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Abstract

Let F = (U1, U2; W ) be a forest with |U1| = |U2| = s, where s ≥ 2, and
let G = (V1, V2, E) be a bipartite graph with |V1| = |V2| = n ≥ 2k + s,
where k is a nonnegative integer. Suppose that the minimum degree of G
is at least k + s. We show that if n > 2k + s then G contains the disjoint
union of the forest F and k disjoint cycles. Moreover, if n = 2k + s, then
G contains the disjoint union of the forest F , k − 1 disjoint cycles and a
path of order 4.

1 Introduction

A set of graphs is called disjoint if no two of them have any vertex in common.
Schuster [5] investigated the disjoint cycles and a forest in a graph. He proved the
following result:

Theorem A. ([5], Theorem) Let F be a forest on s edges without isolated ver-
tices and let G be a graph of order at least 3k + |V (F )| with minimum degree at least
2k + s, where k and s are nonnegative integers. Then G contains the disjoint union
of the forest F and k disjoint cycles.

In this paper, we consider a similar problem in bipartite graphs. About the max-
imum number of disjoint cycles in a bipartite graph, H. Wang proved the following
theorems:

Theorem B. ([7], Theorem 1) Let G = (V1, V2; E) be a bipartite graph with
|V1| = |V2| = n > 2k, where k is a positive integer. Suppose that the minimum degree
of G is at least k + 1. Then G contains k disjoint cycles.

Theorem C. ([7], Theorem 2) Let G = (V1, V2; E) be a bipartite graph with
|V1| = |V2| = n = 2k, where k is a positive integer. Suppose that the minimum degree
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of G is at least k + 1. Then G contains k − 1 disjoint 4-cycles and a path of order 4
such that the path is disjoint from all the k − 1 4-cycles.

This paper proves two theorems as follows:

Theorem 1. Let F = (U1, U2; W ) be a forest with |U1| = |U2| = s, where s ≥ 2.
Let G = (V1, V2, E) be a bipartite graph with |V1| = |V2| = n > 2k + s, where k is a
nonnegative integer. Suppose that the minimum degree of G is at least k + s. Then
G contains the disjoint union of the forest F and k disjoint cycles.

Theorem 2. Let F = (U1, U2; W ) be a forest with |U1| = |U2| = s, where s ≥ 2.
Let G = (V1, V2; E) be a bipartite graph with |V1| = |V2| = n = 2k + s, where k is a
nonnegative integer. Suppose that the minimum degree of G is at least k+s. Then G
contains the disjoint union of the forest F , k−1 disjoint cycles and a path of order 4.

All graphs considered in this paper are finite simple graphs in standard termi-
nology and notation from [1] except as indicated. Let G = (V, E) be a graph. For
any u ∈ V , if G′ is a subgraph of G, we define N(u, G′) to be NG(u)∩ V (G′) and let
d(u, G′) = |N(u, G′)|. If d(u, G) = 0 or 1 we say that u is an isolated vertex or an
endvertex of G, respectively. The minimum degree of G is denoted by δ(G). For a
subset U of V , G[U ] is the subgraph of G induced by U . For two disjoint subgraphs
G1 and G2 of G, E(G1, G2) is the set of all edges of G between G1 and G2. Let
e(G1, G2) = |E(G1, G2)|, i.e. e(G1, G2) =

∑
x∈V (G1) d(x, G2). A set of pairwise dis-

joint edges of G is called a matching in G. If M is a matching with the property that
every vertex of G is incident with an edge of M , then M is called a perfect matching
in G. The disjoint union of two graphs S and T is denoted by S

.∪ T . We use the
symbol ©k to denote the disjoint union of k cycles; for k = 1 we simply write ©
instead of ©1. An embedding of a graph H into a graph G is an injective mapping
σ : V (H) → V (G) so that for every edge xy ∈ E(G), the edge σ(x)σ(y) is contained
in E(G). We write H ⊆ G or G ⊇ H if there is an embedding of H into G. For an
embedding σ of H into G and a subgraph M of H, let σ(M) denote the image of M
in G, i.e., σ(M) is the subgraph of G with vertex set {σ(x) : x ∈ V (M)} and edge
set {σ(x)σ(y) : xy ∈ E(M)}. We use (X, Y ; E) to denote a bipartite graph with
(X, Y ) as its bipartition and E as its edge set. The length of a cycle C is denoted
by l(C), and a 4-cycle is a cycle of length 4. An acyclic graph is a graph without
cycles.

2 Lemmas

For all lemmas listed below, G = (V1, V2; E) is a given bipartite graph.

Lemma 2.1 ([7], Lemma 2.1) Let C be a cycle of G and x a vertex of G not on C.
Suppose d(x, C) ≥ 2. Then either C is a 4-cycle or C + x contains a cycle C ′ such
that l(C ′) < l(C).
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Lemma 2.2 ([7], Lemma 2.2) Let C be a 4-cycle of G. Let x ∈ V1 and y ∈ V2 be
two vertices not on C. Suppose d(x, C) + d(y, C) ≥ 3. Then there exists z ∈ V (C)
such that either C − z + x is a 4-cycle and yz ∈ E, or C − z + y is a 4-cycle and
xz ∈ E.

Lemma 2.3 ([7], Lemma 2.3) Let T be a tree of order at least 2 with a bipartition
(X, Y ) such that |Y | ≥ |X |. Let p = |Y | − |X |. Then Y contains at least p + 1
endvertices of T .

Lemma 2.4 ([7], Lemma 2.4) Let P = x1x2x3 and Q = y1y2y3 be two disjoint paths
of G with x1 ∈ V1 and y1 ∈ V2. Let C be a 4-cycle of G such that C is disjoint
from both P and Q. Suppose d(x1, C) + d(x3, C) + d(y1, C) + d(y3, C) ≥ 5. Then
G[V (C ∪ P ∪ Q)] contains a 4-cycle C ′ and a path P ′ of order 6 such that P ′ is
disjoint from C ′.

Lemma 2.5 ([7], Lemma 2.5) Let C be a 4-cycle of G. Let uv and xy be two disjoint
edges of G such that they are disjoint from C. Suppose d(u, C) + d(v, C) + d(x, C) +
d(y, C) ≥ 5. Then G[V (C)∪{u, v, x, y}] contains a 4-cycle C ′ and a path P ′ of order
4 such that P ′ is disjoint from C ′.

Lemma 2.6 ([7], Lemma 2.6) Let C be a 4-cycle and P a path of order 4 in G such
that P is disjoint from C and

∑
x∈V (P ) d(x, C) ≥ 6. Then either G[V (C∪P )] contains

two disjoint quadrilaterals, or P has an endvertex, say z, such that d(z, C) = 0.

Lemma 2.7 ([7], Lemma 2.7) Let C be a 4-cycle and P a path of order s ≥ 6 in
G such that C is disjoint from P . If

∑
x∈V (P ) d(x, C) ≥ s + 1, then G[V (C ∪ P )]

contains two disjoint cycles.

Lemma 2.8 ([7], Lemma 2.8) Let s and t be two integers such that t ≥ s ≥ 2 and
t ≥ 3. Let C1 and C2 be two disjoint cycles of G with lengths 2s and 2t, respectively.
Suppose that

∑
x∈V (C2) d(x, C1) ≥ 2t + 1. Then G[V (C1 ∪ C2)] contains two disjoint

cycles C ′ and C ′′ such that l(C ′) + l(C ′′) < 2s + 2t.

Lemma 2.9 Let F = (U1, U2; W ) be a forest with |U1| = |U2| = s, where s ≥ 1. Let
G = (V1, V2; E) be a bipartite graph with |V1| = |V2| = n ≥ s and δ(G) ≥ s. Then
G ⊇ F .

Proof. Without loss of generality, assume F is a tree. The lemma is trivial for
s = 1. By Lemma 2.3, each of U1 and U2 contains an endvertex of F , say x and y,
respectively. Let F ′ = F − {x, y}. By induction on s, there exists an embedding
σ of F ′ in G. Suppose x1x, y1y ∈ W with {x1, y1} ⊆ V (F ′). Since δ(G) ≥ s,
N(σ(x1), G−V (σ(F ′))) 	= ∅ and N(σ(y1), G−V (σ(F ′))) 	= ∅, and it follows G ⊇ F .

Lemma 2.10 Let F = (U1, U2; W ) be a forest in G with |U1| = |U2| = s, where
s ≥ 3. Let C = (A1, A2; B) be a cycle in G with |A1| = |A2| = t ≥ 3, and C is
disjoint from F . Suppose e(C, F ) ≥ 2ts − 4, then G[V (C ∪ F )] ⊇ C ′ .∪ F , where C ′

is a 4-cycle.
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Proof. Since e(C, F ) ≥ 2ts − 4, t ≥ 3 and s ≥ 3, there exist {x, y} ⊆ V (C)
with x 	= y and d(x, F ) = d(y, F ) = s. We may choose x and y such that x ∈ A1

and y ∈ A2. Suppose this is not the case, say, for any z ∈ A2, d(z, F ) ≤ s − 1.
Let C = z1z2...z2tz1 with z1 ∈ A1. As e(C, F ) ≥ 2ts − 4, either d(z1, F ) = s or
d(z5, F ) = s. If w ∈ N(z2, F ) ∩ N(z4, F ), then G[V (C ∪ F )] ⊇ C ′ .∪ F , where C ′

is the 4-cycle wz2z3z4w and F ⊆ F − w + zi for some i ∈ {1, 5} with d(zi, F ) = s.
So we may assume N(z2, F ) ∩ N(z4, F ) = ∅. Therefore d(z2, F ) + d(z4, F ) ≤ s.
Then e(C, F ) ≤ t(s − 1) + s(t − 1) = 2ts − t − s < 2ts − 4, a contradiction, hence
the claim is true. Then we see that for any i ∈ {1, ..., t − 1} with z2i+1 	= x,
N(z2i, F ) ∩ N(z2i+2, F ) = ∅, and N(z2, F ) ∩ N(z2t, F ) = ∅ if x 	= z1, for otherwise
G[V (C∪F )] ⊇ C ′ .∪ F , where C ′ is a 4-cycle. When t is even, it’s easy to deduce that∑t

i=1 d(z2i, F ) ≤ s(t/2) and
∑t

i=1 d(z2i−1, F ) ≤ s(t/2). So 2ts − 4 ≤ e(C, F ) ≤ ts,
implying st ≤ 4, a contradiction. Similarly, when t is odd, we obtain e(C, F ) ≤
2((t − 1)s/2 + s) < 2ts − 4, a contradiction.

Lemma 2.11 Let F = (U1, U2; W ) be a forest in G = (V1, V2; E) with |U1| = |U2| =
s, where s ≥ 3. Let uv and xy be two disjoint edges of G such that they are disjoint
from F . Suppose d(u, F ) + d(v, F ) + d(x, F ) + d(y, F ) ≥ 4s− 3 and G[V (F )] = Ks,s.
Then G[V (F ) ∪ {u, v, x, y}] ⊇ F

.∪ P , where P is a path of order 4.

Proof. As
∑

t∈T d(t, F ) ≥ 4s − 3 where T = {u, v, x, y}, either N(u, F ) ∩
N(x, F ) 	= ∅ or N(v, F ) ∩ N(y, F ) 	= ∅. Say the former holds, and let w ∈
N(u, F ) ∩ N(x, F ). For the same reason, either d(v, F ) > 0 or d(y, F ) > 0. Say
d(y, F ) > 0. Clearly, G[V (F )] − w + y contains F since G[V (F )] = Ks,s. As vuwx
is a path of G, the lemma follows.

Lemma 2.12 Let F = (U1, U2; W ) be a forest in G with |U1| = |U2| = s, where
s ≥ 3. Let P = x1x2...x2t be a path in G, where t ≥ 3. Suppose P is disjoint from
F , G[V (F )] = Ks,s and e(P, F ) ≥ 2t(s − 1) + 1. Then G[V (F ∪ P ))] ⊇ F

.∪ ©.

Proof. Without loss of generality, suppose U1 ⊆ V1. Suppose that there exists
v ∈ U1 such that v ∈ N(xi, F ) ∩ N(xi+2, F ) for some i ∈ {1, ..., 2t − 2}. Then
vxixi+1xi+2v is a 4-cycle in G. If d(xj, F ) ≥ 1 for some xj ∈ V (P ) ∩ V1 − {xi+1},
then G[V (F ) − {v}] + xj contains F and so the lemma holds. So we may assume
d(xj, F ) = 0 for all xj ∈ V (P ) ∩ V1 − {xi+1}. It follows that 2t(s − 1) + 1 ≤
e(P, F ) ≤ ts + s, which implies (t − 1)(s − 2) − 1 ≤ 0, a contradiction. So we may
assume N(xi, F ) ∩ N(xi+2, F ) = ∅ and therefore d(xi, F ) + d(xi+2, F ) ≤ s for all
i ∈ {1, ..., 2t − 2}. If t is odd, then 2t(s− 1) + 1 ≤ e(P, F ) ≤ s(t− 1) + 2s, implying
(t−1)(s−2)−1 ≤ 0, a contradiction. If t is even, Then 2t(s−1)+1 ≤ e(P, F ) ≤ ts,
which implies t(s − 2) + 1 ≤ 0, a contradiction again.

Lemma 2.13 Let P = x1x2x3 and Q = y1y2y3 be two disjoint paths of G with
x1 ∈ V1 and y1 ∈ V2. Let F = (U1, U2; W ) be a forest in G with |U1| = |U2| = s,
where s ≥ 3. suppose F is disjoint from both P and Q, and d(x1, F ) + d(x3, F ) +
d(y1, F ) + d(y3, F ) ≥ 4s− 2. Then G[V (F ∪P ∪Q)] ⊇ F

.∪ C, where C is a 4-cycle.
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Proof. First we claim that N(x1, F ) ∩ N(x3, F ) 	= ∅ and N(y1, F ) ∩ N(y3, F ) 	=
∅. Suppose not, without loss of generality, say N(x1, F ) ∩ N(x3, F ) = ∅, then
d(x1, F )+d(x3, F ) ≤ s. It follows that 2s ≥ d(y1, F )+d(y3, F ) ≥ 4s−2−s = 3s−2,
implying s ≤ 2, a contradiction. Clearly there exists one of {x1, x3, y1, y3}, say x1,
such that d(x1, F ) = s. Let u ∈ N(y1, F )∩N(y3, F ). Then we see that F−u+x1 ⊇ F
and uQu is a 4-cycle disjoint from F − u + x1, where u ∈ N(y1, F ) ∩ N(y3, F ).

3 Proofs of the Theorems

To prove the theorems, we introduce the following terminology: For a graph H
and a path P = x1x2...xt of H, we define σ(P, H) = max{d(x2, H), d(xt−1, H)} if
t ≥ 2 and σ(P, H) = d(x1, H) if t = 1.

Let G and F be given as stated in the two theorems. We may assume that F is
connected. If s = 2, F is a path of order 4. Since |V1| = |V2| = n ≥ 2k +2 = 2(k +1)
and δ(G) ≥ k +2 > k +1, we see that if s = 2 then G ⊇ F

.∪ ©k by Theorem B and
Theorem C. Therefore we suppose s ≥ 3 and need to show the following:

G ⊇ ©k .∪ F if n > 2k + s and

G ⊇ ©k−1 .∪ F
.∪ P if n = 2k + s, where P is a path of order 4. (1)

We use induction on k to prove (1). If k = 0, (1) follows from Lemma 2.9. Since
n ≥ 2k + s = 2(k − 1) + (s + 2) and δ(G) ≥ k + s = (k − 1) + (s + 1), by induction
on k, G ⊇ ©k−1

.∪ F
.∪ K2. Let C1, C2, ..., Ck−1 be k − 1 disjoint cycles of G. Let σ

be an embedding of F in G− V (
⋃k−1

i=1 Ci). We choose C1, C2, ..., Ck−1 and σ(F ) such
that

∑k−1

i=1
l(Ci) is minimum. (2)

Subject to (2), we choose C1, C2, ..., Ck−1 and σ(F ) such that

e(G[σ(F )]) is maximum. (3)

Let D = G−V (
⋃k−1

i=1 Ci)−V (σ(F )). Subject to (2) and (3), we choose C1, C2, ...,
Ck−1 and σ(F ) such that

the length of a longest path in D is maximal. (4)

Let P = x1x2...xp be a fixed longest path of D. Without loss of generality, assume
x1 ∈ V1. Subject to (2), (3) and (4), we choose C1, C2, ..., Ck−1 and σ(F ) such that

σ(P, D) is minimum. (5)

Let D0 = D − V (P ). Subject to (2) to (5), we choose C1, C2, ..., Ck−1 and σ(F )
such that

the length of a longest path in D0 is maximal. (6)
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Let Q = y1y2...yq be a fixed longest path of D0. Without loss of generality, assume
y1 ∈ V1 if q is even. Subject to (2) to (6), we finally choose C1, C2, ..., Ck−1 and σ(F )
such that

if q is odd, then σ(Q, D0) is minimum; (7)

if q is even, then d(y2, D0) is minimum. (8)

Clearly, p ≥ q. Let H =
⋃k−1

i=1 Ci and |V (D)| = 2d. We will prove a number of
claims. First, we claim

d ≥ 2. (9)

Proof of (9). Suppose d ≤ 1. Without loss of generality, assume that l(C1) ≤
l(C2) ≤ ... ≤ l(Ck−1) and l(Ck−1) = 2t. Then t ≥ 3, for otherwise n = 2(k − 1) +
s + 1 < 2k + s. By Lemma 2.8 and (2), e(Ck−1, Ci) ≤ 2t for all i ∈ {1, ..., k − 2}.
By Lemma 2.1 and (2), d(x, Ck−1) ≤ 1 for all x ∈ V (D). Therefore e(Ck−1, σ(F )) ≥
2t(k + s) − 2t(k − 2) − 4t − 2 = 2ts − 2. Then G[V (Ck−1 ∪ σ(F ))] ⊇ C ′ .∪ F by
Lemma 2.10, where C ′ is a 4-cycle, contradicting (2).

We claim

p ≥ 3 and if |V (D0)| ≥ 4 then q ≥ 3. (10)

Proof of (10). First we show p ≥ 3. To the contrary, suppose p ≤ 2. If p < 2,
then for any x ∈ V (D) ∩ V1 and y ∈ V (D) ∩ V2, d(x, D) = d(y, D) = 0. It follows
that d(x, H) + d(y, H) ≥ 2(k + s) − 2s = 2k. Then there exists a Ci in H such
that d(x, Ci) + d(y, Ci) ≥ 3. By Lemma 2.1 and (2), Ci is a 4-cycle. By Lemma
2.2, G[V (Ci) ∪ {x, y}] ⊇ C ′

i

.∪ K2, where C ′
i is a 4-cycle. This is a contradiction to

p < 2. So p = 2. Let P = x1x2. We may choose C1, C2, ..., Ck−1 and σ(F ) such that
D0 ⊇ K2 while (2), (3) and (4) are maintained. If this is not the case, then by (4),
d(x, D) = 0 for all x ∈ D0. For any x ∈ V (D0) ∩ V1 and y ∈ V (D0) ∩ V2, if there
exists a cycle, say C1, such that d(x, C1) + d(y, C1) ≥ 3, then by Lemma 2.1 and (2),
C1 must be a 4-cycle. By Lemma 2.2, G[V (C1)∪{x, y}] contains a 4-cycle C ′ and an
edge e′ disjoint from C ′. So we may assume d(x, Ci)+d(y, Ci) ≤ 2 for all Ci ∈ H. It
follows that d(x, σ(F )) + d(y, σ(F )) ≥ 2(k + s)− 2(k − 1) = 2s + 2, a contradiction.
Hence D0 ⊇ K2. This argument allows us to choose C1, C2, ..., Ck−1 and σ(F ) such
that D has a perfect matching. Let uv ∈ E(D0) and R = {x1, x2, u, v}. If there
exists a cycle Ci in H such that

∑
x∈Rd(x, Ci) ≥ 5, then by Lemma 2.5, G[V (Ci)∪R]

contains the disjoint union of a 4-cycle and a path of order 4, contradicting p = 2.
So

∑
x∈Rd(x, Ci) ≤ 4 for all Ci ∈ H. Therefore

∑
x∈Rd(x, σ(F )) ≥ 4(k + s) − 4(k −

1) − 4 = 4s, i.e. d(x, σ(F )) = s for all x ∈ R. Clearly G[V (σ(F )) ∪ R] ⊇ F
.∪ C,

where C is a 4-cycle, implying (1). Hence p ≥ 3.
Suppose q ≤ 2 when |V (D0)| ≥ 4. By a similar argument, we may choose

C1, C2, ..., Ck−1, σ(F ) and P such that D0 ⊇ 2K2. Let u1v1 and u2v2 be two indepen-
dent edges in D0, and T = {u1, v1, u2, v2}. Since D is acyclic,

∑
x∈T d(x, D) ≤ 6. By

Lemmas 2.1 and 2.5,
∑

x∈T d(x, Ci) ≤ 4 for all Ci ∈ H. So
∑

x∈T d(x, σ(F )) ≥ 4(k +
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s)−4(k−1)−6 = 4s−2. Clearly there exists x ∈ T such that d(x, σ(F )) = s. Then
G[V (σ(F ))] = Ks,s follows from (3). By Lemma 2.11, G[V (σ(F )) ∪ T ] ⊇ F

.∪ Q′,
where Q′ is a path of order 4 while (2), (3), (4), (5) are maintained, contradicting
q ≤ 2. Hence (10) holds.

The argument in the above paragraph shows that if |V (D0)| ≥ 2, then q ≥ 2. We
claim

σ(P, D) = 2, σ(Q, D0) ≤ 2 if q is odd and d(y2, D0) ≤ 2 if q is even. (11)

Proof of (11). First we suppose that σ(Q, D0) ≥ 3 if q is odd and d(y2, D0) ≥ 3
if q is even. In the former case, we may assume d(y2, D0) ≥ 3 and q ≥ 3. Let
{a, b} = {1, 2} such that y1 ∈ Va. Let u be an endvertex of D0 such that uy2 ∈ E
and u 	∈ {y1, yq}. Clearly, either d(u, P ) = 0 or d(y1, P ) = 0 as D is acyclic.
Without loss of generality, assume that d(u, P ) = 0. Let (A, B) be the bipartition of
D0 − V (Q) ∪ {u} with A ⊆ Va and B ⊆ Vb. Clearly |B| > |A|, so D0 − V (Q) ∪ {u}
has a component T such that|V (T )∩B| > |V (T )∩A|. As there is at most one edge
between Q and T and by Lemma 2.3, we can choose a vertex v ∈ V (T ) ∩ B such
that d(v, D0) ≤ 1. We deduce that d(u, D) + d(v, D) ≤ 3 as D is acyclic.

If there exists Ci in H such that d(u, Ci) + d(v, Ci) ≥ 3, then by Lemma 2.1 and
(2), Ci must be a 4-cycle. By Lemma 2.2, G[V (Ci) ∪ {u, v}] ⊇ C ′ .∪ e′, where C ′ is
a 4-cycle and e′ is an edge, and exactly one of u and v is an endvertex of e′. Let
D′ = G − (V (

⋃
j �=i Cj) ∪ V (C ′)) − V (σ(F )) and D′

0 = D′ − V (P ). By (4), P is still
a longest path of D′. So neither of the two endvertices of e′ is adjacent to x2 or
xp−1 and therefore σ(P, D′) ≤ σ(P, D). Subsequently, Q is still a longest path of
D′

0 by (6). So neither of the two endvertices of e′ is adjacent to y2 or yq−1. Thus
u ∈ V (C ′), d(y2, D

′
0) = d(y2, D0) − 1 and d(yq−1, D

′
0) ≤ d(yq−1, D0). Repeating this

argument for yq−1 if q is odd and d(yq−1, D
′
0) ≥ 3, we obtain a contradiction with (7)

or (8) while (2) to (6) are maintained.
So we may assume d(u, Ci) + d(v, Ci) ≤ 2 for all Ci ∈ H. It follows that

d(u, σ(F )) + d(v, σ(F )) ≥ 2(k + s) − 2(k − 1) − 3 = 2s − 1. By (3), it is easy
to see that G[V (σ(F ))] = Ks,s. If d(v, σ(F )) = s, then d(u, σ(F )) ≥ s − 1. Clearly
G[V (σ(F )∪D0)] ⊇ Ks,s

.∪ Q′, where Q′ is a path with l(Q′) > l(Q) without violating
(2) to (5). Therefore d(u, σ(F )) = s and d(v, σ(F )) = s− 1. Let F ′ = σ(F )−w + u
and D′

0 = D0 − u + w, where w ∈ N(v, σ(F )). Then d(y2, D
′
0) = d(y2, D0) − 1 and

d(yq−1, D
′
0) ≤ d(yq−1, D0). If q is even, we obtain a contradiction to (8) while (2) to

(6) are maintained. If q is odd, we can obtain a contradiction to (7) by applying the
same argument to yq−1. A similar but simpler argument shows that σ(P, D) = 2 as
we have no concerns for the priorities (6) to (8). So (11) holds.

We claim

p ≥ 2d − 1 (12)

Proof of (12). Suppose p ≤ 2d − 2. We distinguish two cases: p is even or odd.
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Case 1. p is even.
By (10), p ≥ 4. Let R = {x1, xp, y1, y2}. By (11), d(y1, D0)+d(y2, D0) ≤ 3. Since

e(P, Q) ≤ 1 and d(x1, D) + d(xp, D) = 2,
∑

x∈R d(x, D) ≤ 6.
If there exists Ci in H such that

∑
x∈R d(x, Ci) ≥ 5, then by Lemma 2.1 and

(2), Ci must be a 4-cycle. Let Ci = u1u2u3u4u1. Without loss of generality, assume
{u1, x1, y1} ⊆ V1. Clearly, either d(x1, Ci)+d(y2, Ci) ≥ 3 or d(xp, Ci)+d(y1, Ci) ≥ 3.
Without loss of generality, say the former holds. By Lemma 2.2, G[V (Ci)∪{x1, y2}]
contains a 4-cycle C ′ and an edge e′ disjoint from C ′ such that exactly one of x1

and y2 is an endvertex of e′. By (4), x1 is not an endvertex of e′. So d(x1, Ci) = 2
and d(y2, Ci) = 1. As d(y1, Ci) + d(xp, Ci) ≥ 2, we have either d(y1, Ci) > 0 or
N(xp, Ci)∩N(y2, Ci) 	= ∅. In either case, it is easy to see that G[V (Ci∪P )∪{y1, y2}] ⊇
C ′′ .∪ P ′, where C ′′ is a 4-cycle and P ′ is a path of order p + 2, contradicting (4).

So we may assume
∑

x∈R d(x, Ci) ≤ 4 for all Ci ∈ H. It follows that
∑

x∈R

d(x, σ(F )) ≥ 4(k + s) − 4(k − 1) − 6 = 4s − 2.

Clearly there exists z ∈ R such that d(z, σ(F )) = s, so G[V (σ(F ))] = Ks,s by (3). we
have either d(x1, σ(F )) + d(y2, σ(F )) ≥ 2s− 1 or d(xp, σ(F )) + d(y1, σ(F )) ≥ 2s− 1.
Without loss of generality, say the former holds. If d(y2, σ(F )) = s, then we readily
see that G[V (σ(F )∪P )∪{y1, y2}] contains Ks,s and a path of order p+1 which is dis-
joint from Ks,s, contradicting (4). So d(y2, σ(F )) = s − 1 and d(x1, σ(F )) = s. And
moreover, N(y2, σ(F ))∩N(xp, σ(F )) = ∅, for otherwise G[V (σ(F )∪D)] ⊇ Ks,s

.∪ P ′,
where P ′ is a path of order p + 2, contradicting (4). Therefore d(y2, σ(F )) +
d(xp, σ(F )) ≤ s. It follows that 2s ≥ d(y1, σ(F ))+d(x1, σ(F )) ≥ 4s−2− s = 3s−2,
implying s ≤ 2, a contradiction.

Case 2. p is odd.
Notice that |V (D0)| is odd. We claim that if q = 3, then we may choose Q

such that y1 ∈ V2. Suppose that this is not true, i.e. y1 ∈ V1. Let (A, B) be the
bipartition of D0 − V (Q) such that A ⊆ V1 and B ⊆ V2. Then |B| = |A| + 2. As D
is acyclic and by Lemma 2.3, we can choose a vertex y0 ∈ B such that d(y0, D0) ≤ 1.
Clearly, d(y0, P ) ≤ 1 and d(y1, P ) + d(y3, P ) ≤ 1. We may assume d(y1, P ) = 0. So
d(y0, D) + d(y1, D) ≤ 3.

If there exists a Ci in H such that d(y0, Ci) + d(y1, Ci) ≥ 3, then by Lemma 2.1,
(2) and Lemma 2.2, Ci must be a 4-cycle, and moreover, G[V (Ci)∪{y0, y1}] contains
a 4-cycle C ′ and an edge e′ disjoint from C ′ such that exactly one of y0 and y1 is
an endvertex of e′. Replacing Ci with C ′ and by (4), we see that neither of the two
endvertices of e′ is adjacent to a vertex in {x1, x2, xp−1, xp}. Therefore (2) to (5) are
maintained. By (6), y1 is not an endvertex of e′. So e′ = y0z0 for some z0 ∈ V (Ci).
Let H ′ = (H − V (Ci)) ∪ C ′, D′ = D − y1 + z0 and D′

0 = D′ − V (P ). Then D′
0 does

not contain a path of order 3 with its two endvertices in V2. It follows from (11) that
d(y2, D

′
0) = 1. Furthermore,

∑
z∈S d(z, D′

0) ≤ 5, where S = {y2, y3, y0, z0}. As D′ is
acyclic,

∑
z∈S d(z, D′) ≤ 7. We distinguish two subcases:

Subcase 1.1. There exists a cycle C ′′ in H ′ such that
∑

z∈S d(z, C ′′) ≥ 5.



A MINIMUM DEGREE RESULT 43

By Lemma 2.1 and (2), C ′′ must be a 4-cycle. By Lemma 2.5, G[V (C ′′) ∪ S]
contains a 4-cycle C ′′′ and a path Q′ of order 4 such that Q′ is disjoint from C ′′′. By
(4), no vertex of Q′ is adjacent to a vertex in {x1, x2, xp−1, xp}. Thus we obtain a
contradiction to (6) while (2) to (5) are maintained.

Subcase 1.2.
∑

z∈S d(z, C ′
i) ≤ 4 for all C ′

i ∈ H ′.
Clearly

∑
z∈S d(z, σ(F )) ≥ 4(k + s) − 7 − 4(k − 1) = 4s − 3. Then there exists

z ∈ S such that d(z, σ(F )) = s. It follows from (3) that G[V (σ(F ))] = Ks,s. By
Lemma 2.11, G[V (σ(F ) ∪ Q) ∪ {y0, z0}] ⊇ F

.∪ Q′, where Q′ is a path of order 4,
contradicting q = 3.

So we may assume d(y0, Ci) + d(y1, Ci) ≤ 2 for all Ci ∈ H. Consequently

d(y0, σ(F )) + d(y1, σ(F )) ≥ 2(k + s) − 2(k − 1) − 3 = 2s − 1.

If d(y0, σ(F )) = s, it’s easy to see that G[V (σ(F )) ∪ {y1, y2, y3, y0}] contains F
and a disjoint path of order 4, contradicting q = 3. So d(y0, σ(F )) = s − 1 and
d(y1, σ(F )) = s. Let y0z0 ∈ E for some z0 ∈ V (σ(F )). By (6), y2z0 	∈ E. Let σ′(F ) =
σ(F )−z0+y1, D′

0 = D0−y1+z0 and D′ = D′
0∪P . Then d(y2, D

′
0) = 1, and moreover,

d(z0, D0
′) ≤ 1 for otherwise we have a path of order 3 with both endvertices in V2.

Let T = {y2, y3, y0, z0}. Then
∑

z∈T d(z, D) ≤ 7 as
∑

z∈T d(z, P ) ≤ 2. Therefore∑
z∈T d(z, σ′(F )) ≥ 4(k + s) − 4(k − 1) − 7 = 4s − 3. Again G[V (σ′(F ))] = Ks,s

follows from (3). By Lemma 2.11, G[V (σ′(F )) ∪ T ] ⊇ F
.∪ Q′, where Q′ is a path of

order 4, contradicting q = 3.
Now y1 ∈ V2 for q = 3, so we can choose three distinct vertices z1, z2, z3 from

D0 with z1 ∈ V1 and {z2, z3} ⊆ V2 such that {z1, z2} = {y1, y2}, and if q ≥ 3 then
z3 ∈ {yq−1, yq}. If q = 2, then |V (D0)| = 3 by (10) and therefore z3 is an isolated
vertex of D0. Let T = {x1, xp−1, xp, z1, z2, z3}. As D is acyclic and d(z3, P ) ≤ 1, we
deduce from (11) that

∑
u∈T d(u, D) ≤ 10.

If there exists a Ci in H such that
∑

u∈T d(u, Ci) ≥ 7, then by Lemma 2.1 and (2),
Ci must be a 4-cycle. Let Ci = v1v2v3v4v1 with v1 ∈ V1. If d(z2, Ci) = 2 or d(z3, Ci) =
2, it is easy to see, by observing two situations that either d(x1, Ci) + d(xp, Ci) ≥ 1
or d(x1, Ci)+d(xp, Ci) = 0, that G[V (Ci∪P )∪{z1, z2, z3}] contains a 4-cycle C ′ and
a path P ′ disjoint from C ′ but longer than P , contradicting (4). Hence d(z2, Ci) ≤ 1
and d(z3, Ci) ≤ 1. We distinguish two subcases. Note that z1z2 ∈ E.

Subcase 2.1. q ≥ 3.
We first suppose that d(z1, Ci) ≥ 1 and d(z2, Ci) = 1. Without loss of generality,

say {v1z2, v2z1} ⊆ E. Then C ′ = v1v2z1z2v1 is a 4-cycle, and e({x1, xp−1, xp}, {v3, v4}) =
0 By (4). As

∑
u∈T d(u, Ci) ≥ 7, we deduce that d(u, Ci) = 1 for all u ∈ T − {z1}

and d(z1, Ci) = 2. Then z1z2v1v4z1 and v2Pv2 are two disjoint cycles in G[V (Ci ∪
P )∪{z1, z2}]. So either d(z1, Ci) = 0 or d(z2, Ci) = 0. Suppose the former holds. We
have d(x1, Ci) + d(xp−1, Ci) + d(xp, Ci) ≥ 5 and therefore N(x1, Ci) ∩N(xp, Ci) 	= ∅.
For v2 ∈ N(x1, Ci) ∩ N(xp, Ci), clearly G[V (Ci ∪ Q)] − v2 is disjoint from v2Pv2

and therefore is acyclic. So d(z2, Ci) + d(z3, Ci) ≤ 1. Consequently, d(x1, Ci) =
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d(xp−1, Ci) = d(xp, Ci) = 2 and d(zj, Ci) = 1 for some j ∈ {2, 3}. Without loss of
generality, say zjv1 ∈ E. Then the 4-cycle xp−1xpv4v3xp−1 is disjoint from the path
zjv1v2x1x2...xp−2 which is longer than P , contradicting (4). Therefore d(z1, Ci) > 0
and d(z2, Ci) = 0.

If d(z3, Ci) = 0, then there exists u′ ∈ {x1, xp−1, xp, z1} such that d(u, Ci) = 2 for
all u ∈ {x1, xp−1, xp, z1}−{u′} and d(u′, Ci) ≥ 1. This implies that {viz1, vix1, vjxp} ⊆
E for some {i, j} = {2, 4} and xp−1vh ∈ E for some h ∈ {1, 3}. Then the 4-cycle
xp−1xpvjvhxp−1 is disjoint from the path z2z1vix1x2...xp−2 which is longer than P ,
contradicting (4). Therefore d(z3, Ci) = 1. Say {v1z3, v2z1} ⊆ E. Then G[V (Q) ∪
{v1, v2}] contains a cycle and therefore G[V (P ) ∪ {v3, v4}] is acyclic. Hence

e({x1, xp−1, xp}, {v3, v4}) ≤ 1.

This implies that d(x1, Ci) + d(xp−1, Ci) + d(xp, Ci) = 4 as d(z1, Ci) + d(z3, Ci) ≤ 3.
Thus d(z1, Ci) = 2 and xp−1v1 ∈ E. Then the 4-cycle z1v2v3v4z1 is disjoint from the
path x1x2...xp−1v1z3 which is longer than P , contradicting (4) again.

Subcase 2.2. q = 2. Notice that d(z3, D) ≤ 1.
First suppose that there exists Ci in H such that d(xp, Ci)+d(z3, Ci) ≥ 3, then by

Lemma 2.1, Lemma 2.2, (2) and (3) as before, we see that Ci is a 4-cycle, d(xp, Ci) = 2
and d(z3, Ci) = 1. Let L1 = Ci − z4 + xp where z4 ∈ V (Ci) such that z3z4 ∈ E.
Let H1 = (H − V (Ci)) ∪ L1 and D1 = G − V (H1) − V (σ(F )). As D1 is acyclic,∑4

i=1d(zi, D1) ≤ 7. If there exists a cycle C ′ in H1 such that
∑4

i=1 d(zi, C
′) ≥ 5,

then by Lemma 2.1 and (2), C ′ must be a 4-cycle. By Lemma 2.5, G[V (C ′) ∪
{z1, z2, z3, z4}] ⊇ C ′′ .∪ Q′, where C ′′ is a 4-cycle and Q′ is a path of order 4. If∑4

i=1 d(zi, C
′
i) ≤ 4 for all C ′

i ∈ H1, then
∑4

i=1 d(zi, σ(F )) ≥ 4(k + s) − 7 − 4(k −
1) = 4s − 3. Again G[V (σ(F ))] = Ks,s by (3). It follows from Lemma 2.11 that
G[V (σ(F )) ∪ {z1, z2, z3, z4}] ⊇ F

.∪ Q′, where Q′ is a path of order 4. So in both
cases we obtain a path Q′ of order 4. Without loss of generality, say the former
case holds. As p is odd and by (4), p ≥ 5. Let H2 = (H1 − V (C ′)) ∪ C ′′, D2 =
G − V (H2) − V (σ(F )), P ′ = P − xp and Q′ = u1u2u3u4 with u1 ∈ V1. Then D2 is
acyclic and e(P ′, Q′) ≤ 1.

When p ≥ 7, if there exists a cycle C ′′′ in H2 such that
∑p−1

i=1 d(xi, C
′′′) ≥ p,

then by Lemma 2.1 and (2), C ′′′ must be a 4-cycle. It follows from Lemma 2.7
that G[V (C ′′′ ∪ P ′)] ⊇ ©2, implying (1). So we may assume

∑p−1
i=1 d(xi, Ci

′′) ≤
p − 1 for all C ′′

i ∈ H2. Therefore
∑p−1

i=1 d(xi, σ(F )) ≥ (p − 1)(k + s) − 2(p − 2) − 1 −
(p − 1)(k − 1) = (s − 1)(p − 1) + 1. By Lemma 2.12, G[V (σ(F ) ∪ P )] ⊇ F

.∪ ©,
which implies (1).

When p = 5, we have e({x1, x3}, {u2, u4}) = 0. Let W = {x1, x3, u2, u4}. Then∑
w∈W d(w, D2) = 6 as D2 is acyclic. If there exists a cycle L′ in H2 such that∑
w∈W d(w, L′) ≥ 5, then by Lemma 2.1 and (2), L′ must be a 4-cycle. By Lemma

2.4, G[V (L′) ∪ {x1, x2, x3, u2, u3, u4}] ⊇ L′′ .∪ P ′′, where L′′ is a 4-cycle and P ′′ is
a path of order 6, contradicting p = 5. So

∑
w∈W d(w, Li) ≤ 4 for all Li ∈ H2.

Therefore
∑

w∈W d(w, σ(F )) ≥ 4(k + s)− 6− 4(k− 1) = 4s− 2. Evidently (1) follows
from Lemma 2.13.
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So we can assume d(xp, Ci) + d(z3, Ci) ≤ 2 for all Ci ∈ H, then d(xp, σ(F )) +
d(z3, σ(F )) ≥ 2(k + s)− 2− 2(k− 1) = 2s. Clearly G[V (σ(F )∪P )] ⊇ F

.∪ P ′, where
P ′ is a path of order p + 1, a contradiction to (4). This proves the subcase 2.2.

Now we may assume that
∑

u∈T d(u, Ci) ≤ 6 for all Ci ∈ H. Then

∑

u∈T

d(u, σ(F )) ≥ 6(k + s) − 10 − 6(k − 1) = 6s − 4.

Again G[V (σ(F ))] = Ks,s by (3). We claim that there exists x ∈ {x1, xp}, say x1,
such that d(x1, σ(F )) ≥ 1. Suppose that this is not the case, then d(x1, σ(F )) =
d(xp, σ(F )) = 0. It follows that 4s ≥ d(xp−1, σ(F )) + d(z1, σ(F )) + d(z2, σ(F )) +
d(z3, σ(F )) ≥ 6s − 4, implying s ≤ 2, a contradiction. Similarly there exists
z ∈ {z2, z3} say z2 such that d(z2, σ(F )) ≥ 1. Let {ux1, vz2} ⊆ E, where {u, v} ⊆
V (σ(F )). Then σ(F )− u + z2 ⊇ F and P + u is a path disjoint from F , a contradic-
tion to (4). So (12) holds.

We are now in the position to complete the proofs. By (9) and (12), p ≥ 2d−1 ≥
3. As D is acyclic, e(P, D) ≤ 2(p − 1) + 1. We distinguish two cases:

Case 1. There exists a Ci in H such that e(P, Ci) ≥ p + 1.

By Lemma 2.1 and (2), Ci must be a 4-cycle. If p ≥ 6, then by Lemma 2.7,
G[V (Ci ∪ P )] ⊇ ©2, implying (1). So assume p ≤ 5 and therefore d = 2 or d = 3.

If d = 2, we will prove Theorem 2. First we prove p = 4. If p 	= 4, then by (10),
p = 3. Without loss of generality, assume {x1, x3} ⊆ V1. Let x0 ∈ D−V (P ). Clearly
d(x0, D)+d(x3, D) = 1. If there exists a cycle Ci in H such that d(x3, Ci)+d(x0, Ci) ≥
3, then by Lemma 2.1 and (2), Ci must be a 4-cycle and G[V (Ci)∪{x0, x3}] contains
a 4-cycle C ′ and an edge e′ disjoint from C ′, and moreover, we must have e′ = x0z for
some z ∈ V (Ci), for otherwise G[V (Ci∪D)] ⊇ C ′

i

.∪ L, where C ′
i is a 4-cycle and L is

a path of order 4, a contradiction. Let D′ = D− x3 + z and H ′ = (H − V (Ci))∪C ′.
If there exists a cycle, say C ′

1 in H ′ such that e(D′, C ′
1) ≥ 5, then by Lemma 2.5,

G[V (C ′
1 ∪D′)] contains a 4-cycle and a disjoint path of order 4, contradicting p = 3.

So we may assume e(D′, C ′
i) ≤ 4 for all C ′

i ∈ H ′. It follows that e(D′, σ(F )) ≥
4(k + s) − 4(k − 1) − 4 = 4s, which implies G[V (σ(F ) ∪ D′)] ⊇ F

.∪ M , where M
is a path of order 4, a contradiction. Thus d(x3, Ci) + d(x0, Ci) ≤ 2 for all Ci ∈ H,
implying d(x3, σ(F ))+d(x0, σ(F )) ≥ 2(k+s)−1−2(k−1) = 2s+1, a contradiction
again. Hence p = 4.

Now we prove n = 2k+s. Suppose l(C1) ≤ l(C2) ≤ ... ≤ l(Ck−1) = 2t. It’s enough
to show t = 2. If t ≥ 3, then by Lemma 2.8 and (2), e(Ck−1, Ci) ≤ 2t for all i ∈
{1, ..., k − 2}, and moreover, e(Ck−1, P ) ≤ 4 by Lemma 2.1 and (2). Therefore
e(Ck−1, σ(F )) ≥ 2t(k+s)−2t(k−2)−4t−4 = 2ts−4. By Lemma 2.10, G[V (Ck−1∪
σ(F ))] ⊇ C ′ .∪ F , where C ′ is a 4-cycle, contradicting t ≥ 3. Hence Theorem 2 holds.

If d = 3, then p = 5. Let z0 ∈ V (D) − V (P ). If d(x1, Ci) + d(z0, Ci) ≤
2 for all Ci ∈ H, then d(x1, σ(F ))+d(z0, σ(F )) ≥ 2(k+s)−2(k−1)−2 = 2s. Clearly
G[V (σ(F ) ∪ D)] ⊇ F

.∪ L, where L is a path of order 6, a contradiction to (4). So
we may assume that there exists Ci ∈ H, say C1 such that d(x1, C1) + d(z0, C1) ≥ 3.
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As before, by Lemma2.1, Lemma 2.2, (2) and (3), we see that C1 is a 4-cycle,
d(x1, C1) = 2 and d(z0, C1) = 1. Let H1 = H − V (C1) and z1 ∈ V (C1) be such that
z1z0 ∈ E. Consider {x5, z0}.

If there exists Cj ∈ H1, say C2 such that d(x5, C2) + d(z0, C2) ≥ 3. Then C2 is a
4-cycle, d(x5, C2) = 2 and d(z0, C2) = 1. Let z2 ∈ V (C2) be such that z0z2 ∈ E. Let
H ′ = (H−V (C1∪C2))∪(C1−z1+x1)∪(C2−z2+x5), D′ = G−V (H ′)−V (σ(F )) and
U = {x2, x4, z1, z2}. Clearly H ′ consists of k − 1 disjoint cycles satisfying (2). Then
d(u, D′) = 1 for all u ∈ U , for otherwise D′ contains a path of order 6, contradicting
(4). If there exists C ′ ∈ H ′ such that

∑
u∈U d(u, C ′) ≥ 5, then by Lemma 2.1 and

(2), C ′ is a 4-cycle. By Lemma 2.4, G[V (C ′ ∪D′)] ⊇ C ′′ .∪ P ′, where C ′′ is a 4-cycle
and P ′ is a path of order 6, a contradiction. So we may assume

∑
u∈U d(u, C ′

i) ≤
4 for all C ′

i ∈ H ′. Therefore
∑

u∈U d(u, σ(F )) ≥ 4(k + s) − 4(k − 1) − 4 = 4s. It
follows that G[V (σ(F ) ∪ D′)] ⊇ F

.∪ C ′′′, where C ′′′ is a 4-cycle, implying (1).
So we may suppose that d(x5, Ci) + d(z0, Ci) ≤ 2 for all Ci ∈ H1. It follows that

d(x5, σ(F ))+d(z0, σ(F )) ≥ 2(k+s)−2(k−2)−5 = 2s−1. If d(z0, σ(F )) = s, clearly
G[V (σ(F ) ∪ D)] ⊇ F

.∪ L, where L is a path of order 6, contradicting p = 5. So we
may assume d(z0, σ(F )) = s−1 and d(x5, σ(F )) = s. Let w ∈ N(z0, σ(F )) and W =
{x2, x4, z1, w}. It’s easy to see that G[V (C1∪D∪σ(F ))] ⊇ C1

′ .∪ D′ .∪ F , where C ′
1 is

a 4-cycle and D′ = G[{x2, x3, x4, z1, z0, w}]. If
∑

u∈W d(u, σ(F )) = 4s, then evidently
G[V (σ(F ) ∪ D′)] ⊇ F

.∪ ©, implying (1). So we may assume e(W, σ(F )) ≤ 4s − 1.
Furthermore, we have e(W, D′) = 4, thus e(W, H ′) ≥ 4(k + s) − 4 − (4s − 1) =
4(k − 1) + 1, where H ′ = H1 ∪ C ′

1. This implies that there exists a cycle C ′ in H ′

such that e(W, C ′) ≥ 5. Again by Lemma 2.1 and (2), C ′ is a 4-cycle. By Lemma
2.4, G[V (C ′ ∪ D′)] ⊇ F

.∪ P ′, where P ′ is a path of order 6, a contradiction.

Case 2. e(P, Ci) ≤ p for all Ci ∈ H.
We have e(P, σ(F )) ≥ p(k + s) − p(k − 1) − (2(p − 1) + 1) = p(s − 1) + 1.

If p is even, let p = 2t. If t = 2 then d = 2. So assume t ≥ 3. It follows
from Lemma 2.12 that G[V (P ∪ σ(F ))] ⊇ F

.∪ ©, implying (1). If p is odd, let
p = 2t + 1. If t = 2 then p = 5. So assume t ≥ 3. If d(x1, σ(F )) ≤ s − 1
or d(xp, σ(F )) ≤ s − 1, then let P ′ = P − x1 or P − xp. We have e(P ′, σ(F )) ≥
(2t+1)(s−1)+1−(s−1) = 2t(s−1)+1. By Lemma 2.12, G[V (P ′∪σ(F ))] ⊇ F

.∪ ©.
So d(x1, σ(F )) = d(xp, σ(F )) = s. Let T = {x2i : i = 1, ..., (p − 1)/2}. If there exists
{x, y} ⊆ T such that N(x, σ(F )) ∩ N(y, σ(F )) 	= ∅, then clearly G[V (P ∪ σ(F ))] ⊇
F

.∪ ©. Therefore
∑

x∈T d(x, σ(F )) ≤ s. Let U = {x2i+1 : i = 1, ..., (p − 3)/2}.
We have e(U, σ(F )) = 0, for otherwise G[V (P ∪ σ(F ))] ⊇ F

.∪ ©. It follows that
3s ≥ e(P, σ(F )) ≥ (2t + 1)(s − 1) + 1, implying (s − 1)(t − 1) ≤ 1, a contradiction.
This completes the proofs of the theorems.
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