A minimum degree result for disjoint cycles and forests in bipartite graphs

Danhong Zhang Hong Wang
Department of Mathematics
The University of Idaho
Moscow
Idaho 83844
USA

Abstract

Let $F=\left(U_{1}, U_{2} ; W\right)$ be a forest with $\left|U_{1}\right|=\left|U_{2}\right|=s$, where $s \geq 2$, and let $G=\left(V_{1}, V_{2}, E\right)$ be a bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|=n \geq 2 k+s$, where k is a nonnegative integer. Suppose that the minimum degree of G is at least $k+s$. We show that if $n>2 k+s$ then G contains the disjoint union of the forest F and k disjoint cycles. Moreover, if $n=2 k+s$, then G contains the disjoint union of the forest $F, k-1$ disjoint cycles and a path of order 4.

1 Introduction

A set of graphs is called disjoint if no two of them have any vertex in common. Schuster [5] investigated the disjoint cycles and a forest in a graph. He proved the following result:

Theorem A. ([5], Theorem) Let F be a forest on s edges without isolated vertices and let G be a graph of order at least $3 k+|V(F)|$ with minimum degree at least $2 k+s$, where k and s are nonnegative integers. Then G contains the disjoint union of the forest F and k disjoint cycles.

In this paper, we consider a similar problem in bipartite graphs. About the maximum number of disjoint cycles in a bipartite graph, H. Wang proved the following theorems:

Theorem B. ([7], Theorem 1) Let $G=\left(V_{1}, V_{2} ; E\right)$ be a bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|=n>2 k$, where k is a positive integer. Suppose that the minimum degree of G is at least $k+1$. Then G contains k disjoint cycles.

Theorem C. ([7], Theorem 2) Let $G=\left(V_{1}, V_{2} ; E\right)$ be a bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|=n=2 k$, where k is a positive integer. Suppose that the minimum degree
of G is at least $k+1$. Then G contains $k-1$ disjoint 4 -cycles and a path of order 4 such that the path is disjoint from all the $k-14$-cycles.

This paper proves two theorems as follows:
Theorem 1. Let $F=\left(U_{1}, U_{2} ; W\right)$ be a forest with $\left|U_{1}\right|=\left|U_{2}\right|=s$, where $s \geq 2$. Let $G=\left(V_{1}, V_{2}, E\right)$ be a bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|=n>2 k+s$, where k is a nonnegative integer. Suppose that the minimum degree of G is at least $k+s$. Then G contains the disjoint union of the forest F and k disjoint cycles.

Theorem 2. Let $F=\left(U_{1}, U_{2} ; W\right)$ be a forest with $\left|U_{1}\right|=\left|U_{2}\right|=s$, where $s \geq 2$. Let $G=\left(V_{1}, V_{2} ; E\right)$ be a bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|=n=2 k+s$, where k is a nonnegative integer. Suppose that the minimum degree of G is at least $k+s$. Then G contains the disjoint union of the forest $F, k-1$ disjoint cycles and a path of order 4.

All graphs considered in this paper are finite simple graphs in standard terminology and notation from [1] except as indicated. Let $G=(V, E)$ be a graph. For any $u \in V$, if G^{\prime} is a subgraph of G, we define $N\left(u, G^{\prime}\right)$ to be $N_{G}(u) \cap V\left(G^{\prime}\right)$ and let $d\left(u, G^{\prime}\right)=\left|N\left(u, G^{\prime}\right)\right|$. If $d(u, G)=0$ or 1 we say that u is an isolated vertex or an endvertex of G, respectively. The minimum degree of G is denoted by $\delta(G)$. For a subset U of $V, G[U]$ is the subgraph of G induced by U. For two disjoint subgraphs G_{1} and G_{2} of $G, E\left(G_{1}, G_{2}\right)$ is the set of all edges of G between G_{1} and G_{2}. Let $e\left(G_{1}, G_{2}\right)=\left|E\left(G_{1}, G_{2}\right)\right|$, i.e. $e\left(G_{1}, G_{2}\right)=\sum_{x \in V\left(G_{1}\right)} d\left(x, G_{2}\right)$. A set of pairwise disjoint edges of G is called a matching in G. If M is a matching with the property that every vertex of G is incident with an edge of M, then M is called a perfect matching in G. The disjoint union of two graphs S and T is denoted by $S \dot{\cup} T$. We use the symbol \bigcirc^{k} to denote the disjoint union of k cycles; for $k=1$ we simply write \bigcirc instead of \bigcirc^{1}. An embedding of a graph H into a graph G is an injective mapping $\sigma: V(H) \rightarrow V(G)$ so that for every edge $x y \in E(G)$, the edge $\sigma(x) \sigma(y)$ is contained in $E(G)$. We write $H \subseteq G$ or $G \supseteq H$ if there is an embedding of H into G. For an embedding σ of H into G and a subgraph M of H, let $\sigma(M)$ denote the image of M in G, i.e., $\sigma(M)$ is the subgraph of G with vertex set $\{\sigma(x): x \in V(M)\}$ and edge set $\{\sigma(x) \sigma(y): x y \in E(M)\}$. We use $(X, Y ; E)$ to denote a bipartite graph with (X, Y) as its bipartition and E as its edge set. The length of a cycle C is denoted by $l(C)$, and a 4 -cycle is a cycle of length 4 . An acyclic graph is a graph without cycles.

2 Lemmas

For all lemmas listed below, $G=\left(V_{1}, V_{2} ; E\right)$ is a given bipartite graph.
Lemma 2.1 ([7], Lemma 2.1) Let C be a cycle of G and x a vertex of G not on C. Suppose $d(x, C) \geq 2$. Then either C is a 4 -cycle or $C+x$ contains a cycle C^{\prime} such that $l\left(C^{\prime}\right)<l(C)$.

Lemma 2.2 ([7], Lemma 2.2) Let C be a 4-cycle of G. Let $x \in V_{1}$ and $y \in V_{2}$ be two vertices not on C. Suppose $d(x, C)+d(y, C) \geq 3$. Then there exists $z \in V(C)$ such that either $C-z+x$ is a 4 -cycle and $y z \in E$, or $C-z+y$ is a 4-cycle and $x z \in E$.

Lemma 2.3 ([7], Lemma 2.3) Let T be a tree of order at least 2 with a bipartition (X, Y) such that $|Y| \geq|X|$. Let $p=|Y|-|X|$. Then Y contains at least $p+1$ endvertices of T.

Lemma 2.4 ([7], Lemma 2.4) Let $P=x_{1} x_{2} x_{3}$ and $Q=y_{1} y_{2} y_{3}$ be two disjoint paths of G with $x_{1} \in V_{1}$ and $y_{1} \in V_{2}$. Let C be a 4-cycle of G such that C is disjoint from both P and Q. Suppose $d\left(x_{1}, C\right)+d\left(x_{3}, C\right)+d\left(y_{1}, C\right)+d\left(y_{3}, C\right) \geq 5$. Then $G[V(C \cup P \cup Q)]$ contains a 4-cycle C^{\prime} and a path P^{\prime} of order 6 such that P^{\prime} is disjoint from C^{\prime}.

Lemma 2.5 ([7], Lemma 2.5) Let C be a 4-cycle of G. Let uv and $x y$ be two disjoint edges of G such that they are disjoint from C. Suppose $d(u, C)+d(v, C)+d(x, C)+$ $d(y, C) \geq 5$. Then $G[V(C) \cup\{u, v, x, y\}]$ contains a 4 -cycle C^{\prime} and a path P^{\prime} of order 4 such that P^{\prime} is disjoint from C^{\prime}.

Lemma 2.6 ([7], Lemma 2.6) Let C be a 4-cycle and P a path of order 4 in G such that P is disjoint from C and $\sum_{x \in V(P)} d(x, C) \geq 6$. Then either $G[V(C \cup P)]$ contains two disjoint quadrilaterals, or P has an endvertex, say z, such that $d(z, C)=0$.

Lemma 2.7 ([7], Lemma 2.7) Let C be a 4-cycle and P a path of order $s \geq 6$ in G such that C is disjoint from P. If $\sum_{x \in V(P)} d(x, C) \geq s+1$, then $G[V(C \cup P)]$ contains two disjoint cycles.

Lemma 2.8 ([7], Lemma 2.8) Let s and t be two integers such that $t \geq s \geq 2$ and $t \geq 3$. Let C_{1} and C_{2} be two disjoint cycles of G with lengths $2 s$ and $2 t$, respectively. Suppose that $\sum_{x \in V\left(C_{2}\right)} d\left(x, C_{1}\right) \geq 2 t+1$. Then $G\left[V\left(C_{1} \cup C_{2}\right)\right]$ contains two disjoint cycles C^{\prime} and $C^{\prime \prime}$ such that $l\left(C^{\prime}\right)+l\left(C^{\prime \prime}\right)<2 s+2 t$.

Lemma 2.9 Let $F=\left(U_{1}, U_{2} ; W\right)$ be a forest with $\left|U_{1}\right|=\left|U_{2}\right|=s$, where $s \geq 1$. Let $G=\left(V_{1}, V_{2} ; E\right)$ be a bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|=n \geq s$ and $\delta(G) \geq s$. Then $G \supseteq F$.

Proof. Without loss of generality, assume F is a tree. The lemma is trivial for $s=1$. By Lemma 2.3, each of U_{1} and U_{2} contains an endvertex of F, say x and y, respectively. Let $F^{\prime}=F-\{x, y\}$. By induction on s, there exists an embedding σ of F^{\prime} in G. Suppose $x_{1} x, y_{1} y \in W$ with $\left\{x_{1}, y_{1}\right\} \subseteq V\left(F^{\prime}\right)$. Since $\delta(G) \geq s$, $N\left(\sigma\left(x_{1}\right), G-V\left(\sigma\left(F^{\prime}\right)\right)\right) \neq \emptyset$ and $N\left(\sigma\left(y_{1}\right), G-V\left(\sigma\left(F^{\prime}\right)\right)\right) \neq \emptyset$, and it follows $G \supseteq F$.

Lemma 2.10 Let $F=\left(U_{1}, U_{2} ; W\right)$ be a forest in G with $\left|U_{1}\right|=\left|U_{2}\right|=s$, where $s \geq 3$. Let $C=\left(A_{1}, A_{2} ; B\right)$ be a cycle in G with $\left|A_{1}\right|=\left|A_{2}\right|=t \geq 3$, and C is disjoint from F. Suppose $e(C, F) \geq 2 t s-4$, then $G[V(C \cup F)] \supseteq C^{\prime} \dot{\cup} F$, where C^{\prime} is a 4-cycle.

Proof. Since $e(C, F) \geq 2 t s-4, t \geq 3$ and $s \geq 3$, there exist $\{x, y\} \subseteq V(C)$ with $x \neq y$ and $d(x, F)=d(y, F)=s$. We may choose x and y such that $x \in A_{1}$ and $y \in A_{2}$. Suppose this is not the case, say, for any $z \in A_{2}, d(z, F) \leq s-1$. Let $C=z_{1} z_{2} \ldots z_{2 t} z_{1}$ with $z_{1} \in A_{1}$. As $e(C, F) \geq 2 t s-4$, either $d\left(z_{1}, F\right)=s$ or $d\left(z_{5}, F\right)=s$. If $w \in N\left(z_{2}, F\right) \cap N\left(z_{4}, F\right)$, then $G[V(C \cup F)] \supseteq C^{\prime} \dot{\cup} F$, where C^{\prime} is the 4-cycle $w z_{2} z_{3} z_{4} w$ and $F \subseteq F-w+z_{i}$ for some $i \in\{1,5\}$ with $d\left(z_{i}, F\right)=s$. So we may assume $N\left(z_{2}, F\right) \cap N\left(z_{4}, F\right)=\emptyset$. Therefore $d\left(z_{2}, F\right)+d\left(z_{4}, F\right) \leq s$. Then $e(C, F) \leq t(s-1)+s(t-1)=2 t s-t-s<2 t s-4$, a contradiction, hence the claim is true. Then we see that for any $i \in\{1, \ldots, t-1\}$ with $z_{2 i+1} \neq x$, $N\left(z_{2 i}, F\right) \cap N\left(z_{2 i+2}, F\right)=\emptyset$, and $N\left(z_{2}, F\right) \cap N\left(z_{2 t}, F\right)=\emptyset$ if $x \neq z_{1}$, for otherwise $G[V(C \cup F)] \supseteq C^{\prime} \dot{\cup} F$, where C^{\prime} is a 4-cycle. When t is even, it's easy to deduce that $\sum_{i=1}^{t} d\left(z_{2 i}, F\right) \leq s(t / 2)$ and $\sum_{i=1}^{t} d\left(z_{2 i-1}, F\right) \leq s(t / 2)$. So $2 t s-4 \leq e(C, F) \leq t s$, implying st ≤ 4, a contradiction. Similarly, when t is odd, we obtain $e(C, F) \leq$ $2((t-1) s / 2+s)<2 t s-4$, a contradiction.

Lemma 2.11 Let $F=\left(U_{1}, U_{2} ; W\right)$ be a forest in $G=\left(V_{1}, V_{2} ; E\right)$ with $\left|U_{1}\right|=\left|U_{2}\right|=$ s, where $s \geq 3$. Let uv and xy be two disjoint edges of G such that they are disjoint from F. Suppose $d(u, F)+d(v, F)+d(x, F)+d(y, F) \geq 4 s-3$ and $G[V(F)]=K_{s, s}$. Then $G[V(F) \cup\{u, v, x, y\}] \supseteq F \cup P$, where P is a path of order 4 .

Proof. As $\sum_{t \in T} d(t, F) \geq 4 s-3$ where $T=\{u, v, x, y\}$, either $N(u, F) \cap$ $N(x, F) \neq \emptyset$ or $N(v, F) \cap N(y, F) \neq \emptyset$. Say the former holds, and let $w \in$ $N(u, F) \cap N(x, F)$. For the same reason, either $d(v, F)>0$ or $d(y, F)>0$. Say $d(y, F)>0$. Clearly, $G[V(F)]-w+y$ contains F since $G[V(F)]=K_{s, s}$. As vuwx is a path of G, the lemma follows.

Lemma 2.12 Let $F=\left(U_{1}, U_{2} ; W\right)$ be a forest in G with $\left|U_{1}\right|=\left|U_{2}\right|=s$, where $s \geq 3$. Let $P=x_{1} x_{2} \ldots x_{2 t}$ be a path in G, where $t \geq 3$. Suppose P is disjoint from $F, G[V(F)]=K_{s, s}$ and $e(P, F) \geq 2 t(s-1)+1$. Then $\left.G[V(F \cup P))\right] \supseteq F \dot{\cup} \bigcirc$.

Proof. Without loss of generality, suppose $U_{1} \subseteq V_{1}$. Suppose that there exists $v \in U_{1}$ such that $v \in N\left(x_{i}, F\right) \cap N\left(x_{i+2}, F\right)$ for some $i \in\{1, \ldots, 2 t-2\}$. Then $v x_{i} x_{i+1} x_{i+2} v$ is a 4-cycle in G. If $d\left(x_{j}, F\right) \geq 1$ for some $x_{j} \in V(P) \cap V_{1}-\left\{x_{i+1}\right\}$, then $G[V(F)-\{v\}]+x_{j}$ contains F and so the lemma holds. So we may assume $d\left(x_{j}, F\right)=0$ for all $x_{j} \in V(P) \cap V_{1}-\left\{x_{i+1}\right\}$. It follows that $2 t(s-1)+1 \leq$ $e(P, F) \leq t s+s$, which implies $(t-1)(s-2)-1 \leq 0$, a contradiction. So we may assume $N\left(x_{i}, F\right) \cap N\left(x_{i+2}, F\right)=\emptyset$ and therefore $d\left(x_{i}, F\right)+d\left(x_{i+2}, F\right) \leq s$ for all $i \in\{1, \ldots, 2 t-2\}$. If t is odd, then $2 t(s-1)+1 \leq e(P, F) \leq s(t-1)+2 s$, implying $(t-1)(s-2)-1 \leq 0$, a contradiction. If t is even, Then $2 t(s-1)+1 \leq e(P, F) \leq t s$, which implies $t(s-2)+1 \leq 0$, a contradiction again.

Lemma 2.13 Let $P=x_{1} x_{2} x_{3}$ and $Q=y_{1} y_{2} y_{3}$ be two disjoint paths of G with $x_{1} \in V_{1}$ and $y_{1} \in V_{2}$. Let $F=\left(U_{1}, U_{2} ; W\right)$ be a forest in G with $\left|U_{1}\right|=\left|U_{2}\right|=s$, where $s \geq 3$. suppose F is disjoint from both P and Q, and $d\left(x_{1}, F\right)+d\left(x_{3}, F\right)+$ $d\left(y_{1}, F\right)+d\left(y_{3}, F\right) \geq 4 s-2$. Then $G[V(F \cup P \cup Q)] \supseteq F \dot{\cup} C$, where C is a 4-cycle.

Proof. First we claim that $N\left(x_{1}, F\right) \cap N\left(x_{3}, F\right) \neq \emptyset$ and $N\left(y_{1}, F\right) \cap N\left(y_{3}, F\right) \neq$ \emptyset. Suppose not, without loss of generality, say $N\left(x_{1}, F\right) \cap N\left(x_{3}, F\right)=\emptyset$, then $d\left(x_{1}, F\right)+d\left(x_{3}, F\right) \leq s$. It follows that $2 s \geq d\left(y_{1}, F\right)+d\left(y_{3}, F\right) \geq 4 s-2-s=3 s-2$, implying $s \leq 2$, a contradiction. Clearly there exists one of $\left\{x_{1}, x_{3}, y_{1}, y_{3}\right\}$, say x_{1}, such that $d\left(x_{1}, F\right)=s$. Let $u \in N\left(y_{1}, F\right) \cap N\left(y_{3}, F\right)$. Then we see that $F-u+x_{1} \supseteq F$ and $u Q u$ is a 4-cycle disjoint from $F-u+x_{1}$, where $u \in N\left(y_{1}, F\right) \cap N\left(y_{3}, F\right)$.

3 Proofs of the Theorems

To prove the theorems, we introduce the following terminology: For a graph H and a path $P=x_{1} x_{2} \ldots x_{t}$ of H, we define $\sigma(P, H)=\max \left\{d\left(x_{2}, H\right), d\left(x_{t-1}, H\right)\right\}$ if $t \geq 2$ and $\sigma(P, H)=d\left(x_{1}, H\right)$ if $t=1$.

Let G and F be given as stated in the two theorems. We may assume that F is connected. If $s=2, F$ is a path of order 4 . Since $\left|V_{1}\right|=\left|V_{2}\right|=n \geq 2 k+2=2(k+1)$ and $\delta(G) \geq k+2>k+1$, we see that if $s=2$ then $G \supseteq F \dot{\cup} \bigcirc^{k}$ by Theorem B and Theorem C. Therefore we suppose $s \geq 3$ and need to show the following:

$$
\begin{align*}
& G \supseteq \bigcirc^{k} \dot{\cup} F \text { if } n>2 k+s \text { and } \\
& G \supseteq \bigcirc^{k-1} \dot{\cup} F \dot{\cup} P \text { if } n=2 k+s, \text { where } P \text { is a path of order } 4 . \tag{1}
\end{align*}
$$

We use induction on k to prove (1). If $k=0$, (1) follows from Lemma 2.9. Since $n \geq 2 k+s=2(k-1)+(s+2)$ and $\delta(G) \geq k+s=(k-1)+(s+1)$, by induction on $k, G \supseteq \bigcirc^{k-1} \dot{\cup} F \dot{\cup} K_{2}$. Let $C_{1}, C_{2}, \ldots, C_{k-1}$ be $k-1$ disjoint cycles of G. Let σ be an embedding of F in $G-V\left(\bigcup_{i=1}^{k-1} C_{i}\right)$. We choose $C_{1}, C_{2}, \ldots, C_{k-1}$ and $\sigma(F)$ such that

$$
\begin{equation*}
\sum_{i=1}^{k-1} l\left(C_{i}\right) \quad \text { is minimum } \tag{2}
\end{equation*}
$$

Subject to (2), we choose $C_{1}, C_{2}, \ldots, C_{k-1}$ and $\sigma(F)$ such that

$$
\begin{equation*}
e(G[\sigma(F)]) \quad \text { is maximum. } \tag{3}
\end{equation*}
$$

Let $D=G-V\left(\bigcup_{i=1}^{k-1} C_{i}\right)-V(\sigma(F))$. Subject to (2) and (3), we choose C_{1}, C_{2}, \ldots, C_{k-1} and $\sigma(F)$ such that

$$
\begin{equation*}
\text { the length of a longest path in } D \text { is maximal. } \tag{4}
\end{equation*}
$$

Let $P=x_{1} x_{2} \ldots x_{p}$ be a fixed longest path of D. Without loss of generality, assume $x_{1} \in V_{1}$. Subject to (2), (3) and (4), we choose $C_{1}, C_{2}, \ldots, C_{k-1}$ and $\sigma(F)$ such that

$$
\begin{equation*}
\sigma(P, D) \quad \text { is minimum. } \tag{5}
\end{equation*}
$$

Let $D_{0}=D-V(P)$. Subject to (2) to (5), we choose $C_{1}, C_{2}, \ldots, C_{k-1}$ and $\sigma(F)$ such that

Let $Q=y_{1} y_{2} \ldots y_{q}$ be a fixed longest path of D_{0}. Without loss of generality, assume $y_{1} \in V_{1}$ if q is even. Subject to (2) to (6), we finally choose $C_{1}, C_{2}, \ldots, C_{k-1}$ and $\sigma(F)$ such that

> if q is odd, then $\sigma\left(Q, D_{0}\right)$ is minimum;
> if q is even, then $d\left(y_{2}, D_{0}\right)$ is minimum.

Clearly, $p \geq q$. Let $H=\bigcup_{i=1}^{k-1} C_{i}$ and $|V(D)|=2 d$. We will prove a number of claims. First, we claim

$$
\begin{equation*}
d \geq 2 \tag{9}
\end{equation*}
$$

Proof of (9). Suppose $d \leq 1$. Without loss of generality, assume that $l\left(C_{1}\right) \leq$ $l\left(C_{2}\right) \leq \ldots \leq l\left(C_{k-1}\right)$ and $l\left(C_{k-1}\right)=2 t$. Then $t \geq 3$, for otherwise $n=2(k-1)+$ $s+1<2 k+s$. By Lemma 2.8 and (2), $e\left(C_{k-1}, C_{i}\right) \leq 2 t$ for all $i \in\{1, \ldots, k-2\}$. By Lemma 2.1 and (2), $d\left(x, C_{k-1}\right) \leq 1$ for all $x \in V(D)$. Therefore $e\left(C_{k-1}, \sigma(F)\right) \geq$ $2 t(k+s)-2 t(k-2)-4 t-2=2 t s-2$. Then $G\left[V\left(C_{k-1} \cup \sigma(F)\right)\right] \supseteq C^{\prime} \dot{\cup} F$ by Lemma 2.10, where C^{\prime} is a 4-cycle, contradicting (2).

We claim

$$
\begin{equation*}
p \geq 3 \text { and if }\left|V\left(D_{0}\right)\right| \geq 4 \text { then } q \geq 3 \tag{10}
\end{equation*}
$$

Proof of (10). First we show $p \geq 3$. To the contrary, suppose $p \leq 2$. If $p<2$, then for any $x \in V(D) \cap V_{1}$ and $y \in V(D) \cap V_{2}, d(x, D)=d(y, D)=0$. It follows that $d(x, H)+d(y, H) \geq 2(k+s)-2 s=2 k$. Then there exists a C_{i} in H such that $d\left(x, C_{i}\right)+d\left(y, C_{i}\right) \geq 3$. By Lemma 2.1 and (2), C_{i} is a 4 -cycle. By Lemma 2.2, $G\left[V\left(C_{i}\right) \cup\{x, y\}\right] \supseteq C_{i}^{\prime} \cup K_{2}$, where C_{i}^{\prime} is a 4-cycle. This is a contradiction to $p<2$. So $p=2$. Let $P=x_{1} x_{2}$. We may choose $C_{1}, C_{2}, \ldots, C_{k-1}$ and $\sigma(F)$ such that $D_{0} \supseteq K_{2}$ while (2), (3) and (4) are maintained. If this is not the case, then by (4), $d(x, D)=0$ for all $x \in D_{0}$. For any $x \in V\left(D_{0}\right) \cap V_{1}$ and $y \in V\left(D_{0}\right) \cap V_{2}$, if there exists a cycle, say C_{1}, such that $d\left(x, C_{1}\right)+d\left(y, C_{1}\right) \geq 3$, then by Lemma 2.1 and (2), C_{1} must be a 4 -cycle. By Lemma $2.2, G\left[V\left(C_{1}\right) \cup\{x, y\}\right]$ contains a 4 -cycle C^{\prime} and an edge e^{\prime} disjoint from C^{\prime}. So we may assume $d\left(x, C_{i}\right)+d\left(y, C_{i}\right) \leq 2$ for all $C_{i} \in H$. It follows that $d(x, \sigma(F))+d(y, \sigma(F)) \geq 2(k+s)-2(k-1)=2 s+2$, a contradiction. Hence $D_{0} \supseteq K_{2}$. This argument allows us to choose $C_{1}, C_{2}, \ldots, C_{k-1}$ and $\sigma(F)$ such that D has a perfect matching. Let $u v \in E\left(D_{0}\right)$ and $R=\left\{x_{1}, x_{2}, u, v\right\}$. If there exists a cycle C_{i} in H such that $\sum_{x \in R} d\left(x, C_{i}\right) \geq 5$, then by Lemma 2.5, $G\left[V\left(C_{i}\right) \cup R\right]$ contains the disjoint union of a 4 -cycle and a path of order 4, contradicting $p=2$. So $\sum_{x \in R} d\left(x, C_{i}\right) \leq 4$ for all $C_{i} \in H$. Therefore $\sum_{x \in R} d(x, \sigma(F)) \geq 4(k+s)-4(k-$ 1) $-4=4 s$, i.e. $d(x, \sigma(F))=s$ for all $x \in R$. Clearly $G[V(\sigma(F)) \cup R] \supseteq F \dot{\cup} C$, where C is a 4 -cycle, implying (1). Hence $p \geq 3$.

Suppose $q \leq 2$ when $\left|V\left(D_{0}\right)\right| \geq 4$. By a similar argument, we may choose $C_{1}, C_{2}, \ldots, C_{k-1}, \sigma(F)$ and P such that $D_{0} \supseteq 2 K_{2}$. Let $u_{1} v_{1}$ and $u_{2} v_{2}$ be two independent edges in D_{0}, and $T=\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}$. Since D is acyclic, $\sum_{x \in T} d(x, D) \leq 6$. By Lemmas 2.1 and 2.5, $\sum_{x \in T} d\left(x, C_{i}\right) \leq 4$ for all $C_{i} \in H$. So $\sum_{x \in T} d(x, \sigma(F)) \geq 4(k+$
$s)-4(k-1)-6=4 s-2$. Clearly there exists $x \in T$ such that $d(x, \sigma(F))=s$. Then $G[V(\sigma(F))]=K_{s, s}$ follows from (3). By Lemma 2.11, $G[V(\sigma(F)) \cup T] \supseteq F \dot{\cup} Q^{\prime}$, where Q^{\prime} is a path of order 4 while (2), (3), (4), (5) are maintained, contradicting $q \leq 2$. Hence (10) holds.

The argument in the above paragraph shows that if $\left|V\left(D_{0}\right)\right| \geq 2$, then $q \geq 2$. We claim

$$
\begin{equation*}
\sigma(P, D)=2, \sigma\left(Q, D_{0}\right) \leq 2 \text { if } q \text { is odd and } d\left(y_{2}, D_{0}\right) \leq 2 \text { if } q \text { is even. } \tag{11}
\end{equation*}
$$

Proof of (11). First we suppose that $\sigma\left(Q, D_{0}\right) \geq 3$ if q is odd and $d\left(y_{2}, D_{0}\right) \geq 3$ if q is even. In the former case, we may assume $d\left(y_{2}, D_{0}\right) \geq 3$ and $q \geq 3$. Let $\{a, b\}=\{1,2\}$ such that $y_{1} \in V_{a}$. Let u be an endvertex of D_{0} such that $u y_{2} \in E$ and $u \notin\left\{y_{1}, y_{q}\right\}$. Clearly, either $d(u, P)=0$ or $d\left(y_{1}, P\right)=0$ as D is acyclic. Without loss of generality, assume that $d(u, P)=0$. Let (A, B) be the bipartition of $D_{0}-V(Q) \cup\{u\}$ with $A \subseteq V_{a}$ and $B \subseteq V_{b}$. Clearly $|B|>|A|$, so $D_{0}-V(Q) \cup\{u\}$ has a component T such that $|V(T) \cap B|>|V(T) \cap A|$. As there is at most one edge between Q and T and by Lemma 2.3, we can choose a vertex $v \in V(T) \cap B$ such that $d\left(v, D_{0}\right) \leq 1$. We deduce that $d(u, D)+d(v, D) \leq 3$ as D is acyclic.

If there exists C_{i} in H such that $d\left(u, C_{i}\right)+d\left(v, C_{i}\right) \geq 3$, then by Lemma 2.1 and (2), C_{i} must be a 4 -cycle. By Lemma 2.2, $G\left[V\left(C_{i}\right) \cup\{u, v\}\right] \supseteq C^{\prime} \dot{\cup} e^{\prime}$, where C^{\prime} is a 4-cycle and e^{\prime} is an edge, and exactly one of u and v is an endvertex of e^{\prime}. Let $D^{\prime}=G-\left(V\left(\bigcup_{j \neq i} C_{j}\right) \cup V\left(C^{\prime}\right)\right)-V(\sigma(F))$ and $D_{0}^{\prime}=D^{\prime}-V(P)$. By (4), P is still a longest path of D^{\prime}. So neither of the two endvertices of e^{\prime} is adjacent to x_{2} or x_{p-1} and therefore $\sigma\left(P, D^{\prime}\right) \leq \sigma(P, D)$. Subsequently, Q is still a longest path of D_{0}^{\prime} by (6). So neither of the two endvertices of e^{\prime} is adjacent to y_{2} or y_{q-1}. Thus $u \in V\left(C^{\prime}\right), d\left(y_{2}, D_{0}^{\prime}\right)=d\left(y_{2}, D_{0}\right)-1$ and $d\left(y_{q-1}, D_{0}^{\prime}\right) \leq d\left(y_{q-1}, D_{0}\right)$. Repeating this argument for y_{q-1} if q is odd and $d\left(y_{q-1}, D_{0}^{\prime}\right) \geq 3$, we obtain a contradiction with (7) or (8) while (2) to (6) are maintained.

So we may assume $d\left(u, C_{i}\right)+d\left(v, C_{i}\right) \leq 2$ for all $C_{i} \in H$. It follows that $d(u, \sigma(F))+d(v, \sigma(F)) \geq 2(k+s)-2(k-1)-3=2 s-1$. By (3), it is easy to see that $G[V(\sigma(F))]=K_{s, s}$. If $d(v, \sigma(F))=s$, then $d(u, \sigma(F)) \geq s-1$. Clearly $G\left[V\left(\sigma(F) \cup D_{0}\right)\right] \supseteq K_{s, s} \cup Q^{\prime}$, where Q^{\prime} is a path with $l\left(Q^{\prime}\right)>l(Q)$ without violating (2) to (5). Therefore $d(u, \sigma(F))=s$ and $d(v, \sigma(F))=s-1$. Let $F^{\prime}=\sigma(F)-w+u$ and $D_{0}^{\prime}=D_{0}-u+w$, where $w \in N(v, \sigma(F))$. Then $d\left(y_{2}, D_{0}^{\prime}\right)=d\left(y_{2}, D_{0}\right)-1$ and $d\left(y_{q-1}, D_{0}^{\prime}\right) \leq d\left(y_{q-1}, D_{0}\right)$. If q is even, we obtain a contradiction to (8) while (2) to (6) are maintained. If q is odd, we can obtain a contradiction to (7) by applying the same argument to y_{q-1}. A similar but simpler argument shows that $\sigma(P, D)=2$ as we have no concerns for the priorities (6) to (8). So (11) holds.

We claim

$$
\begin{equation*}
p \geq 2 d-1 \tag{12}
\end{equation*}
$$

Proof of (12). Suppose $p \leq 2 d-2$. We distinguish two cases: p is even or odd.

Case 1. p is even.
By (10), $p \geq 4$. Let $R=\left\{x_{1}, x_{p}, y_{1}, y_{2}\right\}$. By (11), $d\left(y_{1}, D_{0}\right)+d\left(y_{2}, D_{0}\right) \leq 3$. Since $e(P, Q) \leq 1$ and $d\left(x_{1}, D\right)+d\left(x_{p}, D\right)=2, \sum_{x \in R} d(x, D) \leq 6$.

If there exists C_{i} in H such that $\sum_{x \in R} d\left(x, C_{i}\right) \geq 5$, then by Lemma 2.1 and (2), C_{i} must be a 4 -cycle. Let $C_{i}=u_{1} u_{2} u_{3} u_{4} u_{1}$. Without loss of generality, assume $\left\{u_{1}, x_{1}, y_{1}\right\} \subseteq V_{1}$. Clearly, either $d\left(x_{1}, C_{i}\right)+d\left(y_{2}, C_{i}\right) \geq 3$ or $d\left(x_{p}, C_{i}\right)+d\left(y_{1}, C_{i}\right) \geq 3$. Without loss of generality, say the former holds. By Lemma 2.2, $G\left[V\left(C_{i}\right) \cup\left\{x_{1}, y_{2}\right\}\right]$ contains a 4 -cycle C^{\prime} and an edge e^{\prime} disjoint from C^{\prime} such that exactly one of x_{1} and y_{2} is an endvertex of e^{\prime}. By (4), x_{1} is not an endvertex of e^{\prime}. So $d\left(x_{1}, C_{i}\right)=2$ and $d\left(y_{2}, C_{i}\right)=1$. As $d\left(y_{1}, C_{i}\right)+d\left(x_{p}, C_{i}\right) \geq 2$, we have either $d\left(y_{1}, C_{i}\right)>0$ or $N\left(x_{p}, C_{i}\right) \cap N\left(y_{2}, C_{i}\right) \neq \emptyset$. In either case, it is easy to see that $G\left[V\left(C_{i} \cup P\right) \cup\left\{y_{1}, y_{2}\right\}\right] \supseteq$ $C^{\prime \prime} \cup P^{\prime}$, where $C^{\prime \prime}$ is a 4 -cycle and P^{\prime} is a path of order $p+2$, contradicting (4).

So we may assume $\sum_{x \in R} d\left(x, C_{i}\right) \leq 4$ for all $C_{i} \in H$. It follows that

$$
\sum_{x \in R} d(x, \sigma(F)) \geq 4(k+s)-4(k-1)-6=4 s-2 .
$$

Clearly there exists $z \in R$ such that $d(z, \sigma(F))=s$, so $G[V(\sigma(F))]=K_{s, s}$ by (3). we have either $d\left(x_{1}, \sigma(F)\right)+d\left(y_{2}, \sigma(F)\right) \geq 2 s-1$ or $d\left(x_{p}, \sigma(F)\right)+d\left(y_{1}, \sigma(F)\right) \geq 2 s-1$. Without loss of generality, say the former holds. If $d\left(y_{2}, \sigma(F)\right)=s$, then we readily see that $G\left[V(\sigma(F) \cup P) \cup\left\{y_{1}, y_{2}\right\}\right]$ contains $K_{s, s}$ and a path of order $p+1$ which is disjoint from $K_{s, s}$, contradicting (4). So $d\left(y_{2}, \sigma(F)\right)=s-1$ and $d\left(x_{1}, \sigma(F)\right)=s$. And moreover, $N\left(y_{2}, \sigma(F)\right) \cap N\left(x_{p}, \sigma(F)\right)=\emptyset$, for otherwise $G[V(\sigma(F) \cup D)] \supseteq K_{s, s} \cup P^{\prime}$, where P^{\prime} is a path of order $p+2$, contradicting (4). Therefore $d\left(y_{2}, \sigma(F)\right)+$ $d\left(x_{p}, \sigma(F)\right) \leq s$. It follows that $2 s \geq d\left(y_{1}, \sigma(F)\right)+d\left(x_{1}, \sigma(F)\right) \geq 4 s-2-s=3 s-2$, implying $s \leq 2$, a contradiction.

Case 2. p is odd.
Notice that $\left|V\left(D_{0}\right)\right|$ is odd. We claim that if $q=3$, then we may choose Q such that $y_{1} \in V_{2}$. Suppose that this is not true, i.e. $y_{1} \in V_{1}$. Let (A, B) be the bipartition of $D_{0}-V(Q)$ such that $A \subseteq V_{1}$ and $B \subseteq V_{2}$. Then $|B|=|A|+2$. As D is acyclic and by Lemma 2.3, we can choose a vertex $y_{0} \in B$ such that $d\left(y_{0}, D_{0}\right) \leq 1$. Clearly, $d\left(y_{0}, P\right) \leq 1$ and $d\left(y_{1}, P\right)+d\left(y_{3}, P\right) \leq 1$. We may assume $d\left(y_{1}, P\right)=0$. So $d\left(y_{0}, D\right)+d\left(y_{1}, D\right) \leq 3$.

If there exists a C_{i} in H such that $d\left(y_{0}, C_{i}\right)+d\left(y_{1}, C_{i}\right) \geq 3$, then by Lemma 2.1, (2) and Lemma 2.2, C_{i} must be a 4-cycle, and moreover, $G\left[V\left(C_{i}\right) \cup\left\{y_{0}, y_{1}\right\}\right]$ contains a 4-cycle C^{\prime} and an edge e^{\prime} disjoint from C^{\prime} such that exactly one of y_{0} and y_{1} is an endvertex of e^{\prime}. Replacing C_{i} with C^{\prime} and by (4), we see that neither of the two endvertices of e^{\prime} is adjacent to a vertex in $\left\{x_{1}, x_{2}, x_{p-1}, x_{p}\right\}$. Therefore (2) to (5) are maintained. By (6), y_{1} is not an endvertex of e^{\prime}. So $e^{\prime}=y_{0} z_{0}$ for some $z_{0} \in V\left(C_{i}\right)$. Let $H^{\prime}=\left(H-V\left(C_{i}\right)\right) \cup C^{\prime}, D^{\prime}=D-y_{1}+z_{0}$ and $D_{0}^{\prime}=D^{\prime}-V(P)$. Then D_{0}^{\prime} does not contain a path of order 3 with its two endvertices in V_{2}. It follows from (11) that $d\left(y_{2}, D_{0}^{\prime}\right)=1$. Furthermore, $\sum_{z \in S} d\left(z, D_{0}^{\prime}\right) \leq 5$, where $S=\left\{y_{2}, y_{3}, y_{0}, z_{0}\right\}$. As D^{\prime} is acyclic, $\sum_{z \in S} d\left(z, D^{\prime}\right) \leq 7$. We distinguish two subcases:

Subcase 1.1. There exists a cycle $C^{\prime \prime}$ in H^{\prime} such that $\sum_{z \in S} d\left(z, C^{\prime \prime}\right) \geq 5$.

By Lemma 2.1 and (2), $C^{\prime \prime}$ must be a 4 -cycle. By Lemma 2.5, $G\left[V\left(C^{\prime \prime}\right) \cup S\right]$ contains a 4 -cycle $C^{\prime \prime \prime}$ and a path Q^{\prime} of order 4 such that Q^{\prime} is disjoint from $C^{\prime \prime \prime}$. By (4), no vertex of Q^{\prime} is adjacent to a vertex in $\left\{x_{1}, x_{2}, x_{p-1}, x_{p}\right\}$. Thus we obtain a contradiction to (6) while (2) to (5) are maintained.

Subcase 1.2. $\sum_{z \in S} d\left(z, C^{\prime}{ }_{i}\right) \leq 4$ for all $C_{i}^{\prime} \in H^{\prime}$.
Clearly $\sum_{z \in S} d(z, \sigma(F)) \geq 4(k+s)-7-4(k-1)=4 s-3$. Then there exists $z \in S$ such that $d(z, \sigma(F))=s$. It follows from (3) that $G[V(\sigma(F))]=K_{s, s}$. By Lemma 2.11, $G\left[V(\sigma(F) \cup Q) \cup\left\{y_{0}, z_{0}\right\}\right] \supseteq F \dot{\cup} Q^{\prime}$, where Q^{\prime} is a path of order 4, contradicting $q=3$.

So we may assume $d\left(y_{0}, C_{i}\right)+d\left(y_{1}, C_{i}\right) \leq 2$ for all $C_{i} \in H$. Consequently

$$
d\left(y_{0}, \sigma(F)\right)+d\left(y_{1}, \sigma(F)\right) \geq 2(k+s)-2(k-1)-3=2 s-1 .
$$

If $d\left(y_{0}, \sigma(F)\right)=s$, it's easy to see that $G\left[V(\sigma(F)) \cup\left\{y_{1}, y_{2}, y_{3}, y_{0}\right\}\right]$ contains F and a disjoint path of order 4 , contradicting $q=3$. So $d\left(y_{0}, \sigma(F)\right)=s-1$ and $d\left(y_{1}, \sigma(F)\right)=s$. Let $y_{0} z_{0} \in E$ for some $z_{0} \in V(\sigma(F))$. By $(6), y_{2} z_{0} \notin E$. Let $\sigma^{\prime}(F)=$ $\sigma(F)-z_{0}+y_{1}, D_{0}^{\prime}=D_{0}-y_{1}+z_{0}$ and $D^{\prime}=D_{0}^{\prime} \cup P$. Then $d\left(y_{2}, D_{0}^{\prime}\right)=1$, and moreover, $d\left(z_{0}, D_{0}{ }^{\prime}\right) \leq 1$ for otherwise we have a path of order 3 with both endvertices in V_{2}. Let $T=\left\{y_{2}, y_{3}, y_{0}, z_{0}\right\}$. Then $\sum_{z \in T} d(z, D) \leq 7$ as $\sum_{z \in T} d(z, P) \leq 2$. Therefore $\sum_{z \in T} d\left(z, \sigma^{\prime}(F)\right) \geq 4(k+s)-4(k-1)-7=4 s-3$. Again $G\left[V\left(\sigma^{\prime}(F)\right)\right]=K_{s, s}$ follows from (3). By Lemma 2.11, $G\left[V\left(\sigma^{\prime}(F)\right) \cup T\right] \supseteq F \dot{\cup} Q^{\prime}$, where Q^{\prime} is a path of order 4 , contradicting $q=3$.

Now $y_{1} \in V_{2}$ for $q=3$, so we can choose three distinct vertices z_{1}, z_{2}, z_{3} from D_{0} with $z_{1} \in V_{1}$ and $\left\{z_{2}, z_{3}\right\} \subseteq V_{2}$ such that $\left\{z_{1}, z_{2}\right\}=\left\{y_{1}, y_{2}\right\}$, and if $q \geq 3$ then $z_{3} \in\left\{y_{q-1}, y_{q}\right\}$. If $q=2$, then $\left|V\left(D_{0}\right)\right|=3$ by (10) and therefore z_{3} is an isolated vertex of D_{0}. Let $T=\left\{x_{1}, x_{p-1}, x_{p}, z_{1}, z_{2}, z_{3}\right\}$. As D is acyclic and $d\left(z_{3}, P\right) \leq 1$, we deduce from (11) that $\sum_{u \in T} d(u, D) \leq 10$.

If there exists a C_{i} in H such that $\sum_{u \in T} d\left(u, C_{i}\right) \geq 7$, then by Lemma 2.1 and (2), C_{i} must be a 4 -cycle. Let $C_{i}=v_{1} v_{2} v_{3} v_{4} v_{1}$ with $v_{1} \in V_{1}$. If $d\left(z_{2}, C_{i}\right)=2$ or $d\left(z_{3}, C_{i}\right)=$ 2 , it is easy to see, by observing two situations that either $d\left(x_{1}, C_{i}\right)+d\left(x_{p}, C_{i}\right) \geq 1$ or $d\left(x_{1}, C_{i}\right)+d\left(x_{p}, C_{i}\right)=0$, that $G\left[V\left(C_{i} \cup P\right) \cup\left\{z_{1}, z_{2}, z_{3}\right\}\right]$ contains a 4 -cycle C^{\prime} and a path P^{\prime} disjoint from C^{\prime} but longer than P, contradicting (4). Hence $d\left(z_{2}, C_{i}\right) \leq 1$ and $d\left(z_{3}, C_{i}\right) \leq 1$. We distinguish two subcases. Note that $z_{1} z_{2} \in E$.

Subcase 2.1. $q \geq 3$.

We first suppose that $d\left(z_{1}, C_{i}\right) \geq 1$ and $d\left(z_{2}, C_{i}\right)=1$. Without loss of generality, say $\left\{v_{1} z_{2}, v_{2} z_{1}\right\} \subseteq E$. Then $C^{\prime}=v_{1} v_{2} z_{1} z_{2} v_{1}$ is a 4 -cycle, and $e\left(\left\{x_{1}, x_{p-1}, x_{p}\right\},\left\{v_{3}, v_{4}\right\}\right)=$ 0 By (4). As $\sum_{u \in T} d\left(u, C_{i}\right) \geq 7$, we deduce that $d\left(u, C_{i}\right)=1$ for all $u \in T-\left\{z_{1}\right\}$ and $d\left(z_{1}, C_{i}\right)=2$. Then $z_{1} z_{2} v_{1} v_{4} z_{1}$ and $v_{2} P v_{2}$ are two disjoint cycles in $G\left[V\left(C_{i} \cup\right.\right.$ $\left.P) \cup\left\{z_{1}, z_{2}\right\}\right]$. So either $d\left(z_{1}, C_{i}\right)=0$ or $d\left(z_{2}, C_{i}\right)=0$. Suppose the former holds. We have $d\left(x_{1}, C_{i}\right)+d\left(x_{p-1}, C_{i}\right)+d\left(x_{p}, C_{i}\right) \geq 5$ and therefore $N\left(x_{1}, C_{i}\right) \cap N\left(x_{p}, C_{i}\right) \neq \emptyset$. For $v_{2} \in N\left(x_{1}, C_{i}\right) \cap N\left(x_{p}, C_{i}\right)$, clearly $G\left[V\left(C_{i} \cup Q\right)\right]-v_{2}$ is disjoint from $v_{2} P v_{2}$ and therefore is acyclic. So $d\left(z_{2}, C_{i}\right)+d\left(z_{3}, C_{i}\right) \leq 1$. Consequently, $d\left(x_{1}, C_{i}\right)=$
$d\left(x_{p-1}, C_{i}\right)=d\left(x_{p}, C_{i}\right)=2$ and $d\left(z_{j}, C_{i}\right)=1$ for some $j \in\{2,3\}$. Without loss of generality, say $z_{j} v_{1} \in E$. Then the 4 -cycle $x_{p-1} x_{p} v_{4} v_{3} x_{p-1}$ is disjoint from the path $z_{j} v_{1} v_{2} x_{1} x_{2} \ldots x_{p-2}$ which is longer than P, contradicting (4). Therefore $d\left(z_{1}, C_{i}\right)>0$ and $d\left(z_{2}, C_{i}\right)=0$.

If $d\left(z_{3}, C_{i}\right)=0$, then there exists $u^{\prime} \in\left\{x_{1}, x_{p-1}, x_{p}, z_{1}\right\}$ such that $d\left(u, C_{i}\right)=2$ for all $u \in\left\{x_{1}, x_{p-1}, x_{p}, z_{1}\right\}-\left\{u^{\prime}\right\}$ and $d\left(u^{\prime}, C_{i}\right) \geq 1$. This implies that $\left\{v_{i} z_{1}, v_{i} x_{1}, v_{j} x_{p}\right\} \subseteq$ E for some $\{i, j\}=\{2,4\}$ and $x_{p-1} v_{h} \in E$ for some $h \in\{1,3\}$. Then the 4-cycle $x_{p-1} x_{p} v_{j} v_{h} x_{p-1}$ is disjoint from the path $z_{2} z_{1} v_{i} x_{1} x_{2} \ldots x_{p-2}$ which is longer than P, contradicting (4). Therefore $d\left(z_{3}, C_{i}\right)=1$. Say $\left\{v_{1} z_{3}, v_{2} z_{1}\right\} \subseteq E$. Then $G[V(Q) \cup$ $\left.\left\{v_{1}, v_{2}\right\}\right]$ contains a cycle and therefore $G\left[V(P) \cup\left\{v_{3}, v_{4}\right\}\right]$ is acyclic. Hence

$$
e\left(\left\{x_{1}, x_{p-1}, x_{p}\right\},\left\{v_{3}, v_{4}\right\}\right) \leq 1
$$

This implies that $d\left(x_{1}, C_{i}\right)+d\left(x_{p-1}, C_{i}\right)+d\left(x_{p}, C_{i}\right)=4$ as $d\left(z_{1}, C_{i}\right)+d\left(z_{3}, C_{i}\right) \leq 3$. Thus $d\left(z_{1}, C_{i}\right)=2$ and $x_{p-1} v_{1} \in E$. Then the 4 -cycle $z_{1} v_{2} v_{3} v_{4} z_{1}$ is disjoint from the path $x_{1} x_{2} \ldots x_{p-1} v_{1} z_{3}$ which is longer than P, contradicting (4) again.

Subcase 2.2. $q=2$. Notice that $d\left(z_{3}, D\right) \leq 1$.
First suppose that there exists C_{i} in H such that $d\left(x_{p}, C_{i}\right)+d\left(z_{3}, C_{i}\right) \geq 3$, then by Lemma 2.1, Lemma 2.2, (2) and (3) as before, we see that C_{i} is a 4-cycle, $d\left(x_{p}, C_{i}\right)=2$ and $d\left(z_{3}, C_{i}\right)=1$. Let $L_{1}=C_{i}-z_{4}+x_{p}$ where $z_{4} \in V\left(C_{i}\right)$ such that $z_{3} z_{4} \in E$. Let $H_{1}=\left(H-V\left(C_{i}\right)\right) \cup L_{1}$ and $D_{1}=G-V\left(H_{1}\right)-V(\sigma(F))$. As D_{1} is acyclic, $\sum_{i=1}^{4} d\left(z_{i}, D_{1}\right) \leq 7$. If there exists a cycle C^{\prime} in H_{1} such that $\sum_{i=1}^{4} d\left(z_{i}, C^{\prime}\right) \geq 5$, then by Lemma 2.1 and (2), C^{\prime} must be a 4-cycle. By Lemma 2.5, $G\left[V\left(C^{\prime}\right) \cup\right.$ $\left.\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}\right] \supseteq C^{\prime \prime} \dot{\cup} Q^{\prime}$, where $C^{\prime \prime}$ is a 4 -cycle and Q^{\prime} is a path of order 4. If $\sum_{i=1}^{4} d\left(z_{i}, C_{i}^{\prime}\right) \leq 4$ for all $C_{i}^{\prime} \in H_{1}$, then $\sum_{i=1}^{4} d\left(z_{i}, \sigma(F)\right) \geq 4(k+s)-7-4(k-$ $1)=4 s-3$. Again $G[V(\sigma(F))]=K_{s, s}$ by (3). It follows from Lemma 2.11 that $G\left[V(\sigma(F)) \cup\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}\right] \supseteq F \dot{\cup} Q^{\prime}$, where Q^{\prime} is a path of order 4 . So in both cases we obtain a path Q^{\prime} of order 4. Without loss of generality, say the former case holds. As p is odd and by (4), $p \geq 5$. Let $H_{2}=\left(H_{1}-V\left(C^{\prime}\right)\right) \cup C^{\prime \prime}, D_{2}=$ $G-V\left(H_{2}\right)-V(\sigma(F)), P^{\prime}=P-x_{p}$ and $Q^{\prime}=u_{1} u_{2} u_{3} u_{4}$ with $u_{1} \in V_{1}$. Then D_{2} is acyclic and $e\left(P^{\prime}, Q^{\prime}\right) \leq 1$.

When $p \geq 7$, if there exists a cycle $C^{\prime \prime \prime}$ in H_{2} such that $\sum_{i=1}^{p-1} d\left(x_{i}, C^{\prime \prime \prime}\right) \geq p$, then by Lemma 2.1 and (2), $C^{\prime \prime \prime}$ must be a 4 -cycle. It follows from Lemma 2.7 that $G\left[V\left(C^{\prime \prime \prime} \cup P^{\prime}\right)\right] \supseteq \bigcirc^{2}$, implying (1). So we may assume $\sum_{i=1}^{p-1} d\left(x_{i}, C_{i}^{\prime \prime}\right) \leq$ $p-1$ for all $C_{i}^{\prime \prime} \in H_{2}$. Therefore $\sum_{i=1}^{p-1} d\left(x_{i}, \sigma(F)\right) \geq(p-1)(k+s)-2(p-2)-1-$ $(p-1)(k-1)=(s-1)(p-1)+1$. By Lemma 2.12, $G[V(\sigma(F) \cup P)] \supseteq F \dot{\cup} \bigcirc$, which implies (1).

When $p=5$, we have $e\left(\left\{x_{1}, x_{3}\right\},\left\{u_{2}, u_{4}\right\}\right)=0$. Let $W=\left\{x_{1}, x_{3}, u_{2}, u_{4}\right\}$. Then $\sum_{w \in W} d\left(w, D_{2}\right)=6$ as D_{2} is acyclic. If there exists a cycle L^{\prime} in H_{2} such that $\sum_{w \in W} d\left(w, L^{\prime}\right) \geq 5$, then by Lemma 2.1 and (2), L^{\prime} must be a 4 -cycle. By Lemma 2.4, $G\left[V\left(L^{\prime}\right) \cup\left\{x_{1}, x_{2}, x_{3}, u_{2}, u_{3}, u_{4}\right\}\right] \supseteq L^{\prime \prime} \dot{\cup} P^{\prime \prime}$, where $L^{\prime \prime}$ is a 4 -cycle and $P^{\prime \prime}$ is a path of order 6 , contradicting $p=5$. So $\sum_{w \in W} d\left(w, L_{i}\right) \leq 4$ for all $L_{i} \in H_{2}$. Therefore $\sum_{w \in W} d(w, \sigma(F)) \geq 4(k+s)-6-4(k-1)=4 s-2$. Evidently (1) follows from Lemma 2.13.

So we can assume $d\left(x_{p}, C_{i}\right)+d\left(z_{3}, C_{i}\right) \leq 2$ for all $C_{i} \in H$, then $d\left(x_{p}, \sigma(F)\right)+$ $d\left(z_{3}, \sigma(F)\right) \geq 2(k+s)-2-2(k-1)=2 s$. Clearly $G[V(\sigma(F) \cup P)] \supseteq F \dot{\cup} P^{\prime}$, where P^{\prime} is a path of order $p+1$, a contradiction to (4). This proves the subcase 2.2.

Now we may assume that $\sum_{u \in T} d\left(u, C_{i}\right) \leq 6$ for all $C_{i} \in H$. Then

$$
\sum_{u \in T} d(u, \sigma(F)) \geq 6(k+s)-10-6(k-1)=6 s-4
$$

Again $G[V(\sigma(F))]=K_{s, s}$ by (3). We claim that there exists $x \in\left\{x_{1}, x_{p}\right\}$, say x_{1}, such that $d\left(x_{1}, \sigma(F)\right) \geq 1$. Suppose that this is not the case, then $d\left(x_{1}, \sigma(F)\right)=$ $d\left(x_{p}, \sigma(F)\right)=0$. It follows that $4 s \geq d\left(x_{p-1}, \sigma(F)\right)+d\left(z_{1}, \sigma(F)\right)+d\left(z_{2}, \sigma(F)\right)+$ $d\left(z_{3}, \sigma(F)\right) \geq 6 s-4$, implying $s \leq 2$, a contradiction. Similarly there exists $z \in\left\{z_{2}, z_{3}\right\}$ say z_{2} such that $d\left(z_{2}, \sigma(F)\right) \geq 1$. Let $\left\{u x_{1}, v z_{2}\right\} \subseteq E$, where $\{u, v\} \subseteq$ $V(\sigma(F))$. Then $\sigma(F)-u+z_{2} \supseteq F$ and $P+u$ is a path disjoint from F, a contradiction to (4). So (12) holds.

We are now in the position to complete the proofs. By (9) and (12), $p \geq 2 d-1 \geq$ 3. As D is acyclic, $e(P, D) \leq 2(p-1)+1$. We distinguish two cases:

Case 1. There exists a C_{i} in H such that $e\left(P, C_{i}\right) \geq p+1$.
By Lemma 2.1 and (2), C_{i} must be a 4 -cycle. If $p \geq 6$, then by Lemma 2.7, $G\left[V\left(C_{i} \cup P\right)\right] \supseteq \bigcirc^{2}$, implying (1). So assume $p \leq 5$ and therefore $d=2$ or $d=3$.

If $d=2$, we will prove Theorem 2 . First we prove $p=4$. If $p \neq 4$, then by (10), $p=3$. Without loss of generality, assume $\left\{x_{1}, x_{3}\right\} \subseteq V_{1}$. Let $x_{0} \in D-V(P)$. Clearly $d\left(x_{0}, D\right)+d\left(x_{3}, D\right)=1$. If there exists a cycle C_{i} in H such that $d\left(x_{3}, C_{i}\right)+d\left(x_{0}, C_{i}\right) \geq$ 3 , then by Lemma 2.1 and (2), C_{i} must be a 4 -cycle and $G\left[V\left(C_{i}\right) \cup\left\{x_{0}, x_{3}\right\}\right]$ contains a 4-cycle C^{\prime} and an edge e^{\prime} disjoint from C^{\prime}, and moreover, we must have $e^{\prime}=x_{0} z$ for some $z \in V\left(C_{i}\right)$, for otherwise $G\left[V\left(C_{i} \cup D\right)\right] \supseteq C_{i}^{\prime} \dot{\cup} L$, where C_{i}^{\prime} is a 4-cycle and L is a path of order 4 , a contradiction. Let $D^{\prime}=D-x_{3}+z$ and $H^{\prime}=\left(H-V\left(C_{i}\right)\right) \cup C^{\prime}$. If there exists a cycle, say C_{1}^{\prime} in H^{\prime} such that $e\left(D^{\prime}, C_{1}^{\prime}\right) \geq 5$, then by Lemma 2.5, $G\left[V\left(C_{1}^{\prime} \cup D^{\prime}\right)\right]$ contains a 4-cycle and a disjoint path of order 4, contradicting $p=3$. So we may assume $e\left(D^{\prime}, C_{i}^{\prime}\right) \leq 4$ for all $C_{i}^{\prime} \in H^{\prime}$. It follows that $e\left(D^{\prime}, \sigma(F)\right) \geq$ $4(k+s)-4(k-1)-4=4 s$, which implies $G\left[V\left(\sigma(F) \cup D^{\prime}\right)\right] \supseteq F \dot{\cup} M$, where M is a path of order 4 , a contradiction. Thus $d\left(x_{3}, C_{i}\right)+d\left(x_{0}, C_{i}\right) \leq 2$ for all $C_{i} \in H$, implying $d\left(x_{3}, \sigma(F)\right)+d\left(x_{0}, \sigma(F)\right) \geq 2(k+s)-1-2(k-1)=2 s+1$, a contradiction again. Hence $p=4$.

Now we prove $n=2 k+s$. Suppose $l\left(C_{1}\right) \leq l\left(C_{2}\right) \leq \ldots \leq l\left(C_{k-1}\right)=2 t$. It's enough to show $t=2$. If $t \geq 3$, then by Lemma 2.8 and (2), $e\left(C_{k-1}, C_{i}\right) \leq 2 t$ for all $i \in$ $\{1, \ldots, k-2\}$, and moreover, $e\left(C_{k-1}, P\right) \leq 4$ by Lemma 2.1 and (2). Therefore $e\left(C_{k-1}, \sigma(F)\right) \geq 2 t(k+s)-2 t(k-2)-4 t-4=2 t s-4$. By Lemma 2.10, $G\left[V\left(C_{k-1} \cup\right.\right.$ $\sigma(F))] \supseteq C^{\prime} \dot{\cup} F$, where C^{\prime} is a 4-cycle, contradicting $t \geq 3$. Hence Theorem 2 holds.

If $d=3$, then $p=5$. Let $z_{0} \in V(D)-V(P)$. If $d\left(x_{1}, C_{i}\right)+d\left(z_{0}, C_{i}\right) \leq$ 2 for all $C_{i} \in H$, then $d\left(x_{1}, \sigma(F)\right)+d\left(z_{0}, \sigma(F)\right) \geq 2(k+s)-2(k-1)-2=2 s$. Clearly $G[V(\sigma(F) \cup D)] \supseteq F \dot{\cup} L$, where L is a path of order 6 , a contradiction to (4). So we may assume that there exists $C_{i} \in H$, say C_{1} such that $d\left(x_{1}, C_{1}\right)+d\left(z_{0}, C_{1}\right) \geq 3$.

As before, by Lemma2.1, Lemma 2.2, (2) and (3), we see that C_{1} is a 4 -cycle, $d\left(x_{1}, C_{1}\right)=2$ and $d\left(z_{0}, C_{1}\right)=1$. Let $H_{1}=H-V\left(C_{1}\right)$ and $z_{1} \in V\left(C_{1}\right)$ be such that $z_{1} z_{0} \in E$. Consider $\left\{x_{5}, z_{0}\right\}$.

If there exists $C_{j} \in H_{1}$, say C_{2} such that $d\left(x_{5}, C_{2}\right)+d\left(z_{0}, C_{2}\right) \geq 3$. Then C_{2} is a 4 -cycle, $d\left(x_{5}, C_{2}\right)=2$ and $d\left(z_{0}, C_{2}\right)=1$. Let $z_{2} \in V\left(C_{2}\right)$ be such that $z_{0} z_{2} \in E$. Let $H^{\prime}=\left(H-V\left(C_{1} \cup C_{2}\right)\right) \cup\left(C_{1}-z_{1}+x_{1}\right) \cup\left(C_{2}-z_{2}+x_{5}\right), D^{\prime}=G-V\left(H^{\prime}\right)-V(\sigma(F))$ and $U=\left\{x_{2}, x_{4}, z_{1}, z_{2}\right\}$. Clearly H^{\prime} consists of $k-1$ disjoint cycles satisfying (2). Then $d\left(u, D^{\prime}\right)=1$ for all $u \in U$, for otherwise D^{\prime} contains a path of order 6 , contradicting (4). If there exists $C^{\prime} \in H^{\prime}$ such that $\sum_{u \in U} d\left(u, C^{\prime}\right) \geq 5$, then by Lemma 2.1 and (2), C^{\prime} is a 4 -cycle. By Lemma $2.4, G\left[V\left(C^{\prime} \cup D^{\prime}\right)\right] \supseteq C^{\prime \prime} \dot{\cup} P^{\prime}$, where $C^{\prime \prime}$ is a 4-cycle and P^{\prime} is a path of order 6 , a contradiction. So we may assume $\sum_{u \in U} d\left(u, C_{i}^{\prime}\right) \leq$ 4 for all $C_{i}^{\prime} \in H^{\prime}$. Therefore $\sum_{u \in U} d(u, \sigma(F)) \geq 4(k+s)-4(k-1)-4=4 s$. It follows that $G\left[V\left(\sigma(F) \cup D^{\prime}\right)\right] \supseteq F \dot{\cup} C^{\prime \prime \prime}$, where $C^{\prime \prime \prime}$ is a 4-cycle, implying (1).

So we may suppose that $d\left(x_{5}, C_{i}\right)+d\left(z_{0}, C_{i}\right) \leq 2$ for all $C_{i} \in H_{1}$. It follows that $d\left(x_{5}, \sigma(F)\right)+d\left(z_{0}, \sigma(F)\right) \geq 2(k+s)-2(k-2)-5=2 s-1$. If $d\left(z_{0}, \sigma(F)\right)=s$, clearly $G[V(\sigma(F) \cup D)] \supseteq F \dot{\cup} L$, where L is a path of order 6 , contradicting $p=5$. So we may assume $d\left(z_{0}, \sigma(F)\right)=s-1$ and $d\left(x_{5}, \sigma(F)\right)=s$. Let $w \in N\left(z_{0}, \sigma(F)\right)$ and $W=$ $\left\{x_{2}, x_{4}, z_{1}, w\right\}$. It's easy to see that $G\left[V\left(C_{1} \cup D \cup \sigma(F)\right)\right] \supseteq C_{1}^{\prime} \dot{\cup} D^{\prime} \dot{\cup} F$, where C_{1}^{\prime} is a 4-cycle and $D^{\prime}=G\left[\left\{x_{2}, x_{3}, x_{4}, z_{1}, z_{0}, w\right\}\right]$. If $\sum_{u \in W} d(u, \sigma(F))=4 s$, then evidently $G\left[V\left(\sigma(F) \cup D^{\prime}\right)\right] \supseteq F \dot{\cup} \bigcirc$, implying (1). So we may assume $e(W, \sigma(F)) \leq 4 s-1$. Furthermore, we have $e\left(W, D^{\prime}\right)=4$, thus $e\left(W, H^{\prime}\right) \geq 4(k+s)-4-(4 s-1)=$ $4(k-1)+1$, where $H^{\prime}=H_{1} \cup C_{1}^{\prime}$. This implies that there exists a cycle C^{\prime} in H^{\prime} such that $e\left(W, C^{\prime}\right) \geq 5$. Again by Lemma 2.1 and (2), C^{\prime} is a 4 -cycle. By Lemma 2.4, $G\left[V\left(C^{\prime} \cup D^{\prime}\right)\right] \supseteq F \dot{\cup} P^{\prime}$, where P^{\prime} is a path of order 6 , a contradiction.

Case 2. $e\left(P, C_{i}\right) \leq p$ for all $C_{i} \in H$.
We have $e(P, \sigma(F)) \geq p(k+s)-p(k-1)-(2(p-1)+1)=p(s-1)+1$. If p is even, let $p=2 t$. If $t=2$ then $d=2$. So assume $t \geq 3$. It follows from Lemma 2.12 that $G[V(P \cup \sigma(F))] \supseteq F \dot{\cup} \bigcirc$, implying (1). If p is odd, let $p=2 t+1$. If $t=2$ then $p=5$. So assume $t \geq 3$. If $d\left(x_{1}, \sigma(F)\right) \leq s-1$ or $d\left(x_{p}, \sigma(F)\right) \leq s-1$, then let $P^{\prime}=P-x_{1}$ or $P-x_{p}$. We have $e\left(P^{\prime}, \sigma(F)\right) \geq$ $(2 t+1)(s-1)+1-(s-1)=2 t(s-1)+1$. By Lemma 2.12, $G\left[V\left(P^{\prime} \cup \sigma(F)\right)\right] \supseteq F \dot{\cup} \bigcirc$. So $d\left(x_{1}, \sigma(F)\right)=d\left(x_{p}, \sigma(F)\right)=s$. Let $T=\left\{x_{2 i}: i=1, \ldots,(p-1) / 2\right\}$. If there exists $\{x, y\} \subseteq T$ such that $N(x, \sigma(F)) \cap N(y, \sigma(F)) \neq \emptyset$, then clearly $G[V(P \cup \sigma(F))] \supseteq$ $F \dot{\cup} \bigcirc$. Therefore $\sum_{x \in T} d(x, \sigma(F)) \leq s$. Let $U=\left\{x_{2 i+1}: i=1, \ldots,(p-3) / 2\right\}$. We have $e(U, \sigma(F))=0$, for otherwise $G[V(P \cup \sigma(F))] \supseteq F \dot{\cup} \bigcirc$. It follows that $3 s \geq e(P, \sigma(F)) \geq(2 t+1)(s-1)+1$, implying $(s-1)(t-1) \leq 1$, a contradiction. This completes the proofs of the theorems.

4 References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London (1978).
[2] S. Brandt, Subtrees and subforests of graphs, J. Combin. Theory, Ser. B 61 (1994), 63-70.
[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hunger. 14 (1963), 423-439.
[4] L. Lesniak, Independent cycles in graphs, JCMCC 17 (1995), 55-63.
[5] G. W. Schuster, A minimum degree result for disjoint cycles and forests in graphs. Combinatorica 18(3)(1998) 425-436.
[6] H. Wang, Independent cycles with limited size in a graph. Graphs and Combinatorics 10 (1994), 271-281.
[7] H. Wang, On the maximum number of independent cycles in a bipartite graph. J. Combin. Theory, Ser. B 67 (1996), 152-164.
[8] H. Wang, On the maximum number of independent cycles in a graph. Discrete Mathematics 205 (1999), 183-190.

