Partitioning sets of blocks into designs

Martin J. Sharry and Anne Penfold Street
Department of Mathematics
The University of Queensland
Queensland 4072 AUSTRALIA

Abstract

Earlier results on partitioning sets of blocks into designs are reconsidered and extended, and interesting properties of some of these partitions are discussed.

1. Introduction

A t-design based on a v-set, X, is a collection of k-subsets (blocks) chosen from X in such a way that each unordered t-subset of X occurs in precisely λ of the blocks. Such a design has parameters $t-(v, k, \lambda)$. In particular, for v even, a one-factor of the complete graph K_{v} may be regarded as a $1-(v, 2,1)$ design. Two $t-(v, k, \lambda)$ designs are said to be disjoint if and only if they have no block in common.

If the set of all the $\binom{v}{k} k$-sets contained in X can be partitioned into mutually disjoint $t-(v, k, \lambda)$ designs (all with the same parameters), then these designs are said to form a large set, denoted by $L S(t-(v, k, \lambda))$. In particular, for v even, a onefactorisation of K_{v} may be regarded as a $L S(1-(v, 2,1)$); it is also often denoted by $O F\left(K_{v}\right)$. If a $t-(v, k, \lambda)$ design has b blocks, then b must divide $\binom{v}{k}$ for a large set of these designs to exist. However, even where this condition is satisfied a large set may not exist; for example, there is no $L S(2-(7,3,1))[4]$.

Whether or not a large set exists, it may be possible to pack the designs neatly by enlarging the set of points on which they are based, sometimes by adjoining just one extra point. Thus, if the set of all the $\binom{v}{k} k$-sets chosen from X can be partitioned into v mutually disjoint $t-(v-1, k, \lambda)$ designs, each missing a different point of X, then these designs are said to form an overlarge set, denoted by $\operatorname{OS}(t-(v-1, k, \lambda))$. We shall label the designs of an overlarge set by their missing elements. In particular, for v odd, a near-one-factorisation of K_{v} may be regarded as an $\operatorname{OS}(1-(v-1,2,1)$); it is also often denoted by $\operatorname{NOF}\left(K_{v}\right)$. If a $t-(v-1, k, \lambda)$ design has b blocks, then b must divide $\binom{v}{k}$ for an overlarge set of these designs to exist. However, even where this condition is satisfied an overlarge set may not exist; for example, there is no $O S(5-(12,6,1))[7]$.

There are two general constructions for overlarge sets, as follows:
(i) From any $t-(v, k, 1)$ design, D, we can form an $\operatorname{OS}((t-1)-(v-1, k-1,1))$ by choosing, for each $i=1, \ldots, v$, all the blocks of D containing i, and deleting i from each of them. These $(k-1)$-sets form design \mathcal{D}_{i}, and this ovenlarge set is said to be derived from D. Note that, for different values of i, the designs \mathcal{D}_{i} derived from D need not be isomorphic to each other. (This use of the term 'derived' is consistent with that of Rosa [6].)
(ii) From any $O S(t-(v, k, 1))$ based on the set $\{0,1, \ldots, v\}$ and consisting of the designs $\mathcal{D}_{0}, \mathcal{D}_{1}, \ldots, \mathcal{D}_{v}$, we can form $v+1$ distinct $O S((t-1)-(v-1, k-1,1))$. Starting from some fixed element i, we first discard the design \mathcal{D}_{i} and then, from each design $\mathcal{D}_{j}, j \neq i$, we choose all the blocks containing i, and delete i from each of them to form the design ε_{j} on the set $\{0,1, \ldots, v\} \backslash\{i, j\}$. These designs $\varepsilon_{j}, j \neq i$, form an $O S((t-1)-(v-1, k-1,1))$ based on the set $\{0,1, \ldots, v\} \backslash\left\{\frac{1}{}\right\}$; this is a contraction of the original overlarge set. The isomorphism class of the contraction will in general depend on the element i which has been deleted. We also refer to the original overlarge set of designs \mathcal{D}_{i}, $i=0,1, \ldots, v$, as an extension of the overlarge set of designs ε_{j}. Note that, for $t \geq 2$, every overlarge set of t-designs is an extension of at least one overlarge set of $(t-1)$-designs, but that not every overlarge set of $(t-1)$-designs is a contraction of an overlarge set of t-designs.

Construction (i) above shows that, for example, there is an $O S(2-(v, 3,1))$ for every $v \equiv 1$ or $3(\bmod 6)$, since there is a $3-(v+1,4,1)$ design for every such $v[3]$. But this is not the only way in which such overlarge sets arise. For some small designs, we know all possible overlarge sets and, consequently, we know which of them are extendible; this information is summarised in Table 1.

Construction (ii) for overlarge sets has an analogue for large sets; that is, from a $L S(t-(v, k, 1))$ we can form a $L S((t-1)-(v-1, k-1,1))$ by contraction.

In this paper, we consider the following:

Parameters of designs	Number of non-isomorphic overlarge sets	Number of extendible overlarge sets
$1-(6,2,1)$	7	2
$2-(7,3,1)$	11	$[9]$
$3-(8,4,1)$	2	$[1]$
$1-(8,2,1)$	3460	2
$2-(9,3,1)$	77	$[10]$
$3-(10,4,1)$	21	$[8]$
$4-(11,5,1)$	24	$[7]$

Table 1: The number of non-isomorphic overlarge sets of some small t-designs, and the number of these overlarge sets which are extendible.
(i) relationships between $L S(2-(9,3,1))$ and their contractions to $O F\left(K_{8}\right)$;
(ii) relationships between $O S(2-(7,3,1))$, their contractions to $\operatorname{NOF}\left(K_{7}\right)$ and their extensions to $\operatorname{OS}(3-(8,4,1))$;
(iii) relationships between $\operatorname{OS}(2-(9,3,1))$, their contractions to $\operatorname{NOF}\left(K_{9}\right)$, their extensions to $O S(3-(10,4,1))$ and further to $O S(4-(11,5,1))$;
(iv) the possibility of using contraction and extension of a given large or overlarge set of designs to define a coarser equivalence relation, more appropriate than isornorphism, in cases where the number of isomorphism classes becomes very large.

2. Contractions of $\operatorname{LS}(2-(9,3,1))$

There are precisely two $L S(2-(9,3,1))$ [4], and precisely six $O F\left(K_{8}\right)$ [11]; these are listed for convenience in Tables 2 and 3 respectively. Note that from each 3×3 array in Table 2, the corresponding $2-(9,3,1)$ design is constructed as usual by taking the rows, columns, forward diagonals and back diagonals of the array of the design. In Table $3, G_{j}$ denotes the automorphism group of \mathfrak{F}_{j}. The groups G_{2}, G_{3} and G_{4} are all subgroups of $G_{1} ; G_{5}$ is isomorphic to the subgroup of G_{1} with generators (124)(678), (132)(587) and (17)(28)(35)(46); G_{6} is not isomorphic to any subgroup of G_{1}. Contraction of the first large set on element 1 (or 5) leads to a one-factorisation isomorphic to \mathfrak{F}_{1} and contraction on any other element to a onefactorisation isomorphic to \mathbb{W}_{5}. Contraction of the second large set on any element also leads to a one factorisation isomorphic to $3_{5} 5$. The relationships between these designs are shown in Figure 1.

There is no $\operatorname{LS}(3-(10,4,1))[4]$, so these large sets cannot be extended.

3. Contractions and extensions of $\operatorname{OS}(2-(7,3,1))$

From the six $O F\left(K_{8}\right)$ listed in Table 3 we can obtain the seven $\operatorname{NOF}\left(K_{7}\right)$ listed in Table 4. In this table, a contraction of the $O F\left(K_{8}\right) \mathfrak{F}_{j}$ on the point i is labelled $\mathfrak{N}_{j i}$

Large Set	Designs							
	139	192	127	174	148	186	163	
1	275	745	485	865	635	395	925	
	486	863	639	392	927	274	748	
	124	128	125	129	123	126	127	
2	378	943	983	743	469	357	346	
	956	765	476	586	785	489	598	

Table 2: The two large sets of 2-(9,3,1) designs.

$\begin{gathered} O F ;\left\|G_{j}\right\| ; G_{j} \\ \text { Generators } \end{gathered}$	Blocks	$O F ;\left\|G_{j}\right\| ; G_{j}$ Generators	Blocks
$\begin{gathered} \mathfrak{F}_{1} ; 1344 ; A G L(3,2) \\ (0561732) \\ (45)(67) \end{gathered}$	01 23 45 67 02 13 46 57 03 12 47 56 04 15 26 37 05 14 27 36 06 17 24 35 07 16 25 34	$\begin{gathered} \mathfrak{F}_{2} ; 64 ; \mathbb{Z}_{2}^{4} \cdot \mathbb{Z}_{2}^{2} \\ (02)(13)(46)(57) \\ (24)(35) \\ (45)(67) \end{gathered}$	$\begin{array}{llll} 01 & 23 & 45 & 67 \\ 02 & 13 & 46 & 57 \\ 03 & 12 & 47 & 56 \\ 04 & 15 & 26 & 37 \\ 05 & 14 & 27 & 36 \\ 06 & 17 & 25 & 34 \\ 07 & 16 & 24 & 35 \end{array}$
$\begin{gathered} \mathfrak{F}_{3} ; 16 ; D_{8} \times \mathbb{Z}_{2} \\ (01)(23) \\ (02)(13)(45)(67) \\ (0614)(2735) \end{gathered}$	01 23 45 67 02 13 46 57 03 12 47 56 04 16 25 37 05 17 26 34 06 14 27 35 07 15 24 36	$\begin{gathered} \mathfrak{F}_{4} ; 96 ; \mathbb{Z}_{2}^{4} \cdot S_{3} \\ (0415)(2736) \\ (123)(567) \end{gathered}$	$\begin{array}{llll} 01 & 23 & 45 & 67 \\ 02 & 13 & 46 & 57 \\ 03 & 12 & 47 & 56 \\ 04 & 16 & 27 & 35 \\ 05 & 17 & 26 & 34 \\ 06 & 14 & 25 & 37 \\ 07 & 15 & 24 & 36 \end{array}$
$\begin{gathered} \widetilde{F}_{5} ; 24 ; A_{4} \times \mathbb{Z}_{2} \\ (01)(23)(46)(57) \\ (135)(267) \end{gathered}$	01 23 45 67 02 13 46 57 03 14 27 56 04 16 25 37 05 17 26 34 06 12 35 47 07 15 24 36	$\begin{gathered} \mathfrak{F}_{6} ; 42 ; \mathbb{Z}_{7} \cdot \mathbb{Z}_{6} \\ (01)(45)(67) \\ (153)(476) \end{gathered}$	$\begin{array}{llll} 01 & 23 & 45 & 67 \\ 02 & 14 & 36 & 57 \\ 03 & 16 & 25 & 47 \\ 04 & 17 & 26 & 35 \\ 05 & 12 & 37 & 46 \\ 06 & 15 & 27 & 34 \\ 07 & 13 & 24 & 56 \end{array}$

Table 3: The six non-isomorphic one-factorizations of K_{8}.
G_{j} denotes the automorphism group of the one-factorization of \mathfrak{F}_{j}. For two groups H and $L, H \times L$ denotes their direct product and $H \cdot L$ denotes their semi-direct product. D_{8}, A_{4}, S_{3} and \mathbb{Z}_{n} denote the dihedral group of order 8 , the alternating group of degree 4 , the symmetric group of degree 3 and the cyclic group of order n respectively. \mathbb{Z}_{n}^{m} denotes the direct product of m copies of $\mathbb{Z}_{n} . A G L(3,2)$ is the collineation group of the affine 3 -space over $G F[2]$.

Figure 1: The relationships between the two large sets of $2-(9,3,1)$ designs (denoted by triangles) and the two extendible one-factorizations, \tilde{F}_{1} and \mathfrak{F}_{5}, of K_{8} (denoted by circles).
and has automorphism group $H_{j i}$, which is the stabiliser in G_{j} of the point i. The groups of all of the one-factorisations $\mathfrak{F}, 1 \leq j \leq 5$, are transitive on the points of the design, so just one near-one-factorisation, $\mathfrak{N}_{j 0}$, arises from each. However the group of the 1 -rotational one-factorisation \mathfrak{F}_{6} fixes one point and is transitive on the rest; it gives rise to the two near-one-factorisations, \mathfrak{N}_{60} and \mathfrak{N}_{62}.

Each of these $\operatorname{NOF}\left(K_{7}\right)$ can be extended to an $O S(2-(7,3,1))$; the relationships between them are shown in Figure 2. The relationships between the $O S(2-(7,3,1))$ and $\operatorname{OS}(3-(8,4,1))$ are also shown in Figure 2: only two of the $11 \operatorname{OS}(2-(7,3,1))$ can be extended, type B going to L_{1}, the $O S(3-(8,4,1))$ with automorphism group of order 1512, and type F to L_{2} with group of order 216. Note that only the $\operatorname{NOF}\left(K_{7}\right)$ arising from \mathfrak{F}_{6} lead to $O S(3-(8,4,1))$.

Since there is no $4-(9,5,1)$ design, no $O S(3-(8,4,1))$ is extendible.

4. Contractions and extensions of $\operatorname{OS}(2-(9,3,1))$

The $O F\left(K_{10}\right)$ have been classified by Gelling [2]; there are precisely 396 of them. These give rise to $3460 \operatorname{NOF}\left(K_{9}\right)$, only 150 of which can be extended to $\operatorname{OS}(2-$ (9,3,1)). Table A1 (in the appendix) lists these 150 NOF $\left(K_{g}\right)$; again, if a particular NOF $\left(K_{9}\right)$ was formed by contraction, on i, of the j th $O F\left(K_{10}\right)$ in Gelling's list, then the value of j is called the index of the $\operatorname{NOF}\left(K_{9}\right)$ and both the index and i are listed in the table. Also the automorphism group of the $\operatorname{NOF}\left(K_{9}\right)$ is denoted by G, and the table lists both the order and the generators of G.

Figure A1 shows the relationships between these $\operatorname{NOF}\left(K_{9}\right)$ and the $O S(2-(9,3,1))$. This graph has 11 components, the largest of which (Component 1) contains the overlarge set derived from a $3-(10,4,1)$ design. In fact, it contains 44 of the $O S(2-$ $(9,3,1)$), including all forty that are extendible and four which are not (numbers 18, 54 , $55,58)$. Note that for this case, because of the difficulty of using our previous notation to label the corresponding figures (A1) we have simply labelled the $N O F\left(K_{g}\right)$ from 1 to 150 .

For $O S(2-(9,3,1)), O S(3-(10,4,1))$ and $O S(4-(11,5,1))$, the relationships are summarised in Figures A2 and A3. Each of these graphs showing the extension-contraction relationships has three components, one of which includes almost all the overlarge sets and contains that derived from a $3-(10,4,1)$ or $4-(11,5,1)$ design respectively.

Of the 40 extendible $O S(2-(9,3,1)), 16$ extend in only one way each (numbers 14 , $15,21,22,32,39,46,49,65,66,69,70,73,74,75,76$), six extend in only two ways each (numbers $2,8,23,24,59,77$), twelve in three ways each (numbers $1,5,9,10$, $11,16,17,25,29,30,31,50$), four in four ways each (numbers $3,4,7,12$), one in five ways (number 6) and one in six ways (number 13).

All of the $21 \operatorname{OS}(3-(10,4,1))$ are extendible: two of them extend in only one way each (numbers 17, 18), ten in only two ways each (numbers $4,11,12,13,14,15,16$, $19,20,21$), five in three ways each (numbers $2,5,6,8,10$) and four in four ways each (numbers 1, 3, 7, 9).

$\underset{\text { generators }}{\mathrm{NOF} ; j ; i ;\left\|H_{j i}\right\| ;}$	Blocks	$\begin{gathered} \text { NOF } ; j ; i ;\left\|H_{j i}\right\| ; \\ \text { generators } \end{gathered}$	Blocks
$\begin{gathered} \mathfrak{N}_{10} ; 1 ; 0 ; 168 \\ (124)(365) \\ (45)(67) \end{gathered}$	12 47 56 13 46 57 14 27 36 15 26 37 16 25 34 17 24 35 23 45 67	$\begin{aligned} & \mathfrak{Y}_{20} ; 2 ; 0 ; 8 \\ & \quad(24)(35) \\ & \quad(45)(67) \end{aligned}$	$\begin{array}{lll} 12 & 47 & 56 \\ 13 & 46 & 57 \\ 14 & 27 & 36 \\ 15 & 26 & 37 \\ 16 & 24 & 35 \\ 17 & 25 & 34 \\ 23 & 45 & 67 \end{array}$
$\begin{gathered} श_{30} ; 3 ; 0 ; 2 \\ (46)(57) \end{gathered}$	$\begin{array}{lll} 12 & 47 & 56 \\ 13 & 46 & 57 \\ 14 & 27 & 35 \\ 15 & 24 & 36 \\ 16 & 25 & 37 \\ 17 & 26 & 34 \\ 23 & 45 & 67 \end{array}$	$\begin{gathered} \mathfrak{N}_{40} ; 4 ; 0 ; 12 \\ (123)(567) \\ (45)(67) \end{gathered}$	$\begin{array}{lll} 12 & 47 & 56 \\ 13 & 46 & 57 \\ 14 & 25 & 37 \\ 15 & 24 & 36 \\ 16 & 27 & 35 \\ 17 & 26 & 34 \\ 23 & 45 & 67 \end{array}$
$\begin{gathered} \mathfrak{T}_{50} ; 5 ; 0 ; 3 \\ (135)(267) \end{gathered}$	12 35 47 13 46 57 14 27 56 15 24 36 16 25 37 17 26 34 23 45 67	$\begin{gathered} \mathfrak{Y}_{60} ; 6 ; 0 ; 6 \\ (165437) \end{gathered}$	$\begin{array}{lll} 12 & 37 & 46 \\ 13 & 24 & 56 \\ 14 & 36 & 57 \\ 15 & 27 & 34 \\ 16 & 25 & 47 \\ 17 & 26 & 35 \\ 23 & 45 & 67 \end{array}$
$\mathfrak{N}_{62} ; 6 ; 2 ; 42$ (01) (45) (67) (153) (476)	01 45 67 03 16 47 04 17 35 05 37 46 06 15 34 07 13 56 14 36 57		

Table 4: The seven non-isomorphic near-one-factorizations of K_{7}; all of these result from contractions of the 11 overlarge sets of $2-(7,3,1)$ designs and from the derivation of the six one-factorizations of K_{8}. For the notation, see the begimning of Section 3.

5. Using extensions and contractions to define equivalence

For some of these systems, notably the $\operatorname{OS}(2-(9,3,1))$, the number of isomorphism classes is large enough to be somewhat awkward. One obvious way to try for a coarser and more convenient equivalence relation on this set is the following:

Suppose that A and B are two $O S(t-(v, k, 1))$. Then A and B are said to be equivalent if one can be converted into the other by a finite sequence of contractions and extensions.

This definition works well in the smallest case, as shown in Figure 2. The sets of $\operatorname{NOF}\left(K_{7}\right), O S(2-(7,3,1))$ and $O S(3-(8,4,1))$ fall into three equivalence classes each, corresponding to the three components of the graph. However for the next case, the

Figure 2: The relationships between near-one-factorizations of K_{7} (denoted by circles), overlarge sets of $2-(7,3,1)$ designs (denoted by triangles), and overlarge sets of $3-(8,4,1)$ designs (denoted by squares).
extendible $O S(2-(9,3,1))$ all belong to the same component of the graph in Figure A1, and consequently are all equivalent to each other. (What is worse, they are all equivalent to the four non-extendible overlarge sets that also occur in the same component.) It follows from this that all the $O S(3-(10,4,1))$ are equivalent to each other, and so too are the $O S(4-(11,5,1))$.

Nevertheless, it is interesting to note the order in which the overlarge sets occur in the graphs. For instance, in Figures A2 and A3, the $O S(3-(10,4,1))$ appear in the following six layers, starting from that derived from a $4-(11,5,1)$ design :

$$
21 ; 4 ; 3 ; 1,2,5,6 ; 7,8,9,10,11,16 ; 12,13,14,15,19,20
$$

(Overlarge sets 17 and 18 appear in both cases in separate components.) In other words, given an $O S(3-(10,4,1)$), contracting it to an $O S(2-(9,3,1))$ and extending again has the same effect as extending it to an $O S(4-(11,5,1))$ and contracting again.

Similarly in Figure A2, the $O S(2-(9,3,1))$ appear in six layers, which are the same six layers as in the first part of Component 1 of Figure A1. The non-extendible
overlarge sets $(18,54,58,55)$ then link those of the two small components of Figure A2 into Component 1 of Figure A1.

6. Acknowledgements

The computation was carried out on the Pyramid 9810 in the Department of Mathematics at The University of Queensland using nauty [5] and backtrack techniques.

This work was sponsored by the Australian Research Council.

References

[1] D. R. Breach and Anne Penfold Street, Partitioning sets of quadruples into designs II, Joumal of Combinatorial Mathematics and Combinatorial Computing, $3(1988), 41-48$.
[2] Eric Neil Gelling, On 1-factorizations of the complete graph and the relationship to round robin schedules, M.A. thesis, University of Victoria, Victoria, British Columbia, 1968.
[3] Haim Hanani, On quadruple systems, Canadian Journal of Mathematics, 12 (1960), 145-157.
[4] R. A. Mathon, K. T. Phelps, and A. Rosa, Small Steiner triple systems and their properties, Ars Combinatoria, 15 (1983), 3-110.
[5] Brendan D. McKay, nauty User's Guide (Version 1.2), Australian National University Computer Science Technical Report TR:CS-87-03 (1987).
[6] Alexander Rosa, A theorem on the maximum number of disjoint Steiner triple systems, Journal of Combinatorial Theory, Series A, 18 (1975), 305-312.
[7] Martin J. Sharry, Partitioning sets of quintuples into designs, Journal of Combinatorial Mathematics and Combinatorial Computing, 6 (1989), 67-103.
[8] Martin J. Sharry and Anne Penfold Street, Partitioning sets of quadruples into designs III, Discrete Mathematics (to appear).
[9] Martin J. Sharry and Anne Penfold Street, Partitioning sets of triples into designs, Ars Combinatoria, 26B (1988), 51-66.
[10] Martin J. Sharry and Anne Penfold Street, Partitioning sets of triples into designs II, Journal of Combinatorial Mathematics and Combinatorial Computing, 4 (1988), 53-68.
[11] W. D. Wallis, Anne Penfold Street, and Jennifer Seberry Wallis, Combinatorics: Room squares, sum-free sets, Hadamard matrices, volume 292 of Lecture Notes in Mathematics, Springer Verlag, Berlin, Heidelberg, New York, 1972.

APPENDIX TO SECTION 4

NOF ; index ; $; \quad\|G\|$; generators	Blocks	NOF ; index ; $i ;\|G\|$; generators	Blocks
$\begin{gathered} श_{1} ; 1 ; 0 ; 48 \\ (26359784) \\ (34)(58)(67) \end{gathered}$	12345678 $13 \quad 24 \quad 5769$ $\begin{array}{llll}14 & 23 & 68 & 79\end{array}$ $\begin{array}{llll}15 & 26 & 37 & 89\end{array}$ $\begin{array}{llll}16 & 25 & 39 & 48\end{array}$ $1728 \quad 3549$ 18274659 $\begin{array}{llll}19 & 36 & 47 & 58 \\ 29 & 38 & 45 & 67\end{array}$ $29 \quad 384567$	$\begin{gathered} \Re_{2} ; 1 ; 1 ; 432 \\ (023)(489)(576) \\ (08)(56)(79) \end{gathered}$	20 36 47 58 23 50 68 79 24 57 69 80 25 39 48 70 26 37 40 89 27 30 46 59 28 35 49 60 29 38 45 67 34 56 78 90
$\begin{aligned} & \eta_{3} ; 2 ; 1 ; 12 \\ & (09)(35)(46) \\ & (34)(58)(67) \end{aligned}$	$\begin{array}{llll} 20 & 38 & 45 & 67 \\ 23 & 50 & 68 & 79 \\ 24 & 57 & 69 & 80 \\ 25 & 39 & 48 & 70 \\ 26 & 37 & 40 & 89 \\ 27 & 30 & 46 & 59 \\ 28 & 35 & 49 & 60 \\ 29 & 36 & 47 & 58 \\ 34 & 56 & 78 & 90 \end{array}$	$\begin{aligned} & श_{4} ; 2 ; 2 ; 12 \\ & (09)(35)(46) \\ & (34)(58)(67) \end{aligned}$	$\begin{array}{llll}10 & 36 & 47 & 58\end{array}$ $\begin{array}{llll}13 & 57 & 69 & 80\end{array}$ $14 \quad 5068 \quad 79$ $15 \quad 374089$ $\begin{array}{lll}16 & 39 & 48 \\ 70\end{array}$ $17 \quad 354960$ $\begin{array}{llll}18 & 30 & 46 & 59\end{array}$ $\begin{array}{lll}19 & 38 & 45 \\ 67\end{array}$ $34 \quad 56 \quad 78 \quad 90$
$\begin{aligned} & \mathfrak{N}_{5} ; 4 ; 9 ; 2 \\ & (38)(47)(56) \end{aligned}$	$\begin{array}{llll} 10 & 35 & 47 & 68 \\ 12 & 34 & 56 & 78 \\ 13 & 24 & 57 & 80 \\ 14 & 23 & 58 & 60 \\ 15 & 26 & 37 & 40 \\ 16 & 25 & 48 & 70 \\ 17 & 28 & 36 & 50 \\ 18 & 27 & 30 & 46 \\ 20 & 38 & 45 & 67 \end{array}$	$\begin{gathered} \mathrm{N}_{6} ; 5 ; 0 ; 2 \\ (36)(45)(78) \end{gathered}$	$\begin{array}{llll} 12 & 34 & 56 & 78 \\ 13 & 24 & 57 & 69 \\ 14 & 23 & 68 & 79 \\ 15 & 26 & 37 & 89 \\ 16 & 25 & 39 & 48 \\ 17 & 28 & 46 & 59 \\ 18 & 27 & 35 & 49 \\ 19 & 38 & 45 & 67 \\ 29 & 36 & 47 & 58 \end{array}$
$\begin{aligned} & N_{7} ; 5 ; 1 ; 8 \\ & (08)(56)(79) \\ & (36)(45)(78) \end{aligned}$	$20 \quad 38 \quad 45 \quad 67$ $23 \quad 50 \quad 6879$ $\begin{array}{llll}24 & 57 & 6980\end{array}$ $\begin{array}{llll}25 & 39 & 48 & 70\end{array}$ $26 \quad 374089$ $\begin{array}{llll}27 & 35 & 49 & 60\end{array}$ $\begin{array}{llll}28 & 30 & 46 & 59\end{array}$ $\begin{array}{lllll}29 & 36 & 47 & 58\end{array}$ 34567890	$\begin{aligned} & श_{8} ; 6 ; 3 ; 2 \\ & (08)(56)(79) \end{aligned}$	10 29 47 68 12 56 78 90 14 58 60 79 15 26 40 89 16 25 48 70 17 20 46 59 18 27 49 50 19 28 45 67 24 57 69 80
$\mathfrak{N}_{9} ; 6 ; 7 ; 1$	10 29 35 68 12 34 56 90 13 24 69 80 14 23 58 60 15 26 40 89 16 25 39 48 18 36 49 50 19 28 30 45 20 38 46 59	$\begin{aligned} & \Upsilon_{10} ; 8 ; 0 ; 2 \\ & (23)(67)(89) \end{aligned}$	12 34 56 78 13 24 57 69 14 23 68 79 15 26 37 89 16 27 49 58 17 36 48 59 18 25 39 47 19 28 35 46 29 38 45 67

Table A1: The 150 non-isomorphic near-one-factorizations of K_{9} which result from contractions of the 77 overlarge sets of $2-(9,3,1)$ designs. For the notation see the beginning of Section 4.

NOF ; index ; $i ;\|G\|$; generators	Blocks	NOF ; index ; $\mathfrak{i} ;\|G\|$; generators	Blocks
$\begin{aligned} & \mathfrak{N}_{11} ; 8 ; 1 ; 4 \\ & (05)(69)(78) \\ & (23)(67)(89) \end{aligned}$	$\begin{array}{llll} 20 & 36 & 48 & 59 \\ 23 & 50 & 68 & 79 \\ 24 & 57 & 69 & 80 \\ 25 & 39 & 47 & 60 \\ 26 & 37 & 40 & 89 \\ 27 & 30 & 49 & 58 \\ 28 & 35 & 46 & 70 \\ 29 & 38 & 45 & 67 \\ 34 & 56 & 78 & 90 \end{array}$	$\begin{aligned} & \mathfrak{l}_{12} ; 8 ; 4 ; 4 \\ & (05)(69)(78) \\ & (23)(67)(89) \end{aligned}$	$10 \quad 29 \quad 38 \quad 67$ $12 \quad 56 \quad 7890$ $13 \quad 576980$ $\begin{array}{llll}15 & 26 & 37 & 89\end{array}$ $16 \quad 273058$ 17203659 $1825 \quad 3960$ $19 \quad 28 \quad 35 \quad 70$ 23506879
$\begin{aligned} & \mathfrak{N}_{13} ; 9 ; 1 ; 4 \\ & (06)(24)(89) \\ & (09)(67)(68) \end{aligned}$	$\begin{array}{llll} 20 & 38 & 45 & 67 \\ 23 & 50 & 68 & 79 \\ 24 & 57 & 69 & 80 \\ 25 & 39 & 46 & 70 \\ 26 & 37 & 40 & 89 \\ 27 & 30 & 48 & 59 \\ 28 & 35 & 49 & 60 \\ 29 & 36 & 47 & 58 \\ 34 & 56 & 78 & 90 \end{array}$	$\begin{aligned} & N_{14} ; 9 ; 3 ; 4 \\ & (06)(24)(89) \\ & (09)(57)(68) \end{aligned}$	$\begin{array}{llll} 10 & 29 & 47 & 58 \\ 12 & 56 & 78 & 90 \\ 14 & 50 & 68 & 79 \\ 15 & 26 & 40 & 89 \\ 16 & 27 & 48 & 59 \\ 17 & 28 & 49 & 60 \\ 18 & 25 & 46 & 70 \\ 19 & 20 & 45 & 67 \\ 24 & 57 & 69 & 80 \end{array}$
$\begin{aligned} & \mathfrak{V}_{15} ; 10 ; 2 ; 2 \\ & (08)(56)(79) \end{aligned}$	$\begin{array}{llll} 10 & 36 & 47 & 89 \\ 13 & 57 & 69 & 80 \\ 14 & 58 & 60 & 79 \\ 15 & 39 & 40 & 68 \\ 16 & 37 & 48 & 50 \\ 17 & 30 & 46 & 59 \\ 18 & 35 & 49 & 70 \\ 19 & 38 & 45 & 67 \\ 34 & 56 & 78 & 90 \end{array}$	$\begin{aligned} & \mathfrak{Y}_{16} ; 10 ; 3 ; 2 \\ & (08)(56)(79) \end{aligned}$	10 25 47 89 12 56 78 90 14 58 60 79 15 27 40 68 16 29 48 50 17 28 46 59 18 26 49 70 19 20 45 67 24 57 69 80
$\mathfrak{N}_{17} ; 10 ; 7 ; 1$ (1)	$\begin{array}{llll} 10 & 25 & 36 & 89 \\ 12 & 34 & 56 & 90 \\ 13 & 24 & 69 & 80 \\ 14 & 23 & 58 & 60 \\ 15 & 39 & 40 & 68 \\ 16 & 29 & 48 & 50 \\ 18 & 26 & 35 & 49 \\ 19 & 20 & 38 & 45 \\ 28 & 30 & 46 & 59 \end{array}$		20 39 45 67 23 50 68 79 24 57 69 80 25 36 40 89 26 35 48 70 27 38 49 60 28 37 46 59 29 30 47 58 34 56 78 90
$\begin{gathered} T_{19} ; 12 ; 1 ; 4 \\ (08)(56)(79) \\ (09)(34)(56)(78) \end{gathered}$	20 35 49 67 23 50 68 79 24 57 69 80 25 37 40 89 26 39 48 70 27 38 45 60 28 36 47 59 29 30 46 58 34 56 78 90	$\begin{gathered} 9_{20} ; 12 ; 2 ; 12 \\ (03)(16)(47) \\ (09)(34)(56)(78) \end{gathered}$	10 36 47 59 13 57 69 80 14 50 68 79 15 39 48 70 16 37 40 89 17 30 46 58 18 35 49 67 19 38 45 60 34 56 78 90

Table A1 (cont'd): The 150 non-isomorphic near-one-factorizations of K_{9} which result from contractions of the 77 overlarge sets of $2-(9,3,1)$ designs. For the notation see the beginning of Section 4.

NOF ; index ; $i ;\|G\|$; generators	Blocks	NOF ; index ; $i ;\|G\|$; generators	Blocks
$\begin{aligned} & \mathfrak{N}_{21} ; 13 ; 3 ; 6 \\ & (086579)(124) \end{aligned}$	10 29 47 58 12 56 78 90 14 50 68 79 15 26 48 70 16 27 45 89 17 25 49 60 18 20 46 59 19 28 40 67 24 57 69 80	$\mathfrak{N}_{22} ; 16 ; 8 ; 1$	10 29 35 47 12 34 56 90 13 24 57 69 14 23 60 79 15 26 37 40 16 27 39 50 17 20 46 59 19 36 45 70 25 30 49 67
$\begin{aligned} & \mathfrak{N}_{23} ; 18 ; 1 ; 2 \\ & (05)(69)(78) \end{aligned}$	20 36 47 59 23 50 68 79 24 57 69 80 25 39 48 60 26 37 40 89 27 30 49 58 28 35 46 70 29 38 45 67 34 56 78 90	$\begin{aligned} & \mathfrak{N}_{24} ; 18 ; 4 ; 2 \\ & (05)(69)(78) \end{aligned}$	10 29 38 67 12 56 78 90 13 57 69 80 15 26 37 89 16 27 30 58 17 25 39 60 18 20 36 59 19 28 35 70 23 50 68 79
$\begin{aligned} & \mathfrak{N}_{25} ; 19 ; 2 ; 2 \\ & (08)(56)(79) \end{aligned}$	10 36 49 58 13 57 69 80 14 50 68 79 15 37 40 89 16 39 48 70 17 30 46 59 18 35 47 60 19 38 45 67 34 56 78 90	$\begin{aligned} & \mathfrak{N}_{26} ; 19 ; 3 ; 2 \\ & (08)(56)(79) \end{aligned}$	10 27 49 58 12 56 78 90 14 50 68 79 15 26 40 89 16 25 48 70 17 28 46 59 18 29 47 60 19 20 45 67 24 57 69 80
$\begin{aligned} & \mathfrak{N}_{27} ; 19 ; 4 ; 2 \\ & (08)(56)(79) \end{aligned}$	10 27 36 58 12 56 78 90 13 57 69 80 15 26 37 89 16 25 39 70 17 28 30 59 18 29 35 60 19 20 38 67 23 50 68 79	$\begin{aligned} & \mathfrak{N}_{28} ; 21 ; 1 ; 2 \\ & (08)(56)(79) \end{aligned}$	20 36 47 59 23 58 60 79 24 57 69 80 25 39 48 70 26 37 40 89 27 38 46 50 28 35 49 67 29 30 45 68 34 56 78 90
$\begin{aligned} & \mathfrak{N}_{29} ; 21 ; 2 ; 2 \\ & (08)(56)(79) \end{aligned}$	10 35 49 67 13 57 69 80 14 58 60 79 15 37 40 89 16 39 48 70 17 30 45 68 18 36 47 59 19 38 46 50 34 56 78 90	$\begin{gathered} \mathfrak{N}_{30} ; 22 ; 0 ; 8 \\ (16482537) \end{gathered}$	12 34 56 78 13 25 47 69 14 26 37 89 15 23 48 79 16 24 38 59 17 29 45 68 18 35 49 67 19 28 36 57 27 39 46 58

Table A1(cont'd): The 150 non-isomorphic near-one-factorizations of K_{9} which result from contractions of the 77 overlarge sets of $2-(9,3,1)$ designs. For the notation see the beginning of Section 4 .

$\begin{aligned} & \text { NOF ; index } ; i ;\|G\| ; \\ & \text { generators } \end{aligned}$	Blocks	NOF ; index ; $i ;\|G\|$; generators	Blocks
$\begin{gathered} \mathfrak{N}_{31} ; 22 ; 9 ; 8 \\ (15472638) \end{gathered}$	$\begin{array}{llll} 10 & 27 & 46 & 58 \\ 12 & 34 & 56 & 78 \\ 13 & 25 & 47 & 80 \\ 14 & 26 & 37 & 50 \\ 15 & 23 & 48 & 60 \\ 16 & 24 & 38 & 70 \\ 17 & 30 & 45 & 68 \\ 18 & 20 & 35 & 67 \\ 28 & 36 & 40 & 57 \end{array}$	$\begin{aligned} & \mathfrak{N}_{32} ; 23 ; 3 ; 2 \\ & (08)(56)(79) \end{aligned}$	$\begin{array}{llll}10 & 27 & 49 & 68 \\ 12 & 56 & 78 & 90 \\ 14 & 58 & 60 & 79 \\ 15 & 26 & 40 & 89 \\ 16 & 25 & 48 & 70 \\ 17 & 20 & 46 & 59 \\ 18 & 29 & 47 & 50 \\ 19 & 28 & 45 & 67 \\ 24 & 57 & 69 & 80\end{array}$
$\begin{aligned} & \mathfrak{N}_{33} ; 24 ; 1 ; 2 \\ & (08)(56)(79) \end{aligned}$	20 38 45 67 23 58 60 79 24 57 69 80 25 39 47 68 26 37 49 50 27 36 40 89 28 30 46 59 29 35 48 70 34 56 78 90	$\begin{aligned} & 9_{34} ; 24 ; 3 ; 2 \\ & (08)(56)(79) \end{aligned}$	10 25 47 68 12 56 78 90 14 58 60 79 15 27 40 89 16 29 48 70 17 28 46 59 18 26 49 50 19 20 45 67 24 57 69 80
$\begin{aligned} & \mathrm{I}_{35} ; 24 ; 4 ; 2 \\ & (08)(56)(79) \end{aligned}$	10253968 12567890 13576980 $\begin{array}{lll}15 & 27 & 3689\end{array}$ $\begin{array}{llll}16 & 29 & 35 & 70\end{array}$ $\begin{array}{llll}17 & 28 & 30 & 59\end{array}$ $\begin{array}{llll}18 & 26 & 37 & 50\end{array}$ $\begin{array}{llll}19 & 20 & 38 & 67 \\ 23 & 58 & 60 & 79\end{array}$ $23 \quad 58 \quad 6079$	$\mathfrak{T}_{36} ; 27 ; 0 ; 1$	12 34 56 78 13 24 57 69 14 23 58 79 15 26 37 89 16 29 38 47 17 28 46 59 18 25 36 49 19 35 48 67 27 39 45 68
$\mathfrak{\Re}_{37} ; 34 ; 2 ; 1$	10 36 48 59 13 57 69 80 14 50 68 79 15 37 40 89 16 35 49 70 17 30 46 58 18 39 45 67 19 38 47 60 34 56 78 90	$\mathfrak{N}_{38} ; 37 ; 2 ; 1$	10 38 49 67 13 57 69 80 14 50 68 79 15 37 40 89 16 30 48 59 17 39 46 58 18 36 45 70 19 35 47 60 34 56 78 90
$\mathfrak{V}_{39} ; 40 ; 1 ; 1$	20 38 45 67 23 50 68 79 24 57 69 80 25 39 48 60 26 37 40 89 27 30 49 58 28 36 47 59 29 35 46 70 34 56 78 90	$\mathfrak{N}_{40} ; 40 ; 2 ; 1$ (1)	10 36 47 59 13 57 69 80 14 50 68 79 15 37 40 89 16 30 49 58 17 39 48 60 18 35 46 70 19 38 45 67 34 56 78 90

Table A1 (cont'd): The 150 non-isomorphic near-one-factorizations of K_{9} which result from contractions of the 77 overlarge sets of $2-(9,3,1)$ designs. For the notation see the beginning of Section 4.

$\begin{gathered} \text { NOF ; index ; } i ;\|G\| ; \\ \text { generators } \end{gathered}$	Blocks	$\underset{\underset{\sim}{\text { generators }}}{\text { NOF index } ; i ;\|G\| ;}$	Blocks
$\underset{(1)}{\mathfrak{N}_{41} ; 43 ; 9 ; 1}$	10273846 $\begin{array}{llll}12 & 34 & 56 \\ 13 \\ 13 & 25 & 47\end{array}$ 13 25 4780 14 20 37 $\begin{array}{llll}14 & 26 & 37 & 50 \\ 15 & 23 & 48 & 60\end{array}$ 16 24 58 17304568 $\begin{array}{llll}18 & 20 & 35 & 67 \\ 28 & 36 & 40 & 57\end{array}$	$\begin{aligned} & \mathfrak{Y}_{42} ; 44 ; 1 ; 2 \\ & (34)(58)(67) \end{aligned}$	$\begin{array}{llll} 20 & 38 & 45 & 67 \\ 23 & 50 & 68 & 79 \\ 24 & 57 & 69 & 80 \\ 25 & 39 & 48 & 60 \\ 26 & 37 & 40 & 89 \\ 27 & 30 & 46 & 59 \\ 28 & 35 & 49 & 70 \\ 29 & 36 & 47 & 58 \\ 34 & 56 & 78 & 90 \end{array}$
$\mathfrak{N}_{43} ;{ }_{(1)} ; 3 ; 1$	$\begin{array}{llll} 10 & 25 & 47 & 68 \\ 12 & 56 & 78 & 90 \\ 14 & 58 & 60 & 79 \\ 15 & 26 & 40 & 89 \\ 16 & 29 & 48 & 70 \\ 17 & 28 & 46 & 59 \\ 18 & 27 & 49 & 50 \\ 19 & 20 & 45 & 67 \\ 24 & 57 & 69 & 80 \\ \hline \end{array}$	$\begin{gathered} \mathfrak{N}_{44} ; 49 ; 0 ; 2 \\ (12)(34)(56)(78) \end{gathered}$	12 34 56 78 13 25 47 69 14 26 37 89 15 23 48 79 16 24 38 59 17 29 35 68 18 39 45 67 19 28 46 57 27 36 49 58
$\mathfrak{N}_{45} ; 50 ; 3 ; 1$	$\begin{array}{llll} 10 & 26 & 47 & 59 \\ 12 & 56 & 78 & 90 \\ 14 & 25 & 70 & 89 \\ 15 & 48 & 60 & 79 \\ 16 & 27 & 49 & 58 \\ 17 & 29 & 40 & 88 \\ 18 & 20 & 45 & 67 \\ 19 & 28 & 46 & 50 \\ 24 & 57 & 69 & 80 \\ \hline \end{array}$	$\begin{aligned} & \mathfrak{N}_{46} ; 51 ; 3 ; 2 \\ & (08)(56)(79) \end{aligned}$	10 25 49 68 12 56 78 90 14 58 60 79 15 27 40 89 16 29 48 70 17 28 46 59 18 26 47 50 19 20 45 67 24 57 69 80
$\begin{aligned} & Y_{47} ; 51 ; 4 ; 2 \\ & (08)(56)(79) \end{aligned}$	$\begin{array}{llll} 10 & 25 & 37 & 68 \\ 12 & 56 & 78 & 90 \\ 13 & 57 & 69 & 80 \\ 15 & 27 & 36 & 89 \\ 16 & 29 & 35 & 70 \\ 17 & 28 & 30 & 59 \\ 18 & 26 & 39 & 50 \\ 19 & 20 & 38 & 67 \\ 23 & 58 & 60 & 79 \\ \hline \end{array}$	$\mathfrak{N}_{48} ; 53 ; 0 ; 1$	$\begin{array}{llll} 12 & 34 & 56 & 78 \\ 13 & 24 & 57 & 69 \\ 14 & 25 & 37 & 89 \\ 15 & 26 & 38 & 79 \\ 16 & 27 & 48 & 59 \\ 17 & 28 & 39 & 46 \\ 18 & 35 & 49 & 67 \\ 19 & 23 & 45 & 68 \\ 29 & 36 & 47 & 58 \\ \hline \end{array}$
$\underset{(1)}{\mathfrak{N}_{49} ; 53 ; 5 ; 1}$	$\begin{array}{lllll} 10 & 29 & 36 & 47 \\ 12 & 34 & 78 & 90 \\ 13 & 24 & 69 & 80 \\ 14 & 37 & 60 & 89 \\ 16 & 27 & 30 & 48 \\ 17 & 28 & 39 & 46 \\ 18 & 20 & 49 & 67 \\ 19 & 23 & 68 & 70 \\ 26 & 38 & 40 & 79 \\ \hline \end{array}$	$\mathfrak{N}_{50} ;{ }_{(1)}^{55 ; 2 ; 1}$	$\begin{array}{llll} 10 & 39 & 45 & 67 \\ 13 & 57 & 69 & 80 \\ 14 & 58 & 60 & 79 \\ 15 & 30 & 49 & 68 \\ 16 & 38 & 47 & 59 \\ 17 & 35 & 40 & 89 \\ 18 & 37 & 46 & 50 \\ 19 & 36 & 48 & 70 \\ 34 & 56 & 78 & 90 \end{array}$

Table A1(cont'd): The 150 non-isomorphic near-one-factorizations of K_{9} which result from contractions of the 77 overlarge sets of $2-(9,3,1)$ designs. For the notation see the beginning of Section 4.

NOF ; index ; ; $\|G\|$; generators	Blocks	NOF ; index ; $;\|G\|$; generators	Blocks
$\mathfrak{N}_{51} ; 59 ; 9 ; 1$	$10 \quad 274568$ 12345678 13245780 $14 \quad 25 \quad 3670$ $\begin{array}{lll}15 & 23 & 48 \\ 60\end{array}$ $\begin{array}{llll}16 & 38 & 47 & 50\end{array}$ 17263058 $\begin{array}{llll}18 & 20 & 37 & 46\end{array}$ $28 \quad 354067$	$\mathfrak{Y}_{52} ; 60 ; 2 ; 1$	$\begin{array}{llll} 10 & 38 & 45 & 67 \\ 13 & 57 & 69 & 80 \\ 14 & 36 & 70 & 89 \\ 15 & 40 & 68 & 79 \\ 16 & 39 & 48 & 50 \\ 17 & 35 & 49 & 60 \\ 18 & 37 & 46 & 59 \\ 19 & 30 & 47 & 58 \\ 34 & 56 & 78 & 90 \end{array}$
$\Re_{53} ; 63 ; 8 ; 1$	$\begin{array}{llll} 10 & 25 & 39 & 47 \\ 12 & 34 & 56 & 90 \\ 13 & 24 & 57 & 69 \\ 14 & 23 & 60 & 79 \\ 15 & 26 & 37 & 40 \\ 16 & 27 & 49 & 50 \\ 17 & 30 & 46 & 59 \\ 19 & 20 & 35 & 67 \\ 29 & 36 & 45 & 70 \end{array}$	$\mathfrak{N}_{54} ; 64 ; 8 ; 1$	$\begin{array}{llll}10 & 27 & 36 & 59\end{array}$ 12345690 $\begin{array}{llll}13 & 24 & 57 & 69\end{array}$ $14 \quad 236079$ $\begin{array}{llll}15 & 26 & 37 & 40\end{array}$ 16394750 $\begin{array}{llll}17 & 25 & 30 & 49\end{array}$ $\begin{array}{llll}19 & 20 & 45 & 67\end{array}$ $29 \quad 354670$
$\Re_{55} ; 65 ; 0 ; 1$	12345678 $13 \quad 254769$ $14 \quad 26 \quad 3789$ $15 \quad 2368 \quad 79$ $\begin{array}{lll}16 & 28 & 39 \\ 17 & 45\end{array}$ 17364958 18294657 19273548 24385967	$\mathfrak{V}_{56} ; 67 ; 3 ; 1$	$\begin{array}{llll} 10 & 29 & 48 & 67 \\ 12 & 56 & 78 & 90 \\ 14 & 58 & 60 & 79 \\ 15 & 26 & 40 & 89 \\ 16 & 20 & 47 & 59 \\ 17 & 28 & 49 & 50 \\ 18 & 25 & 46 & 70 \\ 19 & 27 & 45 & 68 \\ 24 & 57 & 69 & 80 \end{array}$
$\mathfrak{Y}_{57} ; 73 ; 3 ; 1$	$\begin{array}{llll}10 & 29 & 48 & 67\end{array}$ 12567890 14506879 15264089 $\begin{array}{llll}16 & 28 & 47 & 59\end{array}$ 17204658 18254970 19274560 24576980	$\mathfrak{Y}_{58} ; 78 ; 0 ; 1$	12 34 56 78 13 24 57 69 14 25 36 89 15 23 68 79 16 27 49 58 17 29 35 48 18 39 45 67 19 26 38 47 28 37 46 59
$\mathfrak{T}_{59} ; 84 ; 4 ; 1$	$\begin{array}{llll} 10 & 28 & 36 & 59 \\ 12 & 56 & 78 & 90 \\ 13 & 57 & 69 & 80 \\ 15 & 26 & 39 & 70 \\ 16 & 27 & 35 & 89 \\ 17 & 25 & 38 & 60 \\ 18 & 29 & 30 & 67 \\ 19 & 20 & 37 & 58 \\ 23 & 50 & 68 & 79 \end{array}$	$\begin{gathered} \mathrm{I}_{60} ; 85 ; 0 ; 1 \\ (1) \end{gathered}$	12 34 56 78 13 24 57 69 14 25 36 89 15 23 68 79 16 27 49 58 17 29 35 48 18 37 46 59 19 26 38 47 28 39 45 67

Table A1(cont'd): The 150 non-isomorphic near-one-factorizations of K_{9} which result from contractions of the 77 overlarge sets of $2-(9,3,1)$ designs. For the notation see the beginning of Section 4.

NOF ; index ; $i ;\|G\|$; generators	Blocks	$\begin{gathered} \text { NOF ; index } ; i ;\|G\| ; \\ \text { generators } \end{gathered}$	Blocks
$\mathfrak{N}_{61} ; 91 ; 3 ; 1$	$\begin{array}{llll} 10 & 27 & 46 & 59 \\ 12 & 56 & 78 & 90 \\ 14 & 26 & 50 & 89 \\ 15 & 40 & 68 & 79 \\ 16 & 24 & 58 & 70 \\ 17 & 29 & 48 & 60 \\ 18 & 20 & 49 & 57 \\ 19 & 28 & 45 & 67 \\ 25 & 47 & 69 & 80 \end{array}$	$\mathfrak{T}_{62} ; 91 ; 5 ; 1$	$\begin{array}{llll} 10 & 27 & 38 & 46 \\ 12 & 34 & 78 & 90 \\ 13 & 47 & 69 & 80 \\ 14 & 26 & 37 & 89 \\ 16 & 24 & 39 & 70 \\ 17 & 29 & 48 & 60 \\ 18 & 20 & 36 & 49 \\ 19 & 28 & 30 & 67 \\ 13 \end{array}$
$\begin{equation*} \mathfrak{\Upsilon}_{63} ; 91 ; 9 ; 1 \tag{1} \end{equation*}$	10 27 38 46 12 34 56 78 13 25 47 80 14 26 37 50 15 23 40 68 16 24 58 70 17 35 48 60 18 20 36 57 28 30 45 67	$\mathfrak{N}_{64} ; 92 ; 1 ; 1$	20 37 48 59 23 49 58 60 24 57 69 80 25 36 70 89 26 38 40 79 27 39 46 50 28 30 45 67 29 35 47 68 34 56 78 90
$\begin{aligned} & \mathfrak{N}_{65} ; 95 ; 1 ; 2 \\ & (08)(56)(79) \end{aligned}$	20 37 45 68 23 58 60 79 24 57 69 80 25 30 49 67 26 38 47 59 27 36 40 89 28 39 46 50 29 35 48 70 34 56 78 90	$\begin{aligned} & 7_{66} ; 95 ; 3 ; 2 \\ & (08)(56)(79) \end{aligned}$	$\begin{array}{llll} 10 & 26 & 47 & 59 \\ 12 & 56 & 78 & 90 \\ 14 & 58 & 60 & 79 \\ 15 & 27 & 40 & 89 \\ 16 & 29 & 48 & 70 \\ 17 & 28 & 46 & 50 \\ 18 & 25 & 49 & 67 \\ 19 & 20 & 45 & 68 \\ 24 & 57 & 69 & 80 \end{array}$
$\mathfrak{N}_{67} ; 96 ; 3 ; 1$	$\begin{array}{llll} 10 & 29 & 48 & 67 \\ 12 & 56 & 78 & 90 \\ 14 & 58 & 60 & 79 \\ 15 & 26 & 40 & 89 \\ 16 & 20 & 47 & 59 \\ 17 & 28 & 46 & 50 \\ 18 & 25 & 49 & 70 \\ 19 & 27 & 45 & 68 \\ 24 & 57 & 69 & 80 \\ \hline \end{array}$	$\mathfrak{N}_{68 ; 97 ; 5 ; 1}^{(1)}$	$\begin{array}{llll} 10 & 29 & 47 & 68 \\ 12 & 34 & 78 & 90 \\ 13 & 24 & 69 & 80 \\ 14 & 36 & 70 & 89 \\ 16 & 27 & 30 & 49 \\ 17 & 28 & 39 & 60 \\ 18 & 20 & 37 & 46 \\ 19 & 23 & 48 & 67 \\ 26 & 38 & 40 & 79 \end{array}$
$\begin{aligned} & \mathfrak{N}_{69} ; 98 ; 3 ; 2 \\ & (08)(56)(79) \end{aligned}$	10 27 49 68 12 56 78 90 14 58 60 79 15 26 40 89 16 25 48 70 17 28 46 59 18 29 47 50 19 20 45 67 24 57 69 80	$\mathfrak{N}_{70} ; 99 ; 4 ; 1$	$10 \quad 29 \quad 35 \quad 67$ 12567890 13576980 $\begin{array}{llll}15 & 26 & 37 & 89\end{array}$ $\begin{array}{llll}16 & 27 & 30 & 58\end{array}$ 17283960 $\begin{array}{llll}18 & 20 & 36 & 59\end{array}$ $\begin{array}{llll}19 & 25 & 38 & 70\end{array}$ 23506879

Table A1(cont'd): The 150 non-isomorphic near-one-factorizations of K_{9} which result from contractions of the 77 overlarge sets of $2-(9,3,1)$ designs. For the notation see the beginning of Section 4.

NOF ; index ; $i ;\|G\|$; generators	Blocks	NOF ; index ; $i ;\|G\|$; generators	Blocks
$\mathfrak{R}_{71} ;{ }_{(1)} 104 ; 8 ; 1$	10 27 36 59 12 34 56 90 13 25 47 69 14 26 39 70 15 30 46 79 16 20 37 45 17 29 35 40 19 24 57 60 23 49 50 67	$\mathrm{T}_{72} ; 105 ; 3 ; 1$	10284967 $12 \quad 56 \quad 7890$ $\begin{array}{lll}14 & 25 & 70 \\ 15\end{array}$ 15406879 $\begin{array}{llll}16 & 20 & 48 & 59\end{array}$ 17294650 18 27 45 $\begin{array}{llll}19 & 26 & 47 & 58\end{array}$ $24 \quad 576980$
$\begin{array}{r} \Upsilon_{73} ; 106 ; 2 ; 1 \\ (1) \end{array}$	10 38 49 67 13 57 69 80 14 58 60 79 15 37 40 89 16 35 48 70 17 39 46 50 18 36 47 59 19 30 45 68 34 56 78 90	$\mathfrak{Y}_{74} ; 114 ; 0 ; 1$	$\begin{array}{llll} 12 & 34 & 56 & 78 \\ 13 & 24 & 57 & 69 \\ 14 & 25 & 36 & 89 \\ 15 & 26 & 48 & 79 \\ 16 & 29 & 37 & 58 \\ 17 & 28 & 39 & 45 \\ 18 & 35 & 49 & 67 \\ 19 & 27 & 38 & 46 \\ 23 & 47 & 59 & 68 \end{array}$
$\mathfrak{N}_{75} ; 117 ; 5 ; 1$ (1)	10 28 37 46 12 34 78 90 13 24 69 80 14 23 60 79 16 29 38 47 17 26 30 89 18 20 49 67 19 36 48 70 27 39 40 68	$\mathfrak{N}_{76} ; 121 ; 6 ; 1$	10 28 49 57 12 34 78 90 13 25 47 80 14 37 50 89 15 23 48 79 17 20 38 59 18 29 30 45 19 27 35 40 24 39 58 70
$\mathfrak{N}_{77} ; 125 ; 8 ; 1$	$\begin{array}{llll} 10 & 27 & 39 & 45 \\ 12 & 34 & 56 & 90 \\ 13 & 24 & 57 & 69 \\ 14 & 25 & 36 & 70 \\ 15 & 26 & 40 & 79 \\ 16 & 30 & 47 & 59 \\ 17 & 29 & 35 & 60 \\ 19 & 20 & 37 & 46 \\ 23 & 49 & 50 & 67 \end{array}$	$\mathfrak{N}_{78} ; 129 ; 3 ; 1$	10 26 48 59 12 56 78 90 14 25 70 89 15 40 68 79 16 29 47 58 17 28 45 60 18 20 49 67 19 27 46 50 24 57 69 80
$\mathfrak{N}_{79} ; 1_{(1)} 30 ; 3 ; 1$	$\begin{array}{llll}10 & 25 & 47 & 68\end{array}$ $12 \quad 56 \quad 7890$ $\begin{array}{llll}14 & 58 & 60 & 79\end{array}$ 15264089 16294870 17204659 18 27 9 50 $\begin{array}{llll}19 & 28 & 45 & 67\end{array}$ $24 \quad 576980$	$\mathfrak{N}_{80} ;{ }_{(1)}^{131 ; 7 ; 1}$	10 23 45 68 12 34 56 90 13 24 69 80 14 25 36 89 15 38 49 60 16 28 30 59 18 29 46 50 19 20 35 48 26 39 40 58

Table A1(cont'd): The 150 non-isomorphic near-one-factorizations of K_{9} which result from contractions of the 77 overlarge sets of $2-(9,3,1)$ designs. For the notation see the beginning of Section 4.

NOF ; index ; $i ;\|G\|$; generators	Blocks	NOF ; index ; $i ;\|G\|$; generators	Blocks
$\begin{gathered} \mathfrak{N}_{81} ; 132 ; 1 ; 2 \\ (08)(56)(79) \end{gathered}$	20 39 45 67 23 58 60 79 24 57 69 80 25 36 48 70 26 35 40 89 27 30 49 68 28 37 46 59 29 38 47 50 34 56 78 90	$\begin{aligned} & श_{82} ; 132 ; 2 ; 6 \\ & (076895)(143) \end{aligned}$	$\begin{array}{llll} 10 & 37 & 46 & 59 \\ 13 & 57 & 69 & 80 \\ 14 & 58 & 60 & 79 \\ 15 & 30 & 49 & 68 \\ 16 & 38 & 47 & 50 \\ 17 & 35 & 40 & 89 \\ 18 & 39 & 45 & 67 \\ 19 & 36 & 48 & 70 \\ 34 & 56 & 78 & 90 \end{array}$
$\begin{gathered} \mathfrak{N}_{83} ; 135 ; 1 ; 2 \\ (08)(56)(79) \end{gathered}$	$\begin{array}{llll} 20 & 35 & 49 & 67 \\ 23 & 50 & 68 & 79 \\ 24 & 57 & 69 & 80 \\ 25 & 37 & 40 & 89 \\ 26 & 39 & 48 & 70 \\ 27 & 30 & 46 & 58 \\ 28 & 36 & 47 & 59 \\ 29 & 38 & 45 & 60 \\ 34 & 56 & 78 & 90 \\ \hline \end{array}$	$\begin{aligned} & श_{84} ; 135 ; 2 ; 2 \\ & (08)(56)(79) \end{aligned}$	10 36 47 59 13 57 69 80 14 50 68 79 15 39 48 70 16 37 40 89 17 38 45 60 18 35 49 67 19 30 46 58 34 56 78 90
$\begin{aligned} & \mathrm{N}_{85} ; 136 ; 1 ; 2 \\ & (05)(69)(78) \end{aligned}$	20 37 46 59 23 50 68 79 24 57 69 80 25 38 49 60 26 39 48 70 27 35 40 89 28 30 45 67 29 36 47 58 34 56 78 90	$\prod_{86} ; 139 ; 2 ; 1$	$\begin{array}{llll} 10 & 39 & 47 & 58 \\ 13 & 57 & 69 & 80 \\ 14 & 36 & 70 & 89 \\ 15 & 40 & 68 & 79 \\ 16 & 37 & 49 & 50 \\ 17 & 35 & 48 & 60 \\ 18 & 30 & 46 & 59 \\ 19 & 38 & 45 & 67 \\ 34 & 56 & 78 & 90 \end{array}$
$\mathfrak{N}_{87} ; 139 ; 8 ; 1$	10 26 39 47 12 34 56 90 13 24 57 69 14 25 36 70 15 23 40 79 16 37 49 50 17 29 35 60 19 20 45 67 27 30 46 59	T88 ${ }_{\text {(1) }} 140 ; 3 ; 1$	10 25 49 68 12 56 78 90 14 58 60 79 15 27 40 89 16 29 48 70 17 28 46 50 18 26 47 59 19 20 45 67 24 57 69 80
$\mathfrak{N}_{89} ; 142 ; 0 ; 1$ (1)	$\begin{array}{llll}12 & 34 & 56 & 78 \\ 13 & 24 & 57 & 69 \\ 14 & 25 & 36 & 89 \\ 15 & 23 & 68 & 79 \\ 16 & 29 & 38 & 47 \\ 17 & 26 & 49 & 58 \\ 18 & 39 & 45 & 67 \\ 19 & 27 & 35 & 48 \\ 28 & 37 & 46 & 59\end{array}$	$\operatorname{Tg}_{90} ; 145 ; 0 ; 1$	12 34 56 78 13 24 57 69 14 25 36 89 15 23 68 79 16 29 38 47 17 26 49 58 18 37 46 59 19 27 35 48 28 39 45 67

Table A1(cont'd): The 150 non-isomorphic near-one-factorizations of K_{9} which result from contractions of the 77 overlarge sets of $2-(9,3,1)$ designs. For the notation see the beginning of Section 4.

$\begin{gathered} \text { NOF } ; \text { index } ; i ;\|G\| ; \\ \text { generators } \end{gathered}$	Blocks	NOF ; index ; $i ;\|G\| ;$ generators	Blocks
$\mathfrak{N}_{91} ; 146 ; 4 ; 1$ (1)	$10 \quad 27 \quad 38 \quad 59$ 12567890 13576980 $\begin{array}{llll}15 & 26 & 30 & 79\end{array}$ $\begin{array}{llll}16 & 29 & 37 & 58\end{array}$ $\begin{array}{llll}17 & 28 & 35 & 60\end{array}$ 18203967 $\begin{array}{llll}19 & 23 & 50 & 68 \\ 25 & 36 & 70 & 89\end{array}$	$\mathfrak{N}_{92} ; 147 ; 1 ; 1$	$\begin{array}{llll} 20 & 35 & 47 & 68 \\ 23 & 48 & 59 & 70 \\ 24 & 57 & 69 & 80 \\ 25 & 37 & 60 & 89 \\ 26 & 38 & 40 & 79 \\ 27 & 36 & 49 & 58 \\ 28 & 39 & 46 & 50 \\ 29 & 30 & 45 & 67 \\ 34 & 56 & 78 & 90 \end{array}$
$\begin{aligned} & \mathrm{T}_{93} ; 148 ; 1 ; 2 \\ & (05)(69)(78) \end{aligned}$	$\begin{array}{llll} 20 & 38 & 46 & 59 \\ 23 & 50 & 68 & 79 \\ 24 & 57 & 69 & 80 \\ 25 & 37 & 49 & 60 \\ 26 & 39 & 48 & 70 \\ 27 & 35 & 40 & 89 \\ 28 & 30 & 45 & 67 \\ 29 & 36 & 47 & 58 \\ 34 & 56 & 78 & 90 \end{array}$	$\begin{gathered} \mathfrak{F}_{94} ; 148 ; 2 ; 2 \\ (05)(69)(78) \end{gathered}$	10 36 47 58 13 57 69 80 14 50 68 79 15 39 48 70 16 35 40 89 17 38 46 59 18 37 49 60 19 30 45 67 34 56 78 90
$\mathfrak{I}_{95} ; 149 ; 8 ; 1$ (1)	$\begin{array}{llll}10 & 29 & 45 & 67\end{array}$ $12 \quad 34 \quad 5690$ $13 \quad 245769$ $\begin{array}{llll}14 & 25 & 36 & 70\end{array}$ $\begin{array}{llll}15 & 23 & 40 & 79\end{array}$ $16 \quad 20 \quad 39 \quad 47$ $17 \quad 26 \quad 30 \quad 59$ $\begin{array}{llll}19 & 37 & 46 & 50\end{array}$ 27354960	$\begin{gathered} श_{96} ; 150 ; 1 ; 2 \\ (09)(34)(56)(78) \end{gathered}$	20 37 46 59 23 49 68 70 24 30 57 89 25 47 69 80 26 38 50 79 27 36 40 58 28 39 45 67 29 35 48 60 34 56 78 90
$\mathfrak{\Re}_{97} ; 151 ; 5 ; 1$	$\begin{array}{llll} 10 & 28 & 39 & 67 \\ 12 & 34 & 78 & 90 \\ 13 & 24 & 69 & 80 \\ 14 & 36 & 70 & 89 \\ 16 & 27 & 30 & 49 \\ 17 & 23 & 48 & 60 \\ 18 & 29 & 37 & 46 \\ 19 & 20 & 47 & 68 \\ 26 & 38 & 40 & 79 \end{array}$	$\mathfrak{N}_{98} ; 174 ; 9 ; 1$ (1)	10 26 37 48 12 34 56 78 13 24 57 80 14 25 36 70 15 23 40 68 16 20 47 58 17 38 46 50 18 27 35 60 28 30 45 67
$\mathfrak{N g 9}_{(1)} ; 177 ; 6 ; 1$	$10 \quad 29 \quad 47 \quad 58$ 12347890 13245780 $\begin{array}{llll}14 & 25 & 37 & 89\end{array}$ $15 \quad 384079$ $\begin{array}{llll}17 & 28 & 39 & 50\end{array}$ $\begin{array}{llll}18 & 20 & 35 & 49\end{array}$ $\begin{array}{llll}19 & 27 & 30 & 45 \\ 23 & 48 & 50 & 70\end{array}$ 23485970	$\mathfrak{N}_{100} ; 180 ; 7 ; 1$	10 28 46 59 12 34 56 90 13 24 69 80 14 25 36 89 15 23 40 68 16 30 49 58 18 26 39 50 19 20 38 45 29 35 48 60

Table A1(cont'd): The 150 non-isomorphic near-one-factorizations of K_{9} which result from contractions of the 77 overlarge sets of $2-(9,3,1)$ designs. For the notation see the beginning of Section 4.

NOF ; index ; $;\|G\|$; generators	Blocks	NOF; index ; $i ;\|G\|$; generators	Blocks
$\mathfrak{N}_{101} ; 199 ; 0 ; 1$	$\begin{array}{llll} 12 & 34 & 56 & 78 \\ 13 & 25 & 47 & 69 \\ 14 & 26 & 38 & 79 \\ 15 & 27 & 36 & 89 \\ 16 & 29 & 48 & 57 \\ 17 & 24 & 39 & 58 \\ 18 & 37 & 46 & 59 \\ 19 & 23 & 45 & 68 \\ 28 & 35 & 49 & 67 \end{array}$	$\mathfrak{N}_{102} ; 205 ; 2 ; 1$ (1)	10 38 46 59 13 47 69 80 14 37 50 89 15 39 68 70 16 35 40 79 17 36 49 58 18 30 45 67 19 48 57 60 34 56 78 90
$9_{103} ; 206 ; 2 ; 1$	$\begin{array}{llll} 10 & 39 & 45 & 67 \\ 13 & 47 & 69 & 80 \\ 14 & 30 & 58 & 79 \\ 15 & 36 & 40 & 89 \\ 16 & 35 & 48 & 70 \\ 17 & 49 & 50 & 68 \\ 18 & 37 & 46 & 59 \\ 19 & 38 & 57 & 60 \\ 34 & 56 & 78 & 90 \end{array}$	$\mathfrak{N}_{104} ; 206 ; 4 ; 1$	10 28 39 67 12 56 78 90 13 25 69 80 15 27 36 89 16 29 35 70 17 23 50 68 18 20 37 59 19 38 57 60 26 30 58 79
$\Im_{105} ; 209 ; 5 ; 1$	$\begin{array}{llll} 10 & 27 & 39 & 46 \\ 12 & 34 & 78 & 90 \\ 13 & 47 & 69 & 80 \\ 14 & 26 & 37 & 89 \\ 16 & 28 & 40 & 79 \\ 17 & 20 & 36 & 48 \\ 18 & 29 & 30 & 67 \\ 19 & 24 & 38 & 60 \\ 23 & 49 & 68 & 70 \end{array}$	$\begin{aligned} & श_{106 ; 214 ; 1 ; 2} \\ & (09)(34)(56)(78) \end{aligned}$	$\begin{array}{llll} 20 & 35 & 49 & 68 \\ 23 & 48 & 59 & 67 \\ 24 & 37 & 58 & 60 \\ 25 & 47 & 69 & 80 \\ 26 & 38 & 50 & 79 \\ 27 & 36 & 40 & 89 \\ 28 & 39 & 45 & 70 \\ 29 & 30 & 46 & 57 \\ 34 & 56 & 78 & 90 \end{array}$
$\mathfrak{N}_{107} ; 215 ; 7 ; 1$ (1)	$\begin{array}{llll}10 & 29 & 35 & 48\end{array}$ $12 \quad 34 \quad 5690$ 13246980 $\begin{array}{lll}14 & 25 & 36 \\ 89\end{array}$ 15234068 16203958 $18 \quad 304659$ $19 \quad 28 \quad 4560$ 26384950	$\mathrm{M}_{108} ; 217 ; 5 ; 1$ (1)	$\begin{array}{llll} 10 & 28 & 37 & 46 \\ 12 & 34 & 78 & 90 \\ 13 & 24 & 69 & 80 \\ 14 & 36 & 70 & 89 \\ 16 & 27 & 30 & 49 \\ 17 & 20 & 39 & 68 \\ 18 & 29 & 47 & 60 \\ 19 & 23 & 48 & 67 \\ 26 & 38 & 40 & 79 \end{array}$
$\mathfrak{N}_{109} ; 217 ; 6 ; 1$	$\begin{array}{llll} 10 & 28 & 37 & 59 \\ 12 & 34 & 78 & 90 \\ 13 & 24 & 57 & 80 \\ 14 & 25 & 70 & 89 \\ 15 & 38 & 40 & 79 \\ 17 & 20 & 39 & 45 \\ 18 & 29 & 35 & 47 \\ 19 & 23 & 48 & 50 \\ 27 & 30 & 49 & 58 \end{array}$	$\mathfrak{Y}_{110} ; 218 ; 8 ; 1$	10 27 36 49 12 34 56 90 13 25 47 69 14 26 37 50 15 24 30 79 16 39 45 70 17 20 46 59 19 23 57 60 29 35 40 67

Table A1(cont'd): The 150 non-isomorphic near-one-factorizations of K_{g} which result from contractions of the 77 overlarge sets of $2-(9,3,1)$ designs. For the notation see the beginning of Section 4.

$\begin{gathered} \text { NOF } ; \text { index } ; i ;\|G\| ; \\ \text { generators } \end{gathered}$	Blocks	NOF ; index ; $i ;\|G\|$; generators	Blocks
$\mathfrak{V}_{111} ; 221 ; 1 ; 1$ (1)	$20 \quad 37 \quad 49 \quad 58$ 23486079 $\begin{array}{llll}24 & 57 & 69 & 80\end{array}$ $\begin{array}{llll}25 & 36 & 70 & 89\end{array}$ 26384750 $27 \quad 394568$ $\begin{array}{llll}28 & 30 & 46 & 59\end{array}$ $\begin{array}{llll}29 & 35 & 40 & 67\end{array}$ $3456 \quad 7890$	$\mathfrak{N}_{112} ; 225 ; 2 ; 1$	10374659 13476980 14 38 50 15396870 16354089 17364958 18304567 $1948 \quad 5760$ 34567890
$\mathfrak{n}_{113} ; 229 ; 2 ; 1$	$\begin{array}{llll} 10 & 36 & 47 & 59 \\ 13 & 57 & 69 & 80 \\ 14 & 50 & 68 & 79 \\ 15 & 39 & 48 & 70 \\ 16 & 35 & 40 & 89 \\ 17 & 30 & 46 & 58 \\ 18 & 37 & 49 & 60 \\ 19 & 38 & 45 & 67 \\ 34 & 56 & 78 & 90 \end{array}$	$\mathfrak{N}_{114} ; 231 ; 2 ; 1$ (1)	10 39 46 58 13 57 69 80 14 36 70 89 15 38 40 79 16 37 48 59 17 49 50 68 18 35 47 60 19 30 45 67 34 56 78 90
$\begin{gathered} \mathfrak{N}_{115} ; 234 ; 1 ; 4 \\ (08)(56)(79) \\ (09)(34)(56)(78) \end{gathered}$	20 36 47 59 23 50 68 79 24 57 69 80 25 37 40 89 26 39 48 70 27 30 46 58 28 35 49 67 29 38 45 60 34 56 78 90	$\begin{gathered} \mathfrak{N}_{116} ; 234 ; 2 ; 4 \\ (08)(56)(79) \\ (09)(34)(56)(78) \end{gathered}$	10 35 49 67 13 57 69 80 14 50 68 79 15 39 48 70 16 37 40 89 17 38 45 60 18 36 47 59 19 30 46 58 34 56 78 90
$\mathfrak{N}_{117} ; 236 ; 3 ; 1$ (1)	10 26 48 79 12 56 78 90 14 25 60 89 15 28 46 70 16 27 40 59 17 29 45 68 18 49 50 67 19 20 47 58 24 57 69 80	$\mathfrak{N}_{118} ; 250 ; 0 ; 1$ (1)	12 34 56 78 13 25 47 69 14 26 37 89 15 23 49 68 16 35 48 79 17 29 36 58 18 24 39 57 19 28 45 67 27 38 46 59
$\mathfrak{N}_{119} ; 251 ; 0 ; 1$	12 34 56 78 13 25 47 69 14 26 38 79 15 23 49 68 16 27 48 59 17 39 46 58 18 29 37 45 19 28 35 67 24 36 57 89	$\mathfrak{N}_{120} ; 252 ; 4 ; 1$ (1)	10 28 39 67 12 56 78 90 13 25 69 80 15 23 68 79 16 20 38 57 17 29 30 58 18 36 59 70 19 27 35 60 26 37 50 89

Table A1(cont'd): The 150 non-isomorphic near-one-factorizations of K_{9} which result from contractions of the 77 overlarge sets of 2-(9,3,1) designs. For the notation see the beginning of Section 4.

NOF ; index ; $i ;\|G\|$; generators	Blocks	$\text { NOF ; index ; } i ;\|G\| ;$ generators	Blocks
$\mathfrak{N}_{121 ; 257 ; 4 ; 1}$ (1)	$\begin{array}{llll}10 & 27 & 36 & 59 \\ 12 & 56 & 78 & 90 \\ 13 & 25 & 69 & 80 \\ 15 & 23 & 68 & 70 \\ 16 & 20 & 37 & 89 \\ 17 & 29 & 30 & 58 \\ 18 & 39 & 57 & 60 \\ 19 & 28 & 35 & 67 \\ 26 & 38 & 50 & 79\end{array}$	$9_{122} ; 268 ; 6 ; 1$ (1)	$\begin{array}{llll} 10 & 28 & 35 & 49 \\ 12 & 34 & 78 & 90 \\ 13 & 25 & 47 & 80 \\ 14 & 37 & 50 & 89 \\ 15 & 23 & 40 & 79 \\ 17 & 29 & 38 & 45 \\ 18 & 24 & 59 & 70 \\ 19 & 27 & 30 & 58 \\ 20 & 39 & 48 & 57 \end{array}$
$\mathfrak{N}_{123} ; 282 ; 1 ; 1$ (1)	$\begin{array}{llll} 20 & 39 & 46 & 58 \\ 23 & 40 & 68 & 79 \\ 24 & 57 & 69 & 80 \\ 25 & 37 & 60 & 89 \\ 26 & 35 & 49 & 70 \\ 27 & 36 & 48 & 59 \\ 28 & 30 & 45 & 67 \\ 29 & 38 & 47 & 50 \\ 34 & 56 & 78 & 90 \end{array}$	$\mathfrak{N}_{124} ; 283 ; 5 ; 1$	$\begin{array}{llll} 10 & 26 & 37 & 89 \\ 12 & 34 & 78 & 90 \\ 13 & 24 & 69 & 80 \\ 14 & 38 & 60 & 79 \\ 16 & 29 & 30 & 47 \\ 17 & 20 & 36 & 48 \\ 18 & 27 & 39 & 46 \\ 19 & 28 & 40 & 67 \\ 23 & 49 & 68 & 70 \end{array}$
$\mathfrak{N}_{125} ; 286 ; 7 ; 1$ (1)	10 26 39 58 12 34 56 90 13 24 69 80 14 25 36 89 15 38 49 60 16 23 48 50 18 20 46 59 19 28 35 40 29 30 45 68	$9_{126} ; 293 ; 7 ; 1$ (1)	10 28 35 49 12 34 56 90 13 25 69 80 14 26 50 89 15 23 40 68 16 20 39 48 18 24 36 59 19 38 45 60 29 30 46 58
$\mathfrak{m}_{127} ; 294 ; 2 ; 1$ (1)	$\begin{array}{llll} 10 & 35 & 68 & 79 \\ 13 & 47 & 69 & 80 \\ 14 & 39 & 58 & 70 \\ 15 & 30 & 48 & 67 \\ 16 & 38 & 40 & 59 \\ 17 & 46 & 50 & 89 \\ 18 & 36 & 49 & 57 \\ 19 & 37 & 45 & 60 \\ 34 & 56 & 78 & 90 \end{array}$	$\mathfrak{M}_{128} ; 297 ; 6 ; 1$	10 23 48 59 12 34 78 90 13 25 47 80 14 37 50 89 15 24 39 70 17 20 49 58 18 29 30 57 19 27 38 45 28 35 40 79
$\mathfrak{V}_{129} ; 311 ; 8 ; 1$ (1)	$\begin{array}{llll} 10 & 27 & 36 & 59 \\ 12 & 34 & 56 & 90 \\ 13 & 25 & 47 & 69 \\ 14 & 26 & 39 & 70 \\ 15 & 30 & 46 & 79 \\ 16 & 20 & 37 & 45 \\ 17 & 23 & 49 & 50 \\ 19 & 24 & 57 & 60 \\ 29 & 35 & 40 & 67 \end{array}$	$\mathfrak{N}_{130} ; 313 ; 2 ; 1$ (1)	$\begin{array}{llll} 10 & 37 & 46 & 59 \\ 13 & 47 & 69 & 80 \\ 14 & 30 & 58 & 79 \\ 15 & 36 & 40 & 89 \\ 16 & 35 & 48 & 70 \\ 17 & 49 & 50 & 68 \\ 18 & 39 & 45 & 67 \\ 19 & 38 & 57 & 60 \\ 34 & 56 & 78 & 90 \end{array}$

Table A1(cont'd): The 150 non-isomorphic near-one-factorizations of K_{9} which result from contractions of the 77 overlarge sets of $2-(9,3,1)$ designs. For the notation see the beginning of Section 4 .

NOF ; index ; $i ;\|G\|$; generators	Blocks	NOF ; index ; $i ;\|G\|$; generators	Blocks
$\mathfrak{N}_{131} ; 319 ; 6 ; 1$ (1)	10 27 48 59 12 34 78 90 13 25 47 80 14 39 58 70 15 28 30 79 17 29 35 40 18 23 49 57 19 24 38 50 20 37 45 89	$\begin{gathered} \mathfrak{N}_{132} ; 328 ; 0 ; 4 \\ (1324)(5867) \end{gathered}$	$12 \quad 34 \quad 5678$ $13 \quad 254769$ $\begin{array}{llll}14 & 26 & 37 & 89\end{array}$ $\begin{array}{ll}15 & 23 \\ 48 & 79\end{array}$ 16243859 $17 \quad 293658$ 18394657 $\begin{array}{llll}19 & 28 & 45 & 67\end{array}$ 27354968
$\begin{gathered} \mathfrak{I}_{133} ; 329 ; 1 ; 4 \\ (0394)(5768) \end{gathered}$	$20 \quad 394567$ 23496870 24. $30 \quad 5789$ 25476980 $26 \quad 38 \quad 5079$ 27354860 $28 \quad 374659$ $\begin{array}{llll}29 & 36 & 40 & 58 \\ & 1 & 56 & 78 \\ 9\end{array}$ 34567890	$\begin{gathered} \mathfrak{N}_{134} ; 329 ; 2 ; 4 \\ (0394)(5768) \end{gathered}$	10 37 46 59 13 47 69 80 14 38 50 79 15 49 68 70 16 30 57 89 17 36 40 58 18 39 45 67 19 35 48 60 34 56 78 90
$\mathfrak{N}_{135} ; 330 ; 0 ; 1$ (1)	12345678 $\begin{array}{llll}13 & 25 & 47 & 69\end{array}$ $14 \quad 263879$ 15 24 39 $\begin{array}{llll}16 & 23 & 57 & 89\end{array}$ $17 \quad 364958$ $\begin{array}{lll}18 & 29 & 45 \\ 67\end{array}$ 19273548 $28 \quad 3746 \quad 59$	$\begin{gathered} \mathfrak{Y}_{136} ; 330 ; 1 ; 4 \\ (0394)(5768) \end{gathered}$	20 36 49 58 23 40 57 89 24 39 68 70 25 47 69 80 26 38 50 79 27 35 48 60 28 37 46 59 29 30 45 67 34 56 78 90
$\mathfrak{N}_{137} ; 338 ; 6 ; 1$	$\begin{array}{llll} 10 & 23 & 58 & 79 \\ 12 & 34 & 78 & 90 \\ 13 & 25 & 47 & 80 \\ 14 & 37 & 50 & 89 \\ 15 & 27 & 38 & 49 \\ 17 & 20 & 39 & 45 \\ 18 & 24 & 59 & 70 \\ 19 & 28 & 35 & 40 \\ 29 & 30 & 48 & 57 \end{array}$	$\mathfrak{N}_{138} ; 348 ; 7 ; 1$	10 26 48 59 12 34 56 90 13 24 69 80 14 25 38 60 15 23 49 68 16 35 40 89 18 29 36 50 19 28 30 45 20 39 46 58
$\mathfrak{N}_{139} ; 349 ; 0 ; 1$ (1)	12 34 56 78 13 25 47 69 14 26 37 89 15 24 39 68 16 28 35 79 17 38 46 59 18 29 45 67 19 23 48 57 27 36 49 58	$\mathfrak{N}_{140} ; 350 ; 9 ; 1$ (1)	10 28 37 46 12 34 56 78 13 25 47 80 14 26 38 50 15 23 68 70 16 30 48 57 17 24 35 60 18 20 45 67 27 36 40 58

Table A1(cont'd): The 150 non-isomorphic near-one-factorizations of K_{9} which result from contractions of the 77 overlarge sets of $2-(9,3,1)$ designs. For the notation see the beginning of Section 4.

NOF ; index ; $i ;\|G\| ;$ generators	Blocks	NOF ; index ; ; $\|G\| ;$ generators	Blocks
$\bigcap_{141} ; 356 ; 6 ; 1$ (1)	10245789 12347890 $\begin{array}{llll}13 & 25 & 47 & 80\end{array}$ 14395870 $15 \quad 293840$ $17 \quad 203549$ 18234579 $\begin{array}{llll}19 & 28 & 37 & 50 \\ 27 & 30 & 48 & 59\end{array}$	$9_{142} ; 359 ; 7 ; 1$	$1024 \quad 38 \quad 59$ 12345690 13256980 $142639 \quad 58$ $\begin{array}{llll}15 & 36 & 40 & 89\end{array}$ $16 \quad 20 \quad 3548$ 18234960 19284650 29304568
$\mathfrak{n}_{143} ; 359 ; 9 ; 1$	10 24 38 67 12 34 56 78 13 25 47 80 14 26 58 70 15 27 36 40 16 20 35 48 17 30 45 68 18 23 57 60 28 37 46 50	$\begin{aligned} & \Re_{144} ; 362 ; 9 ; 3 \\ & (063)(175)(248) \end{aligned}$	$\begin{array}{llll}10 & 28 & 37 & 46\end{array}$ 12345678 13254780 14265870 15273640 $16 \quad 203548$ 17304568 $\begin{array}{llll}18 & 23 & 57 & 60\end{array}$ 24385067
$\bigcap_{145} ; 364 ; 6 ; 1$ (1)	10 27 48 59 12 34 78 90 13 25 47 80 14 37 50 89 15 24 30 79 17 20 39 58 18 23 49 57 19 28 35 40 29 38 45 70	$\begin{gathered} \Re_{146} ; 380 ; 3 ; 6 \\ (076895)(124) \end{gathered}$	$\begin{array}{llll}10 & 25 & 49 & 68\end{array}$ $12 \quad 56 \quad 7890$ 14586079 15274089 16294870 17204659 18264750 $\begin{array}{llll}19 & 28 & 45 & 67\end{array}$ $\begin{array}{llll}24 & 57 & 69 & 80\end{array}$
$\begin{aligned} & \mathfrak{N}_{147} ; 381 ; 4_{3} ; \\ & (078)(195)(263) \end{aligned}$	10 28 39 12567890 $13 \quad 576980$ $\begin{array}{llll}15 & 27 & 36 & 89\end{array}$ $\begin{array}{llll}16 & 20 & 37 & 58\end{array}$ $\begin{array}{llll}17 & 26 & 30 & 59\end{array}$ $18 \quad 293570$ $\begin{array}{llll}19 & 23 & 50 & 68 \\ 25 & 38 & 60 & 79\end{array}$	$9_{148} ; 386 ; 1 ; 1$ (1)	20 39 45 67 23 49 68 70 24 36 58 79 25 47 69 80 26 37 50 89 27 38 40 59 28 30 46 57 29 35 48 60 34 56 78 90
$\begin{aligned} & 91_{149} ; 395 ; 1 ; 2 \\ & (09)(34)(56)(78) \end{aligned}$	20 35 49 67 23 40 57 89 24 39 68 70 25 47 69 80 26 38 50 79 27 36 48 59 28 37 45 60 29 30 46 58 34 56 78 90	$\begin{gathered} 9_{150} ; 396 ; 0 ; 4 \\ (1734)(2956) \end{gathered}$	12 34 56 78 13 25 47 69 14 26 38 79 15 24 39 68 16 23 57 89 17 29 35 48 18 37 46 59 19 28 45 67 27 36 49 58

Table A1(cont'd): The 150 non-isomorphic near-one-factorizations of K_{9} which result from contractions of the 77 overlarge sets of $2-(9,3,1)$ designs. For the notation see the beginning of Section 4.

Figure A1: The relationships between near one-factorizations of K_{9} (denoted by circles) and overlarge sets of $2-(9,3,1)$ designs (denoted by triangles) in the first part of component 1. The next diagram shows the rest of this component with overlarge set of $2-(9,3,1)$ designs, number 18 , as the connecting point.

Figure A1(cont'd): The relationships between near one-factorizations of K_{9} (denoted by circles) and overlarge sets of $2-(9,3,1)$ designs (denoted by triangles) in the second part of component 1. The previous diagram shows the rest of this component with overlarge set of $2-(9,3,1)$ designs, number 18 , as the connecting point.

Figure A1(cont'd): The relationships between near one-factorizations of K_{9} (denoted by circles) and overlarge sets of $2-(9,3,1)$ designs (denoted by triangles) in component 2 .

Figure A1(cont'd): The relationships between near one-factorizations of K_{9} (denoted by circles) and overlarge sets of 2-(9,3,1) designs (denoted by triangles) in components 3 and 4.

Component 11

Figure A1(cont'd): The relationships between near one-factorizations of K_{9} (denoted by circles) and overlarge sets of $2-(9,3,1)$ designs (denoted by triangles) in components 5 through 11.

Figure A2: The relationships between overlarge sets of $2-(9,3,1)$ designs (denoted by triangles) and overlarge sets of $3-(10,4,1)$ designs (denoted by squares).

Figure A3: The relationships between overlarge sets of $3-(10,4,1)$ designs (denoted by squares) and overlarge sets of $4-(11,5,1)$ designs (denoted by pentagons).

