A directed version of Deza graphs—Deza digraphs^{*}

ZHANG GENGSHENG

College of Mathematics and Information Science Hebei Normal University Shijiazhuang, 050016 China

WANG KAISHUN

Department of Mathematics Beijing Normal University Beijing 100875 China

Abstract

As a generalization of Deza graphs, we introduce Deza digraphs and describe the basic theory of these graphs. We also prove the necessary and sufficient conditions when a weakly distance-regular digraph is a Deza digraph.

1 Introduction

In [2], Erickson, Fernando, Haemers, Hardy and Hemmeter introduced Deza graphs as a generalization of strongly regular graphs. They introduced several ways to construct Deza graphs, and developed some basic theory.

Definition 1.1 Suppose Γ is an undirected graph with *n* vertices, and *A* is its adjacency matrix. Γ is called an (n, k, b, c)-*Deza graph* if

$$A^2 = bB + cC + kI,$$

$$AJ = JA = kJ,$$

for some (0, 1)-matrices B and C such that B + C + I = J, the all ones matrix.

^{*} This research was supported by the Youth Science Foundation of Hebei Normal University, the Youth Science Foundation of Beijing Normal University (105107197) and National Natural Science Foundation of China (10171006)

ZHANG GENGSHENG AND WANG KAISHUN

Note that Γ is a strongly regular graph if and only if B or C is A.

In this paper, we consider the directed version of Deza graphs and develop some basic theory. Moreover, we discuss the connections to weakly distance-regular digraphs.

Definition 1.2 Let Γ be a digraph with *n* vertices and let *A* be the adjacency matrix of Γ . Γ is said to be an (n, k, b, c, t)-Deza digraph if

$$A^{2} = bB + cC + tI,$$
$$AJ = JA = kJ$$

for some (0, 1)-matrices B and C such that B + C + I = J, the all ones matrix.

Note that if t = k, then an (n, k, b, c, t)-Deza digraph is an (n, k, b, c)-Deza graph.

It is easy to see that we can get an equivalent definition of Deza digraphs from a combinatorial view point.

Definition 1.3 A digraph Γ with *n* vertices is an (n, k, b, c, t)-Deza digraph if for $u, v \in V(\Gamma)$,

$$|N_{u,v}| = \begin{cases} b \text{ or } c, & \text{if } u \neq v, \\ t, & \text{if } u = v, \end{cases}$$

where $N_{u,v} = \{ w \in V(\Gamma) \mid \partial(u, w) = \partial(w, v) = 1 \}.$

We next give some elementary constraints on the parameters.

Proposition 1.1 Let Γ be an (n, k, b, c, t)-Deza digraph. Define, for a vertex u,

$$\alpha = |\{v \in V(\Gamma) \mid |N_{u,v}| = b\}|, \ \beta = |\{v \in V(\Gamma) \mid |N_{u,v}| = c\}|.$$

Then α and β do not depend on u and

$$\alpha = \begin{cases} \frac{k^2 - t}{b}, & \text{if } b = c, \\ \frac{k^2 - t + c - nc}{b - c}, & \text{if } b \neq c, \end{cases}$$
$$\beta = \begin{cases} \frac{k^2 - t}{c}, & \text{if } b = c, \\ \frac{k^2 - t + b - nb}{c - b}, & \text{if } b \neq c. \end{cases}$$

Proof. Let N be the number of ordered triples (u, w, v) with $\partial(u, w) = \partial(w, v) = 1$ and $u \neq v$. That is,

$$N = |\{(u, w, v) \mid \partial(u, w) = \partial(w, v) = 1, u \neq v\}|.$$

If $\partial(w, u) \neq 1$, then the number of triples (u, w, v) is (k - t)k, while if $\partial(w, u) = 1$, then the number of triples (u, w, v) is (k - 1)t. Thus

$$N = k^2 - t.$$

If b = c, then

$$N = \alpha b = \beta c.$$

Otherwise, by the definition of α and β , we have

$$N = \alpha b + \beta c.$$

If we equate these two expressions for N and use $\alpha + \beta = n - 1$, then α and β are obtained.

Corollary 1.2 Suppose b < c. Then the following hold:

- (i) c-b divides $nc-c-k^2+t$;
- (*ii*) if $\alpha \beta \neq 0$, then $(n-1)b < k^2 t < (n-1)c$.

2 Constructions

Firstly we will give a construction of Deza digraphs using Cayley digraphs.

Proposition 2.1 Let G be a finite group of order n and let S be a k-subset of G not containing the identity element e of G. If

$$S^2 = bB \cup cC \cup t\{e\},\$$

where B, C and $\{e\}$ partition G, then the Cayley digraph Cay(G, S) is an (n, k, b, c, t)-Deza digraph.

Proof. The proof is obvious and will be omitted.

Let Γ_1 and Γ_2 be digraphs. The *lexicographic product* $\Gamma_1[\Gamma_2]$ of Γ_1 and Γ_2 is a digraph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and adjacency defined by

 $\partial((u_1, u_2), (v_1, v_2)) = 1$ if and only if $\partial(u_1, v_1) = 1$ or $u_1 = v_1, \partial(u_2, v_2) = 1$.

Let Γ be a digraph with adjacency matrix A and n vertices. Γ is called a *strongly* regular digraph with parameters (n, k, μ, λ, t) , if

$$A^{2} = tI + \lambda A + \mu(J - I - A),$$
$$JA = AJ = kJ.$$

The parameters are related by the equation

$$k(k + (\mu - \lambda)) = t + (n - 1)\mu.$$

These graphs were first investigated by Duval in [1]. For more information about strongly regular digraphs, see [3], [4].

Note that if B or C is A, then a Deza digraph is a strongly regular digraph.

The next theorem tells us how to derive a Deza digraph using a strongly regular digraph.

Theorem 2.2 Let Γ_1 be a strongly regular digraph with parameters (n, k, λ, μ, t) and let Γ_2 be an (n', k', b, c, t')-Deza digraph. Then $\Gamma_1[\Gamma_2]$ is a Deza digraph if and only if

$$|\{b + tn', c + tn', \mu n', \lambda n' + 2k'\}| \le 2.$$

Proof. Let $u = (u_1, u_2)$ and $v = (v_1, v_2)$ be vertices of $\Gamma_1[\Gamma_2]$. Then

$$|N_{u,v}| = \begin{cases} b + tn', & \text{if } u_1 = v_1 \text{ and } |N_{u_2,v_2}| = b, \\ c + tn', & \text{if } u_1 = v_1 \text{ and } |N_{u_2,v_2}| = c, \\ \lambda n' + 2k', & \text{if } \partial(u_1,v_1) = 1, \\ \mu n', & \text{if } \partial(u_1,v_1) > 1. \end{cases}$$

Hence $\Gamma_1[\Gamma_2]$ is a Deza digraph if and only if these numbers take on at most two values.

Two corollaries follow easily from the theorem.

Corollary 2.3 Let Γ be a strongly regular digraph with parameters $(n, k, \lambda, \mu, 0)$, and let K_m be a complete graph on m vertices. Then $\Gamma[K_m]$ is a Deza digraph if and only if

$$\mu - \lambda = 1$$
 and $m = 2$.

Corollary 2.4 Let Γ_1 be a strongly regular digraph with parameters $(n, k, \lambda, \lambda, t)$, and let $\overline{K_{n'}}$ be a coclique on n' vertices. Then $\Gamma_1[\overline{K_{n'}}]$ is an $(nn', kn', \lambda n', \lambda n', tn')$ -Deza digraph.

Theorem 2.5 Let Γ_1 and Γ_2 be two digraphs. The product $\Gamma_1 \times \Gamma_2$ of Γ_1 and Γ_2 is a Deza digraph if and only if it is in the list below.

- (i) $\Gamma_1 = \overline{K}_n$ for some $n \ge 2$ and Γ_2 is an (n', k, b, c, t)-Deza digraph with b = c or c = 0.
- (*ii*) Γ_1 is an (n, k, b, c, t)-Deza digraph and Γ_2 is an (n', k', b', c', t')-Deza digraph, where $(b, c), (b', c') \in \{(2, 2), (2, 0)\}.$

Proof. First note that $\Gamma_1 \times \Gamma_2$ is regular if and only if both of Γ_1 and Γ_2 are regular. Moreover, the degree of $\Gamma_1 \times \Gamma_2$ is the sum of the degrees of Γ_1 and Γ_2 .

Now suppose $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are two distinct vertices of $\Gamma_1 \times \Gamma_2$. It is easy to check that

$$|N_{u,v}| = \begin{cases} |N_{u_2,v_2}|, & \text{if } u_1 = v_1, \\ |N_{u_1,v_1}|, & \text{if } u_2 = v_2, \\ 2, & \text{if } \partial(u_1,v_1) = \partial(u_2,v_2) = 1, \\ 0, & \text{otherwise.} \end{cases}$$

Case 1. $\Gamma_1 = \overline{K}_n$ for some $n \ge 2$. Then the third case for the size of $N_{u,v}$ given above does not occur. So $\Gamma_1 \times \Gamma_2$ is a Deza digraph if and only if Γ_2 is an (n', k, b, c, t)-Deza digraph with b = c or c = 0. Thus (i) occurs.

Case 2, Both 0 and 2 appear as the value of $|N_{u,v}|$, so (ii) follows.

DEZA DIGRAPHS

3 Connection to weakly distance-regular digraphs

In this section, we will discuss the connections to weakly distance-regular digraphs. For any two vertices $x, y \in V(\Gamma)$, define $\tilde{\partial}(x, y) = (\partial(x, y), \partial(y, x))$.

Definition 3.1 A connected digraph Γ is said to be *weakly distance-regular* if

$$p^{\tilde{k}}_{\tilde{i},\tilde{j}}(x,y) = |\{z \in V(\Gamma) \mid \tilde{\partial}(x,z) = \tilde{i} \text{ and } \tilde{\partial}(z,y) = \tilde{j}\}|$$

depends only on $\tilde{k}, \tilde{i}, \tilde{j}$ and does not depend on the choices of x and y with $\tilde{\partial}(x, y) = \tilde{k}$.

As a natural generalization of distance-regular graphs, weakly distance-regular digraphs were introduced in [5].

Theorem 3.1 Let Γ be a weakly distance-regular digraph of diameter d. Let

$$F = \{(1, i) \mid \partial(x, y) = (1, i) \text{ for some } x, y \in V(\Gamma)\}.$$

Then Γ is a Deza digraph if and only if

$$\sum_{\tilde{i},\tilde{j}\in F} p_{\tilde{i},\tilde{j}}^{\tilde{k}}$$

takes on at most two values as \tilde{k} ranges over $\{\tilde{\partial}(x,y) \mid x, y \in V(\Gamma)\}$.

Proof. Let u and v be two vertices of Γ with $\tilde{\partial}(u, v) = \tilde{k}$. Then

$$|N_{u,v}| = \sum_{\tilde{i},\tilde{j}\in F} p_{\tilde{i},\tilde{j}}^{\tilde{k}}$$

Hence, Γ is a Deza digraph only when these numbers take on at most two values.

We know that $\Gamma = \operatorname{Cay}(Z_n \times Z_2, \{(1,0), (0,1)\})$ is a weakly distance-regular digraph. By the above theorem, it is a Deza digraph.

Note that a weakly distance-regular digraph is *distance-regular* if $\partial(x, y) = \partial(x', y')$ implies $\partial(y, x) = \partial(y', x')$ for all $x, y, x', y' \in V(\Gamma)$.

Corollary 3.2 A distance-regular digraph Γ of diameter d is a Deza digraph if and only if one of the following holds.

- (*i*) d = 2,
- $(ii) \ p_{1,1}^1=0,$
- $(iii) \ p_{1,1}^2 = p_{1,1}^1.$

References

244

- A. Duval, A directed version of strongly regular graphs, J. Combin. Theory Ser. A 47 (1988), 71–100.
- [2] M. Erickson, S. Fernando, W.H. Haemers, D. Hardy and J. Hemmeter, Deza graphs: a generalization of strongly regular graphs, J. Combin. Designs 7 (1999), 395–405.
- [3] S.A. Hobart and T.J. Shaw, A note on a family of directed strongly regular graphs, *European J. Combin.* 20 (1999), 819–820.
- [4] M. Klin, A. Munemasa, M. Muzychuk and P.-H. Zieschang, Directed strongly regular graphs via coherent (cellular) algebras, Preprint, Kyushu-MPS-1997-12, Kyushu University, 1997.
- [5] H. Suzuki and K.S. Wang, Weakly distance-regular digraphs, preprint.

(Received 24 June 2002)