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Abstract

In this paper we define the notions of arc-disjoint and circuit coverings
for directed graphs. Using these ideas we then show that certain diregular
digraphs ‘close’ to Moore bound cannot ezist.

Considering the relationship between degree, diameter and the number of
vertices in o diregular digraph we define the following three optimization
problems. The N(d,k) problem: find the mazimum possible number of
vertices given degree d and diameter k. The K(n,d) problem: find the
minimum possible diameter given the number of vertices n and degree d.
The D(n,k) problem: find the minimum possible degree given the number
of vertices n and diameter k. These three problems are related but as far
as we know not equivalent.

In this paper we study the first two problems for d = 2. We introduce
an efficient number-theoretic divisibility argument that shows N(2,k) <
2F1 4 for many, but not all values of k. This new result also gives new
values for the K(n,2) problem when n = 28 — 3,

The paper concludes with two tables, one giving ¢ summary of our present
knowledge of the N(d, k) problem for d = 2; and the other giving the values
of K(n,d) for d = 2 and n <100.

1. INTRODUCTION
A directed graph, or a digraph, G = (V, E) where

(i) V is a nonempty set V = {vy,v2,...,0n,...} of distinct elements called
vertices;

(i) Eis a bag E = {e1,€2,.+.,€m,...} of ordered pairs (v; - vj),vi,v; € V,
called arcs.
In this paper we shall consider finite digraphs, that is, digraphs in which both V
and E are finite. The number of vertices in the digraph is called the order of the
digraph.
The indegree of a vertex v € G is the number of arcs of the form (u,v) in G.
Similarly, the outdegree of a vertex u € G is the number of arcs of the form (u,v) in
G. The degree of a vertex v is the sum of its indegree and outdegree. If in a digraph
G every vertex has the same degree d then G is said to be a regular digraph, or a

regular digraph of degree d.
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However, if G is a regular digraph in which indegree=outdegree=d for every vertex
in G then G is called a diregular digraph of degree d.

The diameter k of a digraph @ is the maximum shortest distance between any two
vertices of G. .

A diregular digraph G of order n, degree d and diameter k, G € G(n,d, k) consists
of n vertices and nd arcs. For each vertex v € G there are d arcs whose initial
vertex is v, and d arcs whose terminal vertex is v.

Given a digraph G, a set 1,13, . .., l;n of subdigraphs of G covers @ if every arc and
every vertex of G occurs in some [;. and a collection ;,1 < ¢ < m of subdigraphs of
G such that UZ,l; = G is a covering of G. We introduce the following definitions.
Definition 1. A covering L of a digraph G is arc-disjoint if for all I; and [; in L,
I; and I; have no arcs in common whenever ¢ # 7.

Similarly, we can define the concept of a vertez-disjoint covering.

Definition 2. A covering L of a digraph G is a circuit covering if for all l; € L,
the subdigraph [, is a circuit.

Furthermore, we call a circuit covering consisting of circuits of lengths t1,12,...,1s
a ti,...,t-circuit covering. In particular, a 1—circuit covering consists only of
circuits of length t. Lastly, a < t-circuit covering consists of circuits of length ¢ or

less, and a < t—circuit covering consists of circuits of lengths less than t.

The three optimization problems N(d,k), K(n,d) and D(n,k) for diregular di-
graphs G(n,d, k) are defined as follows.

1. The N(d, k) problem : given d and k, find the maximum possible order N(d, k).
This problem has been also called the (d, k) problem.

2. The K(n,d) problem : given n and d, find the minimum possible diameter
K(n,d).

3. The D(n,k) problem : given n and k, find the minimum possible degree
D(n,k).

These three problems are related, but as far as we know, not equivalent. For further
discussion on the relationships between these problems see [5].

The main result of this paper, Theorem 3, namely that for many values of k,
G(n,2,k) is empty, gives new results for the first two problems for d = 2. The
proofs of all the theorems in this paper make use of circuit coverings.

Every diregular digraph G € G(n,d, k) has a < k + 1-circuit covering since every

vertex must reach itself in at most k + 1 steps (in at least d ways).
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fdowever, we shal pe interesied in those digraphs & € Y(n,d,k) which have <
k + 1-circuit covering that is arc-disjoint.

Not all diregular digraphs have such covering. For example, of the 5 nonisomorphic
diregular digraphs in G(5,2,2) all except one (G5) have an arc-disjoint < 3—circuit
covering (Figure 1). The exception is the digraph with vertices ¢, ¢ = 0,1,2,3,4
and arcs (4,7 + 1 mod 5) and (7,7 + 2 mod §). Similarly, the digraph G € G(7,2,3)
with vertices ¢,¢ = 0,1,2,3,4,56,6 and arcs (i,1 + 1 mod 7), ({,i + 2 mod 7) does

not have an arc-disjoint < 4-circuit covering.

4/\2 \ 1mz 1@\2 lma
TS N VA i N VO

G;; Gé G5

Figure 1.
If a diregular digraph G € G(n,d, k) does have an arc-disjoint ¢-circuit covering I
then the number of arcs in L is equal to nd and nd must be divisible by t. We shall
exploit this fact to show the nonexistence of some digraphs.
The results of this paper are presented in the next section as Theorems 1, 2 and 3.
Theorems 1 and 2 do not give new results.
A more general version of Theorem 1, namely that digraphs with degree d, diameter
kand 1+d+...+d* vertices do not exist for d > 1 and k > 1 was proved by Plesnik
and Znam[6] in 1974, and in a sirapler way by Bridges and Toueg[1] in 1980.
A more general version of Theorem 2, namely the nonexistence of diregular digraphs
of degree 2, diameter k and 2 4+ 2% + ... + 28(= 2877 — 2) vertices for k > 2 was
proved by Miller(4]. However, since the proofs of Theorems 1 and 2 are very simple,
we include them here to illustrate the method used to prove Theorem 3 which is
the main result of this paper.
Theorem 3 gives a new result, namely it proves the nonexistence of diregular di-
graphs of degree 2, diameter k and 257! — 3 vertices for many values of k. This in

turn gives new results for the K(n,d) problem and it improves upon the bounds
for the N(d,k) problem.
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2. RESULTS

We have already mentioned in the Introduction to this paper that for d > 1 and
k>1,6(1+d+d +...+d* dk)is empty[6][1]. We can prove this result for k
such that &+ 1 does not divide d(1 +d+d*+...+ d*} in a mauch simpler way using
digraph coverings. '

Theorem 1. If d > 1, k > 1 and k + 1 does not divide d(1 +d+d* +...+ d*)
then G(1+d+d*+ ...+ dk,d, k) is empty.

Proof. HG € G(1+d+d*+.. .+d*,d, k) then every vertex v € G lies on d circuits,
each consisting of k + 1 distinct vertices.

These d circuits have only the vertex v in common. Thus there is an arc-disjoint
k 4+ 1—circuit covering of G.

There are d(1 + d 4+ d? + ...+ d*) arcs in G so if k -+ 1 does not divide d(14+d+
d? + ...+ d¥) then G does not exist. =

We proved (using brute force)[4] that for k > 2, G(2%+1 -2, 2,k) is empty. However,
for k such that k + 1 does not divide 2(2**! — 2) we can prove this result in a much
simpler way using digraph coverings.

The proof of the next theorem makes use of ‘line digraphs’. The line digraph
L(G) € G(nd,d,k + 1) of a digraph G € G(n,d, k) is a digraph constructed from G
as follows.

If i — j in G then there is a vertex (ij) in L(G); and there is an arc (ij,mn) in
L(G) whenever j = m. The line digraph L(G) of a digraph G € G(n,d, k) has nd
vertices, degree d and diameter k+1 (for more detailed explanation see for example
2])-

Theorem 2. If k> 2 and k + 1 does not divide 2(2**! — 2) then G(2*+! — 2,2, k)
is empty.

Proof. Suppose k > 2 and G € G(2¥1! — 2,2, k) exists.

There are no circuits of length less than k in G. (Otherwise the diameter of G would
be greater than k.) ’

Suppose we have a k-circuit in G. Then we can partially draw G as follows (Figure
2).

154



L2
2 2k~ 1

gk 2K 41 gk+1 _ o
Figure 2.
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Then to reach vertex 3 from vertex 2 in at most k steps, we need one of the vertices
2k ...,8 x 251 t6 go to vertex 3, say 2F — 3. For k > 2, to reach all vertices from
2% we must have 2% — 2.

Then every vertex lies on exactly one k-circuit and these circuits are disjoint. Fur-
thermore, for all vertices ¢ € G, if ¢ — z;, ¢ — &, and ¥ — =z, then also y — z,,

that is, G is a line digraph of G* € G(1 +2+2% + ... 4+ 281 2,k — 1).

But such G* does not exist for k — 1 > 1, that is for & > 2 [1].

Hence G does not have a k-circuit.

Then each vertex of G must lie on (at least) two k -+ I-circuits. We will show that
no vertex of GG lies on more than two k -+ 1-circuits which implies that these circuits
are arc-disjoint.

Suppose there are three k + 1-circuits in G.

Then we have (Figure 3).

AN

ANNAN

241 e . ok — 1

FUIE LI gkt _ g 2k

Figure 3.
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where L/denotes a vertex from 2% +1,2% +2,...,3 X 2% — 1 and fi denoies a
vertex from 3 x 271,83 x 2571 41,281 2,

If k > 2 it is not possible to reach all of 2% +1,...,2%! — 2 from 2% in at most k
steps.

Hence every vertex of ( lies on exactly two k -+ 1-circuits and any two such circuits
are arc-disjoint, that is, there is an arc-disjoint & + 1-circuit covering of G.

Hence if k + 1 does not divide 2(251 — 2) then G(25T! —2,2,k) is empty. ®

To prove the main result of this paper, Theorem 3, we shall make use of the following
two Lemmas.

Lemma 1. For k > 3 there are no < k—circuits in G € G(2¥*? — 3,2, k).

Proof. Suppose 1,2,...,2"71.3 are the vertices of G € G2kt —3,2,k).
Obviously, G cannot, contain a circuit of length less than k since a vertex on 2
< k—circuit could not reach all the other vertices of G in at most k steps.
Assume there is a k—circuit in G.

Then we can partially draw G as in Figure 4.

!
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1
Figure 4.

To reach vertex 1 from all vertices in at most k steps, no vertex can reach 1 twice
in less than k steps, so the vertices which are at most k — 1 steps away from 1 must
be all distinct.

Furthermore, to reach vertex 1 from all the 2¥%! — 3 vertices (including vertex 1
since we assume a k—circuit through vertex 1) in at most k steps, the vertices

1,2,...,2% — 1 and all except one of Iy,...,lyx; must be distinct vertices.
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two different ways. To reach vertex 2 from all vertices (in at most k steps) we must
have the vertices in the set

Sp={3,6,7,...,3x 2672 2% ~ 1 haoagg, lakerggy ey lor g, 1}
(except I, if I, € {lyk-141,...,02% _; } and then possibly except z and/or y if ¢ —
I,y = 1, and © and/or y € 5}) go to the vertices [;,lz,...,l5%-1.
Similarly, to reach vertex 3 from all vertices we must have the vertices in the set
Sr={2,4,5,.. 28 83 x 2570 - Ll ey ke
(except I, if I, € {l;,15,...,l5x~1} and then possibly also except z and/or y if
@ — lp,y — I, and ¢ and/or y € 5,) go to the vertices lpx-144,..., 01, 1.

We have (Figure 5).

2&—1 2&-1 + 1 2* -k 1 Tphen Bgheigg ) Lok oy By

P s e e Lok LY -
zk 3 -zk-l__l 2h=2 Lahmt oy

4 5 ¢ 7 14\/15 =C\o‘/m1
\2/\/\3/ mz\/~£3
1\/1
2% -1
Figure 5.

where 27 = lyx_; and
{2k, 280 =3} = {I1,L, ..o lov g}~ b = {&1,%2,. .., Tox_1 } — zg for some
zg € {z1,. .., Toey}
If 2, € {251,...,2F -1}
orif z; € {2%,...,2%* —3} and z; # [,
then we cannot have l; — zy,l; — z1,l; # 15
and l; € {li,.. .y Ige-n 3,0 € {lgho2yq, ooy gy} — I, or Tespectively
l; € {ll, Ceey lzk—l} - lp,lj € {lzk_1+1, s ,lzk__l}.
Then, for k > 3, we cannot reach the vertex 2* — 1 from the 2~ (or respectively
2k=1 _ 1) vertices of {I3,...,l3x-1} and from the 2%~ — 2 (or respectively 2571 —1)
vertices of {{yh-147y...y0lox_1} -
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It remains to consider the case z; = [, € {2%,...,2"7" — 3.

Then to reach the vertex 2 from z; we must have z1 € {l1,...,lk-1}.
Let oy =l = 2%, I, =2F 4+ 1.

We have (Figure 6).

Lgh-t Tyr-tid Tyhog Tyw.g Yar-1  Yza-14, Yau~3  Var g

Lok-1 e v v Tgh-1_y Yar =2 ooe v Yokt

.

wva xr.\/m y\/ys y\/1
T3 3 Yz ys

\/v "
er -1 zk-l .
Figure 6.
Since all except at most one of z4,...,Zox_y are from {2% +1,...,2%"1 — 3} then

all except at most one of yz,...,Ysx -3 must be from {1,2,...,2F =1} = 2*1. If
Y2 # 2 or y3 # 3 this is not possible.

Suppose ¥, = 2, y3 = 3.

Then z4 = 1 (= x4, say). But then we cannot reach both 2% and z,x-1_; from
all vertices.

Hence there cannot be a < k—circuit in G € G(2*7! - 3,2, k). =

Since the diameter of G € G(2¥+1 — 3,2,k) is k and there are no < k—circuits in
G, it follows that there is a k + 1—circuit covering of G. We shall show that such

a covering must be arc-disjoint.

Lemma 2. If G € G(2*"! —3,2,k) and k > 3 then there is an arc-disjoint k +

1—circuit covering L of G.

Proof. Suppose G € G(2%¥1 —3,2,k), k > 3 and the following subdigraphs are in
G (Figure 7).
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Figure 7.

To reach all the other 25+ — 4 vertices from vertex 1 in at most k steps the vertices
1,2,...,2% — 1 must be all distinct.

To reach vertex 1 from all the other 2¥*1 — 4 vertices in at most k steps, the vertices
1,m1,n9,...,m9%__5 must be all distinct.

Since by Lemma 1 there are no < k—circuits in G, we also have vertices
1,2,...,2% = 1,ny,n, all distinct and vertices 1,2,3,n9,...,n9x_, all distinct.

To reach vertex 1 from vertex 2, one of the vertices 251, ..., 3 x 2¥2 — 1 must go

to ny or na.

To reach vertex 1 from vertex 3, one of 3 x 2=2 . 2% — 1 must go to n; or ng.
To reach n; and n; from 1, one of 2¥-1,...,2¥ — 1 must go to n; and one of
2k=1...,2% — 1 must go to n,.

Thus there must be two arc-disjoint k + 1—circuits I; and I, going through vertex
1. Without loss of generality we can take 1 — 2 — 4 — ... — 251 5 2%k , 1 {or
ljand1 =3 —7— ... =28 -1 5281 3,1 for ,.
Suppose there is another k 4+ 1—circuit going through vertex 1, say ly (# l1,1).
Then ly must contain either 1 — 3 and 2F — 1 (1)

orl—2and 25 —3 41 (2).
Note that I, cannot contain both the arcs 1 — 3 and 2%t — 3 — 1 because then
there would be two different ways of reaching 2**! — 3 from 3 in less than k steps
and so we could not reach all vertices from 3.
Similarly, ly cannot contain both 1 — 2 and 2F — 1.

Cases (1) and (2) being syminetric, let Iy be the circuit

lo=1-—-3—6-—...—3x25% 52k 41,
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Figure 8.
Obviously, z; # y; since we must reach 2% from y; in at most k — 1 steps and if
z1 = y; then there would be a k—circuit containing the arcs 2F sz (=y1).
In general, if @ — b,a — ¢,d — b, a,b,c,d € G,d # a, then d — c is not possible
for otherwise there would be a k—circuit in G.
Consequently, if z; # y; then we cannot have both z; = Y and z3 = V3.
Hence there are (at least) two paths in G, p; and p; such that p; is (say)
2k gy — 2y — Ty~ ... — Tok-r and Py 528 3 sy oy Yy — .
Yak-1.
If these are the only two such paths through 2% and 281 — 3 respectively, i.e., if
z; = y; for all z; & p; then all except at most two of 1, T2,Z4,...,Tak2 must be
from {2* +1,...,2%"1 — 3} (to reach all from 2*) and all except at most two of
Y1,Y2s Ydy - - -, Ygk-1 must be from {2k, ... 281 — 4},

One of ©1,%3,24,...,Tzk-1 must be the vertex 2k+1 _ 3 (to reach 2k+1 _ 3 from
2%), and one of Y1,¥2,Y4,- - - Yzx-1 must be 2% ( to reach 2% from 2% —3).
Now for k > 3 there must be some zp € {2k,...,2k*1 — 3} and some y; €

{2%,...,2F*1 — 3} such that z, = ym € p2 and Yy = = € Py for some z, and
Y-

But then there would be a < k—circuit through 2* and z,(= ym) or a < k—circuit
through 2577 — 3 and ym(= xp).

Hence it is not possible to have z; = y; for all =; € p1.
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2] — T and zr, Ty Tm € {2%,...,257 — 3},

This is not possible since we could not reach z,, from 1 in at most k steps.

TR TYAY T Eve T mEE TaEanm s T e I L

Hence it is not possible for a vertex of G to lie on more than two k + 1-circuits.
Every vertex lies on exactly two (arc-disjoint) k + 1—circuits and so every arc lies
on exactly one k + 1—circuit. Thus there is an arc-disjoint k -+ 1—circuit covering

of G. =

Theorem 3. If k > 2 and k + 1 does not divide 2(2*¥*? — 3) then G(2**! - 3,2,k)

is empty.

Proof. If k = 3 then G(13,2,3) is empty [3].

If b > 3 then by Lemma 2, there is an arc-disjoint covering L of G such that
={l:1is a k + 1—circuit of G}.

U L={ly..., L} then L contains m(k -+ 1} distinct arcs.

However, G contains 2(2**? —~ 3) arcs and so if k + 1 does not d1v1de 2(2FF1 - 3)

then G(2%¥*t1 — 3,2,k) is empty. =

3. CONCLUSION

Using Theorem 3 and the fact that for k > 2, 3 x 21 < n < 2k — 2, K(n,2) is

either k or k + 1 [3], it follows that if k > 2 and k -+ 1 does not divide 2(2k+1 - 3)

then K(2%*1 —3,2) = k + L.

Furthermore, for such k’s , N(2,k) < 2k+1 _ 4 is an improvement upon the upper

bound of N(2,k).

Interestingly, we checked the divisibility of 2(2¥+ —3) by k + 1 for 3 < k < 107

(using a computer) and we found that 274486 divides 2(2%7*4¢ —3), 5035922 divides

2(25935922 _ 3 and k+ 1 does not divide 2(2**? — 3) for all the other values of k in

this range.

Hence K(28+? —3,2) = k41 for all k, 3 < k < 107 (except possibly when k =

274485, k = 5035921).

We can now summarise our current state of knowledge of the N(2,k) problem .
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12
25 < N(2,4) < 28
50 < N(2,5) < 60
100 < N(2,6) < 124
200 < N(2,7) < 252
400 < N(2,8) < 508
800 < N(2,9) < 1020
1600 < N(2,10) < 2044

W 0 = D U d WO F

P
()

t 21’—4 x 25 _<_ N(2,t) < Mz,t

where My, = 271 — 4 if t + 1 does not divide 2(2'*! —3)
and M, = 2"7! — 3 otherwise.
Table 1.

Our current state of knowledge of the K(n,2) problem is summarised in Table 2
(for n < 100).
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K(n,2)

n n K(n,2) n K(n,2)
1 0 34 5 67 . 6
2 1 35 5 68 6
3 1 36 5 69 6
4 2 37 5 70 6
5 2 38 5 71 6
6 2 39 5 72 6
7 3 40 5 73 6
8 3 41 5 74 6
9 3 42 5 75 6
10 3 43 5 76 6
11 3 44 5 77 6
12 3 45 5 78 6
13 4 46 5 79 6
14 4 47 5 80 6
15 4 48 5 81 6or7
16 4 49 5 or 6 82 6
17 4 50 5 83 6
18 4 51 5 or 6 84 6
19 4 52 5o0r6 &5 6
20 4 53 5or 6 86 6
21 4 54 5or 6 87 6
22 4 55 50r 6 88 6
23 4 56 5o0r6 89 6
24 4 57 5or6 90 6
25 4 58 5or 6 91 6
26 4ord 59 5or6 92 6
27 4orb 60 5or6 93 6
28 4orb 61 6 94 6
29 5 62 6 95 6
30 5 63 6 96 6
31 5 64 6 97 6or7
32 5 65 6 98 6or7
33 5 66 6 99 6or 7
100 6
Table 2.
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