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Abstract

Generalized Bhaskar Rao n-ary Designs'with elements from abelian groups
are defined. This paper studies a special case of Generalized Bhaskar Rao n-
ary Designs called Bhaskar Rac Ternary Designs. A Bhaskar Rao Ternary
Design, X, is a v x b matrix of 0's, +1's and +2's such that the inner product of
any two rows is 0 and the matrix obtained by replacing each entry of X by its
absolute value is the incidence matrix of a Balanced Ternary Design.
Applications of these designs to the construction of infinite families of
Balanced Ternary Designs and Partially Balanced Ternary Designs are
presented. Some construction methods and necessary conditions for the
existence of Bhaskar Rao Ternary designs are given. A necessary condition
for the existence of balanced ternary designs with even A and block size 4t is
given,

1. infroduction

We shall assume that the reader is familiar with the concept of a balanced
incomplete block design (BiBD) with parameters (v,b,rk,A), and the
incidence matrix of a BIBD; for example see Street and Street(1987). A
balanced n-ary design, introduced by Tocher(1952) in a slightly different
form, is similar to BIBD except that its blocks are multisets and any point may
appear in a block at most n-1 times. For an excellent survey on n-ary designs
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see Billington(1984). When n=3, these designs are called balanced
ternary designs (BTDs). A BTD on V points is a collection of B multisets
(called blocks) of size K, where each element occurs singly in p; blocks and
repeated in p, blocks , such that each pair of distinct elements occurs A
times in the design. Clearly each element will occur a constant number, say R
=py +2p, times. A block say, aabc, of size 4 with an element a occurring
twice and elements b and ¢ occurring singly is said to have the pairs (a,b) and
(a,c) twice and the pair (b,c) once. We say that the BTD has parameters (V, B,
P1» Pp. Ri K, A). The incidence matrix N = ("ij) of a BTD is a V x B matrix and
its (i,j)th entry njj is equal to the number of times the point i occurs in the jth
block. Let A= Znij2 where the sum is over . Saha(1975) has shown that A is
independent of any row. In fact for BTDs, A = py+4p, = RK-AV+A. The
existence for these designs with block size three is proved by Billington(1985)
and families of BTDs with block size four are obtained in
Donovan(1986a,1986b, 1986¢) but as in the case of BIBDs the general
problem is still open. Billington and Robinson(1983) have a list of BTDs with
R < 15 and several necessary conditions for the existence of BTDs. Dillon and
Wertheimer(1985) have used other combinatorial designs for example group
divisible designs and weighing designs, to obtain several of the designs
which are listed in Billington and Robinson(1983) as unsolved or were
obtained by computer search. Using Bhaskar Rao Designs Sarvate and
Seberry(to appear) also have obtained designs which are nonisomorphic to
the solutions given in Billington and Robinson(1983) or the solution was given
by listing all the biocks. Many authors, for example Misra(1988), Patwardhan
and Sharma(1988), Saha and Dey(1973) Sarvate(1989,1990), Sinha, Mathur
and Nigam(1979), Sinha and Saha(1979) have obtained various partially
balanced and balanced ternary designs whereas Vartak and Diwanji(1989)
have constructed column-regular BTDs. Kageyama (1980) and Dillon and
Wertheimer(1985) have obtained a characterization of certain balanced n-ary
and ternary designs. Patwardhan, Dandwate and Vartak(1984) have used
balanced orthogonal designs to obtain generalized partially balanced ternary
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gesigns with two associate classes and with triangular association scheme.
Billington and Hoffman(to appear) have proved that a balanced ternary design
with block size 3, index 2 and Po = 2 exists which contains exactly k pairs of
repeated blocks if and only if v=0or 2 modulo 3,v25,and 0 <k < v(v-5)/g,
k+1 # v(v-5)/6. In this paper we obtain some constructions of n-ary designs
through a generalization of Bhaskar Rao designs.

Generalized Bhaskar Rao designs on binary designs are studied by a
number of authors such as Bhaskar Rao(1966,1970), de Launey(1989), de
Launey and Seberry(1984), Gibbons and Mathon{1987), Koukouvinos,
Kounias, and Seberry (to appear), Lam and Seberry(1984), Palmer and
Seberry(1989), Sarvate and Seberry(to appear), Seberry(1985),
Singh(1982), Street and Rodger(1980), Vyas(1982) and the references
therein. These authors have used GBRDs to construct BIBDs and PBIBDs.
Curran and Vanstone(1988/89) constructed previously unknown resolvable
BIBDs by using GBRDs. As mentioned earlier in Sarvate and Seberry (to
appear) BRDs are used to construct n-ary designs. The aim of this note is to
define GBRDs for n-ary designs, obtain some necessary conditions for the
existence of Bhaskar Rao Ternary Designs (BRTDs), give some construction
methods and then use these designs to construct n-ary designs, where our
emphasis is on ternary designs. It is interesting to note that when we modified
one of the methods of construction of PBIBDs by BRDs, using BRTDs we were
able to construct balanced n-ary designs with little modification. This result
encourages us to modify all the known methods of constructing block designs
from matrices with group elements to the case where matrices are
Generalized Bhaskar Rao n-ary Designs. Keeping with this spirit and also
because we need these result for the construction of BRTDs and BTDs, in this
paper several results from Seberry(1984) are being modified for the BRTD
case.

Definition: Suppose we have a matrix W with elements as integral multiples
of a finite group G = {hq,ho, .. ., hgl where W = hqAq + hoho +. .. + hgAg
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and Aq, Ag, ..., Ag are vxb (0,1,2,..., n-1)-matrices, (n is a positive integer
greater than or equal to 2) and the Hadamard product A;* Aj,i=]is zero.
Suppose (t1ajq, - . ., tpajp) and (s1bjq, . . ., Sbbjb) are the ith and jth rows of W
then we define WW' by (WW');; = (t1ajq, . .. ,tbaib)-(s1bj1‘1, ce sbbjb'1) with

the scalar product. Then W is a generalized Bhaskar Rao n-ary
design or GBRn-aryD if

()WW =Al+ 3 (¢G)B, and

i=1

iy N=Ag+. .. +Ag satisfies NN' = Al + g AB;,
i=1
that is N is the incidence matrix of a partially balanced n-ary design, and (¢;G)

gives the number of fimes a complete copy of the group G occurs. In this

paper we shall only be concerned withn=3, m=1,¢c= % and By = J-I. That
is, in this case N is the incidence matrix of a balanced ternary design. So the
above equations become:

() WW' = Al + 4 G (J-I);

(i) NN' = (RK-AV)l + A J.

Such a matrix W is denoted by GBRTD(V,B,py,p2,R;K,A;G) or
GBRTD(V,K,A;G) when the values of p4 and py are clear from the context.

Example 1. GBRTD(3,9,3,3,9;3,6;Z3), X, is given below:
2 0 1 2 0 1 2 01
X= w20 w2 0 120
0 waw 0 w22aw2 0 1 2
One can check that XX' = 151 + 2Z4(J-1) as required.

Now consider the case when n = 3, that is, N is the incidence matrix of a
ternary design and G = Z, = {1,-1}. In this case we will refer to it as a Bhaskar
Rao Ternary Design, BRTD(V,B;p,p2,R;K,A).
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Example 2. BRTD(3,6;2,2,6;3,4,Z5) = BRTD(3,6;2,2,6;3,4):
f2 012 071
120120

| |
l0120--2

As is common in the case of binary designs we refer to a BRTD as a signed
matrix and the process of labelling + or - to the elements of the incidence
matrix of a BTD (Balanced Ternary Design) as signing the BTD. Also notice
that for a BRTD W, WW' = (R+2p2)i. Now we will give one more example of
BRTD with block size four as we will use it to construct families of BTDs and
BRTDs. This BRTD is a member of a series of BRTDs obtained by cyclic
difference sets in Francel and Sarvate(to appear).

Example 3. BRTD(6,12;4,2,8:4,4).
201001 20100
120100 120100
012010 01-2010
001201 00120 1
100120 100-1 20
010012 0100-12

2. Some Necessary Conditions

A trivial necessary condition for the existence of a BRTD is
Theorem 2.1. A necessary condition for the existence of a BRTD is that A
should be even.

The following Theorem and its proof is based on Theorem 2.3 of Bhaskar
Rao(1970). A similar result for Bhaskar Rao Designs can be found in Street
and Rodger (1980, Theorem 5)
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Theorem 2.2. A necessary condition for the existence of BRTD W is that

when K = 3(mod 4) then ;:—BK(K-1) -%sz must be even, and when K-1 is
4 times an odd integer then 2B - Vp2 = 0(mod 4).
Proof. Let W=A - B, where A + B = N is the underlying BTD. Then

AA' + BB = L (NN' + WW)

BN e B

(RK-AVL + A+ (R+2p2)|)
Consider
Jy Y, (A :BYA :BY Jy 1 =1 ’V(AA‘+BB')JV71
= 3J4 YI(RK-AV) + A J + (R+2p,) )y 4
The left hand side of the above equation is Zsz + (K~K-)2, where K; is the jth

J J
column sum of A. The right hand side of the above equation is

3 VR(K+1) + Vp, = 3 BK(K+1) + Vp,,.
Now using BK? = X(Kj+k-Kj)2 and the above equation, we get

S(K-K)K; = 5 (BK(K-1) - 2Vpy).
Now if K = 3 (mod 4) or K-1 = 4(2s+1) , s 2 1, the left hand side of the above
equation is even. Arithmetical manipulation on the right hand side now gives
the result.

i

Corollary 2.3. A necessary condition for the existence of a BRTD when K
=3 (mod 4)is:
If Vp, = 0(mod 4) then B =0(mod 4) ;
If Vp2 = 1(mod 4) then either B = 1(mod 4) and K(K-1) = 1(mod 4)
or B =3(mod 4) and K(K-1) = 3(mod 4) ;
If Vp2 =2{mod 4) then B=2(mod 4);
if sz = 3(mod 4) then either B = 1(mod 4) and K(K-1) = 3(mod 4)
or B =3(mod 4) and K(K-1) = 1(mod 4).
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nonexistence of BRTDs when K is even. The next theorem based on a result
of Seberry(1984, Theorem 1) modifies the above result.

The following table gives some of the designs which do not satisfy the
necessary condition in Theorem 2.2 and so BRTDs with these parameters do
not exist.

Ne. Vv B Py Po K A Noin Billington
and Robinson(1983)

1. 3 7 5 1 3 6 15
2. 3 8 4 2 3 6 31
3. 3 g 3 3 3 6 54
4. 3 11 9 1 3 10 89
5. 3 12 8 2 3 10 126
6. 3 14 6 4 3 10 242
7. 3 15 13 1 3 14 270
8. 3 i5 5 5 3 10 312
9. 7 14 6 2 5 6 74
10. 10 28 12 1 5 6 208
1. 10 30 8¢ 3 5 & 296
12. 6 i8 5 5 5 10 315
13. 7 7 1 3 7 6 25
14, 7 it 5 3 7 10 103
15, 14 28 8 3 7 6 234
i6. 13 26 2 & 7 6 258
17. 7 15 9 3 7 14 208
i8. 14 30 3 8 7 6 334
9. 18 19 9 1 it 6 95
20. 18 18 3 4 i1 86 109
21, 11 11 1 5 11 10 113
22. 22 26 9 2 i1 6 182
23. 11 15 5 5 11 14 321
24. 26 26 7 3 13 6 74
25. 26 26 7 3 13 6 191
26. 15 15 1 7 15 14 344

Table 1.

171



tHCVICH £.5%. A DlldoRal ridU [(Chidly UCoIyii ¥v = D U(V,D;p-l ,p2,r\,r\,A),
can only exist if the equations
() xg+3x5+ 6%, +. . . +{&(KE1)xe =3 (B(K-1)+2p,V) for K odd,

(i) -Xg+3x4+8%g+ . . . + (4 (KZ-A)x = & (B(K-4)+2p,V) for K even,

have integral solutions. In particular, for K =3, a BRTD can only exists if 4
divides B + poV and for K = 4, a BRTD can exist only when we have an
integral solution for the equation Xg + 3x 4= ,;_pzv.

Proof. Suppose that WW' = Al. Suppose that the column sum of the ith
columnis s;. So we have

Ts2 = (1. OWW(LL 1) = AV L (21)
If K is odd then the column sums can only be £1, £3,. . . zKand if Kis even
then the sum can only be £0, 2, . . . K. Hence if there are xj columns with
column sum i, then using (2.1) we have
Xy+ 9%z + . .. +K2xK = AV,
X{+ Xg+... + xk = B for K odd
and
4xp +16x4 +. . . +K2xK =AV,
Xg+ Xo + X4 +... + XK =B forKeven.

Now VR=BK and A=R+2p,,we have
Bxg+24xg +. . . + (K21)xy = VR-B+2p,V
= B(K-1) + 2p2V for K odd
and
“Axgt12x4 +. . .+ (K2 - 4)xc = VR - 4B + 2p,V
= B(K-4) + 2p2V for K even.
Hence for K = 3, we have 4 divides B+2p2V

and for K =4, we have -Xxg + 3xy4 =§‘-92V.
I

Unfortunately for K= 4 the above theorem on its own can not directly give any
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result because the conditions A(V-1} = H{K-1)-2F2 and ViE=BK can be used to
obtain a necessary condition for the existence of a BTD with even A and block
size 41

Theorem 2.5. No BTD with even A and block size 4t exists if VP is odd,

3. Special Cases.

3.1, Block size 2: A ternary design with block size two is of no interest to

us as it wili be then only & binary design.

In this case Bhaskar Rac(1970) has shown that there always exist a BRDs

with parameiers {v, viv-1), 2ilv-1), 2, 2t).

From now on we will De concerned with termary designs where PiPs> 0. itis
well known that any balanced ternary design is regular; that is, each slement
ocours | imes in P blocks, i = 1,2, where Py and p, are constant for the
design. {See Corollary 2.4 of Billington(1984)). Recall that the understanding
is that balanced ternary designs means balanced equireplicate ternary
designs.

3.2. Block size 3: Billington(1885) has proved the following result.
Theorem 3.1. Necessary and sufficient conditions for the existence of a
BTD with K=3 are

() Viscongruent mod 6 o a value as given below,

{mod 6)
| 2 s 4 5 __ 0 1
Po 01 0,134 1,35 0,1,34 13 012345 1,3
(mod 3} 1 0,3 3 0,235 3 0,3 35
2 1 0235 3 0,3 35 0,3 3

and
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14p, /Al +1 ifAiseven,
iy V 2
L{4p2 /(A—l)‘ +1 ifA is odd.

The following theorem is also from Billington(1985).

Theorem 3.2. A BTD with K=3, any A and Po exists for all V = 3(mod 6)
satisfying Theorem 3.1ji).

Using the same designs constructed in the proof of the above Theorem in
Billington(1985), we can prove :

Theorem 3.3. A BRTD with K =3 and V = 3 (mod 6) exists for any even
A =0 (mod 4).

Prootf. The construction for BTD with K=3 and V=3(mod 6) given in Billington
(1985) is reproduced in this proof for easy reference: We know that there
exists a resolvable Steiner triple system (STS) on 6a+3, a =z 0 elements, for
example see Ray-Chaudhuri and Wilson(1971). Take A identical copies of
such a resolvable STS. Remove two identical copies of Py resolutions, and

for each pair of blocks xyz , xyz that is removed, replace by the new blocks
XXy, yyz, zzx. The remaining blocks are taken unaltered. Consider the
incidence matrix N of the ternary design so obtained. We will sign N to
produce the required BRTDs. Other than the blocks from the resolution
classes which are changed, each block occurs A = 4t times. Sign the
corresponding entries by the rows of Hadamard mairix of size 4. The
remaining blocks occur A-2 = 4(t-1)+2 times. Sign the 4(t-1) occurrences of
each of the remaining blocks by the rows of Hadamard matrix of order 4.
Keep the remaining two occurrences positive. Now each column
corresponding to new block has a 2, sign it by -. We get the required BRTD.
I

Example 4. Consider the blocks, written as columns, of 5T5(9,3,1) with
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resolution classes:

147 123 123 123
258 456 645 564
3689 789 897 978

We will construct BRTD(9,3,4,Z,), p,=2 as follows: first construct BTD(9,3,4);

we take four copies of STS(9,3,1) and replace the two copies of the first two
resolution classes by new blocks

123 456 788 147 258 369
123456 789 147 258 3669
231564897 471582693

The corresponding incidence matrix is given below, to save space let us
denote the consecutive entries 20 1 by a4, 120 by a, ,012byag, andfori
=0and1, il byiy,ifibyia, iilibyig,

[ay 03 03 15 0p 0p aq Og O3 15 Op Op14 Oy Oy 14 Of 04
ag 03 03 15 0p 0 O3 a4 O3 Os 15 0004 14 04 Oy 14 Oy
ag Og 03 15 0p 0p 03 03 a4 0p 0p 15 04 0414 04 Oy 14
O3 ay 03 0 15 0 @ 03 03 15 0p Op Oy 14 Oy 04 Oy 14
O3 ap 03 0p 15 09 03 ap 03 0 15 05 Oy O4 14 14 04 04
03 ag 03 Op 19 0p 03 O3 a5 05 0p 15 14 04 Oy 0y 14 04
03 03 ay Op Op 15 a3 03 Og 15 0p Op 04 Oy 14 Oy 14 Og
03 03 ap 0p 0p 15 0g ag 03 O 15 0p 14 Oy 04 04 04 14
O3 03 ag 02 Op 15 03 O3 az 0p 0p 15 04 14 04 14 Oy Oy

We sign the above incidence matrix by signing each occurrence of 2 by - and
then sign each of the last six columns (where 14 occurs 3 times in each
column) by using the first three rows of Hy, Hadamard matrix of size 4.
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Ine rows o1 an naadamarag mMatnx ot size 4 Can pe used 10 00ldin 10HCWINYG
special cases of Theorem 4.1:

Theorem 3.4. If a BTD(V,B;pl,pz,R;:B,A): X exists then a
BRTD(V,4tB;4tp 1 ,4’(p2, 41R;3,4tA) exists for all positive integers t.

Proof. Let X denotes the incidence matrix of X. Replace in a column the ith
1 by the ith row of the Hadamard matrix if that column consists of 1's only. and
replace it by 1-1 1 -1 if the column contains a 2. Now t copies of the resulting
BRTD give the result.

i
Corollary 3.5. Ifa BTD(V,B;pl,pz,R;&Z): X exists then a

BF(TD(V,4’:&’:3;4’(;)1 Ay, 41R;3,8t) exists for all positive integers 1.

Now we can use Theorem 3.1 and give similar corollaries to construct various
families of BRTDs for K=3.

Similarly by replacing the ith nonzero entry x of BTD by x times the ith row of
Hy4 we can prove:

Theorem 3.6. If a BTD(V,B;pl,pZ,R;4,A)= X exists then a
BRTD(V,4tB;4tp,4tp,, 4iR;4,4tA) exists for all positive integers t.

3.2.1. A=2: When A=2 we have the following necessary and sufficient
conditions for the existence of BTDs obtained from Theorem 3. 1:

When Py = 0(mod 3) V = 0,1,3,4(mod 6),

When p, = 1(mod 3) V = 0,3(mod 6),

When Py = 2(mod 6) V =0,2,3,5(mod 6),

and V22p, + 1

Theorem 3.7. A BRTD(V,B;pl,p2>0,R;K,2) does not exist.
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Proof. Recall we are concerned with ternary designs with Py > 0. Therefore
the inner product of at least one pair of signed rows is either +2 or - 2.

i
Coroliary 3.8. A BRTD(V,B;pl,p2>0,R;3,2) does not exist.

An obvious generalization of Theorem 3.7 is

Theorem 3.8. A necessary condition for the existence of a signed n-ary
design (pn-1>0) is that A be even and greater than or equal to 2(n-1).

The existence problem for BRTD when the block size is three is under
investigation in Francel and Sarvate{to appear).

4. General Constructions.

Theorem 3.4 can be generalized for any K, where we use a Hadamard matfix
of order 4[K/4] provided it exists, where [x] is the least integer greater than or
equal to x. The result is similar to Theorem 6 of Street and Rodger(1980).

Theorem 4.1. Let N be a BTD(V,B;pl,pZ,R;K,A) and X=A-B be a
BRTD(V,sB; Spl,spztsR;K,sA). Then if s is as small as possible, s < 4[K/4]
assuming that a Hadamard matrix of order 4[K/4] exists.

Proof. Let H be a Hadamard matrix of order 4[K/4]. In N replace the ith
nonzero entry t of any column by t times the ith row of H and replace 0's by
4[K/4] O's.

i
Example 5. Let N be a BTD(3,4;2,1,4;3,3),
2101 i1 11 ry
No |1021 and Ho |1 1T ro
0211 1-1 1 -1 g
1-1-11 T4

then
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2222 1111 000 01 1 11 2rq 11 0 1y
X= 11111 000 0 222 2 11-1-1|= r202r1r2

0000 22-2-2 11-1-1 1-11-1 0 rp 1y g
The above result can be generalized to obtain a result similar to Theorem 4 of
Seberry(1984):

Theorem 4.2. Suppose we have a BTD(V,B;p1,p2,R;K,A) and a
BRD(K,a,s,j,A). Then there exist a BRTD(V, Ba;spy, sp,, SR;j, AA).

Proof. Let B be the BTD and W be the BRD. Replace the jth non-zero
element say t of each column of B by t times the j-th row of W to obtain the
required BRTD.

1
Corollary 4.3. Ifa BTD(V,B;p1 ,pz,R;K,A) exists and K(K-1) = 0 (mod 12)
then a BRTD(V, BK(K-1)/3; (K-1)py, (K-1)p,, (K-1)R; 3 ,2A) exists.

Proof. Seberry(1985) has proved that the condition v(v-1) =0 (mod 12) is
necessary and sufficient for the existence of a BRD(v,3,2).

I
Corollary 4.4. Ifa BTD(V,B;p1,p2,R;K,A) exists and K = 1(mod 6) then a
BRTD(V, BK(K-1)/g; 2(K-1)p1/3, 2(K~1)p2/3, 2(K~1)R/3; 4 ,2A) exists.
Proof. This follows since de Launey and Seberry(1984) have proved that the
condition v = 1(mod 6) is sufficient for the existence of BRD(v,4,2).

{
Several such corollaries can be given by using the results of existence of
BRDs. For example, de Launey and Seberry(1984) have shown that v =
1(mod 3) is necessary and sufficient for the existence of BRD(v,4,4) so we
have
Corollary 4.5. Ifa BTD(V.Bip,.p,,R;K,A) exists and K= 1(mod 3) then
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aphliiy, BR(K-1)/4; 4(K-1)p1/3, 4(K-1)p2/3, 4(K-1)R, _; 4 ,4A) exists.

Rra
Now we will give important construction methods for BRTDs using Latin
squares. Form the auxiliary matrices Mij's from mutually orthogonal Latin
squares as in Seberry(1984) and references therein, which satisfy the

following conditions:

! '
LM My =J, a=#b, 0 <a,bst
j=t

and

A
m
IA
o

i '
zMajMa] = 5 0
j=1

Write

O

IMk-11 Mg Mgy
Let A = BRTD(V,B,R,K,A) and B = BRTD(U,A,S, K A). Form D; by replacing the

sth nonzero eniry say t of each column of A by tMg;, i.e. by t times the sth entry
of the ith column of C. Then

<--y times-->

is a BRTD (Uv, BU2+ AV, UR+S K,A). ltis easy to check the first four entries of
the parameters. We check the value of A by observing that the inner product of

of Dy's” The inner product of any two rows g and h will be 0, +J or +2J

depending on whether the kth column in A contributes 0, £1, or +2 in the inner
product of the rows g and h. As the rows of A are orthogonal we have the
result. Hence we have:

Theorem 4.6. /f BRTD(V,B,R,K,A) and BRTD(U,A,S,K,A) exist and if there

are K-1 mutually orthogonal latin squares of order U, then there exists a
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BRTD with parameters BRTD(UV,BU“+AV,UR+S K A).
Notice that we can use a BRD and a BRTD to get a BRTD.

Corollary 4.7. If BRD(v,b,r,K,A} and BRTD(U,A,S,K,A) exist and if there
are K-1 mutually orthogonal latin squares of order U, then there exists a

BRTD with parameters BRTD(Uv,bU2+Av,Ur+S,K,A).

Coroliary 4.8. If BRTD(V,B,R,K,A) and BRD(u,a,s,K,A) exist and if there
are K-1 mutually orthogonal latin squares of order u, then there exists a

BRTD with parameters BRTD(uV,Bu2+aV, uR+s,K,A).

Example 6. (i) Use A = BRTD(3,6,6,3,4) and B = BRD(4,8,6,3,4), we get
BRTD(12, 120,30,3,4). The parameters of the underlying BTD can be obtained
by doubling the BTD listed as number 303 in Billington and Robinson.

(i) Use A = BRD(4,8,6,3,4) and B =BRTD(3,6,6,3,4), we get
BRTD(12,96,24,3,4). The parameters of the underlying BTD can be obtained
by doubling the BTD listed as number 114 in Billington and Robinson.

(iii) Using BRTD(3,6,6,3,4) and BRD(3,4,4,3,4) we can get BRTD(9,66,22,3,4)
and BRTD(9,54,18,3,4) which are multiples of already known designs
(numbers 100 and 40 of Billington and Robinson(1983)).

(iv) Similarly we get BRTDs and hence BTDs if we use A = B =
BRTD(6,12;4,2,8; 4,4) or BRTD(6,12;4,2,8:4,4) and BRD(4,4,4,4,4).

Corollary 4.9. If v(v-1) = O(mod 3) and U=3(mod 6) then a BRTD(Uv,3,4)
and hence a BTD(Uv,3,4) exists. In particular BTD(3v,6v2;6v-4,2,6v;3,4)
and BTD(3v,8v2'-2v;4v-2,2v,8v-2;3,4) exist for all v such that v(v-1) = O(mod
3).

Proof. Seberry(1984) has proved that v(v-1) = 0(mod 3) is necessary and
sufficient condition for the existence of a BRD(v, 2v(v-1)/3, 2(v-1), 3, 4) and we
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nave proved that a BRTD(U,3,4) exists where U = 3(mod 6).

0
Corollary 4.10. If v=1(mod 3) then a BRTD(6v,12v(v+1);8v-4,2,8v;4,4)
and a BRTD(GV,ZV(7V~1);4(v-1)/3+4v,2v,(28v-4)/3;4,4) exist and hence a
BTD(6v, 12v(v+1); 8v-4, 2, 8v; 4, 4) and a BTD(6v, 2v(7v-1); 4(v-1)/3+4v, 2v,
(28v-4)/3; 4, 4) exist.

Proof. This follows since de Launey and Seberry(1984) have proved that v =
1{mod 3) is sufficient condition for the existence of a BRD(v, v(v-1)/3, 4(v-1)/3,
4, 4) and we have shown that a BRTD(6,12;4,2,8:4,4) exists.

I
if there exists a BTD with A = 2, then we can obiain a BTD with A = 4 by a

doubling construction, but if po is odd our construction will give a non-
isomoerphic solution.

Now we will give a construction which does not give equireplicate BTD in
general, but under certain condition stated in the theorem, it does give
equireplicate BTD. The result generalizes Theorem 3 of Seberry(1984) and is
stated without proof.

Theorem 4.11. Suppése there exist a BRTD(V, B; ry To,8;, K, A), B, and a
BRTD(U, A; $1.80, S| K, A), A. Further suppose there exist at least K-1
mutually orthogonal latin squares of order -1 and

(R(K-1)-2r,)(U-1) = (S(K-1 )-2s5)(V-1).
Then there exists a BRTD(V(U-1)+1, B(U-1)2+AV, VS, K,A).

Corollary 4.12. Ifa BRTD(V,B,R,K,A) exists and there are at least K-1
mutually orthogonal latin squares of order V-1, then there exisis a

BRTD(V2-V+1,B(V2-V41), VRK,A).

Example 7. BRTD(3,6,6,3,4) gives a BRTD(7,42,18,3,4) whose underlying
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DI Is a GOUDIe O Ule Gesiygi idolel aos HUunber o il DHENYGLUh aliu
Robinson(1983).

Remark: Theorem 3.4, 3.6 and Corollary 3.5 can be used recursively to obtain
infinitely many families of BTDs.

5. Applications of BRn-aryDs in the construction of n-ary designs.

We have already seen some construction methods in the above section where
we produced BRTDs from smaller BRTDs; by replacing each entry in the
resulting BRTD by its absolute value we can construct BTDs. The following
result gives another technique, which is well known for Generalized Bhaskar
Rao Binary Designs.

Theorem 5.1. Let X = A - B be a BRn-aryD(V,B,R,K,A). Then

A B
M =
B A
is the incidence matrix of a partially balanced n-ary design with parameters

V=2V, B*=2B,R"=R,K'=K, A4 =A/ZandA2=O.

Proof. LetN = A + B. We know that
XX = Al
AA' +BB' =(NN'+ XX')/o = ((RK-AV+A)l + A J)/p
and
AB' + BA' = ((RK-AV-A)l + A J)/o
Hence as A = RK- AV + A we get the result.

Example 8. Consider a Bhaskar Rao 4-ary design (3,12,16,4,16) :
222222220000
X=11-1-12-20 0331 1
1-1t11002-211-3-3
Then
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22222 2220000
A=1 100 2 0003311
Lo1000201100
and
00 000D 0000000
B={0 0 110 2000000].
; 01 010 0020033
So
‘A B
B A

is a partially baianced‘BT4*aryD(6,24,16,4,A1=8,A2:O)

But we observe an interesting property: if we augment this matrix by
[22]xlq
Qﬂx%

then we get a balanced 4-ary design.

That is, we have the following 4-ary design:

220000
A B 0062200
0000 22
220000
B A 002200
000022

This leads us to the following theorem:

Theorem 5.2. If a BRn-ary design exists and Ay = 2s{{K-t)t) for some
positive integers t and s, then there is an n-ary design if K-t and t are both
less than n. Otherwise we have a (K-t)- or t-ary design with parameters
V*=2V, B*= 2B+2sV, R"=R+s(K-t)+s(t), K*=K, and A=AJs.

Proof. Augment the incidence matrix of the partially balanced n-ary design

obtained in Theorem 4.1 by
Kt Kt .. Kttt ... t]xly
[t t... t Kt Kt... K4 x by
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where K-t and t occur s times.

i
Corollary 5.3. I/fa BRD(v, b, r, 3, A=8t) exists then BTD(2v, 2b+2tv; py=r+t,
po=t, R=r+3t; 3, 4t) exists.

Proof. The following matrix will give the required design, where A and B are
as defined in Theorem 4.1.
A B [2...21... 1]xly
{B A [1...12...2xly
i
Seberry(1984, Theorem 15) has proved that v(v-1) = O(mod 3) is necessary
and sufficient condition for the existence of BRD(v,3,8t), therefore we have

Corollary 5.4. If v(v-1) O(mod‘s), then there exist a series of
BTD(2v,2b+2tv, r+t, 1, R=r+31, 3, 41) for all posifive integer t.

For example for v = 4 and t = 1, a BRD(4,16,12,3,8) exists and therefore a
BTD(8,40;13, 1,15;3,4) exist. This BTD is listed as number 268 in Billington
and Robinson(1983) and is obtained by Billington(1985).

The following application is known for the case when we have a BRD, for
example see Bhaskar Rao(1970).

Theorem 5.5. Existence of a BRTD(V,Bip{,p5,R; K, A) and the BIBD({v=2k,
b = 2r, A) implies the existence of a partially balanced ternary design with the
parameters (WV, bB; rpy, 1po, rR; KK, Aq = AX, A= Arp).

Proof. Let N be the incidence matrix of the BIBD and N* be the incidence
matrix of the complement of the BIBD. Replace each positive entry x of the
BRTD by xN and each negative entry y by yN”. As usual 0.is replaced by &
zero matrix. The resulting matrix gives the required PBTD.

0
Example 9. (i) BRTD(3,6;2,2,6;3,4) and BIBD(4,6,3,2,1) give
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Foil1£,00,0,0,10,0,10,0).

(i) BRTD(3,6:2,2,6;3,4) and BIBD(6,10,5,3.2) give
PBTD(18,60;10,10,30; 9,20,10).

(i) BRTD(6,12;4,2,8:4,4) and BIBD(4,6,3,2,1) give
PBTD(24,72:12,6,24; 8,12,6).

(iv) BRTD(6,12;4,2,8;4,4) and BIBD(6,10,53,2) give
PBTD(36,120;20,10, 40;12,24,10).

We know that when v is a power of odd prime, then
BIBD(v+1,2v,v,(v+1)/p,(v-1)/) exists and therefore we have:

Theorem 5.6. Existence of a BRTD(V.B; py.,ps.R; K, A) implies the
existence of a partially balanced temary design with the parameters ((v+1 W,
2vB; vpq, vpp, VR, (v41)K/o, Aq = A(v-1)/o, Ap= Avo) where v is any odd
prime power.

As we have proved that a BRTD with K = 3 and V = 3 (mod €) exists for any A
= 4t, we have:

Theorem 5.7. For V=3(mod 6), a PBTD ((v+1)V,2vB; vpy,vpo . VR; 3(v+1)/p,
A{v-1}jo, 2vt) exists.

Corollary 5.8. For V=3(mod 6), a PBTD(4V, 6B; 3p4, 3p,, 3R; 6, A, 6)

exists.

Using BRTD(6,12:4,2,8;4,4) we get

Theorem 5.9. If v is a prime power then there exists a PBTD(6(v+1),24v;
4v,2v, 8v; 2(v+1),8{v-1},2v).

Remark. Here again we can use Theorems 3.4 and 3.6 recursively to construct

families of PBTDs.
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