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INTRODUCTION 

A directed or 'Unl"llllll. G where 

(i) II is nonempty set 11 , •• 1 v n1 , •• } of distinct elements called 

vertices; 

(ii) E is 

called arcs. 

E = {el' e2, ... 1 em,"'} of ordered 

In this paper we shall consider 'U.A/"hU,t-' ... "" in which both 11 

and E are finite. The number of vprt.l,(,(";: in the 

digraph. 

The indegree of a vertex 

Similarly, the outdegree of 

The degree of a vertex v is 

every vertex has the same 

regular digraph of degree d. 

number of the form (u,v) in G. 

u EGis the number of arcs of the form (u, v) in 

,..,,.'po-.,.,,,,p and If in a digraph 

d then G dig1'aph, or a 
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However, if G 

in G then G 

a digraph in which 1n{iPC'rp,P=r.lltCl.(~gr'ee:=a for every vertex 

called a diregular digraph of degree d. 

The diameter k of 

vertices of G. 

C1.H~ra·Ph G the maximum shortest distance between any two 

A diregular digraph G of order n, d and diameter k, G E 9(n, d, k) consists 

of n vertices and nd arcs. For each vert.ex v G there are d arcs whose initial 

vertex is v, and d arcs whose terminal vertex is v. 

Given a digraph G, set II 1 12)"" lm of subdigraphs of G covers G if every arc and 

every vertex of G OCCurs in some li. and a collection lil 1 i m of subdigraphs of 

G such that. U~lli G is a covering of G. We introduce the following definitions. 

Definition 1. A covering L of G is arc-disjoint if for all Ii and lj in L, 

li and lj have no arcs in common whenever i ;. j. 

Similarly, we can define the concept of a vertex-disjoint covering. 

Definition A L,UVCI"H1t'- L of a digraph G is a circuit covering if for all Ii E L, 

the subdigraph It is a circuit. 

Furthermore, we call a circuit covering consisting of circuits of lengths t 1 , t 2 , ••• ,ts 

a t 1 ,. ., is-circuit covering. In particular, a i- circuit covering consists only of 

circuits of length t. Lastly, a ::; t-circuit covering consists of circuits of length t or 

less, and a i-circuit covering consists of circuits of lengths less than t. 

The three optimization problems N(d,k), K(n,d) and D(n,k) for diregular di­

graphs 9(n, d, k) are defined as follows. 

1. The N(d, k) problem: given d and k, find the maximum possible order N(d, k). 

This problem has been also called the (d, k ) problem. 

2. The K( n, d) problem: given nand d, find the minimum possible diameter 

K(n, 

3. The D(n,k) problem given nand k, find the minimum possible degree 

D(n,k). 

These three problems are related, but as far as we know, not equivalent. For further 

discussion on the relationships between these problems see [5]. 

The main result of this paper, Theorem 3, namely that for many values of k, 

9(n, 2, k) empty, gives new results for the first two problems for d = 2. The 

proofs of all the theorems in this paper make use of circuit coverings. 

Every diregular digraph G E 9( n, d, k) has a ~ k + l-circuit covering since every 

vertex must reach itself in at most k + 1 steps (in at least d ways). 
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t. shall 

b.e()rems 1, and 3. 

d, diameter 

by Plesnik 

in 1980. 

of 2, diameter k and 2 + 2) vertices for k was 

However, since the of 1 and 2 very 

we include them here to illustrate the method used to prove Theorem 3 which is 

the main result this paper. 

new result, 

of diameter k and 

turn new results for the 

for the N (d, k) problem. 

it proves the nonexistence of diregular di­

- 3 vertices for many values of k. This in 

d) problem and it upon the bounds 
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2. RESULTS 

We mentioned in Introduction to this paper that for d 1 and 

k 1 j d2 
• • + dk

, d, k) We can prove this result for k 

such that k + 1 does not divide d(l + + d2 + .. + dk
) a much way using 

digraph 

Theorem 1 If d 1, k 1 and k + 1 does not divide d(l + d + d2 + ... + dk
) 

then 9 (1 + d + d2 + ... + dk
, d, k) is empty. 

Proof. If G E 9 (1 d + d2 + ... + dk 
, d, k) then every vertex v E G lies on d circuits, 

each vVL.O>."'"H"5 of k + 1 distinct vertices. 

These d circuits have only the vertex in common. Thus there is an arc-disjoint 

k + I-circuit of G. 

There are + ... + dk ) arcs in G so if k + 1 does not divide d( 1 + d + 
d2 + '" + dk

) then G does not exist. iii 

We proved (using brute force) [4] that for k 2,9(2 k +1 2, 2,k) is empty. However, 

for k such that k 1 does not divide 2(2k+l - 2) we can prove this result in a much 

simpler way using digraph coverings. 

The proof of the next theorem makes use of 'line . The line digraph 

L( G) d, k + 1) of a digraph G E 9( n, d, k) is a digraph constructed from G 

as follows. 

If i in G then there is a vertex (ij) in L(G)j and there is an arc (ij,mn) in 

L(G) whenever j m. The line digraph L(G) of a digraph G E 9(n,d,k) has nd 

vertices, degree d and diameter k + 1 (for more detailed explanation see for example 

[2]). 

Theorem 2. If k > 2 and k + 1 does not divide 2(2k+l - 2) then 9(2k+1 - 2,2, k) 

is empty. 

Proof. Suppose k > 2 and G E 9(2 k+1 2,2, k) exists. 

There are no circuits oflength less than k in G. (Otherwise the diameter of G would 

be greater than k.) 

Suppose we have a k-circuit in G. Then we can partially draw G as follows (Figure 

2). 
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1 

A 
2 3 

/\ 1\ 
4 /) G 7 

- 1 

2. 

Then to reach vertex 3 from vertex 2 in at most k steps, we need one of the vertices 

2k, ... ,3 X 2k - 1 to go to vertex 3, say 2k ---t 3. For k > 2, to reach all vertices from 

2k we must have 2k ---t 2. 

Then every vertex lies on exactly one k-circuit and these circuits are disjoint. Fur­

thermore, for all vertices x E if x ---t Xl, X ---t a;z and y ---t Xl then also y ---t X2, 

that G is a line digraph of G* E + 2 + 22 + ... + ,2, k 

But such G* does not exist for k - 1 > 1, that is for k > 2 

Hence G does not have a k-circuit. 

Then each vertex of G must lie on (at two k + I-circuits. We will show that 

no vertex of G lies on more than two k + I-circuits which iHJ.IJJ.,L'-'''' that these circuits 

are arc-disjoint. 

there are three k + I-circuits in G. 

Then we have (Figure 3). 

~ 
1 L 

A A 
;\ l\ A A 
'loG 7L L L L 

3. 
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·where D denot.es a vert.ex from 2'" + 1,2'" + 2, ... ,3 X 21C-~ -- 1 and f( denotes a 

vertex from 3 X 2k - 1 , 3 X 2k - 1 + 1, ... , 2k+1 - 2. 

If k > 2 it. is not. possible t.o reach all of 2k + 1, ... ,2k+1 
- 2 from 2k in at most k 

steps. 

Hence every vertex of G lies on exactly two k + I-circuits and any two such circuits 

are arc-disjoint, that is, there is an arc-disjoint. k + I-circuit covering of G. 

Hence if k + 1 does not divide 2(2k+l - 2) then 9(2 k+1 2,2, k) is empty. III 

To prove the main result of this paper, Theorem 3, we shall make use of the following 

two Lemmas. 

Lemma 1. For k > 3 there are no ::; k-circuits in G E 9(2 k +1 
- 3,2, k). 

Proof. Suppose 1,2, ... ,2k+1 _3 are the vertices of G E 9(2 k + 1 
- 3,2,k). 

Obviously, G cannot contain a circuit of length less than k since a vertex on a 

< k-circuit. could not. reach all the ot.her vert.ices of G in at m.ost k steps. 

Assume there is a k-circuit in G. 

Then we can partially draw G as in Figure 4. 

Figure 4. 

To reach vert.ex 1 from all vert.ices in at most k steps, no vertex can reach 1 twice 

in less than k steps, so the vertices which are at most k - 1 steps away from 1 must 

be all distinct. 

Furthermore, to reach vertex 1 from all the 2k+1 
- 3 vertices (including vertex 1 

since we assume a k-circuit through vertex 1) in at most k steps, the vertices 

1,2, ... ,2 k 
- 1 and all except one of ll' ... ,l2k-l must be distinct vertices. 
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have 

Sinrilarly, to have the vertices in the set 

SY' } 

also except x and/or y if (except 

x-+lp,y­

We have 

to the ,,,,,,"t.1t~P'" , .. "l2"-ll1. 

where Xl 

{2 k , ••• , 

5), 

+ 1 

-1 and 

- 3} {11 , l2' ... 1 

Xq E {Xl," ,XZk_l}' 

IfXIE "." I} 
or if Xl E ". 'j 

then we cannot have li -+ Xl, lj -+ Xl, li 1= l.i 

5. 

and Ii E {Ill" ,l2k-t},lj E {lZk-l+l"" ,12k_I} -lp ,or respectively 

liE{ZI,"" } lp,ljE ".,12k-I}' 
Then, for k 3, we cannot reach the vertex 2k - 1 from the 2k - 1 (or respectively 

-1) vertices of {h, ... , 12k-1} and from the 2k
- 1 - 2 (or respectively 2k - 1 -1) 

vertices of {l2k-1+1"'" l2k-I} . 
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It remains to consider the , ... ,2 ic -t-! 

Then to reach the vertex 2 from Xl 

Let Xl = l1 2k, h 2k + l. 
We have (Figure 6). 

a!,"-1 X:a"_1 +1 '''\,j'-' Y"v-'+' V"v-' V 
X2"- 2 2.'2"-1 -1 Yah "-2 Yl,,-1_1 

6. 

Since all except most one of X2,"" X2k-l are from {2k + 1, ... , 2k+1 
- 3} then 

all except at most one of Y2, .. , Y2k-l must be from {1, 2, ... , 2k - 1} - 2k-l. If 

Y2 -# 2 or Y3 -# 3 this is not possible. 

Suppose yz = 2, Y3 = 3. 

Then Xq 1 (= X2" -1' say). But then we cannot reach both 2k and x2k- 1-1 from 

all vertices. 

Hence there cannot be a ::; k-circuit in G E 9(2 k+1 - 3,2, k). III 

Since the diameter of G E 9(2k+l - 3,2, k) is k and there are no ::; k-circuits in 

G, it follows that there is a k + I-circuit covering of G. We shall show that such 

a covering must be arc-disjoint. 

Lemma 2. If G E 9(2k+1 - 3,2, k) and k > 3 then there is an arc-disjoint k + 
1-circuit covering L of G. 

Proof. Suppose G E 9(2 k+1 - 3,2, k), k > 3 and the foUowing subdigraphs are in 

G (Figure 7). 
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+ 1 

1. 

To reach all the 

1,2, ... , 

To reach 

1 

4 vertices from vertex 1 in at 

be all distinct. 

steps the vertices 

Lelnma 

1, .,. ,2k 

To reach vertex 1 

to nl or n2' 

To reach 

To 

11 and 1 ---t 3 7 

4 in most k steps, the vertices 

- 1 must go 

1 to or 

to nl and one of 

through 

2k - 1 -t 2k ---t 1 for 

Suppose there vertex 1, say 10 (I- l1' 

Then lo must contain 

Note that Io cannot contain both the arcs 1 

there would be two different ways of reaching 

and so we could not reach all ""'·,.,.,.<'C>c from 3. 

Similarly, lo cannot contain both 1 2 and 2k ---t 

2k+l 3 -t 1 because then 

3 from 3 in less than k steps 

Cases (1) and being symmetric, let lo be the circuit 

lo = 1 ---t 3 -t 6 ---t ••• ---t 3 x 

159 



Figure 8. 

Obviously, Yl since we must reach 2k from Yl In at most k 1 steps and if 

Xl = Yl then there would be a k-circuit containing the 2k ---t Xl Yl). 

In general, if a ---t b, a ---t c, d b, a, b, c, d E G, d =/:: a, then d ---t c is not possible 

for otherwise there would be a k-circuit in G. 

Consequently, if Xl =/:: Yl then we cannot have both X2 = Y2 and X3 = Y3. 

Hence there are (at least) two in G, PI and P2 such that PI is (say) 

2k ---t Xl ---t X2 ---t X4 ---t '" ---t X2k-1 and P2 is 2k+l - 3 -t Yl ---t Y2 ---t Y4 ---t ••• ---t 

Y2 k - 1 • 

If these are the only two such through and 2k + 1 - 3 respectively, i.e., if 

Xi = Yi for all Xi rt PI then all except at most two of Xl, X2, X4,' •• , X2k-1 must be 

from {2 k + 1, ... , 2 k+ 1 (to reach all from 2 k) and all except at most two of 

Yl,Y2,Y4"",Y2k-1 must be from {2 k
, ••• ,2k+1 _4}. 

One of Xl,X2,X4"",X2k-1 must be the vertex 2k+ 1 
- 3 (to reach 2k +1 

- 3 from 

2k), and one OfYl,Y2,Y41""Y2k-1 must be 2k (to reach 2k from 2k+l_ 3). 

Now for k > 3 there must be some Xp E {2 k
, ••• , 2 1c+1 - 3} and some Yq E 

{2 k
, • •. ,2k+1 

- 3} such that xp = Ym E P2 and Yq = Xn E PI for some Xn and 

Ym' 

But then there would be a ::; k-circuit through 2k and xp(= Ym) or a ::; k-circuit 

through 2k + 1 - 3 and Ym(= 

Hence it is not possible to have Xi = Yi for all Xi rt PI-

160 



Xl -4 Xm 

This 

Hence it 

vertex lies 

on k+ 

of G. III 

from 1 in at most k steps. 

on more than two k + I-circuits. 

k + 1-circuits and so every arc lies 

arc-disjoint k + I-circuit covering 

Theorem 3. If k and k + 1 not divide 2(2k+l - 3) then 9(2 k+1 - 3,2, k) 

is 

Proof. If k 

If 

L 

If 

then 

3. CONCLUSION 

U sing Theorem and fact that for k 

either k or k + 1 [3], it follows that if k > 
then - 3, k + 1. 

V"'-'.LU"VL'~' for such k's , k) ~ 
k ). 

L of G such that 

distinct arcs. 

if k + 1 does not divide 2(2k+l - 3) 

3 x :S n 2, K(n, 2) is 

and k + 1 does not divide 2(2k+l - 3) 

4 is an 11"'''''''1'(,,,,,,·.,..,...,,,,,,,t upon the upper 

we checked the divisibility of 2(2k+l - 3) by k + 1 for 3 :S k ~ 107 

and we found that 274486 divides -3),5035922 divides 

3) and k + 1 does not divide 2(2k+l - 3) for all the other values of k in 

this range. 

Hence - 3,2) = k + 1 for all k, 3 ::; k ::; 107 when k = 

274485, k = 5035921). 

We can now summarise our current state of of the N(2, k) problem. 
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k N(Z, k) 

1 

1 3 
2 6 
3 12 
4 25 N(2,4) 28 

5 50 ::; N(2, 5) ::; 60 

6 100 N(2,6)::; 124 

7 200 :::; N(2, 7) 252 

8 400 N(2,8) 508 

9 800 :::; N(2, 9) :::; 1020 

10 1600 :::; N(2,10) :::; 2044 

2t - 4 X 25 ::; N(2, t) ::; M 2 ,t 

where M'l"t = 2t+l - 4 if t + 1 does not divide 2(2t+l - 3) 

and M'l,.t = 2t+l - 3 otherwise. 

Table 1. 

Our current state of knowledge of the K(n,2) problem is summarised in Table 2 

(for n :::; 100). 
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n 

1 

1 5 6 

3 36 69 6 

4 5 6 

6 

2 39 5 72 6 
7 40 6 
8 3 41 5 74 6 

3 42 75 6 
10 3 43 5 6 
11 3 44 5 77 6 

3 45 6 
4 46 79 6 

14 4 47 5 80 6 

15 4 48 5 81 6 or 7 
16 4 49 5 or 6 82 6 
17 4 50 83 6 

4 51 5 or 6 84 6 

19 4 52 5 or 85 6 
20 4 53 5 or 6 86 6 
21 4 54 or 6 6 

22 4 55 5 or 6 6 
23 4 56 5 or 6 6 
24 4 57 5 or 6 90 6 
25 4 58 5 or 6 91 6 
26 4 or 5 59 5 or 6 92 6 

27 4 or 5 60 5 or 6 93 6 
28 4 or 5 61 6 94 6 

29 5 62 6 95 
30 63 6 96 6 

31 5 64 6 97 6 or 7 
32 5 65 6 98 or 7 
33 5 66 6 99 or 7 

100 6 

Table 2. 
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