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Assume u' 
degree 2 in 
the construction of 
disjoint collection of each of at least 5. Since N( u') n N( u) n N( v') n 
N(w) = {v} none of u,v' or w can be in W. Since N(u') n N(v) {u}, v cannot 
be in W. Then v' is not dominated. 

Claim 2. 
vertices. 

dormna·tmg set W of G' does not contain aU .• I(LVL,llC 

TiV contains no of adjacent vertices that includes a vertex u' in the 
construction of G', Claim 1. u, V(Go) are adjacent. Without loss 
of we may asume u has 2 in Since u' E N ( u) n either 
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Any perfect in a with no adjacent vertices 
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5. Perfect Domination in Trees 

We now show that we 
time linear in the number of u.o,e1" 11'''''' 

although algorithm U":>"''-<U.''00 

root may be chosen arbitrarily. 

Consider a tree T (V, with root 
nating P, each vertex v of T must 

tree has a perfect dominating set in 
Our result holds for unrooted trees, 

a root. For an unrooted tree, 

r. With respect to a perfect domi
one of the following statements: 

(above) 
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( below) 

The parent of v in P. 
The vertex v in P. 
Some child of v is in P. 

Note that a leaf must satisfy statement in or statement above and that if two 
leaves are siblings in T then their must be in P. the tree 
beginning with the leaves, we can determine if T has a perfect dominating set. 
The algorithm given may be viewed as a special case of the elegant and general 
methods of for linear in trees and other families of graphs. 
For a constructive characterization of trees which have a perfect set see 
[BBSj. The linear time algorithm there is essentially the same, but to 
clarify our parallel algorithm for the problem we provide the following sketch. 

To simplify notation and details of the algorithm, consider the following trans
formation (as indicated in figure 3) of T to a tree T' in which every vertex has at 
most two children. The tree T' has a perfect dominating set if and if T has 
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Since the root r cannot be dominated from =I- (0,0,0) 
if and if T has a dominatint, .. ~t. That the above U,iF,VLJ.<JHJ .. U correctly 
determines whether T has a perfect dominating set is shown induction on 
the number of vertices of T. That it is linear is obvious. 
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We next show that Domination can be solved in O(log IVI) time with 
O(IVI) CREW processors. The basic approach is due to the work of [MR] on eval-
uation of while the observations needed to carry out the approach 
on a problem of a graph property such Perfect Domination are due 
to [MPj. A naive parallelization of the algorithm by associating with each 
vertex v of T a processor to compute value( v) is O(height). The obvious shortcom
ing is that it fails to deal adequately with long paths in the tree. composing the 
functions associated with certain parent-child pairs we can sufficiently collapse long 
paths of partially evaluated vertices to obtain an O(log IV\) time algorithm. 

In place of (1) and consider the following computation rules : 

If v has one child then 

u 0 

~ ) (x,y, zjT (3) value( v) 0 

If v has two children then 

( ~I 
0 

Z, ) 
(4) value( v) 0 o (X2' Y2, 

Zl Yl 

(Since the function is commutative, which child is child1 and which is child2 can 
be decided arbitrarily.) The significant difference in (4). Notice that (2) is in 
no associative. The rule (4) divides the function evaluation into 
two firstly, the creation of the thn,,'e by three matrix, and secondly, matrix 
multiplication. We exploit the fact that matrix multiplication is associative. If we 
have a parent-child for which some other child of the parent is evaluated then 
the three by three matrix for the parent can be created, leaving only the matrix 
multipication to be performed. For example, consider the tree shown in figure 4, 
where (a, b, c) and (d, e, f) are known and (x, y, z) is unknown. 

(d,e,f)~ 
(a, b,c) (x,y, z) 

Figure 4. 

Here 

value(u) = (~ ~ ~) (x,y,zf 
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and 

value{v) = (~ ~ ~) (value{vW 

so, 

value{v) = 0 ; ~)( ~ ~ n {x,y,zl ( 
~ ~c ~!) (x,y,z? 
fa ec eb 

We can associate with v a known matrix, (~ ~c ~!), and delete u from 
fa ec eb 

the computation, thus "shortening" the tree. By the tec:hnlqlles of [MR] the entire 
tree can be evaluated in time O(1og IVI). 

6. Summary 

We have addressed in this paper some formulations of "domination" where classes 
of vertices are permitted or required to have at most one or exactly one neighbor in 
the dominating set. In perfect domination every vertex must be uniquely dominated, 
in semi perfect domination every vertex not in the dominating set must be uniquely 
dominated, while a weakly perfect dominating set is both semiperfect and satisfies 
the condition that a vertex not in the dominating set has at most one neighbor in 
the dominating set. 

We have shown that determining whether an arbitrary graph G has a perfect 
dominating set is NP-complete for planar graphs of maximum degree three. Deter
mining whether G has a nontrivial semi perfect dominating set is also NP-complete 
for planar graphs, as is determining whether G has a weakly perfect dominating 
set. We have also shown how the problem Perfect Domination can be solved in 
O(log IVI) time with a linear number of processors for input restricted to trees. 

Acknowledgements. We would like to thank Gary Miller and Andre Proskurowski 
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