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Abstract

As a generalization of Deza graphs, we introduce Deza digraphs and
describe the basic theory of these graphs. We also prove the necessary
and sufficient conditions when a weakly distance-regular digraph is a Deza
digraph.

1 Introduction

In [2], Erickson, Fernando, Haemers, Hardy and Hemmeter introduced Deza graphs
as a generalization of strongly regular graphs. They introduced several ways to
construct Deza graphs, and developed some basic theory.

Definition 1.1 Suppose Γ is an undirected graph with n vertices, and A is its
adjacency matrix. Γ is called an (n, k, b, c)-Deza graph if

A2 = bB + cC + kI,

AJ = JA = kJ,

for some (0, 1)-matrices B and C such that B + C + I = J , the all ones matrix.
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Note that Γ is a strongly regular graph if and only if B or C is A.
In this paper, we consider the directed version of Deza graphs and develop some

basic theory. Moreover, we discuss the connections to weakly distance-regular di-
graphs.

Definition 1.2 Let Γ be a digraph with n vertices and let A be the adjacency matrix
of Γ. Γ is said to be an (n, k, b, c, t)-Deza digraph if

A2 = bB + cC + tI,

AJ = JA = kJ

for some (0, 1)-matrices B and C such that B + C + I = J , the all ones matrix.

Note that if t = k, then an (n, k, b, c, t)-Deza digraph is an (n, k, b, c)-Deza graph.
It is easy to see that we can get an equivalent definition of Deza digraphs from a

combinatorial view point.

Definition 1.3 A digraph Γ with n vertices is an (n, k, b, c, t)-Deza digraph if for
u, v ∈ V (Γ),

|Nu,v| =

{
b or c, if u �= v,
t, if u = v,

where Nu,v = {w ∈ V (Γ) | ∂(u, w) = ∂(w, v) = 1}.

We next give some elementary constraints on the parameters.

Proposition 1.1 Let Γ be an (n, k, b, c, t)-Deza digraph. Define, for a vertex u,

α = |{v ∈ V (Γ) | |Nu,v| = b}|, β = |{v ∈ V (Γ) | |Nu,v| = c}|.

Then α and β do not depend on u and

α =

{
k2−t

b
, if b = c,

k2−t+c−nc
b−c

, if b �= c,

β =

{
k2−t

b
, if b = c,

k2−t+b−nb
c−b

, if b �= c.

Proof. Let N be the number of ordered triples (u, w, v) with ∂(u, w) = ∂(w, v) = 1
and u �= v. That is,

N = |{(u, w, v) | ∂(u, w) = ∂(w, v) = 1, u �= v}|.

If ∂(w, u) �= 1, then the number of triples (u, w, v) is (k − t)k, while if ∂(w, u) = 1,
then the number of triples (u, w, v) is (k − 1)t. Thus

N = k2 − t.
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If b = c, then
N = αb = βc.

Otherwise, by the definition of α and β, we have

N = αb + βc.

If we equate these two expressions for N and use α + β = n − 1, then α and β are
obtained.

Corollary 1.2 Suppose b < c. Then the following hold:

(i) c − b divides nc − c − k2 + t;

(ii) if αβ �= 0, then (n − 1)b < k2 − t < (n − 1)c.

2 Constructions

Firstly we will give a construction of Deza digraphs using Cayley digraphs.

Proposition 2.1 Let G be a finite group of order n and let S be a k-subset of G not
containing the identity element e of G. If

S2 = bB ∪ cC ∪ t{e},
where B, C and {e} partition G, then the Cayley digraph Cay(G, S) is an (n, k, b, c, t)-
Deza digraph.

Proof. The proof is obvious and will be omitted.

Let Γ1 and Γ2 be digraphs. The lexicographic product Γ1[Γ2] of Γ1 and Γ2 is a
digraph with vertex set V (Γ1) × V (Γ2) and adjacency defined by

∂((u1, u2), (v1, v2)) = 1 if and only if ∂(u1, v1) = 1 oru1 = v1, ∂(u2, v2) = 1.

Let Γ be a digraph with adjacency matrix A and n vertices. Γ is called a strongly
regular digraph with parameters (n, k, µ, λ, t), if

A2 = tI + λA + µ(J − I − A),

JA = AJ = kJ.

The parameters are related by the equation

k(k + (µ − λ)) = t + (n − 1)µ.

These graphs were first investigated by Duval in [1]. For more information about
strongly regular digraphs, see [3], [4].

Note that if B or C is A, then a Deza digraph is a strongly regular digraph.
The next theorem tells us how to derive a Deza digraph using a strongly regular

digraph.
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Theorem 2.2 Let Γ1 be a strongly regular digraph with parameters (n, k, λ, µ, t) and
let Γ2 be an (n′, k′, b, c, t′)-Deza digraph. Then Γ1[Γ2] is a Deza digraph if and only
if

|{b + tn′, c + tn′, µn′, λn′ + 2k′}| ≤ 2.

Proof. Let u = (u1, u2) and v = (v1, v2) be vertices of Γ1[Γ2]. Then

|Nu,v| =




b + tn′, if u1 = v1 and |Nu2,v2 | = b,
c + tn′, if u1 = v1 and |Nu2,v2 | = c,
λn′ + 2k′, if ∂(u1, v1) = 1,
µn′, if ∂(u1, v1) > 1.

Hence Γ1[Γ2] is a Deza digraph if and only if these numbers take on at most two
values.

Two corollaries follow easily from the theorem.

Corollary 2.3 Let Γ be a strongly regular digraph with parameters (n, k, λ, µ, 0), and
let Km be a complete graph on m vertices. Then Γ[Km] is a Deza digraph if and only
if

µ − λ = 1 and m = 2.

Corollary 2.4 Let Γ1 be a strongly regular digraph with parameters (n, k, λ, λ, t),
and let Kn′ be a coclique on n′ vertices. Then Γ1[Kn′] is an (nn′, kn′, λn′, λn′, tn′)-
Deza digraph.

Theorem 2.5 Let Γ1 and Γ2 be two digraphs. The product Γ1 × Γ2 of Γ1 and Γ2 is
a Deza digraph if and only if it is in the list below.

(i) Γ1 = Kn for some n ≥ 2 and Γ2 is an (n′, k, b, c, t)-Deza digraph with b = c or
c = 0.

(ii) Γ1 is an (n, k, b, c, t)-Deza digraph and Γ2 is an (n′, k′, b′, c′, t′)-Deza digraph,
where (b, c), (b′, c′) ∈ {(2, 2), (2, 0)}.

Proof. First note that Γ1×Γ2 is regular if and only if both of Γ1 and Γ2 are regular.
Moreover, the degree of Γ1 × Γ2 is the sum of the degrees of Γ1 and Γ2.

Now suppose u = (u1, u2) and v = (v1, v2) are two distinct vertices of Γ1 × Γ2. It
is easy to check that

|Nu,v| =




|Nu2,v2 |, if u1 = v1,
|Nu1,v1 |, if u2 = v2,
2, if ∂(u1, v1) = ∂(u2, v2) = 1,
0, otherwise.

Case 1. Γ1 = Kn for some n ≥ 2. Then the third case for the size of Nu,v

given above does not occur. So Γ1 × Γ2 is a Deza digraph if and only if Γ2 is an
(n′, k, b, c, t)-Deza digraph with b = c or c = 0. Thus (i) occurs.

Case 2, Both 0 and 2 appear as the value of |Nu,v|, so (ii) follows.
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3 Connection to weakly distance-regular digraphs

In this section, we will discuss the connections to weakly distance-regular digraphs.

For any two vertices x, y ∈ V (Γ), define ∂̃(x, y) = (∂(x, y), ∂(y, x)).

Definition 3.1 A connected digraph Γ is said to be weakly distance-regular if

pk̃
ĩ,j̃(x, y) = |{z ∈ V (Γ) | ∂̃(x, z) = ĩ and ∂̃(z, y) = j̃}|

depends only on k̃, ĩ, j̃ and does not depend on the choices of x and y with ∂̃(x, y) = k̃.

As a natural generalization of distance-regular graphs, weakly distance-regular
digraphs were introduced in [5].

Theorem 3.1 Let Γ be a weakly distance-regular digraph of diameter d. Let

F = {(1, i) | ∂̃(x, y) = (1, i) for some x, y ∈ V (Γ)}.

Then Γ is a Deza digraph if and only if

∑
ĩ,j̃∈F

pk̃
ĩ,j̃

takes on at most two values as k̃ ranges over {∂̃(x, y) | x, y ∈ V (Γ)}.

Proof. Let u and v be two vertices of Γ with ∂̃(u, v) = k̃. Then

|Nu,v| =
∑

ĩ,j̃∈F

pk̃
ĩ,j̃ .

Hence, Γ is a Deza digraph only when these numbers take on at most two values.

We know that Γ = Cay(Zn × Z2, {(1, 0), (0, 1)}) is a weakly distance-regular
digraph. By the above theorem, it is a Deza digraph.

Note that a weakly distance-regular digraph is distance-regular if ∂(x, y) = ∂(x′, y′)
implies ∂(y, x) = ∂(y′, x′) for all x, y, x′, y′ ∈ V (Γ).

Corollary 3.2 A distance-regular digraph Γ of diameter d is a Deza digraph if and
only if one of the following holds.

(i) d = 2,

(ii) p1
1,1 = 0,

(iii) p2
1,1 = p1

1,1.
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