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Abstract

We show that every 2-regular graph consisting of at most four uniform
components has a ρ-labeling (or a more restricted labeling). This has an
application in the cyclic decomposition of certain complete graphs into
the disjoint unions of cycles.

1 Introduction

If a and b are integers we denote {a, a+1, . . . , b} by [a, b] (if a < b, [a, b] = ∅). Let N

denote the set of nonnegative integers and Zn the group of integers modulo n. For
a graph G, let V (G) and E(G) denote the vertex set of G and the edge set of G,
respectively. Let V (Kv) = Zv and let G be a subgraph of Kv. By clicking G, we
mean applying the isomorphism i → i + 1 to V (G). Let K and G be graphs such
that G is a subgraph of K. A G-decomposition of K is a set Γ = {G1, G2, . . . , Gt}
of subgraphs of K each of which is isomorphic to G and such that the edge sets of
the graphs Gi form a partition of the edge set of K. If K is Kv, a G-decomposition
Γ of K is cyclic if clicking is a permutation of Γ. If G is a graph and r is a positive
integer, rG denotes the vertex disjoint union of r copies of G.
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For any graph G, an injective function h : V (G) → N is called a labeling (or a
valuation) of G. In [14], Rosa introduced a hierarchy of labelings. We add a few items
to this hierarchy. Let G be a graph with n edges and no isolated vertices and let h be
a labeling of G. Let h(V (G)) = {h(u) : u ∈ V (G)}. Define a function h̄ : E(G) → Z

+

by h̄(e) = |h(u) − h(v)|, where e = {u, v} ∈ E(G). Let Ē(G) = {h̄(e) : e ∈ E(G)}.
Consider the following conditions:

(a) h(V (G)) ⊆ [0, 2n],

(b) h(V (G)) ⊆ [0, n],

(c) Ē(G) = {x1, x2, . . . , xn}, where for each i ∈ [1, n] either xi = i or xi = 2n+1−i,

(d) Ē(G) = [1, n].

If in addition G is bipartite, then there exists a bipartition (A, B) of V (G) (with
every edge in G having one endvertex in A and the other in B) such that

(e) for each {a, b} ∈ E(G) with a ∈ A and b ∈ B, we have h(a) < h(b),

(f) there exists an integer λ such that h(a) ≤ λ for all a ∈ A and h(b) > λ for all
b ∈ B.

Then a labeling satisfying the conditions:
(a), (c) is called a ρ-labeling;
(a), (d) is called a σ-labeling;
(b), (d) is called a β-labeling.

A β-labeling is necessarily a σ-labeling which in turn is a ρ-labeling. If G is
bipartite and a ρ, σ or β-labeling of G also satisfies (e), then the labeling is ordered
and is denoted by ρ+, σ+ or β+, respectively. If in addition (f) is satisfied, the
labeling is uniformly-ordered and is denoted by ρ++, σ++ or β++, respectively.

A β-labeling is better known as a graceful labeling and a uniformly-ordered β-
labeling is an α-labeling as introduced in [14].

Labelings are critical to the study of cyclic graph decompositions as seen in the
following two results by Rosa [14].

Theorem 1 Let G be a graph with n edges. There exists a cyclic G-decomposition
of K2n+1 if and only if G has a ρ-labeling.

Theorem 2 Let G be a graph with n edges that has an α-labeling. Then there exists
a cyclic G-decomposition of K2nx+1 for all positive integers x.

Clearly if G is bipartite, then an α-labeling of G is the most desired labeling.
However, there exist numerous classes of bipartite graphs (including some classes of
trees) which do not admit α-labelings (see [14]). Hence the need to introduce the
variations on the theme of α-labelings. In [6] it was shown that Theorem 2 extends
to graphs with ρ+-labelings.
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Theorem 3 Let G be a graph with n edges that has a ρ+-labeling. Then there exists
a cyclic G-decomposition of K2nx+1 for all positive integers x.

Let G be a graph with n edges and Eulerian components and let h be a β-labeling
of G. It is well-known (see [14]) that we must have n ≡ 0 or 3 (mod 4). Moreover,
if such a G is bipartite, then n ≡ 0 (mod 4). These conditions hold since for such
a G,

∑
e∈E(G) h̄(e) = n(n + 1)/2. This sum must in turn be even, since each vertex

is incident with an even number of edges and h̄(e) = |h(u) − h(v)|, where u and
v are the endvertices of e. Thus we must have 4|n(n + 1). Clearly, the same will
hold if such a G admits a σ-labeling. We shall refer to this restriction as the parity
condition. There are no such restrictions on |E(G)| if h is a ρ-labeling.

Theorem 4 (Parity Condition) If a graph G with Eulerian components and n edges
has a σ-labeling, then n ≡ 0 or 3 (mod 4). If such a G is bipartite, then n ≡ 0
(mod 4).

In [14], Rosa presented α- and β-labelings of C4m and of C4m+3, respectively. It
is also known that both C4m+1 and C4m+2 admit ρ-labelings. It was also shown in [6]
that there exists a ρ+-labeling of C4m+2, for all positive integers m. It can be easily
checked that this labeling is actually a ρ++-labeling.

In this manuscript, we will focus on labelings of 2-regular graphs (i.e., the vertex-
disjoint union of cycles). If a 2-regular graph G is bipartite, then it is shown in [3]
that G necessarily admits a ρ++-labeling. Such a G need not admit an α-labeling,
even if the parity condition is satisfied. It is well-known for example that 3C4 does
not have an α-labeling (see [11]). Similarly, if G is not bipartite, then G need not
admit a β-labeling even if the parity condition is satisfied. For example, it is shown
in [12] that rC3 does not admit a β-labeling for all r > 1 and rC5 never admits a
β-labeling. It is thus reasonable to focus on labelings that are less restrictive than
β-labelings when studying 2-regular graphs.

Here, we shall show that every 2-regular graph consisting of at most four uniform
components has a ρ-labeling (or a more restricted labeling). This has an application
in the cyclic decomposition of certain complete graphs into the disjoint unions of
cycles. Moreover, it provides further evidence in support of a conjecture that every
2-regular graph admits a ρ-labeling.

2 Summary of Some of the Known Results

As stated in the previous section, the following is known for cycles (see [13], [14] and
[6]).

Theorem 5 Let m ≥ 3 be an integer. Then, Cm admits an α-labeling if m ≡ 0
(mod 4), a ρ-labeling if m ≡ 1 (mod 4), a ρ++-labeling if m ≡ 2 (mod 4), and a
β-labeling if m ≡ 3 (mod 4).

For 2-regular graphs with two components, we have the following from Abrham
and Kotzig [2].
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Theorem 6 Let m ≥ 3 and n ≥ 3 be integers. Then the graph Cm ∪ Cn has a β-
labeling if and only if m+n ≡ 0 or 3 (mod 4). Moreover, Cm ∪Cn has an α-labeling
if and only if both m and n are even and m + n ≡ 0 (mod 4).

Thus 2Cm has an α-labeling if m ≥ 4 is even. In the next section, we show that
2Cm admits a ρ-labeling if m ≥ 3 is odd.

For 2-regular graphs with more than two components, the following is known. In
[11], Kotzig shows that if r > 1, then rC3 does not admit a β-labeling. Similarly,
he shows that rC5 does not admit a β-labeling for any r. In [12], Kotzig shows
that 3C4k+1 admits a β-labeling for all k ≥ 2. In [5], it is shown that rC3 admits a
ρ-labeling for all r ≥ 1. In [8], Eshghi shows that C2m ∪C2n ∪C2k has an α-labeling
for all m, n, and k ≥ 2 with m + n + k ≡ 0 (mod 2) except when m = n = k = 2.
Thus 3C4m has an α-labeling for all m > 1. In [1], Abrham and Kotzig show that
rC4 has an α-labeling for all positive integers r 	= 3. An additional result follows by
combining results from [6] and from [3].

Theorem 7 Let G be a 2-regular bipartite graph of order n. Then G has a σ++-
labeling if n ≡ 0 (mod 4) and a ρ++-labeling if n ≡ 2 (mod 4).

3 Main results

We shall show that 2Cm has a ρ-labeling when m is odd, 3C5 has a σ-labeling, 3Cm

has a ρ-labeling when m ≡ 3 (mod 4), and 4Cm has a σ-labeling when m is odd.
This along with some of the known results shows that rCm has a ρ-labeling (or a
more restricted labeling) when r ≤ 4. Some additional definitions and notational
conventions are necessary.

We denote the path with consecutive vertices a1, a2, . . . , ak by (a1, a2, . . . , ak). By
(a1, a2, . . . , ak) + (b1, b2, . . . , bj), where ak = b1, we mean the path (a1, . . . , ak, b2, . . . ,
bj).

To simplify our consideration of various labelings, we will sometimes consider
graphs whose vertices are named by distinct nonnegative integers, which are also
their labels.

Let a, b, and h be integers with 0 ≤ a ≤ b and h > 0. Set d = b − a. We define
the path

P (a, h, b) = (a, a + h + 2d − 1, a + 1, a + h + 2d − 2, a + 2, . . . , b − 1, b + h, b).

It is easily checked that P (a, h, b) is simple and

V (P (a, h, b)) = [a, b]∪[b + h, b + h + d − 1].

Furthermore, the edge labels of P (a, h, b) are distinct and

Ē(P (a, h, b)) = [h, h + 2d − 1].

These formulas will be used extensively in the proofs that follow.
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Figure 1: The path P (0, 3, 5).

Theorem 8 Let the graph G consist of two vertex-disjoint cycles, each of the same
odd length. Then G has a ρ-labeling.

Proof. First we consider cycles of length 4x+1, x a positive integer. The two cycles
will be G1 and G2, defined as follows:

G1 = P (0, 6x + 4, x − 1) + P (x − 1, 4x + 3, 2x − 1) + (2x − 1, 2x, 8x + 3, 0),

G2 = P (8x + 4, 2x + 2, 9x + 4) + P (9x + 4, 3, 10x + 3)

+ (10x + 3, 10x + 5, 12x + 6, 8x + 4).

Now we compute
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Figure 2: A ρ-labeling of C9 ∪ C9.

V (G1) = [0, 2x − 1]∪[7x + 3, 8x + 1]∪[6x + 2, 7x + 1]∪{2x, 8x + 3}
V (G2) = [8x + 4, 10x + 3]∪[11x + 6, 12x + 5]∪[10x + 6, 11x + 4]

∪{10x + 5, 12x + 6}.

We can order these as

[0, 2x − 1], 2x, [6x + 2, 7x + 1], [7x + 3, 8x + 1], 8x + 3

from G1, and

[8x + 4, 10x + 3], 10x + 5, [10x + 6, 11x + 4], [11x + 6, 12x + 5], 12x + 6
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from G2. We see that the vertices of the two cycles are distinct and contained in
[0, 2(8x + 2)] = [0, 16x + 4]. (If x = 1 the sets [7x + 3, 8x + 1] and [10x + 6, 11x + 4]
are empty, but this does not change the proof.)

Likewise we compute

Ē(G1) = [6x + 4, 8x + 1]∪[4x + 3, 6x + 2]∪{1, 6x + 3, 8x + 3},
Ē(G2) = [2x + 2, 4x + 1]∪[3, 2x]∪{2, 2x + 1, 4x + 2}.

We can order these as the edge label 1 from G1,

2, [3, 2x], 2x + 1, [2x + 2, 4x + 1], 4x + 2

from G2, and

[4x + 3, 6x + 2], 6x + 3, [6x + 4, 8x + 1], 8x + 3

from G1. Thus Ē(G) = [1, 8x+1]∪{8x+3}. Since 2(8x+2)+1− (8x+3) = 8x+2,
we have a ρ-labeling. (If x = 1 the sets [3, 2x] and [6x + 4, 8x + 1] are empty, but
this does not change the proof.)

Now suppose the cycles have length 4x + 3, x a nonnegative integer. The two
cycles will be defined as follows:

G1 = P (0, 6x + 6, x) + P (x, 4x + 5, 2x) + (2x, 2x + 2, 8x + 7, 0),

G2 = P (8x + 8, 2x + 4, 9x + 8) + P (9x + 8, 3, 10x + 8)

+ (10x + 8, 10x + 9, 12x + 12, 8x + 8).

Now we compute

V (G1) = [0, 2x]∪[7x + 6, 8x + 5] ∪ [6x + 5, 7x + 4]∪{2x + 2, 8x + 7}
V (G2) = [8x + 8, 10x + 8] ∪ [11x + 12, 12x + 11]∪[10x + 11, 11x + 10]

∪{10x + 9, 12x + 12}.

We can order these as

[0, 2x], 2x + 2, [6x + 5, 7x + 4], [7x + 6, 8x + 5], 8x + 7

from G1, and

[8x + 8, 10x + 8], 10x + 9, [10x + 11, 11x + 10], [11x + 12, 12x + 11], 12x + 12

from G2. We see that the vertices of the two cycles are distinct and contained in
[0, 2(8x+6)] = [0, 16x+12]. (If x = 0 the sets [6x+5, 7x+4], [7x+6, 8x+5], [10x+
11, 11x+10] and [11x+12, 12x+11] are empty, but this does not change the proof.)
Likewise we compute

Ē(G1) = [6x + 6, 8x + 5]∪[4x + 5, 6x + 4]∪{2, 6x + 5, 8x + 7},
Ē(G2) = [2x + 4, 4x + 3]∪[3, 2x + 2]∪{1, 2x + 3, 4x + 4}.
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Figure 3: A ρ-labeling of C7 ∪ C7.

We can order these as the edge label 1 from G2, 2 from G1,

[3, 2x + 2], 2x + 3, [2x + 4, 4x + 3], 4x + 4

from G2, and

[4x + 5, 6x + 4], 6x + 5, [6x + 6, 8x + 5], 8x + 7

from G1. Thus Ē(G) = [1, 8x+5]∪{8x+7}. Since 2(8x+6)+1− (8x+7) = 8x+6,
we have a ρ-labeling. (If x = 0 the sets [3, 2x + 2], [2x + 4, 4x + 3], [4x + 5, 6x + 4]
and [6x + 6, 8x + 5] are empty, but this does not change the proof.) �

It is known that 3C5 does not have a β-labeling (see [11]) and that 3C4x+1 has a
β-labeling for x ≥ 2 (see [12]).

Lemma 9 The graph consisting of the vertex-disjoint union of three C5’s has a σ-
labeling.

Proof. Take the cycles (0, 14, 1, 4, 15, 0), (16, 25, 17, 18, 28, 16) and (5, 11, 6, 8, 12, 5).
�

Theorem 10 Let x be a nonnegative integer, and let a graph consist of three vertex-
disjoint cycles, each of length 4x + 3. Then the graph has a ρ-labeling.

Proof. First assume x > 0. The three cycles will be G1, G2, and G3, defined as
follows:

G1 = P (0, 10x + 9, x) + P (x, 8x + 7, 2x) + (2x, 2x + 3, 12x + 10, 0),

G2 = P (12x + 11, 4x + 6, 14x + 11) + (14x + 11, 14x + 13, 22x + 19, 12x + 11),

G3 = P (2x + 4, 2x + 5, 3x + 4) + P (3x + 4, 4, 4x + 4)

+ (4x + 4, 4x + 5, 6x + 9, 2x + 4).
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Figure 4: A ρ-labeling of C7 ∪ C7 ∪ C7.

Now we compute

V (G1) = [0, 2x]∪[11x + 9, 12x + 8]∪[10x + 7, 11x + 6]∪{2x + 3, 12x + 10},
V (G2) = [12x + 11, 14x + 11]∪[18x + 17, 20x + 16]∪{14x + 13, 22x + 19},
V (G3) = [2x + 4, 4x + 4]∪[5x + 9, 6x + 8]∪[4x + 8, 5x + 7]∪{4x + 5, 6x + 9}.

We can order these as

[0, 2x], 2x + 3

from G1,

[2x + 4, 4x + 4], 4x + 5, [4x + 8, 5x + 7], [5x + 9, 6x + 8], 6x + 9

from G3,

[10x + 7, 11x + 6], [11x + 9, 12x + 8], 12x + 10

from G1, and

[12x + 11, 14x + 11], 14x + 13, [18x + 17, 20x + 16], 22x + 19

from G2. We see that for x > 0 the vertices of the three cycles are distinct and
contained in [0, 2(12x + 9)] = [0, 24x + 18].

Likewise we compute

Ē(G1) = [10x + 9, 12x + 8]∪[8x + 7, 10x + 6]∪{3, 10x + 7, 12x + 10},
Ē(G2) = [4x + 6, 8x + 5]∪{2, 8x + 6, 10x + 8},
Ē(G3) = [2x + 5, 4x + 4]∪[4, 2x + 3]∪{1, 2x + 4, 4x + 5}.

We can order these as the edge label 1 from G3, 2 from G2, 3 from G1,

[4, 2x + 3], 2x + 4, [2x + 5, 4x + 4], 4x + 5

from G3,

[4x + 6, 8x + 5], 8x + 6
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from G2,
[8x + 7, 10x + 6], 10x + 7

from G1, 10x + 8 from G2, and

[10x + 9, 12x + 8], 12x + 10

from G1. Thus E(G) = [1, 12x + 8]∪{12x + 10}. Since 2(12x + 9) + 1− (12x + 10) =
12x + 9, we have a ρ-labeling.

Finally if x = 0 we take our cycles to be (0, 3, 10, 0), (1, 2, 6, 1), and (5, 7, 13, 5).
�

Theorem 11 Let the graph G consist of four vertex-disjoint cycles, each of the same
odd length. Then G has a σ-labeling.

Proof. First we consider the case when the cycles have length 4x + 1, where x is a
positive integer. Our four cycles will be G1, G2, G2, and G4, defined as follows:

G1 = P (0, 12x + 6, 2x − 1) + (2x − 1, 4x − 1, 16x + 4, 0),

G2 = P (16x + 5, 8x + 6, 18x + 4) + (18x + 4, 20x + 5, 28x + 9, 16x + 5),

G3 = P (4x, 4x + 6, 6x − 1) + (6x − 1, 8x + 1, 12x + 5, 4x),

G4 = P (20x + 6, 2x + 6, 21x + 5) + (21x + 5, 23x + 9, 21x + 6)

+ P (21x + 6, 2, 22x + 5) + (22x + 5, 22x + 6, 24x + 11, 20x + 6)

Now we compute

V (G1) = [0, 2x − 1]∪[14x + 5, 16x + 3]∪{4x − 1, 16x + 4},
V (G2) = [16x + 5, 18x + 4]∪[26x + 10, 28x + 8]∪{20x + 5, 28x + 9},
V (G3) = [4x, 6x − 1]∪[10x + 5, 12x + 3]∪{8x + 1, 12x + 5},
V (G4) = [20x + 6, 21x + 5]∪[23x + 11, 24x + 9]∪{23x + 9}

∪ [21x + 6, 22x + 5]∪[22x + 7, 23x + 5]∪{22x + 6, 24x + 11}.
We can order these sets as follows.

cycle vertices
G1 [0, 2x − 1]
G1 4x − 1
G3 [4x, 6x − 1]
G3 8x + 1
G3 [10x + 5, 12x + 3]
G3 12x + 5
G1 [14x + 5, 16x + 3]
G1 16x + 4
G2 [16x + 5, 18x + 4]
G2 20x + 5

cycle vertices
G4 [20x + 6, 21x + 5]
G4 [21x + 6, 22x + 5]
G4 22x + 6
G4 [22x + 7, 23x + 5]
G4 23x + 9
G4 [23x + 11, 24x + 9]
G4 24x + 11
G2 [26x + 10, 28x + 8]
G2 28x + 9
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Figure 5: A σ-labeling of 4C9.

From this we can see that the vertices of the four cycles are distinct and contained in
[0, 2(16x+4)] = [0, 32x+8]. (If x = 1 the sets [22x+7, 23x+5] and [23x+11, 24x+9]
are empty, but this does not change the proof.)

Likewise we compute

Ē(G1) = [12x + 6, 16x + 3]∪{2x, 12x + 5, 16x + 4},
Ē(G2) = [8x + 6, 12x + 3]∪{2x + 1, 8x + 4, 12x + 4},
Ē(G3) = [4x + 6, 8x + 3]∪{2x + 2, 4x + 4, 8x + 5},
Ē(G4) = [2x + 6, 4x + 3]∪{2x + 4, 2x + 3}∪[2, 2x − 1]∪{1, 2x + 5, 4x + 5}.

We can order these sets as follows.

cycle edge labels
G4 1
G4 [2, 2x − 1]
G1 2x
G2 2x + 1
G3 2x + 2
G4 2x + 3
G4 2x + 4
G4 2x + 5
G4 [2x + 6, 4x + 3]
G3 4x + 4

cycle edge labels
G4 4x + 5
G3 [4x + 6, 8x + 3]
G2 8x + 4
G3 8x + 5
G2 [8x + 6, 12x + 3]
G2 12x + 4
G1 12x + 5
G1 [12x + 6, 16x + 3]
G1 16x + 4

We see that the edge labels are exactly the set [1, 16x + 4]. (If x = 1, the sets
[2, 2x − 1] and [2x + 6, 4x + 3] are empty, but this does not change the proof.)
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Now we consider the case when the cycles have length 4x+3, where x is a positive
integer. The case x = 0 will be considered separately. Our four cycles will be defined
as follows:

G1 = P (0, 14x + 12, x) + P (x, 12x + 11, 2x) + (2x, 2x + 1, 16x + 12, 0),

G2 = P (16x + 13, 10x + 8, 17x + 14) + P (17x + 14, 8x + 9, 18x + 13)

+ (18x + 13, 18x + 16, 28x + 23, 16x + 13),

G3 = P (2x + 2, 6x + 8, 3x + 2) + P (3x + 2, 4x + 6, 4x + 2)

+ (4x + 2, 4x + 4, 10x + 10, 2x + 2),

G4 = (18x + 17, 22x + 22, 18x + 18) + P (18x + 18, 5, 20x + 17)

+ (20x + 17, 20x + 21, 24x + 24, 18x + 17).
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30 12 72 61

6 7 8 9 10 53 54 55 56 57

29 28 25 24 66 64 63 62

44 5 79 52

0 1 2 3 4 45 46 47 48 49

43 42 40 39 78 77 76 74

G1 G2

G3 G4

Figure 6: A ρ-labeling of 4C11.

Now we compute

V (G1) = [0, 2x]∪[15x + 12, 16x + 11]∪[14x + 11, 15x + 10]∪{2x + 1, 16x + 12},
V (G2) = [16x + 13, 18x + 13]∪[27x + 22, 28x + 22]∪[26x + 22, 27x + 20]

∪{18x + 16, 28x + 23},
V (G3) = [2x + 2, 4x + 2]∪[9x + 10, 10x + 9]∪[8x + 8, 9x + 7]∪{4x + 4, 10x+10},
V (G4) = {18x + 17, 22x + 22}∪[18x + 18, 20x + 17]∪[20x + 22, 22x + 20]

∪{20x + 21, 24x + 24}.
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We can order these sets as follows.

cycle vertices
G1 [0, 2x]
G1 2x + 1
G3 [2x + 2, 4x + 2]
G3 4x + 4
G3 [8x + 8, 9x + 7]
G3 [9x + 10, 10x + 9]
G3 10x + 10
G1 [14x + 11, 15x + 10]
G1 [15x + 12, 16x + 11]
G1 16x + 12
G2 [16x + 13, 18x + 13]

cycle vertices
G2 18x + 16
G4 18x + 17
G4 [18x + 18, 20x + 17]
G4 20x + 21
G4 [20x + 22, 22x + 20]
G4 22x + 22
G4 24x + 24
G2 [26x + 22, 27x + 20]
G2 [27x + 22, 28x + 22]
G2 28x + 23

From this we can see that the vertices of the four cycles are distinct and contained
in [0, 2(16x + 12)] = [0, 32x + 24] for x > 0. (If x = 1 the set [26x + 22, 27x + 20] is
empty, but this does not change the proof.)

Likewise we compute

Ē(G1) = [14x + 12, 16x + 11]∪[12x + 11, 14x + 10]∪{1, 14x + 11, 16x + 12},
Ē(G2) = [10x + 8, 12x + 9]∪[8x + 9, 10x + 6]∪{3, 10x + 7, 12x + 10},
Ē(G3) = [6x + 8, 8x + 7]∪[4x + 6, 6x + 5]∪{2, 6x + 6, 8x + 8},
Ē(G4) = {4x + 5, 4x + 4}∪[5, 4x + 2]∪{4, 4x + 3, 6x + 7}.

We can order these sets as follows.

cycle edge labels
G1 1
G2 3
G3 2
G4 4
G4 [5, 4x + 2]
G4 4x + 3
G4 4x + 4
G4 4x + 5
G3 [4x + 6, 6x + 5]
G3 6x + 6
G4 6x + 7

cycle edge labels
G3 [6x + 8, 8x + 7]
G3 8x + 8
G2 [8x + 9, 10x + 6]
G2 10x + 7
G2 [10x + 8, 12x + 9]
G2 12x + 10
G1 [12x + 11, 14x + 10]
G1 14x + 11
G1 [14x + 12, 16x + 11]
G1 16x + 12

We see that for x ≥ 2 the edge labels are exactly the set [1, 16x + 12]. (If x = 1 the
set [8x + 9, 10x + 6] is empty, but this does not change the proof.)

Finally, if x = 0 we take G1 = (0, 1, 12, 0), G2 = (13, 16, 23, 13), G3 = (2, 4, 10, 2),
and G4 = (5, 9, 14, 5). �

The results for labelings of rC4x+k, 1 ≤ r ≤ 4, 3 ≤ k ≤ 6 and x ≥ 0 are
summarized in the table below.
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k = 3 k = 4 k = 5 k = 6
r = 1 β α ρ ρ++

r = 2 ρ α ρ α

r = 3 ρ
σ++ if x = 0
α if x > 0

σ if x = 0
β if x > 0

ρ++

r = 4 σ
α if x = 0

σ++ if x > 0
σ σ++

Table 1. Labelings of rC4x+k, 1 ≤ r ≤ 4, 3 ≤ k ≤ 6 and x ≥ 0.

We can offer the following corollary.

Corollary 12 Let G be a 2-regular graph with n edges and at most 4 components.
Then there exists a cyclic G-decompositions of K2n+1.

4 Concluding Remarks

The study of graph decompositions is a popular branch of modern combinatorial
design theory (see [4] for an overview). In particular, the study of G-decompositions
of K2n+1 (and of K2nx+1) when G is a graph with n edges (and x is a positive
integer) has attracted considerable attention. The study of graph labelings is also
quite popular (see Gallian [9] for a dynamic survey). Theorem 1 provides a powerful
link between the two areas. Much of the attention on labelings has been on graceful
labelings (i.e., β-labelings). Unfortunately, the parity condition “disqualifies” large
classes of graphs from admitting graceful labelings. This difficulty is compounded
by the fact that certain classes of graphs with ρ-labelings meet the parity condition,
yet fail to be graceful.

In conclusion, we note that our results here, along with results from [5] and [10],
provide further evidence in support of the following conjecture which is presented in
a forthcoming survey [7].

Conjecture 13 Every 2-regular graph has a ρ-labeling.

Evidence suggests that the above conjecture can be strengthened to predict a σ-
labeling if the parity condition is satisfied.
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