Labelings of unions of up to four uniform cycles

Diane Donovan
Centre for Discrete Mathematics and Computing
Department of Mathematics
The University of Queensland
Queensland 4072, Australia
Saad I. El-Zanati Charles Vanden Eynden
4520 Mathematics Department
Illinois State University
Normal, Illinois 61790-4520, U.S.A.
Somporn Sutinuntopas
Department of Mathematics
Faculty of Science
Ramkhamhaeng University
Hua-Mark, Bangkok 10240, Thailand

Abstract

We show that every 2-regular graph consisting of at most four uniform components has a ρ-labeling (or a more restricted labeling). This has an application in the cyclic decomposition of certain complete graphs into the disjoint unions of cycles.

1 Introduction

If a and b are integers we denote $\{a, a+1, \ldots, b\}$ by $[a, b]$ (if $a<b,[a, b]=\emptyset$). Let \mathbb{N} denote the set of nonnegative integers and \mathbb{Z}_{n} the group of integers modulo n. For a graph G, let $V(G)$ and $E(G)$ denote the vertex set of G and the edge set of G, respectively. Let $V\left(K_{v}\right)=\mathbb{Z}_{v}$ and let G be a subgraph of K_{v}. By clicking G, we mean applying the isomorphism $i \rightarrow i+1$ to $V(G)$. Let K and G be graphs such that G is a subgraph of K. A G-decomposition of K is a set $\Gamma=\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$ of subgraphs of K each of which is isomorphic to G and such that the edge sets of the graphs G_{i} form a partition of the edge set of K. If K is K_{v}, a G-decomposition Γ of K is cyclic if clicking is a permutation of Γ. If G is a graph and r is a positive integer, $r G$ denotes the vertex disjoint union of r copies of G.

For any graph G, an injective function $h: V(G) \rightarrow \mathbb{N}$ is called a labeling (or a valuation) of G. In [14], Rosa introduced a hierarchy of labelings. We add a few items to this hierarchy. Let G be a graph with n edges and no isolated vertices and let h be a labeling of G. Let $h(V(G))=\{h(u): u \in V(G)\}$. Define a function $\bar{h}: E(G) \rightarrow \mathbb{Z}^{+}$ by $\bar{h}(e)=|h(u)-h(v)|$, where $e=\{u, v\} \in E(G)$. Let $\bar{E}(G)=\{\bar{h}(e): e \in E(G)\}$. Consider the following conditions:
(a) $h(V(G)) \subseteq[0,2 n]$,
(b) $h(V(G)) \subseteq[0, n]$,
(c) $\bar{E}(G)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, where for each $i \in[1, n]$ either $x_{i}=i$ or $x_{i}=2 n+1-i$, (d) $\bar{E}(G)=[1, n]$.

If in addition G is bipartite, then there exists a bipartition (A, B) of $V(G)$ (with every edge in G having one endvertex in A and the other in B) such that
(e) for each $\{a, b\} \in E(G)$ with $a \in A$ and $b \in B$, we have $h(a)<h(b)$,
(f) there exists an integer λ such that $h(a) \leq \lambda$ for all $a \in A$ and $h(b)>\lambda$ for all $b \in B$.

Then a labeling satisfying the conditions:
(a), (c) is called a ρ-labeling;
(a), (d) is called a σ-labeling;
(b), (d) is called a β-labeling.

A β-labeling is necessarily a σ-labeling which in turn is a ρ-labeling. If G is bipartite and a ρ, σ or β-labeling of G also satisfies (e), then the labeling is ordered and is denoted by ρ^{+}, σ^{+}or β^{+}, respectively. If in addition (f) is satisfied, the labeling is uniformly-ordered and is denoted by ρ^{++}, σ^{++}or β^{++}, respectively.

A β-labeling is better known as a graceful labeling and a uniformly-ordered β labeling is an α-labeling as introduced in [14].

Labelings are critical to the study of cyclic graph decompositions as seen in the following two results by Rosa [14].

Theorem 1 Let G be a graph with n edges. There exists a cyclic G-decomposition of $K_{2 n+1}$ if and only if G has a ρ-labeling.

Theorem 2 Let G be a graph with n edges that has an α-labeling. Then there exists a cyclic G-decomposition of $K_{2 n x+1}$ for all positive integers x.

Clearly if G is bipartite, then an α-labeling of G is the most desired labeling. However, there exist numerous classes of bipartite graphs (including some classes of trees) which do not admit α-labelings (see [14]). Hence the need to introduce the variations on the theme of α-labelings. In [6] it was shown that Theorem 2 extends to graphs with ρ^{+}-labelings.

Theorem 3 Let G be a graph with n edges that has a ρ^{+}-labeling. Then there exists a cyclic G-decomposition of $K_{2 n x+1}$ for all positive integers x.

Let G be a graph with n edges and Eulerian components and let h be a β-labeling of G. It is well-known (see [14]) that we must have $n \equiv 0$ or $3(\bmod 4)$. Moreover, if such a G is bipartite, then $n \equiv 0(\bmod 4)$. These conditions hold since for such a $G, \sum_{e \in E(G)} \bar{h}(e)=n(n+1) / 2$. This sum must in turn be even, since each vertex is incident with an even number of edges and $\bar{h}(e)=|h(u)-h(v)|$, where u and v are the endvertices of e. Thus we must have $4 \mid n(n+1)$. Clearly, the same will hold if such a G admits a σ-labeling. We shall refer to this restriction as the parity condition. There are no such restrictions on $|E(G)|$ if h is a ρ-labeling.

Theorem 4 (Parity Condition) If a graph G with Eulerian components and n edges has a σ-labeling, then $n \equiv 0$ or $3(\bmod 4)$. If such $a G$ is bipartite, then $n \equiv 0$ $(\bmod 4)$.

In [14], Rosa presented α - and β-labelings of $C_{4 m}$ and of $C_{4 m+3}$, respectively. It is also known that both $C_{4 m+1}$ and $C_{4 m+2}$ admit ρ-labelings. It was also shown in [6] that there exists a ρ^{+}-labeling of $C_{4 m+2}$, for all positive integers m. It can be easily checked that this labeling is actually a ρ^{++}-labeling.

In this manuscript, we will focus on labelings of 2-regular graphs (i.e., the vertexdisjoint union of cycles). If a 2-regular graph G is bipartite, then it is shown in [3] that G necessarily admits a ρ^{++}-labeling. Such a G need not admit an α-labeling, even if the parity condition is satisfied. It is well-known for example that $3 C_{4}$ does not have an α-labeling (see [11]). Similarly, if G is not bipartite, then G need not admit a β-labeling even if the parity condition is satisfied. For example, it is shown in [12] that $r C_{3}$ does not admit a β-labeling for all $r>1$ and $r C_{5}$ never admits a β-labeling. It is thus reasonable to focus on labelings that are less restrictive than β-labelings when studying 2 -regular graphs.

Here, we shall show that every 2-regular graph consisting of at most four uniform components has a ρ-labeling (or a more restricted labeling). This has an application in the cyclic decomposition of certain complete graphs into the disjoint unions of cycles. Moreover, it provides further evidence in support of a conjecture that every 2 -regular graph admits a ρ-labeling.

2 Summary of Some of the Known Results

As stated in the previous section, the following is known for cycles (see [13], [14] and [6]).

Theorem 5 Let $m \geq 3$ be an integer. Then, C_{m} admits an α-labeling if $m \equiv 0$ $(\bmod 4)$, a ρ-labeling if $m \equiv 1(\bmod 4)$, a ρ^{++}-labeling if $m \equiv 2(\bmod 4)$, and a β-labeling if $m \equiv 3(\bmod 4)$.

For 2-regular graphs with two components, we have the following from Abrham and Kotzig [2].

Theorem 6 Let $m \geq 3$ and $n \geq 3$ be integers. Then the graph $C_{m} \cup C_{n}$ has a β labeling if and only if $m+n \equiv 0$ or $3(\bmod 4)$. Moreover, $C_{m} \cup C_{n}$ has an α-labeling if and only if both m and n are even and $m+n \equiv 0(\bmod 4)$.

Thus $2 C_{m}$ has an α-labeling if $m \geq 4$ is even. In the next section, we show that $2 C_{m}$ admits a ρ-labeling if $m \geq 3$ is odd.

For 2-regular graphs with more than two components, the following is known. In [11], Kotzig shows that if $r>1$, then $r C_{3}$ does not admit a β-labeling. Similarly, he shows that $r C_{5}$ does not admit a β-labeling for any r. In [12], Kotzig shows that $3 C_{4 k+1}$ admits a β-labeling for all $k \geq 2$. In [5], it is shown that $r C_{3}$ admits a ρ-labeling for all $r \geq 1$. In [8], Eshghi shows that $C_{2 m} \cup C_{2 n} \cup C_{2 k}$ has an α-labeling for all m, n, and $k \geq 2$ with $m+n+k \equiv 0(\bmod 2)$ except when $m=n=k=2$. Thus $3 C_{4 m}$ has an α-labeling for all $m>1$. In [1], Abrham and Kotzig show that $r C_{4}$ has an α-labeling for all positive integers $r \neq 3$. An additional result follows by combining results from [6] and from [3].

Theorem 7 Let G be a 2-regular bipartite graph of order n. Then G has a σ^{++} labeling if $n \equiv 0(\bmod 4)$ and a ρ^{++}-labeling if $n \equiv 2(\bmod 4)$.

3 Main results

We shall show that $2 C_{m}$ has a ρ-labeling when m is odd, $3 C_{5}$ has a σ-labeling, $3 C_{m}$ has a ρ-labeling when $m \equiv 3(\bmod 4)$, and $4 C_{m}$ has a σ-labeling when m is odd. This along with some of the known results shows that $r C_{m}$ has a ρ-labeling (or a more restricted labeling) when $r \leq 4$. Some additional definitions and notational conventions are necessary.

We denote the path with consecutive vertices $a_{1}, a_{2}, \ldots, a_{k}$ by $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$. By $\left(a_{1}, a_{2}, \ldots, a_{k}\right)+\left(b_{1}, b_{2}, \ldots, b_{j}\right)$, where $a_{k}=b_{1}$, we mean the path $\left(a_{1}, \ldots, a_{k}, b_{2}, \ldots\right.$, b_{j}).

To simplify our consideration of various labelings, we will sometimes consider graphs whose vertices are named by distinct nonnegative integers, which are also their labels.

Let a, b, and h be integers with $0 \leq a \leq b$ and $h>0$. Set $d=b-a$. We define the path

$$
P(a, h, b)=(a, a+h+2 d-1, a+1, a+h+2 d-2, a+2, \ldots, b-1, b+h, b) .
$$

It is easily checked that $P(a, h, b)$ is simple and

$$
V(P(a, h, b))=[a, b] \cup[b+h, b+h+d-1] .
$$

Furthermore, the edge labels of $P(a, h, b)$ are distinct and

$$
\bar{E}(P(a, h, b))=[h, h+2 d-1] .
$$

These formulas will be used extensively in the proofs that follow.

Figure 1: The path $P(0,3,5)$.

Theorem 8 Let the graph G consist of two vertex-disjoint cycles, each of the same odd length. Then G has a ρ-labeling.

Proof. First we consider cycles of length $4 x+1, x$ a positive integer. The two cycles will be G_{1} and G_{2}, defined as follows:

$$
\begin{aligned}
G_{1} & =P(0,6 x+4, x-1)+P(x-1,4 x+3,2 x-1)+(2 x-1,2 x, 8 x+3,0) \\
G_{2} & =P(8 x+4,2 x+2,9 x+4)+P(9 x+4,3,10 x+3) \\
& +(10 x+3,10 x+5,12 x+6,8 x+4)
\end{aligned}
$$

Now we compute

Figure 2: A ρ-labeling of $C_{9} \cup C_{9}$.

$$
\begin{aligned}
V\left(G_{1}\right)= & {[0,2 x-1] \cup[7 x+3,8 x+1] \cup[6 x+2,7 x+1] \cup\{2 x, 8 x+3\} } \\
V\left(G_{2}\right)= & {[8 x+4,10 x+3] \cup[11 x+6,12 x+5] \cup[10 x+6,11 x+4] } \\
& \cup\{10 x+5,12 x+6\} .
\end{aligned}
$$

We can order these as

$$
[0,2 x-1], 2 x,[6 x+2,7 x+1],[7 x+3,8 x+1], 8 x+3
$$

from G_{1}, and

$$
[8 x+4,10 x+3], 10 x+5,[10 x+6,11 x+4],[11 x+6,12 x+5], 12 x+6
$$

from G_{2}. We see that the vertices of the two cycles are distinct and contained in $[0,2(8 x+2)]=[0,16 x+4]$. (If $x=1$ the sets $[7 x+3,8 x+1]$ and $[10 x+6,11 x+4]$ are empty, but this does not change the proof.)

Likewise we compute

$$
\begin{aligned}
& \bar{E}\left(G_{1}\right)=[6 x+4,8 x+1] \cup[4 x+3,6 x+2] \cup\{1,6 x+3,8 x+3\}, \\
& \bar{E}\left(G_{2}\right)=[2 x+2,4 x+1] \cup[3,2 x] \cup\{2,2 x+1,4 x+2\} .
\end{aligned}
$$

We can order these as the edge label 1 from G_{1},

$$
2,[3,2 x], 2 x+1,[2 x+2,4 x+1], 4 x+2
$$

from G_{2}, and

$$
[4 x+3,6 x+2], 6 x+3,[6 x+4,8 x+1], 8 x+3
$$

from G_{1}. Thus $\bar{E}(G)=[1,8 x+1] \cup\{8 x+3\}$. Since $2(8 x+2)+1-(8 x+3)=8 x+2$, we have a ρ-labeling. (If $x=1$ the sets $[3,2 x]$ and $[6 x+4,8 x+1]$ are empty, but this does not change the proof.)

Now suppose the cycles have length $4 x+3, x$ a nonnegative integer. The two cycles will be defined as follows:

$$
\begin{aligned}
G_{1} & =P(0,6 x+6, x)+P(x, 4 x+5,2 x)+(2 x, 2 x+2,8 x+7,0) \\
G_{2} & =P(8 x+8,2 x+4,9 x+8)+P(9 x+8,3,10 x+8) \\
& +(10 x+8,10 x+9,12 x+12,8 x+8)
\end{aligned}
$$

Now we compute

$$
\begin{aligned}
V\left(G_{1}\right)= & {[0,2 x] \cup[7 x+6,8 x+5] \cup[6 x+5,7 x+4] \cup\{2 x+2,8 x+7\} } \\
V\left(G_{2}\right)= & {[8 x+8,10 x+8] \cup[11 x+12,12 x+11] \cup[10 x+11,11 x+10] } \\
& \cup\{10 x+9,12 x+12\} .
\end{aligned}
$$

We can order these as

$$
[0,2 x], 2 x+2,[6 x+5,7 x+4],[7 x+6,8 x+5], 8 x+7
$$

from G_{1}, and

$$
[8 x+8,10 x+8], 10 x+9,[10 x+11,11 x+10],[11 x+12,12 x+11], 12 x+12
$$

from G_{2}. We see that the vertices of the two cycles are distinct and contained in $[0,2(8 x+6)]=[0,16 x+12]$. (If $x=0$ the sets $[6 x+5,7 x+4],[7 x+6,8 x+5],[10 x+$ $11,11 x+10]$ and $[11 x+12,12 x+11]$ are empty, but this does not change the proof.) Likewise we compute

$$
\begin{aligned}
& \bar{E}\left(G_{1}\right)=[6 x+6,8 x+5] \cup[4 x+5,6 x+4] \cup\{2,6 x+5,8 x+7\} \\
& \bar{E}\left(G_{2}\right)=[2 x+4,4 x+3] \cup[3,2 x+2] \cup\{1,2 x+3,4 x+4\} .
\end{aligned}
$$

Figure 3: A ρ-labeling of $C_{7} \cup C_{7}$.

We can order these as the edge label 1 from $G_{2}, 2$ from G_{1},

$$
[3,2 x+2], 2 x+3,[2 x+4,4 x+3], 4 x+4
$$

from G_{2}, and

$$
[4 x+5,6 x+4], 6 x+5,[6 x+6,8 x+5], 8 x+7
$$

from G_{1}. Thus $\bar{E}(G)=[1,8 x+5] \cup\{8 x+7\}$. Since $2(8 x+6)+1-(8 x+7)=8 x+6$, we have a ρ-labeling. (If $x=0$ the sets $[3,2 x+2],[2 x+4,4 x+3],[4 x+5,6 x+4]$ and $[6 x+6,8 x+5]$ are empty, but this does not change the proof.)

It is known that $3 C_{5}$ does not have a β-labeling (see [11]) and that $3 C_{4 x+1}$ has a β-labeling for $x \geq 2$ (see [12]).

Lemma 9 The graph consisting of the vertex-disjoint union of three C_{5} 's has a σ labeling.

Proof. Take the cycles $(0,14,1,4,15,0),(16,25,17,18,28,16)$ and $(5,11,6,8,12,5)$.

Theorem 10 Let x be a nonnegative integer, and let a graph consist of three vertexdisjoint cycles, each of length $4 x+3$. Then the graph has a ρ-labeling.

Proof. First assume $x>0$. The three cycles will be G_{1}, G_{2}, and G_{3}, defined as follows:

$$
\begin{aligned}
G_{1} & =P(0,10 x+9, x)+P(x, 8 x+7,2 x)+(2 x, 2 x+3,12 x+10,0) \\
G_{2} & =P(12 x+11,4 x+6,14 x+11)+(14 x+11,14 x+13,22 x+19,12 x+11) \\
G_{3} & =P(2 x+4,2 x+5,3 x+4)+P(3 x+4,4,4 x+4) \\
& +(4 x+4,4 x+5,6 x+9,2 x+4)
\end{aligned}
$$

Figure 4: A ρ-labeling of $C_{7} \cup C_{7} \cup C_{7}$.

Now we compute

$$
\begin{aligned}
V\left(G_{1}\right) & =[0,2 x] \cup[11 x+9,12 x+8] \cup[10 x+7,11 x+6] \cup\{2 x+3,12 x+10\}, \\
V\left(G_{2}\right) & =[12 x+11,14 x+11] \cup[18 x+17,20 x+16] \cup\{14 x+13,22 x+19\}, \\
V\left(G_{3}\right) & =[2 x+4,4 x+4] \cup[5 x+9,6 x+8] \cup[4 x+8,5 x+7] \cup\{4 x+5,6 x+9\} .
\end{aligned}
$$

We can order these as

$$
[0,2 x], 2 x+3
$$

from G_{1},

$$
[2 x+4,4 x+4], 4 x+5,[4 x+8,5 x+7],[5 x+9,6 x+8], 6 x+9
$$

from G_{3},

$$
[10 x+7,11 x+6],[11 x+9,12 x+8], 12 x+10
$$

from G_{1}, and

$$
[12 x+11,14 x+11], 14 x+13,[18 x+17,20 x+16], 22 x+19
$$

from G_{2}. We see that for $x>0$ the vertices of the three cycles are distinct and contained in $[0,2(12 x+9)]=[0,24 x+18]$.

Likewise we compute

$$
\begin{aligned}
\bar{E}\left(G_{1}\right) & =[10 x+9,12 x+8] \cup[8 x+7,10 x+6] \cup\{3,10 x+7,12 x+10\}, \\
\bar{E}\left(G_{2}\right) & =[4 x+6,8 x+5] \cup\{2,8 x+6,10 x+8\} \\
\bar{E}\left(G_{3}\right) & =[2 x+5,4 x+4] \cup[4,2 x+3] \cup\{1,2 x+4,4 x+5\} .
\end{aligned}
$$

We can order these as the edge label 1 from $G_{3}, 2$ from $G_{2}, 3$ from G_{1},

$$
[4,2 x+3], 2 x+4,[2 x+5,4 x+4], 4 x+5
$$

from G_{3},

$$
[4 x+6,8 x+5], 8 x+6
$$

from G_{2},

$$
[8 x+7,10 x+6], 10 x+7
$$

from $G_{1}, 10 x+8$ from G_{2}, and

$$
[10 x+9,12 x+8], 12 x+10
$$

from G_{1}. Thus $E(G)=[1,12 x+8] \cup\{12 x+10\}$. Since $2(12 x+9)+1-(12 x+10)=$ $12 x+9$, we have a ρ-labeling.

Finally if $x=0$ we take our cycles to be $(0,3,10,0),(1,2,6,1)$, and $(5,7,13,5)$.

Theorem 11 Let the graph G consist of four vertex-disjoint cycles, each of the same odd length. Then G has a σ-labeling.

Proof. First we consider the case when the cycles have length $4 x+1$, where x is a positive integer. Our four cycles will be G_{1}, G_{2}, G_{2}, and G_{4}, defined as follows:

$$
\begin{aligned}
G_{1} & =P(0,12 x+6,2 x-1)+(2 x-1,4 x-1,16 x+4,0), \\
G_{2} & =P(16 x+5,8 x+6,18 x+4)+(18 x+4,20 x+5,28 x+9,16 x+5), \\
G_{3} & =P(4 x, 4 x+6,6 x-1)+(6 x-1,8 x+1,12 x+5,4 x), \\
G_{4} & =P(20 x+6,2 x+6,21 x+5)+(21 x+5,23 x+9,21 x+6) \\
& +P(21 x+6,2,22 x+5)+(22 x+5,22 x+6,24 x+11,20 x+6)
\end{aligned}
$$

Now we compute

$$
\begin{aligned}
V\left(G_{1}\right) & =[0,2 x-1] \cup[14 x+5,16 x+3] \cup\{4 x-1,16 x+4\}, \\
V\left(G_{2}\right) & =[16 x+5,18 x+4] \cup[26 x+10,28 x+8] \cup\{20 x+5,28 x+9\}, \\
V\left(G_{3}\right) & =[4 x, 6 x-1] \cup[10 x+5,12 x+3] \cup\{8 x+1,12 x+5\}, \\
V\left(G_{4}\right) & =[20 x+6,21 x+5] \cup[23 x+11,24 x+9] \cup\{23 x+9\} \\
& \cup[21 x+6,22 x+5] \cup[22 x+7,23 x+5] \cup\{22 x+6,24 x+11\} .
\end{aligned}
$$

We can order these sets as follows.

cycle	vertices		cycle	vertices
G_{1}	$[0,2 x-1]$		G_{4}	$[20 x+6,21 x+5]$
G_{1}	$4 x-1$		G_{4}	$[21 x+6,22 x+5]$
G_{3}	$[4 x, 6 x-1]$		G_{4}	$22 x+6$
G_{3}	$8 x+1$		G_{4}	$[22 x+7,23 x+5]$
G_{3}	$[10 x+5,12 x+3]$		G_{4}	$23 x+9$
G_{3}	$12 x+5$		G_{4}	$[23 x+11,24 x+9]$
G_{1}	$[14 x+5,16 x+3]$		G_{4}	$24 x+11$
G_{1}	$16 x+4$		G_{2}	$[26 x+10,28 x+8]$
G_{2}	$[16 x+5,18 x+4]$		G_{2}	$28 x+9$
G_{2}	$20 x+5$			

Figure 5: A σ-labeling of $4 C_{9}$.

From this we can see that the vertices of the four cycles are distinct and contained in $[0,2(16 x+4)]=[0,32 x+8]$. (If $x=1$ the sets $[22 x+7,23 x+5]$ and $[23 x+11,24 x+9]$ are empty, but this does not change the proof.)

Likewise we compute

$$
\begin{aligned}
\bar{E}\left(G_{1}\right) & =[12 x+6,16 x+3] \cup\{2 x, 12 x+5,16 x+4\}, \\
\bar{E}\left(G_{2}\right) & =[8 x+6,12 x+3] \cup\{2 x+1,8 x+4,12 x+4\}, \\
\bar{E}\left(G_{3}\right) & =[4 x+6,8 x+3] \cup\{2 x+2,4 x+4,8 x+5\}, \\
\bar{E}\left(G_{4}\right) & =[2 x+6,4 x+3] \cup\{2 x+4,2 x+3\} \cup[2,2 x-1] \cup\{1,2 x+5,4 x+5\} .
\end{aligned}
$$

We can order these sets as follows.

cycle	edge labels		cycle	edge labels
G_{4}	1		G_{4}	$4 x+5$
G_{4}	$[2,2 x-1]$		G_{3}	$[4 x+6,8 x+3]$
G_{1}	$2 x$		G_{2}	$8 x+4$
G_{2}	$2 x+1$		G_{3}	$8 x+5$
G_{3}	$2 x+2$		G_{2}	$[8 x+6,12 x+3]$
G_{4}	$2 x+3$		G_{2}	$12 x+4$
G_{4}	$2 x+4$		G_{1}	$12 x+5$
G_{4}	$2 x+5$		G_{1}	$[12 x+6,16 x+3]$
G_{4}	$[2 x+6,4 x+3]$		G_{1}	$16 x+4$
G_{3}	$4 x+4$			

We see that the edge labels are exactly the set $[1,16 x+4]$. (If $x=1$, the sets $[2,2 x-1]$ and $[2 x+6,4 x+3]$ are empty, but this does not change the proof.)

Now we consider the case when the cycles have length $4 x+3$, where x is a positive integer. The case $x=0$ will be considered separately. Our four cycles will be defined as follows:

$$
\begin{aligned}
G_{1} & =P(0,14 x+12, x)+P(x, 12 x+11,2 x)+(2 x, 2 x+1,16 x+12,0), \\
G_{2} & =P(16 x+13,10 x+8,17 x+14)+P(17 x+14,8 x+9,18 x+13) \\
& +(18 x+13,18 x+16,28 x+23,16 x+13), \\
G_{3} & =P(2 x+2,6 x+8,3 x+2)+P(3 x+2,4 x+6,4 x+2) \\
& +(4 x+2,4 x+4,10 x+10,2 x+2) \\
G_{4} & =(18 x+17,22 x+22,18 x+18)+P(18 x+18,5,20 x+17) \\
& +(20 x+17,20 x+21,24 x+24,18 x+17) .
\end{aligned}
$$

Figure 6: A ρ-labeling of $4 C_{11}$.

Now we compute

$$
\begin{aligned}
V\left(G_{1}\right)= & {[0,2 x] \cup[15 x+12,16 x+11] \cup[14 x+11,15 x+10] \cup\{2 x+1,16 x+12\}, } \\
V\left(G_{2}\right)= & {[16 x+13,18 x+13] \cup[27 x+22,28 x+22] \cup[26 x+22,27 x+20] } \\
& \cup\{18 x+16,28 x+23\}, \\
V\left(G_{3}\right)= & {[2 x+2,4 x+2] \cup[9 x+10,10 x+9] \cup[8 x+8,9 x+7] \cup\{4 x+4,10 x+10\}, } \\
V\left(G_{4}\right)= & \{18 x+17,22 x+22\} \cup[18 x+18,20 x+17] \cup[20 x+22,22 x+20] \\
& \cup\{20 x+21,24 x+24\} .
\end{aligned}
$$

We can order these sets as follows.

cycle	vertices		cycle	
G_{1}	$[0,2 x]$		G_{2}	vertices
G_{1}	$2 x+1$		G_{4}	$18 x+16$
G_{3}	$[2 x+2,4 x+2]$		G_{4}	$[18 x+18,20 x+17]$
G_{3}	$4 x+4$		G_{4}	$20 x+21$
G_{3}	$[8 x+8,9 x+7]$		G_{4}	$[20 x+22,22 x+20]$
G_{3}	$[9 x+10,10 x+9]$		G_{4}	$22 x+22$
G_{3}	$10 x+10$		G_{4}	$24 x+24$
G_{1}	$[14 x+11,15 x+10]$		G_{2}	$[26 x+22,27 x+20]$
G_{1}	$[15 x+12,16 x+11]$		G_{2}	$[27 x+22,28 x+22]$
G_{1}	$16 x+12$		G_{2}	$28 x+23$
G_{2}	$[16 x+13,18 x+13]$			

From this we can see that the vertices of the four cycles are distinct and contained in $[0,2(16 x+12)]=[0,32 x+24]$ for $x>0$. (If $x=1$ the set $[26 x+22,27 x+20]$ is empty, but this does not change the proof.)

Likewise we compute

$$
\begin{aligned}
\bar{E}\left(G_{1}\right) & =[14 x+12,16 x+11] \cup[12 x+11,14 x+10] \cup\{1,14 x+11,16 x+12\}, \\
\bar{E}\left(G_{2}\right) & =[10 x+8,12 x+9] \cup[8 x+9,10 x+6] \cup\{3,10 x+7,12 x+10\}, \\
\bar{E}\left(G_{3}\right) & =[6 x+8,8 x+7] \cup[4 x+6,6 x+5] \cup\{2,6 x+6,8 x+8\}, \\
\bar{E}\left(G_{4}\right) & =\{4 x+5,4 x+4\} \cup[5,4 x+2] \cup\{4,4 x+3,6 x+7\} .
\end{aligned}
$$

We can order these sets as follows.

cycle	edge labels		cycle	
	1		edge labels	
G_{1}	3		G_{3}	$[6 x+8,8 x+7]$
G_{2}	2		G_{3}	$8 x+8$
G_{3}	4		G_{2}	$[8 x+9,10 x+6]$
G_{4}	G_{2}	$10 x+7$		
G_{4}	$[5,4 x+2]$		G_{2}	$[10 x+8,12 x+9]$
G_{4}	$4 x+3$		G_{2}	$12 x+10$
G_{4}	$4 x+4$		G_{1}	$[12 x+11,14 x+10]$
G_{4}	$4 x+5$		G_{1}	$14 x+11$
G_{3}	$[4 x+6,6 x+5]$		G_{1}	$[14 x+12,16 x+11]$
G_{3}	$6 x+6$		G_{1}	$16 x+12$
G_{4}	$6 x+7$			

We see that for $x \geq 2$ the edge labels are exactly the set $[1,16 x+12]$. (If $x=1$ the set $[8 x+9,10 x+6]$ is empty, but this does not change the proof.)

Finally, if $x=0$ we take $G_{1}=(0,1,12,0), G_{2}=(13,16,23,13), G_{3}=(2,4,10,2)$, and $G_{4}=(5,9,14,5)$.

The results for labelings of $r C_{4 x+k}, 1 \leq r \leq 4,3 \leq k \leq 6$ and $x \geq 0$ are summarized in the table below.

	$k=3$	$k=4$	$k=5$	$k=6$
$r=1$	β	α	ρ	ρ^{++}
$r=2$	ρ	α	ρ	α
$r=3$	ρ	$\begin{array}{ccc} \hline \sigma^{++} & \text {if } & x=0 \\ \alpha & \text { if } & x>0 \end{array}$	$\begin{array}{ccc} \hline \sigma & \text { if } & x=0 \\ \beta & \text { if } & x>0 \end{array}$	ρ^{++}
$r=4$	σ	$\begin{array}{ccc} \alpha & \text { if } & x=0 \\ \sigma^{++} & \text {if } & x>0 \end{array}$	σ	σ^{++}

Table 1. Labelings of $r C_{4 x+k}, 1 \leq r \leq 4,3 \leq k \leq 6$ and $x \geq 0$.
We can offer the following corollary.

Corollary 12 Let G be a 2 -regular graph with n edges and at most 4 components. Then there exists a cyclic G-decompositions of $K_{2 n+1}$.

4 Concluding Remarks

The study of graph decompositions is a popular branch of modern combinatorial design theory (see [4] for an overview). In particular, the study of G-decompositions of $K_{2 n+1}$ (and of $K_{2 n x+1}$) when G is a graph with n edges (and x is a positive integer) has attracted considerable attention. The study of graph labelings is also quite popular (see Gallian [9] for a dynamic survey). Theorem 1 provides a powerful link between the two areas. Much of the attention on labelings has been on graceful labelings (i.e., β-labelings). Unfortunately, the parity condition "disqualifies" large classes of graphs from admitting graceful labelings. This difficulty is compounded by the fact that certain classes of graphs with ρ-labelings meet the parity condition, yet fail to be graceful.

In conclusion, we note that our results here, along with results from [5] and [10], provide further evidence in support of the following conjecture which is presented in a forthcoming survey [7].

Conjecture 13 Every 2 -regular graph has a ρ-labeling.

Evidence suggests that the above conjecture can be strengthened to predict a σ labeling if the parity condition is satisfied.

Acknowledgement

The first two authors wish to thank the Mathematics Department at Ramkhamhaeng University for the tremendous hospitality shown during a recent workshop. This work was initiated at the said workshop.

References

[1] J. Abrham and A. Kotzig, All 2-regular graphs consisting of 4-cycles are graceful, Discrete Math. 135 (1994), 1-14.
[2] J. Abrham and A. Kotzig, Graceful valuations of 2-regular graphs with two components, Discrete Math. 150 (1996), 3-15.
[3] A. Blinco and S.I. El-Zanati, A note on the cyclic decomposition of complete graphs into bipartite graphs, Bull. Inst. Combin. Appl., to appear.
[4] J. Bosák, Decompositions of Graphs, Kluwer Academic Publishers Group, Dordrecht, 1990.
[5] J.H. Dinitz and P. Rodney, Disjoint difference families with block size 3, Util. Math. 52 (1997), 153-160.
[6] S.I. El-Zanati, C. Vanden Eynden and N. Punnim, On the cyclic decomposition of complete graphs into bipartite graphs, Australas. J. Combin. 24 (2001), 209219.
[7] S.I. El-Zanati and C. Vanden Eynden, Graph labelings and graph decompositions, a survey, forthcoming.
[8] K. Eshghi, The existence and construction of α-valuations of 2-regular graphs with 3 components, Ph.D. Thesis, Industrial Engineering Dept., University of Toronto, 1997.
[9] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., Dynamic Survey 6, 106 pp.
[10] H. Hevia and S. Ruiz, Decompositions of complete graphs into caterpillars, Rev. Mat. Apl. 9 (1987), 55-62.
[11] A. Kotzig, β-valuations of quadratic graphs with isomorphic components, Util. Math., 7 (1975), 263-279.
[12] A. Kotzig, Recent results and open problems in graceful graphs, Congress. Numer. 44 (1984), 197-219.
[13] A. Rosa, On the cyclic decomposition of the complete graph into polygons with odd number of edges, Časopis Pěst. Mat. 91 (1966), 53-63.
[14] A. Rosa, On certain valuations of the vertices of a graph, in: Théorie des graphes, journées internationales d'études, Rome 1966 (Dunod, Paris, 1967), 349-355.

