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Abstract

The complexity of decision problems concerning the existence of subsets
V' C V of graphs G = (V, E) with domination properties that involve con-
ditions on the number of neighbors of a vertex that belong to V' is studied.
Several such problems are shown to be N P-complete, even for input restricted
to planar graphs of maximum degree 3. In particular, an independent set V'
with the property that each vertex in ¥V — V' has a unique neighbor in V' is
termed a perfect dominating set. 1t is shown that determining whether a tree
has a perfect dominating set can be solved in O(log|V]) time with O([V])
processors in the CREW PRAM model of parallel computation and in O(V])
time sequentially.

1. Introduction

A dominating set in a graph & = (V| E) is a subset V' of the vertex set V having
the property that every vertex of G either belongs to V' or has a neighbor that
belongs to V. Applications of concepts of domination arise in situations where every
vertex in the graph which models the problem must have “at least one” neighbor
in the distinguished subset V' of the vertex set V of the graph. We study here
variations which arise where at least one neighbor in V' is necessary, but more than
one is too much! All graphs are simple, without loops or multiple edges. The
following describes one such variation.

Perfect Domination

Instance: A graph G = (V. E).

Question: Is there a subset V' C V which satisfies the conditions: (i) V' is a
dominating set, and (i) N[u] A N[v] = 0 for all u,v € V',u # v, where N(z) = {yly
is adjacent to z} and Niz| = {z} U N(z).

A perfect dominating set in the graph (), (the ¢-dimensional binary cube) is pre-
cisely a perfect single error-correcting code. The graph @, has a perfect dominating

set if and only if ¢ =2° — 1.

Perfect dominating sets, also called perfect codes in graphs, have been previously
studied by a number of authors [Bi,DR,HS KK ,KMM Krl,Kr2,Kr3,Kr4,Sm]. Our
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focus in this paper is on issues of computational complexity. Note that replacing the
requirement “at least one neighbor in V'” by “exactly one neighbor in V'” allows
the interesting question to be asked (for a variety of properties of V') whether such
a set V' exists at all in the graph. Our main result in this paper is that many
such decision problems for domination properties are NP-complete, even for planar
graphs, but can be answered in linear sequential time and in O(log|V|) time using
O(|V]) CREW processors for trees.

2. Perfect Domination

Theorem 1 shows that Perfect Domination is NP-complete for planar graphs of
maximum degree three. A stronger result has been obtained independently by [KK].
We include a proof here as it forms the basis of some of our subsequent theorems.
We give only the main points of the argument.

Theorem 1. Perfect Domination is NP-complete for planar graphs of maximum
degree three.

Proof.  The problem is clearly in NP. We show that it is N P-hard by reducing
from the NP-complete problem Planar Three-Dimensional Matching (GJ,DF]. An
instance of this problem consists of three disjoint sets R, B, Y, of equal cardinality
q and a set T of triples, T'C R x B x Y. We assume without loss of generality that
each element of RU B U Y belongs to at least one triple in T. To each instance
I we may associate a bipartite graph ;. The vertex classes of Gy are RUBUY
and T. An edge connects a triple t € T to an element 2 € RU B UY if and only
if 7 is a member of £. The question is to decide if there is a subset of ¢ triples of
T that contains all the elements of R, B and Y. In [DF] this problem is shown to
be N P-complete even when restricted to instances I for which the associated graph
(G is planar.

To reduce an instance I of Planar Three-Dimensional Matching to Perfect Dom-
ination we modify the associated graph Gy by introducing a third set of vertices 1"
in one~to—one correspondence with the set of vertices T’ together with edges joining
each vertex ¢ € T to the corresponding vertex t' € T". Thus each vertex of T of the
modified graph G has degree one.

If P C T is a solution set of ¢ triples for the instance I of Three-Dimensional
Matching then P U {#'|t € T — P} is a perfect dominating set in G;. Conversely, if
G has a perfect dominating set D then no vertex z of RU B UY belongs to D.
To see this, note that there is at least one triple t to which z belongs and z € D
implies ¢ ¢ D. If ¢/ & D then t' has no neighbor in D, while if ¢ € D then ¢ has two
neighbors in D. In either case this contradicts that D is perfect. '

A perfect dominating set D in G} that consists entirely of vertices in T°U 1"
corresponds to a solution set for I, since each element of RU B UY has exactly one
neighbor (triple in which it occurs) in DNT. The graphs G and G can clearly be
computed from [ in polynornial time.
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Figure 1 shows an example (for a vertex of degree 5) of a transformation of
a planar graph H to a planar graph ' which has maximum degree three with
the property that H' has a perfect dominating set if and only if # has one. This

transformation is easily accomplished in polynomial time. a
e
a e g
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c

Figure 1. Transformation to maximum degree three.

3. Semiperfect Domination

The conditions which define a perfect dominating set are rather stringent; not
only do we require that vertices in V — V’ have exactly one neighbor in V', but we
also require that no two vertices of V' be adjacent. Relaxing this second require-
ment motivates the following definition, which would be applicable to problems of
“interference-free” servicing or broadcasting, where the service centers or transmit-
ters can be adjacent.

Definition. A semiperfect dominating set of a graph G = (V, F) is subset V' of the
vertex set V' C V such that

i) V'is a dominating set.
g

(it) Forve V-V |INw)nV'|=1.

Since every graph G' = (V, E) has a semiperfect dominating set (by taking V'’ = V)
it is natural to ask whether it has one of size less than or equal to k.

Minimal Semiperfect Domination
Instance: A graph G = (V, F) and an integer k.
GJuestion: Does G have a semiperfect dominating set V' C V| such that [V'] < k7

As a special case, we may ask whether G has a nontrivial semiperfect dominating
set, i.e. one with V' £ V. Minimal Semiperfect Domination is NP-complete as a
corollary to the NP-completeness of the following problem, which is the special case
of k=|V|-1.

Semiperfect Domination
Instance: A graph G.
Question: Does G have a nontrivial semiperfect dominating set?
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Theorem 2.  Semiperfect Domination is NP-complete for planar graphs.

Proof. The problem is clearly in NP. We reduce from Perfect Domination for
connected, planar graphs of maximum degree three. We may assume without loss
of generality that no vertex of degree 2 in G has two distinct neighbors of degree 2,
since otherwise G can be simplified by replacing a path of length 4 with all internal
vertices of degree 2 by a single edge, with the resulting graph having a perfect
dominating set if and only if G has one.

Under this assumption, let Gy be obtained from G as follows:
1. Replace each edge zoz; of G where deg(zo) = deg(z1) = 3 by a path of length 7.
2. Replace each path zgz1z: where deg(zo) = deg(zz) = 3 and deg(z,) = 2 by 2
path of length 5.
3. Replace each path zozizsz3 where deg(zo) = deg(xs) = 3 and deg(z) =
deg(z,) = 2 by a path of length 9.

The result of the above modifications is to produce a graph (o that has a perfect
dominating set if and only if ¢ has one, and which is isomorphic to a subdivision of
a cubic graph C with each edge e of C subdivided s, time where s, > 4 and s, =0
(mod 2).

Next, for all vertices u of degree 2 in Gy create a new vertex u’ and attach it
to u and to both neighbors of u in Gy. The construction of G insures that the v}
of figure 2(c) can have a consistent orientation around the trivalent vertices v, thus
assuring the planarity of G/, the corresponding subgraph of which is shown in figure

< >=<

9(d).

Figure 2. (a) G. (b) Go. (c) Degree two modification. (d) G".
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Claim 1. 1 G has a perfect dominating set P then G’ has a nontrivial semiperfect
dominating set §.

Clearly P dominates all of ' except the vertices labeled y,w,z and possibly
z in figure 2(d). Let 5 be the union of P with appropriate vertices from the set
{w,2,y,z}. If 2 has a neighbor in P then include z in S, otherwise include y. S is
in fact a perfect dominating set of G'.

Claim 2. Any nontrivial semiperfect dominating set 5 of f does not contain
adjacent vertices.

Note that if two vertices of a 3-cycle are in S then the third vertex is in S also.
If z € 5 then {y,w,z} € 5. If § is nontrivial and contains an adjacent pair of
vertices, these must belong to a set {z,y,w, 2z} as in figure 3(d). If two of these are
in S then all must be. In particular, = must be in 5. But then no vertex of N[u/]
can be in S, a contradiction.

Since any semiperfect dominating set with no adjacent vertices is a perfect dom-
inating set, Claim 1 and Claim 2 together conclude the proof. a

4. Weakly Perfect Domination

In Semiperfect Domination we require that each vertex not in V/ have exactly
one neighbor in V', with no conditions on adjacencies between vertices in V', If we
require in addition that each vertex in V’ be adjacent to at most one other vertex in
V', then we have the following problem, equivalently obtained by replacing closed
neighborhoods by open neighborhoods in the definition of a perfect dominating set.

Weakly Perfect Domination

Instance: A graph G = (V, E).

Question: Is there a subset V' C V such that: (i) V' is a dominating set, and (i1)
forallu,ve V', usto, Nu)N N(v)=§7

Theorem 8. Weakly Perfect Domination is NP-complete for planar graphs.

Proof.  The problem is clearly in NP. The reduction is from Perfeet Domination
for connected, planar graphs of maximum degree three. For such a graph @ let G
be constructed as in the previous proof. For each u € Gy of degree two create a
vertex u’ as before and attach it to w and to both neighbors of u in . Denote this
new graph G’

Any perfect dominating set of Gy is a perfect dominating set of (' and thus a
weakly perfect dominating set of (. To show that a weakly perfect dominating set
of G is a perfect dominating set of Gy we argue the following claims.

Claim 1. Any weakly perfect dominating set W of ' does not contain any vertex
u' created in the construction of G,
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Assume v’ € W, u adjacent to v,v adjacent to w # u, w # v’ and u,v,w of
degree 2 in Gy. That such a v and w exist for every u of detree 2 is assured, since in
the construction of G the vertices of degree 2 induce a subgraph that consists of a
disjoint collection of paths, each of length at least 5. Since N(u') N N(u) N N(v')N
N(w) = {v} none of u,v’ or w can be in W. Since N(u') N N(v) = {u}, v cannot
be in W. Then v’ is not dominated.

Claim 2. Any weakly perfect dominating set W of G’ does not contain adjacent
vertices.

W contains no pair of adjacent vertices that includes a vertex u' created in the
construction of G, by Claim 1. Suppose u,v € V(Gg) are adjacent. Without loss
of generality we may asume u has degree 2 in Go. Since v’ € N(u) N N(v), either

ugWorvdV.

Any weakly perfect dominating set in G with no adjacent vertices is a perfect
dominating set in G’ and by Claim 1, a perfect dominating set in Gi. Since Go has
a perfect dominating set if and only if G has a perfect dominating set, the proof is
concluded. =

5.  Perfect Domination in Trees

We now show that we can determine if a tree has a perfect dominating set in
time linear in the number of vertices of the tree. Our result holds for unrooted trees,
although the algorithm assumes that the tree has a root. For an unrooted tree, a
root may be chosen arbitrarily.

Consider a tree T' = (V, E) with root vertex r. With respect to a perfect domi-
nating P, each vertex v of T must satisfy exactly one of the following statements:

(above) The parent of v is in P.
(in) The vertex v is in P.
(below) Some child of v is in P.

Note that a leaf must satisfy statement in or statement above and that if two
leaves are siblings in T then their parent must be in P. By evaluating the tree
beginning with the leaves, we can determine if T' has a perfect dominating set.
The algorithm given may be viewed as a special case of the elegant and general
methods of [BLW,Wi] for linear algorithms in trees and other families of graphs. °
For a constructive characterization of trees which have a perfect dominating set see
[BBS]. The linear time algorithm presented there is essentially the same, but to
clarify our parallel algorithm for the problem we provide the following sketch.

To simplify notation and details of the algorithm, consider the following trans-
formation (as indicated in figure 3) of T' to a tree 7" in which every vertex has at
most two children. The tree T’ has a perfect dominating set if and only if T has
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@ pelicty Quiliillaving set. 1 he number of vertices i £ 18 bounded by 4 |V, and
the transformation can be made in sequential time linear in the size of T. The
transformation can also be accomplished in time O(log |V]) with a linear number
of processors by repeatedly “splitting” the task at each vertex with more than 2
children.

abcde | ¢ /\
c d e d e

Figure 3. Transformation to at most two children.

We may assume henceforth that 7' is a tree in which every vertex has at most two
children. Associate with each vertex v of T a boolean vector, value(v) = (a, b, c),
where a, b or ¢ is true if and only if, based only on examination of the subtree rooted
at v, some perfect dominating set of T' exists in which v satisfies statement above,
in or below respectively. Thus value (leaf) is initialized to (1,1,0), reflecting the fact
that a leaf can not be dominated from below. For an internal vertex v, value (v) is
to be computed in terms of the values of its children. The function to be computed
at each internal vertex v of T' can be expressed as follows:

If v has one child then

(1) walue(v) = (z,z,y)

where (z,y,2) is the value of the child of v.

If v has two children then

(2)  walue(v) = (2129, 7129, 21Y2 + 1122)

where (21,1, z1) and (23,2, 2) are the values of the children of v.

For example, v satisfies statement above if all of its children satisfy statement
below; v satisfies statement in if all of its children satisfy statement above; v satisfies
statement below if some child satisfies statement in and all other children (if any)
satisly statement below.

Since the root r cannot be dominated from above, value(r)(0,1,1)T # (0,0,0)
if and only if 7" has a perfect dominatiny, .et. That the above algorithm correctly
determines whether 7" has a perfect dominating set is easily shown by induction on
the number of vertices of 7. That it is linear is obvious.
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We next show that Perfect Domination can be solved in O(log|V'|) time with
O([V|) CREW processors. The basic approach is due to the work of [MR] on eval-
uation of expression trees while the observations needed to carry out the approach
on a problem of determining a graph property such as Perfect Domination are due
to [MP]. A naive parallelization of the previous algorithm by associating with each
vertex v of T' a processor to compute value(v) is O(height). The obvious shortcom-
ing is that it fails to deal adequately with long paths in the tree. By composing the
functions associated with certain parent-child pairs we can sufficiently collapse long
paths of partially evaluated vertices to obtain an O(log [V']) time algorithm.

In place of (1) and (2) consider the following computation rules :

If v has one child then

001
(3) walue(v)=| 1 0 0 |(z,y,2)"
010

If v has two children then

) O 0 Z1
(4)  wvalue(v)=1| zx 0 0 | (222, z)F
0 »n

(Since the function is commutative, which child is child; and which is child; can
be decided arbitrarily.) The significant difference is in (4). Notice that (2) is in
no apparent way associative. The rule (4) divides the function evaluation into
two tasks: firstly, the creation of the three by three matrix, and secondly, matrix
multiplication. We exploit the fact that matrix multiplication is associative. If we
have a parent-child pair for which some other child of the parent is evaluated then
the three by three matrix for the parent can be created, leaving only the matrix
multipication to be performed. For example, consider the tree shown in figure 4,
where (a,b,¢) and (d, ¢, f) are known and (z,y, ) is unknown.

v
(d,e,f) u
(a,b,c) (x,y 2/
Figure 4.
Here
0 0 ¢
value(u) =1 a 0 0 (z,y,2)T
0 c b
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and

00 f
value(v) = | d 0 0 | (value(v))”
0 f e
$0,
00 f 00 ¢ 0 fc fb
value(v) = | d 0 0 a 0 |(z,9,2)" =] 0 0 dec |(z,y,2)7
0 f e 0 ¢ b fa ec e€b
0 fe fb
We can associate with v a known matrix, 0 0 dc |, and delete u from
fa ec eb

the computation, thus “shortening” the tree. By the techniques of [MR] the entire
tree can be evaluated in time O(log |V]).

6. Summary

We have addressed in this paper some formulations of “domination” where classes
of vertices are permitted or required to have at most one or exactly one neighbor in
the dominating set. In perfect domination every vertex must be uniquely dominated,
in semiperfect domination every vertex not in the dominating set must be uniquely
dominated, while a weakly perfect dominating set is both semiperfect and satisfies
the condition that a vertex not in the dominating set has at most one neighbor in
the dominating set.

We have shown that determining whether an arbitrary graph & has a perfect
dominating set is NP-complete for planar graphs of maximum degree three. Deter-
mining whether G has a nontrivial semiperfect dominating set is also NP-complete
for planar graphs, as is determining whether GG has a weakly perfect dominating
set. We have also shown how the problem Perfect Domination can be solved in
O(log |V]) time with a linear number of processors for input restricted to trees.
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