,6} {1,7,5,8}
{1)7,574} {1’7’3,6} {91237’3} {93257?6} {977’8’4} {975’8?6}
{9,5,3,4} {2,7,8,4} {2,5,8,6} {2,53,4} {7,5,3,6} {8,3,4,6}

Large Set #2

{6,8,1,2} {6,8,2,7} {6,8,5,4} {6,1,7,3} {6,1,7,9} {6,2,5,4}
{6$ 3, 57 9} {673’ 91 4} {8’ 1’3’ 5} {8’179’ 4} {8’ 2’ 3’ 9} {8’ 71 37 4}
{8,7,5,9} {1,2,3,4} {1,2,5,9} {1,7,5,4} {2,7,3,5} {2,7,9,4}

The underlying design for Large Set # 1 has an automorphism group of order 8,
and we find that exactly 672 permutations give rise to a large set. Since 672 = 8 x
7 % 12, we know that there are exactly 12 distinct large sets among the 672. In fact,
these 12 large sets are all isomorphic. The isomorphistus are the 12 permutations in
the group (a,3), where & = (1 3 2 6 4 5)(7)(8)(9) and A = (1)(2)(3)(4)(5)(6)(7)(8
9). Note that {a, ) is a subgroup of the normalizer N(G).

A similar situation arises with Large Set # 2. The underlying design has an
automorphism group of order 32, and we find that exactly 1344 permutations give
rise o a large set. Since 1344 = 32 X 7 x 6, there are exactly 6 distinct large sets
among the 1344. The 6 large sets are all isomorphic. This large set has o®f as an
automorphism, so (o) will permute the six distinct isomorphic copies of Large Set
# 2. :

Hence, we have the following.

Theorem 3.1 Leto = (1234 56 7)(8)(9) and G = (o). Then there are precisely
two non-isomorphic G—invariant L5 2 — (9,4,3).
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4 Large sets of 2 - (11,5, 2) designs

There is precisely one non-isomorphic 2 — (11,5,2) design [14]. We shall use the
following 2 — (11, 5,2) design (X, A), where X = {1,...,11}.

{1,2,3,7,10}  {1,2,6,9,11} {1,3,4,5,9}  {1,4,6,7,8}
{1,5,8,10,11} {2,3,4,8,11} {2,4,5,6,10} {2,5,7,8, 9}
{3,5,6,7,11} {3,6,8,9,10} {4,7,9,10,11}

Its automorphism group is PSL(2,11) and has order 660. Therefore, there are
111/660 = 60480 distinct 2 — (11,5,2) designs on X. Note that we can construct
these 60480 designs by computing the 60480 coset representatives of PSI(2,11)

‘in 53;. We can obtain the 60480 coset representatives by the following easy trick.
PS5IL(2,11) is & subgroup of index 12 of the Mathieu group MMy, which is in furn
a subgroup of index 7! of §4;. It is not difficult to find 12 coset representatives of
PSL(2,11) in My;. To find 7! coset representatives of My, in Sy, is also easy: take
the 7! permutations that fix the points 1 —4. These 7! permutations are in different
cosets since My, is sharply 4—transitive, and hence no non-identity element fixes
four points. :

A large set will consist of 42 designe. It seems reasonable to search for large sets
generated from six starfer designs using the permutation o = (1}2)(8)(4) 56 7 8
910 11). Such a large set will be G—invariant, where G = {¢).

There will be 60480 / 7 = 8640 G —orbits of 2— (11, 5,2) designs. We can obtain
2 list of orbit representatives by taking the 8640 coset representatives that fix the
point 5. It turns out that 2160 rows of the mairix M contain an entry exceeding one,
50 we are left with a 6480 X 66 matrix M’. We proceed to find all binary solutions
U to the equation UM’ = J using our binary knapsack solver Synth. Note that any
solution contains exactly six non-zero entries. The solutions were enumerated in
about three weeks time on a SPARCstation 1. The resulting solutions were tested
for isomorphism using Brendan McKay’s graph isomorphism program Naufy. It
was found that there were five large sets, up to isomorphism. Hence, we have the
following.

Theorem 4.1 Let o = (1)(2)(3)(4)(5 6 78 9 10 11) and G = (5). Then there are
precisely five non-isomorphic G—invariant LS 2 — (11,5,2).

The six starter designs in a large set are described by letting suitable permuta-
tions act on the design (X, A). The permutations used to generate the five large
sets are as follows.

Large Set #1
1. (1254610837911)
2. (14811105 7)(26)(39)
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< W@ HENON L1710 8)9)
4. (1328 4 6)(5 7)(9)(10)(11)

- (1)(2)(3)(4)(5)(6 89 7 10)(11)
. (1311)(2 9 57 10)(4)(6 8)

(<48

(=

Large Set #2
- (1)(2)(3)(4)(5)(6 10)(7)(8 11)(9)

- (1)(2)(3)(4)(5)(6 8 9)(7)(10)(11)
. (111)(274539106)(8)

ek

[

(2]

N

. (1462 7)(39)(5 11 8 10)

=

. (1326)(4 75119 8)(10)
6. (13876 11)(2 10)(4)(5 9)

Large Set #3
1. (1462 7)(3 9)(5 10)(8)(11)
2. (125483910 11)(6)(7)
3. (13264105811 97)

>N

. (1410511 87)(26)(39)
5. (110 97 4285 3)(6)(11)
- (12)(3)(4)(5)(6 710 8)(9 11)

=]

Large Set #4

1. (149731158 6)(2)(10)

(]

.(1108532674)(911)

(2

. (1472105119 3 6)(8)

>

.(176105)(24311809)

(=)

. (11121074539 6)(8)

2]

. (16 74)(2 985 3)(10)(11)
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Large Set #5

1. (1631197104 8)(2)(5)
2. (125483709 11)(6)(10)

2]

. (132 7)(4 6)(5 10)(8 11)(9)
4. (1871052 439)(6)(11)
5. (1639 8)(2)(4 10)(5)(7 11)
6. (13 11)(2 8 10)(4)(5 7 6 9)

5 Large sets of 2 — (10,4, 2) designs

There are precisely three non-isomorphic 2 — (10,4, 2) designs [19]. The design D,
has automorphism group G; = (a1, ;) of order 720, where a; = (13258697
10) and f; = (1793 2)(4 8 6 10 5). D, is obtained from the starter block {1,2,3,4}
under the action of Gy.

The design D, has automorphism group Gy = (az, 2} of order 48, where oy =
(194)(2351076)andf; = (18894)(3576). D, is obtained from the two
starter blocks {1,2,3,4} (orbit of length 12) and {2,3,7,10} (orbit of length 3).

The design Dj has automorphism group G5 = (ag,fs) of order 24, where ag =
(184)(2637510)and fs = (23 6)(4 9 8)(5 710). D; is obtained from the
three starter blocks {1,2,3,6} (orbit of length 8), {1,2,4,7} (orbit of length 6) and
{1,4,8,9} (fixed block).

We searched for G'—invariant large sets, where ¢ = (0) and o = (1)(2)(3)(4 5
6 789 10). A large set must contain exactly 14 designs, and since a 2 — (10,4, 2)
design has no automorphisms of order seven, a large set is comprised of exactly two
orbits of designs under G.

Since ¢ cannot fix a 4-set or a 2 — (10,4,2) design, it follows that G—orbits
of 4-sets and of 2-(10,4,2) designs all have length seven. Hernce, there are exactly
(140) /T = 30 orbits of 4-sets under G. There are altogether [S10l/|G1| = 101/720
= 5040 2 — (10,4,2) designs isomorphic to I)y, fused into 5040/7 = 720 orbits of
designs isomorphic to D;. We proceed to compute the matrix M = M;, having
dimensions 720 x 30, as in Section 2. Here it turns out that every row of M; has
at least one eniry which exceeds 1, so that there can be no binary solutions U to
the matrix equation UM, = J. In fact, no G—invariant large set can involve a
2 — (10,4, 2) design isomorphic to D;.

There are & total of |S10|/|G3| = 10!/48 = 75600 designs isomorphic to D,,
comprising exactly 75600/7 = 10800 orbits of designs of type D, under G. Thus,
the matrix M = M, has dimensions 10800 x 30. After removing those rows of
M, which contain entries greater than 1, we obtain & submatrix Mj, of dimensions
444 x 30. It required about one minute computing time on a SPARCstation 1 for
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OUr Program JSYnin 10 delermine tnat 1nere are No piary soluuions U 1o 1ne sysiein
UM; =J.

There are a total of |S1e]/|Gs| = 10!/24 = 151200 designs isomorphic to Ds, and
these fuse into 151200/7 = 21600 orbits under G. Here the matrix M = M; has
dimensions 21600 x 30, but after removal of the rows with entries greater than 1, we
obtain a submatrix M} of dimensions 1104 x 30. A Synth run required about six
minutes to determine the complete set of binary solutions to the system UM} = J.
There are presicely 36 solutions, yielding G—invariant LS 2 — (10,4,2) in which all
14 designs are isomorphic to Ds. These 36 solutions are all isomorphic.

There remains the possibility that there could exist G—invariant LS 2—(10,4,2)
in which one G—orbit of designs is isomorphic to D;, and the other G—orbit of de-
signs is isomorphic to Dy, By concatenating the matrices Mj and M;, we construct
a matrix M, of dimensions 1548 x 30. We determined that there are a total of 84
binary sclutions to the system UM, = J. 36 of these solutions comprise two orbits
of designs isomorphic to D, and were discussed above; the remaining 48 solutions
split into exactly two further isomorphism classes.

We now present representatives of the above three classes of large sets. In the
first example, both starter designs are isomorphic to Ds; in the second and third
examples, one starter design is isomorphic to D, and the other is isomorphic to Dj.

Large Set #1
1. D", n=(1493876)25)
2. D, p=(17356)(2984)

Large Set #2
1. Dy, m=(15786)(29)(3104)
2. Dy, p=(173849105)

Large Set #3

1.D ,x=(1791026853)

2. D, p=(11038472695)
Summarizing, we have the following result.

Theorem 5.1 Leto = (1)(2)(3)(4 56 78 9) and G = (¢). Then there are precisely
three non-isomorphic G—invariant LS 2 — (10,4,2).
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¢ A large sel Of 4 — (1U,0,4) GQESIgNS

There are precisely 21 non-isomorphic 2—(10, 5, 4) designs [27]. We found a large set,
consisting of 14 designs, generated from two starter designs using the permutation
o= (123456 7)(8)(9)(10). The two starter designs are obtained by letting the
two permutations (1 2 5 9 3)(4 10)(6 7)(8) and (1 8 6 9 10 7 3 4 5)(2) act on the
following 2 — (10, 5,4) design.

{1,2,3,4,5} {1,2,3,4,6} {1,2,6,7,8} {1,2,8,9,10}
{1,3,5,8,10} {1,3,7,9,10} {1,4,5,7,10} {1,4,6,8,9}
{2,3,5,8,8} {2,3,6,7,10} {2,4,5,7,9} {2,4,7,8,10}
{3,4,6,9,10} {3,4,7,8,9} {1,5,6,7,9} {2,5,6,9,10}
{3,5,6,7,8 {4,5,6,8,10}

We suspect that it would be computationslly feasible to perform an enumeration
of all non-isomorphic (¢)—invariant LS 2 — (10, 5,4). Since it would be quite time-
consuming, we contented ourselves with one example.

7 A large set of 2 — (12,4, 3) designs

For reasons not entirely clear, the search for an LS 2 — (12, 4, 3) was frustratingly
long. A short description of these efforts may interest the reader. We say that a
set of mutually disjoint designs is of type (o, p) if each of the designs has o as an
automorphism and p permutes the designs amongst themselves. If the set is a large
set, it will be G—invariant where & = (o, p).

Leto, =(1234567891011)(12) andlet oy = (14 5 9 3)(2 8 10 7 6)(11)(12).
Consider the following sets of blocks:

M, = {{1s 2,3,5},{1,2,6, 8}: {17 4,1, 12}}

M, = {{1,2,3,7},{1,2,4,10},{1,4,8,12}}
Ny = {{1,2,38,6},{1,2,5,10},{1,3,8,12}}
N, = {{1,2,3,6},{1,2,5,10},{1,8,7,12}}

Applying powers of oy to any one of My, My, Ny, or N, produces a 2 — (12,4, 3)
design. Then, applying powers of ¢, to any one of these designs gives a set of five
disjoint designs of type (o1,0,). We label these sets FM,,FM;, FN; and FN,,
respectively. Each FM; is disjoint from each FN; and this gives all non-isomorphic
sets of ten disjoint 2 — (12,4, 3) designs with automorphism oy on each design.

We attempted to obtain an additional set of five disjoint 2 — (12,4,3) designs
by searching for a “iransversal” across the 33 orbits of length five of four-sets in
the complementary set of 165 blocks. There are only two nonisomorphic sets of 165
blocks disjoint from the four initial sets of 10 x 33 = 330 blocks. An exhaustive
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search showed tnat no such transversal exists. Serious efforts to decompose these
165 blocks in other ways were not made.

Another attempt focused on &,. There are 99 orbits of four-sets, each of length
five, under the action of o;. Several 2 — (12,4,3) designs (taken from Constable
(8]) were hit with random permutations. Roughly one in fifieen of these random
copies of & 2 — (12,4,3) design forms a “transversal” of 33 of the 99 orbits and
hence gives rise to five disjoint 2 — (12,4,3) designs. Over 30,000 such sets of five
disjoint 2 — (12,4, 3) designs were found but very few sets of ten mutually disjoint
2 - (12,4, 3) designs were found. Searches for a final “transversal” of the remaining
33 orbits were unsuccessful whenever tried.

The next attempts used alternate numerology. Observe that three divides v =
12, b = 33, and 15 (the number of designs in an LS 2 — (12,4,3)). Assume o3 =

(12 3)(4 56)(7 8 9)(10 11 12) and o4 = (1 4 7)(2 5 8)(3 6 9)(10)(11)(12) are
automorphisms of our LS. An LS of 15 designs might arise in a mixture of ways. For
example, an LS might have some sets of three mutually disjoint 2— (12,4, 3) designs
of type (o3,04) or of type (04,03). Alternatively, there might be “transversal”
designs across orbits of size three under o3 or across orbits of size three under oy.
This approach (though very promising) was not seriously pursued since a large set
was found by a different method.

Let o= o5 = (123)(456)(789)(10 11 12) and p = (1 47 10)(2 5 8 11)(3 6 9
12). Then o and p generate a cyclic group G of order 12. If G acts on our LS, there
must be some designs in the large set fixed by p, since four does not divide 15. We
assumed there would be three mutually disjoint designs of type (p, o) that would
cover all orbits of lengths 1 and 2 under the action of p. The other 12 designs might
partition into three disjoint sets where each set consists of four mutually disjoint
2 — (12,4,3) designs of type (o, p).

Such sets of 12 disjoint designs were easy to create, but efforts to decompose the
remaining 99 blocks, in the intended way, failed. In reverse order, we started with
a set of three disjoint designs of type (p,0) and iried decomposing the remaining
blocks. One attempt ran for a week but no large set resulted. In frustration, about
80 non-isomorphic sets of three designs of type (p, o) were generated.

It turned out that three of these 80 sets of 99 blocks had automorphism groups
of order 24 (rather than order 12 = |G|). After one of these three “special” sets of
three disjoint designs of type (p, o) was selected, a simple hill-climbing algorithm
was used to find 2 — (12,4,12) designs from the unused blocks. A design was saved
if it decomposed into a type (o, p) set of four disjoint 2 — (12,4,3) designs. This
process was repeated on the remaining blocks.

After several futile runs a fortuitous overnight run produced an LS. Consider
the following sets of blocks.

{1,2,4,5} {1,2,8,12} {1,2,9,11} {1,4,10,11}
s {1,5,6,9} {1,5,10,12} {1,6,7,8}  {1,7,9,12}
{4,5,9,10} {4,7,9,12} {4,7,10,11}
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{1,2,3,7  {1,4,5,7r {1,4,8,10} {1,4,11,12}
s, {1,5,6,8}  {1,5,6,10} {1,6,11,12} {1,7,9,10}
{1,9,11,12} {4,7,8,11} {4,8,9,10}

{1,2,5,11} {1,2,8,9}  {1,2,11,12} {1,4,5,8}
Ss {1,4,5,12} {1,6,7,9} {1,6,7,10} {1,6,8,12}
{4,5,7,12} {4,7,10,12} {7,8,11,12}

Applying powers of o to each S; produces the 33 blocks of a 2 —(12,4,3) design.
Then, applying powers of g to each such design produces a total of twelve mutually
disjoint 2 — (12,4, 3) designs. We need three more disjoint designs that are disjoint
from these twelve.

Define the following set of blocks T'.

o 3,6,9,12} {1,3,7,0} {2,6,8,12} {1,2,3,4} {1,2,3,10}
{1,2,5,7} {1,4,9,12} {1,5,8,12} {1,6,8,11} {2,3,8,12}

Now apply powers of p to the blocks in T to produce orbits of lengths 1, 2, 2, 4,
4,4, 4, 4, 4 and 4 (respectively). Thes 33 blocks give another 2 — (12,4,3) design.
Now, applying powers of o to this design gives a total of three 2 — (12,4,3) designs
which complete the large set. This large set is G—invariant where G = {0, p).

8 A large set of 3 —(12,5,6) designs

We also found a large set of 3 — (12,5,6) designs. There are six designs in a large
set. The key here is {o recognize that if one can get five disjoint designs then the
sixth one follows. Hence, we might define p = (1 4 5 9 3)(2 8 10 7 6)(11)(12) and
hope to find a G—invariant large set with G = {p). This will require that one design
be fixed by G, and the others cycle through an orbit of size five.

Define o= (12345678910 11)(12) and let (o, p) act on the following four
starter blocks:

{1,2,3,4,8} {1,2,4,5,12} {1,2,3,5,8} {1,2,3,7,10}

The resulting set of 132 blocks forms a 3 — (12,5, 6) design.
Next, let o act on the following set of twelve blocks.

{1,2,3,5,7} {1,2,3,6,7}  {1,2,3,6,9}  {1,2,3,8,10}
{1,2,3,8,12} {1,2,3,10,12} {1,2,4,5,7}  {1,2,4,5,8}
{1,2,4,6,10} {1,2,4,8,12} {1,2,6,10,12} {1,3,6,9,12}
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A8 PrOduces anoiner ¢ — (14,90, 0) aesign. rinaly, let the powers Ol p act on tnis
design, obtaining a total of six 3 — (12,5,6) designs. This set of six 3 — (12,5,6)
designs is a large set.

Note that this large set implies the existence of s large set of 2 — (12,5,20)
designs.
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daples ol large setis
In the following tables, N denotes the number of designs in the large set and ?

indicates that the large set is unknown. Also, * Denotes that the design does not
exist.

Table 1: Existence of large sets of ¢t — (v,k, \) designs, 6 <v < 12

Parameters N | Existence | Remarks

2—(6,3,2) 2 yes Bhattacharya [2]

2—(7,3,1) 5 no Cayley [4]

2 (8,4,3) 5 yes Sharry and Street [22]
3—(8,4,1) 5 no LS 2~ (7,8,1) does not exist
2-(9,3,1) 7 yes Kirkman [15]

2—(9,4,3) 7 yes this paper

2-—(10,3,2) 4 yes Teirlinck [25]

2—(10,4,2) |14 yes this paper

3 —(10,4,1) 7 no Kramer and Mesner [186]
2-(10,5,4) |14 .yes this paper

3 —(10,5,3) 7 yes extension of LS 2 — (9,4, 3)
2-(11,3,3) 3 yes Teirlinck [26]

2 —(11,4,6) 6 yes Chee, Colbourn, Furino, Kreher [5]
3 (11,4,4) 2 ves derivation of LS 4 — (12,5,4)
2—(11,5,2) |42 yes this paper

3-(11,5,2) |14 no * Oberschelp [20] and Dehon [9]
4—(11,5,1) 7 no LS 3 — (10,4,1) does not exist

2 -(12,3,2) 5 yes Schreiber [21]

2—-(12,4,3) |15 yes this paper

3-(12,4,3) | 3 yes Teirlinck [26]

2—-(12,5,20) | 6 yes LS 3 —(12,5,6) as 2—designs
3-(12,5,6) 6 yes this paper

4 —(12,5,4) 2 yes Denniston [11]
2—(
3—(
4—(
5—(

12,6,5) |42 yes LS 3 —(12,6,2) as 2—designs
12,6,2) |42 yes extension of LS 2 — (11,5,2)
12,6,2) |14 no * LS 3 — (11,5,2) does not exist
12,6,1) 7 no LS 3 — (10,4,1) does not exist
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dable 41 Lxistence ol Jarge s€is8 Ol 7 — (V, 8, A QCEIgNE, 13 & U I o

Parameters N | Existence | Remarks

2 (13,3,1) 11 yes Denniston [10]

2 (13,4,1) 55 yes Chouinazd [7]

3-(13,4,2} 5 yes Magliveras and O'Brien (unpublished)
2 - (13,5,5) | 33 ?

3~ (13,5,15) 3 yes Chee, Colbourn, Furino, Kreher [5]
4-(13,5,3) | 3

2-(13,6,5) | 66

3-(13,6,20) | 6

4-(13,6,6) | 6

5 (13,6,4) 2 yes derivation of LS 6 — (14,7,4)
2 —(14,3,86) 2 yes Hanani [13]

2 - (14,4,6) | 11 ?

3—(14,4,1) | 11 ?

2 —(14,5,20) | 11 7

3 (14,5,5) | 11 ?

2 - (14,6,15) | 33 ?

3-(14,6,5) | 33 ?

4 —(14,86,15) 3 yes Chee, Colbourn, Furino, Kreher [5]
5-(14,6,3) | 3 ?

2 - (14,7,6) |132 ?

3-(14,7,5) | 66 ?

4—(14,7,20)| 6 ?

5—-(14,7,6) | 6 ?

6 — (14,7,4) 2 yes Kreher and Radsziszowsk [17]
2—(15,3,1) 13 yes Denniston [10]

2-(15,4,6) | 13 7

2 —(15,5,2) | 143 ?

3-(15,5,6) | 11 ?

4 - (18,5,1) | 11 no ¥ Mendelsohn and Hung [18]

2 —(15,6,5) | 143 7

3 (15,6,20) | 11 ?

4-(15,6,5) | 11 7

2 —(15,7,3) |429 ?

3-(15,7,15) | 33 ?

4-(15,7,5) | 33 ?

5—(15,7,15) | 3 ?

6—(15,7,3) | 3 ?

205







