Bounds on the number of generalized partitions and some applications

W.M.B. Dukes
School of Theoretical Physics
Dublin Institute for Advanced Studies
10 Burlington Rd.
Dublin 4
Ireland
dukes@stp.dias.ie

Abstract

We present bounds concerning the number of Hartmanis partitions of a finite set. An application of these inequalities improves the known asymptotic lower bound on the number of linear spaces on n points. We also present an upper bound for a certain class of these partitions which bounds the number of Steiner triple and quadruple systems.

Recent work has extended the known numerical values for the number of linear spaces on n points [1]. Upper and lower bounds of $2^{\binom{n}{3}}$ and 2^{n}, respectively, were given in $[2,7]$. We improve the lower bound by showing an inequality of Knuth (see [5]) to hold for more general structures known as Hartmanis d-partitions. We prove an upper bound for the number of these structures and also give an upper bound for a certain class of these partitions. This last inequality gives asymptotic upper bounds for the number of Steiner triple and quadruple systems.

A linear space is a collection of points and lines such that every pair of distinct points are on a unique line and every line contains at least two points. Let $S_{n}:=$ $\{1, \ldots, n\}$ be a finite set of size n and S_{n}^{d} the collection of all d-element subsets of S_{n}. We say that a collection of subsets \mathcal{P} of S_{n} is a d-partition of S_{n} (to be more specific, a Hartmanis d-partition, see [4]) if

- for all $X \in \mathcal{P},|X| \geq d$,
- $\bigcup_{X \in \mathcal{P}} X=S_{n}$,
- every d-element subset of S_{n} is contained in a unique $X \in \mathcal{P}$.

The one-to-one correspondence between linear spaces on n points and unlabeled 2partitions of S_{n} is easily seen by noting that the sets of the 2-partition correspond to the lines. It is also apparent that a Steiner triple system is simply a 2-partition whose sets have cardinality three and a Steiner quadruple system is a 3-partition whose sets have cardinality four. Further details of Steiner systems may be found in [6]. Notice that a 1-partition of S_{n} is what we normally refer to as a partition of S_{n}.

Let $p_{n}(d)$ denote the number of d-partitions of S_{n} and $p_{n}^{\star}(d)$ the corresponding number of unlabeled d-partitions. Let $p_{n}(d ; a)$ denote the number of d-partitions whose sets contain at most a elements and $p_{n}^{\star}(d ; a)$ the corresponding unlabeled number. From their definitions we have that $p_{n}^{\star}(d ; a) \leq p_{n}^{\star}(d) \leq p_{n}(d)$ and $p_{n}^{\star}(d ; a) \leq$ $p_{n}(d ; a) \leq p_{n}(d)$. The number of linear spaces on n points is given by $p_{n}^{\star}(2)$.

Theorem 1 For all $0<d<n, p_{n}(d ; d+1) \geq 2^{\binom{n}{d+1} / 2 n}$ and $p_{n}^{\star}(d ; d+1) \geq \frac{1}{n!} 2^{\binom{n}{d+1} / 2 n}$.
Proof: Let H be the $n \times k$ matrix whose $i^{\text {th }}$ row is the binary representation of i for all $1 \leq i \leq n$ and $k:=\left\lfloor\log _{2} n\right\rfloor+1$. For any $X \in S_{n}^{d+1}$, let \vec{X} be its binary representation. Define the partition \mathcal{U}_{j} of S_{n}^{d+1} by

$$
\mathcal{U}_{j}:=\left\{X \in S_{n}^{d+1} \mid \vec{X} H=\text { binary representation of } j\right\}
$$

for all $0 \leq j<2^{k}$. Now notice that if $X, Y \in \mathcal{U}_{j}$ and $X \neq Y$, then $|X \backslash Y| \geq 2$. Indeed, if $|X \backslash Y|=1$ then $X=A \cup\{x\}, Y=A \cup\{y\}$, with $x \neq y$ and $x, y \notin A$. Hence $(\vec{A}+\{\vec{x}\}) H=(\vec{A}+\{\vec{y}\}) H$, which is a contradiction since $\{\vec{x}\} H$ is the binary representation of x. Thus for any $X, Y \in \mathcal{U}_{j},|X \cap Y| \leq d-1$. Since the \mathcal{U}_{j} partition S_{n}^{d+1}, there exists some \mathcal{U}_{j} with at least

$$
\left|\mathcal{U}_{j}\right| \geq\binom{ n}{d+1} / 2^{k} \geq\binom{ n}{d+1} / 2 n
$$

sets. This particular \mathcal{U}_{j} (and any collection of subsets of it), along with all the d-sets not contained in any member of \mathcal{U}_{j}, defines a d-partition. Thus there are at least $2^{\left|\mathcal{U}_{j}\right|} \geq 2^{\left({ }_{d+1}^{n}\right) / 2 n}$ such d-partitions of S_{n}. Note that the fraction of d-element subsets covered by the largest \mathcal{U}_{j} is $(n-d) / 2 n$ as $\binom{d+1}{d}\binom{n}{d+1} / 2 n=((n-d) / 2 n)\binom{n}{d}$. The second inequality holds by dividing this number by n ! to rule out any isomorphisms.

The construction of the matrix H is indicative of Hamming codes and indeed Knuth [5] elucidates this point in his particular $d=[n / 2]-1$ case. In our case it is equivalent to finding the a collection of binary code words of length n with $d+1$ 1's which is single error-correcting.

Numerous computer computations with $d=2$ and $10 \leq n \leq 30$ showed the largest of the \mathcal{U} families, although only marginal, was always \mathcal{U}_{0}. For a special case of $d=2$ we may improve the bound in the previous theorem to $2^{n(n-1) / 6}$ by explicitly evaluating $\left|\mathcal{U}_{0}\right|$.

Theorem 2 If $d=2$ and $n=2^{m}-1$ for some $m>1$, then $\left|\mathcal{U}_{0}\right|=\binom{n}{2} / 3$.

Proof: If $n=2^{m}-1$ then the rows of the matrix H will consist of all non-zero binary vectors of length m (so that $k=m$.) Let \vec{r}_{i} be the vector representing the $i^{\text {th }}$ row of H. Since $d=2$ we have

$$
\begin{aligned}
\left|\mathcal{U}_{0}\right| & =\#\left\{X \in S_{n}^{3} \mid \vec{X} H=\overrightarrow{0} \bmod 2\right\} \\
& =\#\left\{\{i, j, l\} \subseteq S_{n} \mid \vec{r}_{i}+\vec{r}_{j}+\vec{r}_{l}=\overrightarrow{0} \quad \bmod 2\right\}
\end{aligned}
$$

Notice that if we have i, j, l such that $\vec{r}_{i}+\vec{r}_{j}+\vec{r}_{l}=\overrightarrow{0} \bmod 2$ then l is uniquely determined by i and j as $\vec{r}_{l}=\vec{r}_{i}+\vec{r}_{j} \bmod 2$. Similarly i can be determined from j and l, and j from i and l. Thus $\left|\mathcal{U}_{0}\right|$ will be the number of pairs in S_{n}, scaled down by a factor of 3 . Hence $\left|\mathcal{U}_{0}\right|=\binom{n}{2} / 3$.

Note that the above theorem holds for general d, the cardinality of $\left|\mathcal{U}_{0}\right|$ will be $\binom{n}{d} /(d+1)$ by using the same argument. We now give a short proof of an upper bound on the number of d-partitions. The proof for $d=2$ can be found in [2].

Theorem 3 For all $0<d<n, p_{n}(d) \leq 2^{\binom{n}{d+1}}$.

Proof: Let \mathcal{P} be a d-partition of S_{n} and exclude from \mathcal{P} any sets of size d. Define $f(\mathcal{P}):=\left\{X \in S_{n}^{d+1} \mid X \subseteq P \in \mathcal{P}\right\}$. The map f is injective and we may easily construct the inverse as follows: Let $\mathcal{P}^{\prime}=f(\mathcal{P})$. If $X, Y \in \mathcal{P}^{\prime}$ and $|X \cap Y| \geq d$ then replace X and Y in \mathcal{P}^{\prime} by $X \cup Y$. Iterate this step until $|X \cap Y|<d$ for all $X, Y \in \mathcal{P}^{\prime}$. Insert into \mathcal{P}^{\prime} all d-element subsets of S_{n} not contained in members of \mathcal{P}^{\prime}. The collection \mathcal{P}^{\prime} is now the original collection \mathcal{P}. Thus for each d partition \mathcal{P} we have a unique collection $f(\mathcal{P}) \subseteq S_{n}^{d+1}$. The number of such collections is bounded above by $2^{\binom{n}{d+1}}$.

Theorem 4 For all $1<d<n$, $p_{n}(d ; d+1)<2^{n+1+(n+1)^{d}\left(\log _{2} e+\log _{2}(n-d)\right)}$.

Proof: Let $\mathcal{P}=\left\{H_{1}, \ldots, H_{p}\right\}$ be a d-partition of S_{n} with d-element sets removed and such that $|H|=d+1$ for all $H \in \mathcal{P}$. The $(d+1) p$ sets $\{X \mid X \subset H \in \mathcal{P}$ and $|X|=$ $d\}$ are unique. Thus

$$
(d+1) p \leq\binom{ n}{d} \Leftrightarrow p \leq \frac{1}{n+1}\binom{n+1}{d+1}
$$

Let $N(n, d):=\binom{n+1}{d+1} /(n+1)$. Since $\binom{n}{k}<\left(\frac{e n}{k}\right)^{k}$ for $n \geq k \geq 1$ (see p. 1077 of [3]),
the number of such d-partitions is bounded by

$$
\begin{aligned}
\sum_{i=0}^{N(n, d)}\binom{\binom{n}{d+1}}{i} & <(N(n, d)+1)\binom{\binom{n}{d+1}}{N(n, d)} \\
& <2^{n+1}\left(\frac{e\binom{n}{d+1}}{N(n, d)}\right)^{N(n, d)} \\
& <2^{n+1}(e(n-d))^{N(n, d)}
\end{aligned}
$$

and using $N(n, d)<(n+1)^{d}$ for $d>1$,

$$
\begin{aligned}
& <2^{n+1}(e(n-d))^{(n+1)^{d}} \\
& =2^{n+1+(n+1)^{d}\left(\log _{2} e+\log _{2}(n-d)\right)} .
\end{aligned}
$$

For n large, it is clear that the upper bound in the previous theorem can be given by $2^{(n+1)^{d}\left(\log _{2} e+\log _{2} n\right)}$ by absorbing $n+1$ into the $\log _{2}(n-d)$ term. However, attempting to use this technique to bound $p_{n}(d)$ yields $\log _{2} p_{n}(d)=O\left(n^{d+1}\right)$ which is already apparent from Theorem 3. Inserting $d=2$ in Theorems 1 and 4 yields the following bounds on the number of linear spaces

$$
\frac{1}{n!} 2^{(n-1)(n-2) / 12} \leq p_{n}^{\star}(2) \leq 2^{\binom{n}{3}}
$$

and the number of linear spaces whose lines contain at most three points is bounded by

$$
p_{n}(2 ; 3)<2^{n+1+(n+1)^{2}\left(\log _{2} e+\log (n-2)\right)}
$$

Theorem 4 is interesting from the point that it serves as an upper bound for the number of Steiner triple/quadruple systems $(d=2,3)$. Recall that $f(n)=O(g(n))$ (resp. $\Omega(g(n))$) if there exist numbers C, n_{0} such that $f(n) \leq C g(n)$ (resp. \geq) for all $n \geq n_{0}$. The results in this paper may be summarized asymptotically (each is readily apparent from the exponents of the bounds in Theorems 1-4):

$$
\begin{aligned}
\log _{2} p_{n}(d ; d+1) & =\Omega\left(n^{d}\right) \\
\log _{2} p_{n}^{\star}(d ; d+1) & =\Omega\left(n^{d}-n \log n\right) \\
\log _{2} p_{n}(d ; d+1) & =O\left(n^{d} \log n\right) \\
\log _{2} p_{n}(d) & =O\left(n^{d+1}\right) .
\end{aligned}
$$

Achieving better asymptotics for the numbers $p_{n}(d)$ seems a difficult problem. Attempts at constructing classes containing all d-partitions on S_{n} resulted in $\log _{2} p_{n}(d)$ $=O\left(n^{d+1}\right)$.

Acknowledgments

The author would like to thank the anonymous referee for helpful comments and pointers towards the application to Steiner systems, and T. C. Dorlas for noticing that Theorem 2 holds in a more general setting.

References

[1] A. Betten and D. Betten, The proper linear spaces on 17 points, Discrete Appl. Math. 95 (1999), 83-108.
[2] J. Doyen, Sur le nombre d'espaces linéaires non isomorphes de n points, Bull. Soc. Math. Belg. 19 (1967), 421-437.
[3] R.L. Graham, M. Grötschel and L. Lovász, eds. Handbook of Combinatorics, North Holland, 1995.
[4] J. Hartmanis, Lattice theory of generalized partitions, Canad. J. Math. 11 (1959), 97-106.
[5] D.E. Knuth, The asymptotic number of geometries, J. Combin. Theory Ser. A 16 (1974), 398-400.
[6] C.C. Lindner and C.A. Rodger, Design Theory, $1^{\text {st }}$ edition, CRC Press 1997.
[7] J.A. Thas, Sur le nombre d'espaces linéaires non isomorphes de n points, Bull. Soc. Math. Belg. 21 (1969), 57-66.

