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Abstract

A graph H is said to be light in a class G of graphs if at least one member
of G contains a copy of H and there is an integer w(H,G) such that each
member G of G with a subgraph isomorphic with H has also a copy H
with degree sum

∑
x∈V (H)

degG(x) ≤ w(H,G).

In this paper we prove that all proper spanning subgraphs H of the
complete graph K4 are light in the class G of large graphs of minimum
degree 5 embedded in a compact 2-manifold. The exact values of w(H,G)
are determined as well. Moreover, we have proved that K4 itself is not
light in this family G.

1 Introduction

An orientable compact 2-manifold Sg or orientable surface Sg (see [17]) of genus g is
obtained from the sphere by adding g handles. A non-orientable compact 2-manifold
Nq or non-orientable surface Nq of genus q is obtained from the sphere by adding q
crosscaps. The Euler characteristic of a surface is defined by

χ(Sg) = 2 − 2g and χ(Nq) = 2 − q.
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Compact 2-manifolds are called surfaces for short throughout the paper. We shall
consider graphs without loops and multiple edges. Multigraphs may have loops or
multiple edges.

If a graph G is embedded in a surface M then the connected components of
M − G are called the faces of G. If each face is an open disc then the embedding is
called a 2-cell embedding. If each vertex has degree ≥ 3 and each vertex of degree
h is incident with h different faces then G is called a map in M. If, in addition, G
is 3-connected and the embedding has “representativity” at least three, then G is
called a polyhedral map in M, see e.g. Robertson and Vitray [18] or Mohar [15]. Let
us recall that the representativity rep(G, M) (or face width) of a (2-cell) embedded
graph G into a manifold M is equal to the smallest number k such that M contains
a noncontractible closed curve that intersects the graph G in k points. We say that
H is a subgraph of a polyhedral map G if H is a subgraph of the underlying graph
of the map G.

The facial walk of a face α in a 2-cell embedding is the shortest closed walk
induced by all the edges incident with α. The degree or size of a face α of a 2-cell
embedding is the length of its facial walk. Vertices and faces of degree i are called
i-vertices and i-faces, respectively. A (2-cell) 3-face is also said to be a triangle. The
number of i-faces and j-vertices in a map is denoted by fi and nj , respectively. For
a map G let V (G), E(G) and F (G) be the vertex set, the edge set and the face set
of G, respectively.

For a 2-cell embedding G in a manifold M the famous Euler’s formula states

|V (G)| − |E(G)| + |F (G)| = χ(M).

The degree of a vertex v in G is denoted by degG(v) or deg(v) if G is known from
the context. Correspondingly, degG(α) and deg(α) denote the size of a face α. A
path and a cycle on k distinct vertices is defined to be the k-path and the k-cycle,
respectively. A k-path is always denoted by Pk. The length of a path or a cycle is
the number of its edges.

It is a consequence of Euler’s formula that each planar graph contains a vertex
of degree at most 5. It is well known that any graph embedded in a surface M with
Euler characteristic χ(M) �= 2 has minimum degree

δ(G) ≤
⌊

5 +
√

49 − 24χ(M)

2

⌋
.

(For a proof see e.g. Sachs [19], p. 227.)
For two graphs H and G we write G ∼= H if the graphs H and G are isomorphic.

A beautiful theorem of Kotzig [13, 14] states that every 3-connected planar graph
contains an edge with degree sum of its endvertices being at most 13. This result was
further developed in various directions and served as a starting point for discovering
many structural properties of embeddings of graphs. For example Ivančo [5] has
proved that every polyhedral map on Sg contains an edge with degree sum of their
end vertices being at most 2g + 13 if 0 ≤ g ≤ 3 and at most 4g + 7, if g ≥ 4. For
other results in this area see e.g. our surveys [9] and [10].
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The weight of a subgraph H of a graph G is the sum of the degrees (in G) of
its vertices. Let G be a class of graphs and let H be a connected graph such that
infinitely many members of G contain a subgraph isomorphic to H. Then we define
w(H,G) to be the smallest integer w such that each graph G ∈ G which contains a
subgraph isomorphic to H has a subgraph isomorphic to H of weight at most w. If
w(H,G) exists then H is called light in G, otherwise H is heavy in G. For brevity, we
write w(H) if G is known from the context.

Fabrici and Jendrol’ [3] showed that all paths are light in the class of all 3-
connected planar graphs. They further showed that no other connected graphs are
light in the class of all 3-connected planar graphs. Fabrici, Hexel, Jendrol’ and
Walther [2] proved that the situation remains unchanged if the minimum degree is
raised to four, i.e., in this class of graphs only the paths are light. Mohar [16] showed
that the same is true for 4-connected planar graphs.

The situation is the same on each compact 2-manifold M other than the plane.
We proved [8] that all paths are light in the class of all polyhedral maps on a compact
2-manifold M, and each other connected graph is not light in this class. From the
counterexamples of Fabrici, Hexel, Jendrol’ and Walther [2] and Mohar [16] we can
derive counterexamples which show that only the paths are light in the class of all
polyhedral maps on M of minimum degree 4; moreover, only the paths are light in
the class of all 4-connected polyhedral maps on M. There is a dramatic change when
passing to the class of all polyhedral maps on M of minimum degree 5. In this class
not only the paths but also some cycles, stars, etc. are light. In [11] we surveyed the
weights known in this class.

For more information we refer the reader to our survey [10] on light subgraphs in
plane graphs and in graphs embedded in the projective plane and to our survey [9]
on light subgraphs in graphs on surfaces M of Euler characteristic χ(M) ≤ 0.

First we briefly recall the results of our paper [11] on light subgraphs of order
≤ 3.

Each 2-cell embedding G on a surface M of Euler characteristic χ(M) ≤ 0 with
vertex number n ≥ 6|χ(M)| contains a vertex of degree at most 6. If G has enough
vertices of degree > 6, i.e., n > 6|χ(M)|, then G contains even a vertex of degree
at most 5. A graph G on M is said to be large if it has a large number of vertices
or a large positive charge. The positive charge ch(G) of a graph G is defined to be
ch(G) :=

∑
deg(v)≥7

(degG(v)−6). (Here and in the sequel the sum in
∑

deg(v)≥7

(degG(v)−6)

is taken over all k-vertices v ∈ V (G) with k ≥ 7.) Here we will study large 2-cell
embeddings of minimum degree 5 in surfaces M .

Our theorems are formulated and proved for the wider class of 2-cell embeddings
of graphs of minimum degree ≥ 5 in surfaces . We remark that each connected graph
has a 2-cell embedding in a compact 2-manifold. Thus this restriction is not essential
in the class of all graphs embedded in M.

All connected graphs of order ≤ 3 are light.

Theorem 1 (Jendrol’ and Voss [11]). Let G be a 2-cell embedding of a graph of
minimum degree ≥ 5 in a surface M of Euler characteristic χ(M) ≤ 0. Then G
contains a triangle of weight at most 18, if
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(a)
∑

deg(v)≥7

(degG(v) − 6) > 24|χ(M)|, or

(b) the number of vertices of G is n > 83|χ(M)|, or

(c) G is a triangulation with more than 18|χ(M)| 5-vertices.

The bound 18 is tight.

For the connected subgraphs of a 3-cycle Theorem 1 implies immediately:

Corollary 2. The graphs of Theorem 1 contain paths P1, P2, P3 of weights w(P1) ≤
6, w(P2) ≤ 12, w(P3) ≤ 18. All bounds are tight, if the number of vertices n >
83|χ(M)|.

If the positive charge of the graphs of Theorem 1 is large enough then the upper
bound 18 can be lowered to 17 for the path P3 on three vertices.

Theorem 3. Let G be a 2-cell embedding of a graph of minimum degree ≥ 5 in a
surface M of Euler characteristic χ(M) ≤ 0. Then G contains a 3-path P3 of weight
at most 17, if its positive charge

ch(G) =
∑

deg(v)≥7

(degG(v) − 6) > 16|χ(M)|.

Moreover, if G has more than 10|χ(M)| 5-vertices then G again contains a 3-path of
weight at most 17. The bound 17 is tight.

Note in the second assertion of Theorem 3 the graph G is not necessarily a
triangulation (compare with Theorem 1).

By a slight extention of the proof of Theorem 3 in [11] a proof of Corollary 4 can
be obtained.

Corollary 4. The graphs of Theorem 5 contain paths P1 and P2 of weight w(P1) ≤ 5
and w(P2) ≤ 11. These bounds are tight.

In the following we deal with subgraphs of order 4. A diamond D4 is a graph
obtained from the complete graph K4 by deleting one edge and embedding it in a
surface so as to form two (2-cell) 3-faces with one common edge. A kite T4 is a
subgraph of D4 obtained from D4 by deleting an edge incident with a 2-vertex of D4.

The kite T4 is light.

Theorem 5. Let G be a 2-cell embedding of a graph of minimum degree ≥ 5 in a
surface M of Euler characteristic χ(M) ≤ 0. G has a kite T4 of weight w(T4) ≤ 24,
if

(a)
∑

deg(v)≥7

(deg(v) − 6) > 36|χ(M)|, or if

(b) the number of vertices is n > 149|χ(M)|.
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Moreover, the bound 24 is sharp, if the number of vertices n > 149|χ(M)|.
For the connected subgraphs of a kite Theorem 5 implies:

Corollary 6. The graphs of Theorem 5 contain a 4-path P4 and a 3-star K1,3 of
weight w(P4) ≤ 24 and w(K1,3) ≤ 24, respectively. All these bounds are tight if the
number of vertices n > 149|χ(M)|.

If the positive charge of the graphs of Theorem 5 is large enough then the upper
bound 24 can be lowered to 23.

Theorem 7. Let G be a 2-cell embedding of a graph of minimum degree ≥ 5 in a
surface M of Euler characteristic χ(M) ≤ 0. The graph G has a kite T4 of weight
w(T4) ≤ 23, if ∑

deg(v)≥7

(degG(v) − 6) > 150|χ(M)|.

For connected spanning subgraphs of a kite Theorem 7 implies:

Theorem 8. The graphs of Theorem 7 contain a 4-path P4 and a 3-star K1,3 of
weight w(P4) ≤ 23 and w(K1,3) ≤ 23, respectively. All these bounds are tight if the
positive charge > 150|χ(M)|.

The result about kites cannot be derived from the corresponding results relating
to diamonds. There are polyhedral maps of M in which each diamond has weight
≥ 27.

Theorem 9. Let G be a 2-cell embedding of a graph of minimum degree ≥ 5 in a
surface M of Euler characteristic χ(M) ≤ 0. Then the map G has a diamond D4 of
weight w(D4) ≤ 27, if

(a)
∑

deg(v)≥7

(deg(v) − 6) > 186|χ(M)|, or if

(b) the number of vertices n > 335|χ(M)|.
Moreover, if G has no 12-vertices, or no 12- and 11-vertices, or no 12-, 11- and
10-vertices, then G has a diamond D4 of weight w(D4) ≤ 26, or w(D4) ≤ 25, or
w(D4) ≤ 24, respectively.

The previous assertion can be generalized.

Theorem 10. Let G be a 2-cell embedding of a graph of minimum degree ≥ 5 in a
compact 2-manifold M of Euler characteristic χ(M) ≤ 0.
Let c0, c1, c2 be real numbers. Let

σ(G) :=
∑

deg(v)≥7

(deg(v) − 6) − 186|χ(M)| and

n∗ := n − 335|χ(M)|. The map G has a diamond D4 with weight w(D4) :
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(i) w(D4) ≤ 27, if σ(G) > 0 or n∗ > 0.

(ii) w(D4) ≤ 26, if v12 ≤ c2 and σ(G) > 14c2 or n∗ > 75c2.

(iii) w(D4) ≤ 25, if n12 ≤ c2 & n11 ≤ c1 and

σ(G) > 14c2 + 28c1 or n∗ > 75c2 + 49c1.

(iv) w(D4) ≤ 24, if n12 ≤ c2 & n11 ≤ c1 & n10 ≤ c0 and

σ(G) > 14c2 + 28c1 + 42c0 or n∗ > 75c2 + 49c1 + 22c0.

If M = S0 is the plane then by Jendrol’ and Madaras [6] the precise bound for
both the 4-path P4 and the 3-star K1,3 is 23. Borodin and Woodall [1] proved that
25 is the precise bound for the 4-cycle in triangulations of the plane. The proofs of
Jendrol’ and Madaras [6] and Borodin and Woodall [1] for the plane can be extended
to a proof for the projective plane; thus the bound 23 for the 4-path P4 and the
3-star K1,3 and the bound 25 for the 4-cycle in triangulations is also valid for the
projective plane. For methods of extending see e.g. Sanders [20]. We conjecture:

Conjecture. Let G be a graph of minimum degree ≥ 5 embedded in the plane or the
projective plane. Then G contains a diamond D4 of weight w(D4) ≤ 25. Moreover,
if G does not have 10-vertices then G has a diamond D4 of weight w(D4) ≤ 24. If
true both bounds are tight.

If M is the torus S1 or the Klein bottle N2, i.e., χ(M) ≤ 0, then condition (b)
of Theorem 5 and condition (b) of Theorem 9 give no restrictions to the number of
vertices of G. Hence Theorem 5, Corollary 6, and Theorem 9 are valid for all graphs
G of minimum degree ≥ 5 embedded in the torus S1 or in the Klein bottle N2. Thus
24 is the precise bound for the weight of the kite T4, the 4-path P4, and the 3-star
K1,3, and 27 is the precise bound for the diamond D4. Moreover, w(D4) ≤ 26, or 25,
or 24, if G has no 12-vertices, or no 12-and 11-vertices, or no 12-, 11-, and 10-vertices,
respectively. But Theorem 7 and Corollary 8 imply: if these graphs contain at least
one vertex of degree ≥ 7 then 23 is the precise bound for T4, P4 and K1,3. Now it
follows easily from Euler’s formula that the bound 24 for D4, P4, or K1,3 are only
attained at the triangulations of the torus and the Klein bottle in which each vertex
has degree 6.

In the paper [12] we will deal with the cycles of lengths 5. Particularly, we will
prove:

Let G be a graph of minimum degree ≥ 5 embedded in a surface M of Euler
characteristic χ(M) ≤ 0. The graph G has a 5-cycle C∗

5 with one diagonal of weight
w(C∗

5) ≤ 32, if

(a)
∑

deg(v)≥7

(deg(v) − 6) > 396|χ(M)|, or

(b) the number of vertices n > 1859|χ(M)|.
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Moreover, if G has no 12-vertices then G has a 5-cycle C5 of weight w(C5) ≤ 31.
Jendrol’, Madaras, Soták, and Tuza [7] proved that no plane connected graph H

with maximum degree �(H) ≥ 6 or with a block having ≥ 11 vertices is light in the
class of all polyhedral plane maps of minimum degree ≥ 5. Moreover, they proved
that all cycles Cs, s ≥ 11, and all stars K1,r, r ≥ 5, are not light in this class. Hexel
[4] investigated this question in the families of all 4- or 5-connected plane maps.

Here we present the smallest plane connected graph which is not light in the class
of all polyhedral maps of minimum degree ≥ 5 embedded in M, when M differs from
the plane or the projective plane.

Theorem 11. Let M be a surface. The complete graph K4 on four vertices is not
light in the class of all polyhedral maps of M.

Finally we consider multigraphs H of minimum degree ≥ 5 embedded in M such
that the minimum face size is at least 3. The weight of a face α of H is the degree
sum of its vertices, where a vertex v is counted l times if v appears precisely l times
on the boundary of α.

The proofs of Theorem 10 can be used to establish the following result.

Theorem 12. Let H be a multigraph of minimum degree ≥ 5 embedded in a surface
M of Euler characteristic χ(M) ≤ 0 so that the minimum face size ≥ 3. Then H
contains a 2-cell 4-face F ∗

4 with one diagonal of weight w(F ∗
4 ) ≤ 27, if

(a)
∑

deg(v)≥7

(deg(v) − 6) > 186|χ(M)|, or if

(b) the number of vertices n > 335|χ(M)|.

Moreover, if G has no 12-vertices or no 12- and 11-vertices, or no 12-, 11- and 10-
vertices then G has a 2-cell 4-face F ∗

4 with one diagonal of weight w(F ∗
4 ) ≤ 26, or

w(F ∗
4 ) ≤ 25, or w(F ∗

4 ) ≤ 24, respectively.

Note, there are multigraphs with these properties without a 3-cycle. Thus the
existence of a light triangle does not imply the existence of a light 3-cycle.

2 Proof of Theorem 5 — the upper bound for kites

Let G be a counterexample with n vertices having the largest possible number of
edges. Than each kite T4 has a weight ≥ 25.

We assign the charges c(v) = degG(v)−6 and c(α) = 2 degG(α)−6 to each vertex
v and to each face α of G, respectively. Then Euler’s formula implies

∑
v∈V

c(v) +
∑
α∈F

c(α) =
∑
v∈V

(degG(v) − 6) +
∑
α∈F

(2 degG(α) − 6)(1)

= −6χ(M) = 6|χ(M)|,
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because χ(M) ≤ 0.
We redistribute the charges according the following rules:

Rules of Discharging.
Let ε be a real number with 0 ≤ ε ≤ 1

15
.

Rule R1. Let α be a face of size degG(α) ≥ 4.
(a) If α is a 4-face incident with a vertex of degree ≥ 6 or degG(α) ≥ 5 then α sends
the charge 2

3
− ε to each 5-neighbour.

(b) If α is a 4-face incident only with 5-vertices then α sends the charge 1
3

+ ε to
each 5-neighbour. In this case we say that α has property E .

Rule R2. Suppose u is a 5-vertex adjacent with a vertex v of degree ≥ 7 such that
the edge uv belongs to two 3-faces.
(a) If degG(v) = 7 then v sends 1

4
to u.

(b) If degG(v) ≥ 8 then v sends 1
3

+ ε to u.

We remark that in Rule R1 the charge 1
3

+ ε < 2
3
− ε.

(2) c∗(v) ≥




0, if degG(v) ∈ {5, 6},
1
4
, 2

3
− 4ε, 5

3
− 4ε if degG(v) = 7, 8, 9, respectively,(

2
3
− ε

)
d − 6 ≥ 2

3
− 10ε, if degG(v) = d ≥ 10

c∗(α) ≥




0, if degG(α) = 3

3ε, if degG(α) = 4(
4
3

+ ε
)
r − 6 ≥ 2

3
+ 5ε, if degG(α) = r ≥ 5.

Proof of (2). Let v be an arbitrary vertex of degree d and let α be an r-face of G.
Let H denote the subgraph of G induced by v and its neighbours. There are several
cases.

1. d = 5
If u is a neighbour of v then u, u+, u++, u+++ = u−−, u−, u denote the neighbours of
u in this cyclic order around v.
1.1. Let v be incident only with triangles.
Each kite of H contains a vertex of degree ≥ 7. Hence v has at least three neighbours
of a degree ≥ 7, say x, y, and z.
If x, y, x have degrees ≥ 8 then x, y, z send a total charge ≥ 3

(
1
3

+ ε
)

= 1 + 3ε ≥ 1
to v.
Next, without loss of generality, let x be a 7-vertex. Since H � {y, z} is a kite the
vertex v has a neighbour w of degree ≥ 7, w /∈ {x, y, z}. Therefore, x, y, z and w
send a total charge ≥ 4 × 1

4
= 1 to v.

1.2. Let v be incident with at least two faces of size ≥ 4. If v is incident with three
faces of size ≥ 4 then they send a total charge ≥ 3

(
1
3

+ ε
)

= 1 + 3ε ≥ 1 to v. If v is
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incident with two faces of size ≥ 4, one of them is no 4-face with E , then these two
faces send a total charge ≥

(
2
3
− ε

)
+

(
1
3

+ ε
)

= 1 to v.
Next let v be incident with precisely two 4-faces with E , say α and β. There is

a neighbour ū of v, ū ∈ H � {α, β}, forming with three 5-vertices of α
⋃

β a kite
of weight ≥ 25. Hence ū has a degree ≥ 10 sending a charge ≥ 1

3
+ ε to v. Thus v

receives
(

1
3

+ ε
)

+ 2
(

1
3

+ ε
)

= 1 + 3e ≥ 1 from its neighbourhood.

1.3. Let α be a 4-face only incident with 5-vertices. The face α sends ≥ 1
3

+ ε to v.
Let u be incident with α, then (α∪H)�{u, u−, u−−} and (α∪H)�{u+, u++, u+++}
induce subgraphs of G containing a kite. Therefore the vertices u− and u++ have
a degree ≥ 10, each sending a charge ≥ 1

3
+ ε to v. Hence v receives a charge

≥ 3
(

1
3

+ ε
)

= 1 + 3ε > 1 from its neighbourhood.

2. d = 6. In this case c∗(v) = c(v) = 0.
By Rule R2 each 5-neighbour u of v receiving a positive charge from a vertex v of

degree ≥ 7 has the property that the edge vu is in two triangles. Such a 5-neighbour
is also called a receiving 5-neighbour.

3. 7 ≤ d ≤ 9.
Any two consecutive 5-neighbours u, u+ of v receiving a positive charge from v form
with v a triangle vuu+v. A third 5-neighbour forms with vuu+v a kite of weight
≤ 24, a contradiction! Thus v has at most ρ 5-neighbours receiving a positive charge
from v, where ρ = 3, if d = 7, and ρ = 4, if d ∈ {8, 9}.
If d = 7 then v sends a total charge ≤ 3 × 1

4
= 3

4
to its neighbourhood, and c∗(v) ≥

1− 3
4

= 1
4
. If d ∈ {8, 9} then v sends a total charge ≤ 4

(
1
3

+ ε
)

to its neighbourhood,
and c∗(v) ≥ d − 6 − 4

(
1
3

+ ε
)
. Hence c∗(v) ≥ 2

3
− 4ε or c∗(v) ≥ 5

3
− 4ε, if d = 8 or

d = 9, respectively.

4. d ≥ 10.
The vertex v sends to each neighbour a charge ≤ 1

3
+ ε. Hence c∗(v) ≥ d − 6 −

d
(

1
3

+ ε
)

=
(

2
3
− ε

)
d − 6 ≥ 2

3
− 10ε.

5. r = 3. Obviously, c∗(α) = c(α) = 0.

6. r = 4. If α is only incident with 5-vertices then

c∗(α) ≥ c(α) − 4 ×
(

1

3
+ ε

)
=

2

3
− 4ε ≥ 3ε.

If α is incident with a vertex of degree ≥ 6 then

c∗(α) = c(α) − 3 ×
(

2

3
− ε

)
= 3ε.

7. r = 5. By our rules:

c∗(α) ≥ 2r − 6 − r ×
(

2

3
− ε

)
=

(
4

3
+ ε

)
r − 6 ≥ 2

3
+ 5ε



180 S. JENDROL’ AND H.-J. VOSS

The proof of (2) is complete. �

The assertion (2) implies:

If ε = 0 then c∗(v) ≥ 1

6
(degG(v) − 6)(3)

for all vertices v of degree ≥ 7, c∗(v) ≥ 0 for all vertices v of degrees 5 and 6, and
c∗(α) ≥ 0 for all faces α.
For ε = 0 assertions (1) and (3) with

∑
deg(v)≥7

(degG(v) − 6) > 36|χ(M)| imply

6|χ(M)| =
∑

v∈V (G)

c(v) +
∑

α∈F (G)

c(α) =
∑

v∈V (G)

c∗(v) +
∑

α∈F (G)

c∗(α) ≥

≥
∑

v∈V (G),deg(v)≥7

c∗(v) ≥ 1

6

∑
deg(v)≥7

(degG(v) − 6) > 6|χ(M)|.

This contradiction shows that there is no counterexample in case (a) of Theorem 5.
Thus the proof of assertion (a) is complete.

Next the proof of (b) will be completed. Let ε = 1
35

. A triangle is said to be light
if it is only incident with vertices of degrees ≤ 6. We discharge vertices and faces a
second time according the following rules.

Rule R∗1. If a vertex of degree ≥ 7 is incident with a triangle β then v sends 1
50

to β.

Rule R∗2. If a vertex v of degree ≥ 7 is incident with a triangle β which has a
common edge with a light triangle γ then v sends 1

150
to γ.

Rule R∗3. If an r-face α, r ≥ 4, has a common edge with a light triangle β then α
sends 1

3.50
to β.

With ε =
1

35
the new charges are:(4)

c∗∗(α) ≥ (r − 2)
1

50
for all faces α.

c∗∗(v) ≥ 0 for all vertices v.

Proof of (4). Let α be an r-face. Assertion (2) with ε = 1
35

implies:
If r = 3 and α is incident with a vertex of degree ≥ 7 then by Rule R∗1 the face α
receives 1

50
from v.

If r = 3 and α is incident only with vertices of degrees ≤ 6 then α is a light face.
The triangle α has a common edge with three faces β1, β2 and β3. If β1 has a size
≥ 4 then by Rule R∗3 the face β1 sends 1

150
to α. If β1 is a triangle then α ∪ β1

contains a kite of weight ≥ 25. Hence the unique vertex z1 of β1�α has a degree ≥ 7,
and by Rule R∗2 the vertex z1 sends 1

150
to α. Consenquently, the face α receives
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1
150

from each of its neighbouring faces. Thus α receives the total charge 1
50

, and
c∗∗(α) ≥ c∗(α) + 3 1

150
= 1

50
.

If r = 4 then c∗∗(α) ≥ c∗(α) − 4 1
150

= 3
35

− 4 1
150

= 31
525

≥ 2
50

.
If r ≥ 5 then c∗∗(α) ≥

(
4
3

+ 1
35

)
r − 6 − r 1

150
= 1423

1050
r − 6 ≥ 1

50
(r − 2).

Let v be a d-vertex. Assertion (3) with ε = 1
35

implies:
If d ∈ {5, 6} then c∗∗(v) = c∗(v) ≥ 0.
If v is a vertex of degree ≥ 7 then v sends to each neighbouring face β a charge ≤ 1

50
.

If β is a triangle and γ is a light triangle having with β a common edge (γ does not
contain v) then v sends a charge ≤ 1

150
to γ. Hence c∗∗(v) ≥ c∗(v) − 4

150
d.

If d = 7, 8, or 9 then c∗(v) ≥ 1
4
, 2

3
− 4

35
, and 5

3
− 4

35
and c∗∗(v) ≥ 19

300
, 178

525
, and 689

525
,

respectively. Hence c∗∗(v) > 0 for d ∈ {7, 8, 9}.
If d ≥ 10 then c∗(v) ≥

(
2
3
− 1

35

)
d − 6 and

c∗∗(v) ≥
((

2

3
− 1

35

)
d − 6

)
− d

4

3 × 50
=

107

175
d − 6 ≥ 107

175
× 10 − 6 > 0.

�

Next each r-face α, r ≥ 4, will be subdivided into r − 2 triangles by introducing
r − 3 diagonals. The charge ≥ r−2

50
will be redistributed to the new triangles so that

each new triangle has a charge ≥ 1
50

. Thus a (semi-)triangulation T is obtained,
each triangle β of T has a charge c∗∗∗(β) ≥ 1

50
, and each vertex v has the charge

c∗∗∗(v) = c∗∗(v) ≥ 0 by assertion (4).
Let f denote the number of faces of T . It is well known that f = 2(n + |χ(M)|),

where n denotes the number of vertices of T . Consequently, with n > 149|χ(M)|
vertices we obtain

6|χ(M)| =
∑

v∈V (G)

c(v) +
∑

α∈F (G)

c(α) =

=
∑

v∈V (G)

c∗∗∗(v) +
∑

β∈F (T )

c∗∗∗(β) ≥

=
∑

β∈F (T )

c∗∗∗(β) ≥ 1

50
f =

1

50
2(n + |χ(M)|)

> 6|χ(M)|.

This contradiction proves the assertion (b) of Theorem 5.

3 Proof of Theorem 7 — the improved upper bound for kites

Let G be a counterexample with n vertices having the largest possible number of
edges. Then each kite T4 has a weight ≥ 24. We assign the charges c(v) := degG(v)−6
and c(α) := 2 degG(α) − 6 to each vertex v and to each face α of G, respectively.

From Section 2 we know that Euler’s formula implies
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(1)
∑
v∈V

c(v) +
∑
α∈F

c(α) =

=
∑
v∈V

(degG(v) − 6) +
∑
α∈F

(2 degG(v) − 6) = −6χ(M) = 6|χ(M)|.

In a 2-cell embedding of a graph a face may meet a vertex several times, say
t-times. In this case for brevity we say that v is incident with t faces.

We redistribute the charges according the rules R1 and R2.
Rule R1. Let α be a face of G and u one of the 5-neighbours of α.

(a) If α has a size ≥ 6 or α is a 5-face incident with a vertex of degree ≥ 6 or α is
a 4-face incident with two vertices of degree ≥ 6 then α sends 1 to u.

(b) If α is a 5-face incident only with 5-vertices then α sends 4
5

to u.

(c) If α is a 4-face incident with precisely one vertex of degre ≥ 6 then α sends 2
3

to u.

(d) If α is a 4-face incident only with 5-vertices then α sends 1
2

to u.

If α meets u t-times then α sends the corresponding charge t-times.

Rule R2. Suppose u is a 5-vertex adjacent to a vertex v of degree ≥ 7 such that
the edge uv belongs to two triangles.

(a) If deg(v) = 7 and the two neighbours of v different from u, lying in the triangles
incident with the edge uv have a degree ≥ 6 then v sends 1

3
to u.

If deg(v) = 7 and one neighbour w of v, w �= u, lying in one triangle incident
with the edge uv has degree 5 or 6 then v sends 1

2
or 1 to u, respectively.

(b) If deg(v) = 8 then v sends 1
2

to u.

(c) If deg(v) = 9 and one neighbour of v has a degree ≥ 6 then v sends 1
3
+ 1

24
= 3

8

to u. If deg(v) = 9 and all neighbours of v have degree 5 then v sends 1
3

to u.

(d) If deg(v) ≥ 10 then v sends 2
5

to u.

We claim

After applying Rules R1 and R2 to G, the second charge c∗(v) ≥ 0 and(2)

c∗(α) ≥ 0 for each vertex v ∈ V (G) and each face α ∈ F (G), respectively.

Moreover,

c∗(v) ≥ 1

24
for each 5-vertex of G.
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Proof of (2).

Let v be an arbitrary vertex of degree d. Let H denote the subgraph of G induced
by v and its neighbours. There are several cases.

Consider first 5-vertices, i.e. d = 5. If u is a neighbour of v then u, u+, u++, u−−, u−, u
denote the neighbours of v in this cyclic order around v.

1. Let v be incident only with triangles. Each kite of H contains a vertex of degree
≥ 7. Hence v has at least three neighbours of a degree ≥ 7.

If v has a least 4 neighbours of degree ≥ 7 then they send a total charge ≥ 4× 1
3

= 4
3

to v, and c∗(v) = −1 + 4
3

= 1
3
. Next let v have precisely three vertices of degree

≥ 7. If v has an 8-neighbour or a neighbour of degree ≥ 10 then this vertex and the
two other vertices of degree ≥ 7 send a total charge ≥ 2

5
+ 2 × 1

3
= 1 + 1

15
to v, and

c∗(v) ≥ −1 +
(
1 + 1

15

)
= 1

15
. Next let v have precisely three 7- and 9-vertices.

1.1. If v has two 9-neighbours then one of these neighbours has a neighbour of degree
≥ 6 and by Rule R2(c) it sends 1

3
+ 1

24
to v. Thus the three neighbours of degree ≥ 7

send a total charge ≥
(

1
3

+ 1
24

)
+2× 1

3
= 1+ 1

24
to v, and c∗(v) ≥ −1+

(
1 + 1

24

)
= 1

24
.

1.2. The vertex v has precisely one 9-neighbour, say u. If degG(u+) ≥ 6 or degG(u−)
≥ 6 then by the above used arguments c∗(v) ≥ 1

24
.

Next let degG(u+) = degG(u−) = 5. Then degG(u++) = degG(u−−) = 7, and
vu+u++vu− is a kite of weight 22, a contradiction!

1.3. The vertex v has no 9-neighbour. Therefore, v has three 7-neighbours and two
neighbours of degree ≤ 6, say x and y. Since the vertices x, y, v and a 7-vertex form a
kite of weight ≥ 24, the degrees degG(x) = degG(y) = 6. The vertex x is adjacent to
a 7-neighbour of v, say z. By Rule R2(a) the vertex z sends 1 to v. Hence the three
7-neighbours of v send a total charge ≥ 1+2× 1

3
to v, and c∗(v) ≥ −1+

(
1 + 2

3

)
= 2

3
.

2. Let v be incident with at least two faces of size ≥ 4.

If v is incident with three faces of size ≥ 4 then they send a total charge ≥ 3× 1
2

= 1+ 1
2

to v, and c∗(v) ≥ −1 +
(
1 + 1

2

)
= 1

2
.

If v is incident with two faces of size ≥ 4, one of them is no 4-face being only incident
with 5-vertices, then these two faces send a total charge ≥ 2

3
+ 1

2
= 1 + 1

6
to v, and

c∗(v) ≥ −1 +
(
1 + 1

6

)
= 1

6
.

Next let v be incident with precisely two 4-faces being only incident with 5-vertices,
say α and β. There is a neighbour u of v, u ∈ H �{α, β}, forming with three vertices
α ∪ β a kite of weight ≥ 24. Hence u has a degree ≥ 9 sending a charge ≥ 1

3
to v.

Thus v receives a total charge ≥ 1
3

+ 1
2

+ 1
2

= 1 + 1
3

from u, α, and β, respectively.
Thus c∗(v) ≥ −1 +

(
1 + 1

3

)
= 1

3
.

3. Let v be incident with precisely one face α of size ≥ 4. Let u and u+ denote the
neighbour of v such that vu and vu+ are edges of α. We consider three subcases.

3.1. If degG(v) ≥ 6 and degG(u+) ≥ 6 then by Rule R1a the face α sends the charge
1 to v. Since vu++u−−vu− is a kite of weight ≥ 24 our of the vertices u++, u−−, u−
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has degree ≥ 7 and sends a charge ≥ 1
3

to v. Hence v receives a charge ≥ 1 + 1
3

from
its neighbourhood, and c+(v) ≥ −1 +

(
1 + 1

3

)
= 1

3
.

3.2. If degG(u) = 5 and degG(u+) ≥ 6 then by Rules R1 the face α sends a charge
≥ 2

3
to v. If degG(u++) ≥ 8 then by Rules R2 vertex u++ sends a charge ≥ 1

3
+ 1

24
.

Hence v receives a charge ≥ 2
3

+
(

1
3

+ 1
24

)
= 1 + 1

24
from its neighbourhood, and

c∗(v) ≥ −1 +
(
1 + 1

24

)
= 1

24
. Next let degG(u++) ≤ 6. Since vu+u++vu−− and

vu+u++vu− are kites of weight ≥ 24 the degrees degG(u−) ≥ 8 and degG(u−−) ≥ 8.
Therefore by Rule R2 each of these two vertices sends a charge ≥ 1

3
+ 1

24
to v.

Hence v receives a charge ≥ 2
(

1
3

+ 1
24

)
+ 2

3
= 1 + 5

12
from its neighbourhood, and

c∗(v) ≥ −1 +
(
1 + 5

12

)
= 5

12
.

3.3. Finally let degG(u++) = 7. Since vu++u−−vu and vu−uvu++ are kites of weight
≥ 24 the degrees degG(u−−) ≥ 7 and degG(u−) ≥ 7. By Rule R2 each of the
three vertices u++, u−−, and u− sends a charge ≥ 1

3
to v. Hence v receives a charge

≥ 3 × 1
3

+ 2
3

= 5
3

from its neighbourhood, and c∗(v) ≥ −1 + 5
3

= 2
3
.

3.4. If degG(u) = degG(u+) = 5 then by Rule R1 the face α sends a charge ≥ 1
2

to v. Since vu+u++vu and vu−uvu+ are kites of weight 24 the vertices u++ and
u− have a degree ≥ 9. By Rule R2 the vertices u++ and u− send 1

3
to v, hence

the vertex v receives a charge ≥ 1
2

+ 2 × 1
3

= 1 + 1
6

from its neighbourhood, and
c∗(v) ≥ −1 +

(
1 + 1

6

)
= 1

6
.

Consider d-vertices, d ≥ 6. Obviously, c∗(v) = c(v) = 0, if degG(v) = 6.

d = 7 First let v be incident with a triangle vuu+v such that degG(u) = 5 and
degG(u+) ∈ {5, 6}. If w is a neighbour of v, w /∈ {u, u+} then vuu+vw is a kite of
weight ≥ 24, and degG(w) ≥ 6. Consequently, if u+ has degree 5 or 6 then v has
precisely two or one 5-neighbours receiving a charge from v, respectively. By Rule
R2 the vertex v sends 1 to its neighbourhood in both cases, and c∗(v) ≥ 1 − 1 = 0.
Next let v be incident with no triangle vuu+v such that degG(u) = 5 and degG(u+) ∈
{5, 6}. Therefore, v has no two consecutive 5-neighbours receiving a charge from v.
Then v has at most three 5-neighbours receiving a charge from v, and by Rule R2 the
vertex v sends a charge ≤ 3× 1

3
= 1 to its neighbourhood. Hence c∗(v) ≥ 1− 1 = 0.

d = 8
If v has two consecutive 5-neighbours, say u and u+, receiving a charge from v, then
uu+ is an edge of G. If w is a neighbour of v, w /∈ {u, u+} then vuu+vw is a kite
of weight ≥ 24 and degG(w) ≥ 6. Consequently, v has precisely two 5-neighbours
receiving a charge from v. If v has no two consecutive 5-neighbours receiving a charge
from v then v sends a charge to at most four 5-neighbours. Hence in all cases v sends
a charge ≤ 4 × 1

2
= 2 to its neighbourhood and c∗(v) ≥ 2 − 2 = 0.

d = 9
If v has a neighbour of degree ≥ 6 then v sends the charge 1

3
+ 1

24
to at most eight

5-neighbours. Hence v sends ≤ 8
(

1
3

+ 1
24

)
= 3 to its neighbourhood. If v has only

5-neighbours then v sends the charge 1
3

to at most nine 5-neighbours. Hence v sends
≤ 9 × 1

3
= 3 to its neighbourhood. Thus in all cases c∗(v) ≥ 3 − 3 = 0.

d ≥ 10
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By Rule R2 the vertex v sends a charge ≤ 2
5

to each neighbour. Hence v sends
≤ d × 2

5
to its neighbourhood, and

c∗(v) ≥ d − 6 − 2

5
d =

3

5
d − 6 ≥ 3

5
× 10 − 6 = 0.

It is obvious that the new charge c∗(α) ≥ 0 for all faces α ∈ F (G). This completes
the proof of (2).

Let n5 denote the number of 5-vertices of G. The assertion (1) implies

∑
deg(v)≥7

(degG(v) − 6) − n5 + 2
∑

α∈G(G)

(degG(α) − 3) = 6|χ(M)|.

With
∑

deg(v)≥7

(degG(v) − 6) > 150|χ(M)| this implies

v5 ≥
∑

deg(v)≥7

(degG(v) − 6) − 6|χ(M)| > 144|χ(M)|.(3)

The assertions (1), (2), and (3) imply

6|χ(M)| =
∑

v∈V (G)

c(v) +
∑

α∈F (G)

c(α) =

=
∑

v∈V (G)

c∗(v) +
∑

α∈F (G)

c∗(α) ≥

≥
∑

deg(v)=5

c∗(v) ≥ 1

24
n5 > 6|χ(M)|.

This contradiction shows that there is no counterexample. Thus the proof of Theo-
rem 7 is complete.

4 Proof of Theorem 10 — the upper bound for diamonds

Let G be a counterexample with n vertices. Then each diamond D4 has a weight
≥ w∗, where w∗ = 28, 27, 26, or 25 in the cases (i), (ii), (iii), or (iv), respectively.

We give a common proof with the hypothesis that the weight of each diamond
D4 is at least 25. The results we obtain are also valid in the other cases; only if it is
necessary are the stronger bounds 28, 27, or 26, respectively, used.

We assign the charges c(v) := degG(v) − 6 and c(α) := 2 degG(α) − 6 to each
vertex v and to each face α of G, respectively. Then these charges fulfill the equality
(1) of Section 2.

We redistribute the charges according the following rules.

Discharging faces

Rule R1. Let α be a face of size ≥ 4.
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Fig. 1 Fig. 2 Fig. 3 Fig. 4

(a) If α is a face of size ≥ 5 or α is a 4-face incident with a vertex of degree ≥ 6
then α sends 7

12
to each 5-neighbour.

(b) If α is a 4-face only incident with 5-vertices then α sends 23
48

to each 5-neighbour.

(c) Let β be a 3-face with boundary uvzu, where uv is also an edge of the boundary
of α (Fig. 1). If degG(z) = 5 and degG(u) ≥ 6, degG(v) ≥ 6 then α sends 1

12
to

z “across the edge uv”.

Discharging vertices
Suppose u is a 5-vertex adjacent to a vertex v of degree ≥ 7 such that the edge vu
belongs to two 3-faces, say vuzv and uvzu (Fig. 2).
Rule R2. Let degG(v) = 7.

(a) If degG(y) = 5 or degG(z) = 5 then v sends 5
24

to u.

(b) If degG(y) ≥ 6 and degG(z) ≥ 6 then v sends 1
4

to u.

Rule R3. Let degG(v) = 8.

(a) If degG(y) = 5 or degG(z) = 5 then v sends 7
24

to u.

(b) If degG(y) ≥ 6 and degG(z) ≥ 6 then v sends 5
12

to u.

(c) Let vyzv bound a 3-face γ, y �= u.

If degG(y) ≥ b, degG(z) ≥ 6 and degG(x) ≥ 6 then v sends to the vertex u the
charge 1

2
indead of 5

12
(Fig. 3).

(Note: the four consecutive neighbours x, z, u, y form a path xzuy.)

Rule R4. Let degG(v) = 9.

(a) If degG(y) = 5 or degG(z) = 5 then v sends 23
48

to u.

(b) If degG(y) ≥ 6 and degG(z) ≥ 6 then v sends 25
48

to u.

Rule R5. Let degG(v) ≥ 10.

(a) If degG(y) = 5 or degG(z) = 5 then v sends 25
48

to u.

(b) If deg(y) ≥ 6 and degG(z) ≥ 6 then v sends 7
12

to u.
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Rule R6. Let v be incident with a triangle β which has a common edge xy with a
triangle γ not containing v (Fig. 4). Let u denote the unique vertex of γ � β.
If degG(v) ≥ 8, degG(u) = 5, and degG(x) = degG(y) = 6 then v sends 1

24
to u “across

the edge xy”.

Lemma 1. The new charges c∗ of vertices and faces are:

c∗(v) ≥




0, if degG(v) ∈ {5, 6},
1
12

, 1
6
, 1

8
, if degG(v) = 7, 8, 9, respectively.

23d
48

− 6, if degG(v) = d ≥ 10.

c∗(α) ≥
{

1
12

, if degG(α) = 4
4r
3
− 6 ≥ 2

3
, if degG(α) = r ≥ 5.

Moreover

c∗(v) ≥




1
3
, if degG(v) = 10 and w∗ ≥ 26,

3
4
, if degG(v) = 11 and w∗ ≥ 27,

7
6
, if degG(v) = 12 and w∗ ≥ 28.

Proof of Lemma 1.
Let v be an arbitrary vertex of degree d. There are several cases.

d = 5
Let v have two objects of the following type:

(i) an r-face α, r ≥ 4, incident with v, and being no 4-face only incident with
5-vertices;

(ii) a neighbour ū of degree ≥ 10, and the edge ūv is incident with two 3-faces; or

(iii) a 4-face α incident only with 5-vertices.

The vertex v receives a charge ≥ 1 besides the case that v is incident with two 4-
faces which have only 5-neighbours. In this case there is a neighbour u belonging
to no 4-face. Since vu−uu+v is a diamond D4, it contains a vertex x of degree ≥ 7,
belonging to none of the two 4-faces. Therefore, by our rules the vertex x sends a
charge ≥ 5

24
to v. Hence c∗(v) ≥ 2

(
1
2
− 1

48

)
+ 5

24
> 1.

Next let v be incident with at most one object.

A. The vertex v has none of the objects (i), (ii), or (iii). Hence all neighbour faces of
v are triangles, the vertex v and its neighbourhood form a wheel H. Each neighbour
has a degree ≤ 9. Obviously, at most one neighbour of v has degree 5.

A1. Let v have a neighbour u of degree 5. Then all other neighbours have a degree
≥ 6. H contains two diamonds D4 and D′

4 which meet only in the edge vu and its
endvertices. Hence at least two neighbours of v have a degree ≥ 7. There are three
subcases, namely, 0, 1, or 2 neighbours of v have degree 6.
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A1.1. No neighbour of v has degree 6.
Hence v has four neighbours of a degree ≥ 7. Then each of the two diamonds D4

and D′
4 contains a vertex of degree ≥ 7 and a vertex of degree ≥ 8. Each vertex of

degree ≥ 7 sends a charge ≥ 5
24

to v and each vertex of degree ≥ 8 sends a charge 7
24

to v. Consequently, c∗(v) ≥ −1 + 2 × 5
24

+ 2 × 7
24

= 0.

A1.2. Precisely one neighbour has degree 6.

A1.2.1. The 6-neighbour of v belongs to a triangle containing u and v. Without
loss of generality, let u+ be the 6-neighbour of v. Since uu+vu−u and uu+u++vu are
diamonds D4 of a weight ≥ 25 the vertices u− and u++ are 9-vertices. By hypothesis
u+++ = u−− is a vertex of degree ≥ 7. It sends by Rule R2 the charge 1

4
to v. By

Rule R4 the vertices u++ and u− send the charge 25
48

and 23
48

to v, respectively. Hence
c∗(v) ≥ −1 + 1

4
+ 25

48
+ 23

48
> 0.

A1.2.2. The 6-neighbour of v does not belong to a triangle containing u and v.
Without loss of generality, let u++ be the 6-neighbour of v. Since uu+u++vu and
uvu−−u−u are diamonds D4 the vertex u+ is a 9-vertex and u− and u−− have degrees
≥ 7, where one of them has a degree ≥ 8. The Rules R4, R2 and R3 imply: If
degG(u−) ≥ 7 and degG(u−−) ≥ 8 then u+, u−, and u−− send to v a charge ≥ 23

48
, 5

24
,

and ≥ 5
12

, respectively. If degG(u−) ≥ 8 and degG(u−−) ≥ 7 then u+, u−, and u−−

send to v a charge ≥ 23
48

, 7
24

, and 1
4
, respectively. Hence

c∗(v) ≥ −1 +
23

48
+

5

24
+

5

12
=

5

48
> 0, or

c∗(v) ≥ −1 +
23

48
+

7

24
+

1

4
=

1

48
> 0.

A1.3. Precisely two neighbours of v have degree 6. Obviously, u and these two
vertices are not consecutive neighbours of v.

A1.3.1. One 6-neighbour of v belongs to a triangle containing u and v. Without loss
of generality, let u+ and u−− be 6-neighbours of v. Since uu+u++vu and uu+vu−u
are diamonds D4 the vertices u− and u++ have degree 9.
By Rule R4 the vertices u− and u++ send the charges 23

48
and 25

48
to v, respectively.

Hence c∗(v) ≥ −1 + 23
48

+ 25
48

= 0.

A1.3.2. No 6-neighbour of v belongs to a triangle containing u and v. Hence u++

and u−− are 6-vertices. Since uu+u++vu and uvu−−u−u are diamonds the vertices
u+ and u− have degree 9. Both of them send 23

48
to v.

Let α denote the face containing the edge u++u−− and not containing v. If deg α ≥ 4
then by Rule R1(c) this face sends 2

24
to v, and c∗(v) ≥ −1 + 2 × 23

48
+ 2

24
≥ 0.

Note let α be a triangle with vertex y /∈ {u++, u−−}. Since vu++yu−−v is a diamond
D4 the vertex y has a degree ≥ 8. By Rule R6 the vertex a sends 1

24
to v. Hence

c∗(v) ≥ −1 + 2 × 23
48

+ 1
24

= 0.

A2. Let v have no neighbour of degree 5.
Then the vertex v has at least two neighbours of degree ≥ 7.
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A2.1. If v has at least four neighbours of degree ≥ 7 then by Rule R2b the vertex
v receives a total charge ≥ 4 × 1

4
and c∗(v) ≥ 1 − 1 = 0.

A2.2. If v has two 6-neighbours and three neighbours of degrees ≥ 7, two of them
have a degree ≥ 8 then by Rule R2 the vertex v receives a total charge ≥ 1

4
+2× 5

2
=

1 + 1
12

. Hence c∗(v) ≥ 1
12

> 0.

A2.2.1. The only case open is when the vertex v has two 6-neighbours, two 7-
neighbours and a neighbour of degree 7, 8, or 9.

Let u be one of the 6-neighbours. If u+ is a 6-neighbour, too, then the diamond
uu+u++vu or the diamond uu+vu−u has weight 24, a contradiction!

Without loss of generality let u++ be the second 6-neighbour. Since uu+u++vu
is a diamond the vertex u+ has degree 8 or 9. If deg(u+) = 9 then u+, u−−, and u−

send the charges 1
2

+ 1
48

, 1
4
, and 1

4
to v, respectively. Hence c∗(v) ≥ 0.

Next let deg(u+) = 8. By Rule R3(b) the vertex u+ sends 5
12

to v. Let α denote
the face containing the edge uu+ and not containing v. If deg α ≥ 4 then by Rule
R1(c) this face sends 1

12
to v, and c∗(v) ≥ −1 + 2 × 1

4
+ 5

12
+ 1

12
= 0.

Next let α be a triangle with vertex x /∈ {u, u+}. Since vuxu+v is a diamond D4

the vertex x has a degree ≥ 6. By Rule R3(c) the vertex u+ sends 1
2

instead of 5
12

.
Hence c∗(v) ≥ 0 also in this subcase.

A2.3. If v has three 6-neighbours then they cannot be three consecutive neighbours
of v because otherwise they and v would from a diamond of weight 23, a contradiction!

Without loss of generality let u, u++, u−− be the 6-neighbours of v.
Since vuu+u++v and vu−−u−uv are diamonds the degrees of u+ and u− are 8

or 9.
If u+ has degree 9 then by Rule R4(b) the vertex u+ sends 25

48
to v. If u+ has

degree 8 then let α denote the face containing the edge uu+ and not containing v.
If deg α ≥ 4 then by Rule R1(c) this face α sends 1

12
to v; so by Rules R1(c) and

R3(b) the vertex u+ and the face α send a total charge 1
12

+ 5
12

= 1
2

to v. If deg α = 3
then let z be the vertex of α with z /∈ {u, u+}. Since vuzu+v is a diamond the vertex
z has a degree ≥ 6. By Rule R3(c) the vertex u+ sends 1

2
to v. Consequently, in any

case the vertex u+ and the face α send the total charge 1
2

to v.
The same is true for the vertex u− and the face β containing the edge u−u and not

containing v. This implies u+, α, u−, β send a total charge ≥ 1 to v, and c∗(v) ≥ 0.

B. The vertex v has precisely one of the objects (i), (ii), or (iii).

B1. Let the object be of type (iii), i.e., it is a 4-face α only incident with 5-vertices.
The face α sends 23

48
to v. Let u and u+ be the neighbours of v such that the

edges vu and vu+ belong to α. Obviously, the vertices u++, u−−, u− have a degree
≥ 6. If u−− is a 9-vertex then by Rule R4(b) the vertex u−− sends 25

48
to v, and

c∗(v) ≥ −1 + 23
48

+ 25
48

= 0.
The cycles vu+u++u−−v and vu−−u−uv are diamonds. If degG(u−−) = 6 then

degG(u++) = degG(u−) = 9 and by Rule R4 each of the vertices u++ and u− sends
≥ 23

24
to v. Hence u++, u−, and α send a total charge

≥ 2 × 23

48
+

23

48
= 1 +

7

16
to v, and c∗(v) ≥ 7

16
> 0.
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Next let degG(u−−) ∈ {7, 8}. The vertices u++, u−−, u− have degree ≥ 7. Hence
they send a total charge ≥ 3 × 5

24
= 15

24
to v, and together with the charge from

α c∗(v) ≥ −1 + 15
24

+ 23
48

> 0.

B2. Next let v have precisely one of the objects (i), or (ii). Hence the vertex v is
incident with precisely one face α of size ≥ 4 (not being of type (iii)) or is adjacent
with precisely one vertex x of degree ≥ 10. The face α or the vertex x sends to v a
charge ≥ 7

12
or ≥ 25

48
, respectively.

B2.1. At least one neighbour u of v has degree 5. There is a diamond D4 through
u such that the two vertices of D4 \ {u, v} do not belong to α and do not include
x. Since w(D4) ≥ 25 one of the two vertices of D4 \ {u, v} has degree 9 or one has
degree 8 and the other has degree 7 or 8. Hence they send a total charge ≥ 23

48
to v,

and v receives a total charge ≥ 1 from them and α or x, respectively.

B2.2. All neighbours of v have degree ≥ 6. The neighbours of v not beloying to
α and different from x form with v a diamond D4. Since w(D4) ≥ 25 one of the
neighbours of v in D4 has a degree ≥ 8 or two of the neighbours of v in D4 have
degree 7. In both cases these vertices send a total charge ≥ 10

24
to v. Since by Rules

R1a and R5b the face α and the vertex x send to v the vertex v receives a charge
≥ 1 from its neighbourhood.

d = 6. Obviously, c∗(v) = c(v) = 0.

d = 7. No three consecutive 5-neighbours of v receive a charge from v. Hence at
most four 5-neighbours of v receive a charge from v. If v sends a charge to at most
three 5-neighbours then c∗(v) ≥ 1 − 3 × 1

4
= 1

4
> 1

12
.

If precisely four 5-neighbour of v receive a charge from v then at least two of them
form a pair of consecutive neighbours of v, each of them receiving the charge 5

24
by

Rule R2(a). Hence

c∗(v) ≥ 1 − 2 × 5

24
− 2 × 1

4
=

2

24
=

1

12
.

d = 8
No three consecutive 5-neighbours of v receive a charge from v. Hence at most five
5-neighbours of v receive a charge from v. If at most three 5-neighbours of v receive
a charge from v then the Rules R3(c) and R6 imply that c∗(v) ≥ 2−3× 1

2
−8× 1

24
=

1
6
. Next let precisely four 5-neighbours of v receive a charge from v. If two of

them form a pair of consecutive vertices then these two 5-neighbours receive the
charge 7

24
from v by Rule R3(a). Each of the remaining two 5-neighbours receives

a charge ≤ 1
2
. The vertex v send 1

24
over at most four edges by Rule R6, and

c∗(v) ≥ 2−2× 7
24
−2× 1

2
−4× 1

24
= 1

4
> 1

6
. If now two of the four 5-neighbours form

a pair of consecutive vertices then each 5-neighbour receives the charge 5
12

by Rule
R3(b) (Rule R3(c) cannot be applied), and v does not send a charge over any edge.
Hence c∗(v) ≥ 2 − 4 × 5

12
= 1

3
> 1

6
. If precisely five neighbours of v receive a charge
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from v then they form two pairs of consecutive vertices, each of which receives the
charge 7

24
from v. Rule R6 cannot be applied. Hence c∗(v) ≥ 2−4× 7

24
− 1

2
= 1

3
> 1

6
.

d = 9
No three consecutive 5-neighbours of v receive a charge from v. Hence at most six
5-neighbours of v receive a charge from v. If precisely ρ 5-neighbours of v receive a
charge from v, 0 ≤ ρ ≤ 5, then v sends 1

24
across ≤ 9 − ρ edges and

c∗(v) ≥ 3 − ρ × 25

48
− (9 − ρ) × 1

24
= 3 − 23ρ + 18

48
≥ 11

48
>

1

8
.

Next let six 5-neighbours of v receive a charge from v. Then v with its neighbours
form a wheel, and there are three pairs of consecutive 5-neighbours on the cycle of the
wheel. By Rule R4(a) the vertex v sends a total charge ≤ 6× 23

48
to its neighbourhood

(the Rule R6 cannot be applied). Hence c∗(v) ≥ 3 − 6 × 23
48

= 1
8
.

d ≥ 10, w∗ ≥ 25
For this part of the proof we introduce the Rules R5(b) and R6 in a new way. If
deg u = 5, deg u− ≥ 6, deg u+ ≥ 6 and vuu+v and vu+uv are triangles, then by Rule
R5(b) the vertex v sends 1

2
+ 2

24
to u. Now we say: v directly sends 1

2
to u, indirectly

sends 1
24

to u via u− and indirectly sends 1
24

to u via u+. Altogether u receives again
the charge 1

2
+ 2

24
.

If according to Rule R6 the vertex v sends across the edge uu+ to a 5-vertex z, z �= v,
then degG u = degG u+ = 6 and uzu+u is a triangle. Now we say: v sends 1

48
to z

via u, and v send 1
48

to z via u+.
With this new intepretation the vertex v sends to each neighbour a charge ≤

1
2

+ 1
48

. Hence the new charge

c∗(v) ≥ c(v) − d

(
1

2
+

1

48

)
= d − 6 − d

(
1

2
+

1

48

)
=

23d

48
− 6.

Hence c∗(v) ≥ 11
48

, if d ≥ 13.

Better bounds are obtained, if w∗ > 25. More precisely let

d = 10, w∗ ≥ 26 or d = 11, w∗ ≥ 27 or d = 12, w∗ ≥ 28.

In these three cases no three consecutive 5-neighbours of v receive a charge from v.
A case analysis shows that the number of 5-neighbours receiving some charge from v
is at most d−4. If precisely ρ 5-neighbours of v receive a charge from v, 0 ≤ ρ ≤ d−4,
then v sends 1

24
across ≤ d − ρ edges and

c∗(v) ≥ d − 6 − ρ × 7

12
− (d − ρ) × 1

24
≥ 5d − 46

12
.

Next we prove our Lemma 1 for faces. For a face α let r = degG(α):
Obviously, c∗(α) = c(α) = 0 if α is a triangle.

r = 4: If α is a 4-face incident only with 5-vertices then α sends 23
48

to each 5-
neighbour, and c∗(v) ≥ 2 − 4 × 23

48
= 1

12
. Next let the 4-face α be bounded by a

4-cycle, where at least one vertex of α has a degree ≥ 6.



192 S. JENDROL’ AND H.-J. VOSS

If α has precisely three 5-vertices then Rule R1(c) cannot be applied. Hence c∗(v) ≥
2 − 3 7

12
= 1

4
> 1

12
.

If α has at most two 5-vertices then

c∗(v) ≥ 2 − 2 × 7

12
− 4 × 1

12
=

1

2
>

1

12
.

r ≥ 5: By Rule R1 we obtain

c∗(v) ≥ 2(r − 3) − r × 7

12
− r × 1

12
− 4r

3
− 6 ≥ 2

3
.

This completes the proof of Lemma 1. �

Lemma 1 immediately implies

(1) c∗(v) ≥ 1
31

(d − 6) for each vertex v of degree d ≥ 7, degG(v) /∈ {10, 11, 12}.
Moreover, c∗(v) ≥ 1

31
(d − 6) if d = 10, w∗ ≥ 26, or d = 11, w∗ ≥ 27,

or d = 12, w∗ ≥ 28.

By the hypothesis,∑
degG(v)≥7

(degG(v) − 6) > 186|χ(M)| + 42n10 + 28n11 + 14n12.(2)

Euler’s formula, Lemma 1 and the assertions (1) and (2) imply

6|χ(M)| =
∑
v∈V

(degG(v) − 6) +
∑
α∈F

(2 degG(α) − 6)

=
∑

v∈V (G)

c(v) +
∑

α∈F (G)

c(α) =
∑

v∈V (G)

c∗(v) +
∑

α∈F (G)

c∗(α)

≥
∑

degG(v)≥7

c∗(v) =
∑

degG(v) ≥ 7
degG(v) /∈ {10, 11, 12}

c∗(v) +
∑

degG(v)∈{10,11,12}

c∗(v)

≥ 1

31

∑
degG(v) ≥ 7

degG(v) /∈ {10, 11, 12}

(degG(v) − 6) − 58

48
n10 −

35

48
n11 −

12

48
n12

=
1

31

∑
degG(v)≥7

(degG(v) − 6) − 1

31
(10 − 6)n10 −

1

31
(11 − 6)n11

− 1

31
(12 − 6)n12 −

58

48
n10 −

35

48
n11 −

12

48
n12

=
1

31

∑
degG(v)≥7

(degG(v) − 6) − 1990

31 × 48
n10 −

1325

31 × 45
n11 −

660

31 × 48
n12

>
1

31
(186|χ(M)| + 42n10 + 28n11 + 14n13)

− 1990

31 × 48
n10 −

1325

31 × 48
n11 −

660

31 × 48
n12 ≥ 6|χ(M)|.

(3)
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This contradiction proves the assertion (i) of the theorem in the case that w∗ ≥ 25.
If w∗ ≥ 26 then in (2) and (3) the terms · · · v10 can be deleted.
If w∗ ≥ 27 then in (2) and (3) the terms · · · v10, · · · v11 can be deleted.
If w∗ ≥ 23 then in (2) and (3) the terms · · · v10, · · · v11, · · · v12 can be deleted.
This completes the proof of assertion (i) of our Theorem 10.

Next the proof of (ii)–(iv) will be finished. A triangle is said to be light if it is
only incident with vertices of degrees ≤ 6. We discharge vertices and faces a second
time according to the following rules.
Rule R∗1. If a vertex v of degree ≥ 7 is incident with a triangle β then v sends 1

112

to β.

Rule R∗2. If a vertex v of degree ≥ 7 is incident with a triangle β which has a
common edge with a light triangle γ then v sends 1

3×112
to γ.

Rule R∗3. If an r-face α, r ≥ 4, has a common edge with a light triangle β then α
sends 1

3×112
to β.

Lemma 2 Let v be a d-vertex and α and r-face of G. Let c∗∗ denote the new charge.
Then:
c∗∗(α) ≥ (r − 2) × 1

112
for all faces α;

c∗∗(v) ≥ 0 for all vertices v of degree degG(v) ≥ 7, degG(v) /∈ {10, 11, 12};
c∗∗(v) ≥ −223

168
,−289

336
,−11

28
if degG(v) = 10, 11, 12, respectively.

Moreover, c∗∗(v) ≥ 0, if d = 10, w∗ ≥ 26 or d = 11, w∗ ≥ 27 or d = 12, w∗ ≥ 28.

Proof of Lemma 2. Let α be an r-face. Lemma 1 implies:
If r = 3 and α is incident with a vertex v of degree ≥ 7 then by Rule R∗1 the face
α receives 1

112
from v.

If r = 3 and α is incident only with vertices of degrees ≤ 6 then α is a light triangle,
say xyzx. Let β denote the face incident with the edge xy, β �= α. If degG(β) ≥ 4
then by Rule R∗3 the face β sends 1

3×112
to α. If degG(β) = 3 then α∪β is a diamond

of weight ≥ 25. Hence the unique vertex u ∈ β \ α has a degree ≥ 7 and by Rule
R∗2 the vertex u sends α the charge 1

3×112
. Thus α receives 1

3×112
across each of its

three bounding edges, and α receives the total charge 1
112

.
If r = 4 then c∗∗(α) ≥ 1

12
− 4 × 1

3×112
> 2

112
.

If r ≥ 5 then c∗∗(α) ≥ 4r
3
− 6 − r

3×112
= 447

336
× r − 6 > 1

112
× (r − 2).

Let v be a d-vertex. Again we start with Lemma 1. It implies if d ∈ {5, 6} then
c∗∗(v) = c∗(v) ≥ 0. Next let d ≥ 7. By Rules R∗1 and R∗2 the vertex v sends
a total charge ≤ d × 1

112
+ d × 1

3×112
= d × 4

3×112
to its neighbourhood. Hence

c∗∗(v) ≥ c∗(v) − 4
3×112

× d.

If 7 ≤ d ≤ 9 then c∗∗(v) ≥ 0, 1
14

, 1
56

, if d = 7, 8, 9, respectively.
If d ≥ 10 then

c∗∗(v) ≥ 23

48
× d − 6 − 4

3
× d × 1

112
=

157

336
× d − 6.

If d ≥ 13 then c∗∗(v) ≥ 157
336

× 13 − 6 = 25
336

> 0.
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If d = 10, 11, 12 then c∗∗(v) ≥ −223
168

,−289
336

,−11
28

, respectively.
If d = 10 and w∗ ≥ 26 then c∗∗(v) ≥ 1

3
− 10 × 4

3×112
= 3

14
> 0.

If d = 11 and w∗ ≥ 27 then c∗∗(v) ≥ 3
4
− 11 × 4

3×112
= 13

21
> 0.

If d = 12 and w∗ ≥ 28 then c∗∗(v) ≥ 7
6
− 12 × 4

3×112
= 43

42
> 0.

Thus the proof of Lemma 2 is complete.

Next each r-face α, r ≥ 4, will be subdivided into r − 2 triangles by introducing
r−3 diagonals. The charge c∗∗(α) ≥ r−2

112
will be redistributed to the new triangles so

that each new triangle has a charge ≥ 1
112

. Thus a semitriangulation T is obtained,
each triangle β of T has a charge c∗∗∗(β) ≥ 1

112
, and each vertex v has the charge

c∗∗∗(v) = c∗∗(v) ≥ 0 of Lemma 2.
Let f denote the number of faces of T . It is well known that f = 2(n + |χ(M)|,

where n denotes the number of vertices of T . Consequently, with

n > 335|χ(M)| + 75v10 + 49v11 + 22v12(4)

we obtain from Lemma 2

6|χ(M)| =
∑

v∈V (G)

c(v) +
∑

α∈F (G)

c(α)(5)

=
∑

deg(v) ≥ 7
deg(v) /∈ {10, 11, 12}

c∗∗∗(v) +
∑

deg(v)∈{10,11,12}

c∗∗∗(v) +
∑

β∈F (T )

c∗∗∗(β)

≥
∑

deg(v)∈{10,11,12}

c∗∗∗(v) +
∑

β∈F (T )

c∗∗∗(β)

≥ −223

168
n10 −

289

335
n11 −

11

28
n12 +

1

112
× 2(n + |χ(M)|)

> 6|χ(M)|.

This contradiction proves the assertion (b) of the theorem in the case that w∗ ≥ 25.
If w∗ ≥ 26 then in (4) and (5) the terms · · · v10 can be deleted.
If w∗ ≥ 27 then in (4) and (5) the terms · · · v10 and · · · v11 can be deleted.
If w∗ ≥ 28 then in (4) and (5) the terms · · · v10, · · · v11, · · · v12 can be deleted.
This completes the proof of our Theorem 10.
The proof of Theorem 10 is also valid for multigraphs. This gives a proof for Theo-
rem 12.

5 The lower bounds

A. Classes of polyhedral graphs without a light K4

Let G be a triangulation of M. We say an icosahedron I is inserted into a triangle
α of G if α and a triangle β of a copy of I are deleted, and the bounding 3-cycle
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of α is identified with the bounding 3-cycle of β. Let G′ and C denote the graph so
obtained, and a separating 3-cycle, respectively.

Each subgraph U of G′ isomorphic to K4 is also a subgraph of G.(1)

Proof of (1). The icosahedron I does not contain a K4. If there is a K4 in G′ which
is not in G then this K4 contains both a vertex of G � C and a vertex of I � C. But
these two vertices are not joined by an edge. This contradiction completes the proof
of (1). �

Let G0 = U denote an embedding of K4 in the plane or a triangulation of surface
M containing K4 as a subgraph. Suppose the triangulation Gi has already been
constructed. Then Gi+1 is obtained by inserting an icosahedron into each 3-face of
Gi. By (1) the graph Gi+1 has precisely those subgraphs isomorphic to K4 that the
graph Gi has. Each vertex v of Gi has, in Gi+1, a degree degGi+1

(v) = 3 × degGi
(v).

Consequently every vertex x of each copy of K4 has in Gi+1 a degree degGi+1
(x) =

3 × 4i. Hence the weight of any copy of K4 in Gi is 4 × (3× 4i), and K4 is not light
in {Gi | i ≥ 0}.

B. Classes of polyhedral maps on the torus and the Klein bottle

Let s ≥ 3 be an integer and ps+1 × ps+1 be the cartesian product of two paths of
lengths s with vertex set

V = {(i, j) | i, j ∈ Z, 0 ≤ i, j ≤ s}
and edge set

{{(i, j), (i, j + 1)}|0 ≤ i ≤ s, 0 ≤ j ≤ s − 1}
∪ {{(i, j), (i + 1, j)} | 0 ≤ i ≤ s − 1, 0 ≤ j ≤ s}.

Identifying opposite sides of the rectangle results in a toroidal quadrangulation �s,
and reversing the side (s, 0), (s, 1), · · · , (s, s) of this rectangle and then identifying
opposite sides of the rectangle results in a quadrangulation Ps on the Klein bottle,
respectively.

Next we distinguish two subcases:

B1. The lower bounds for D4 and C4 in maps of large order and large
positive charge.

We put s = 3t, t ∈ N. In �3t and P3t the edge set

{{(i, j), (i + 1, j − 1)} | 0 ≤ i ≤ 3t − 1, 2 ≤ j ≤ 3t}

is added, and each vertex of the set

{(i, i + 3t) | 0 ≤ i ≤ 3t, 0 ≤ l ≤ t}

is deleted, together with its incident edges (all indices modulo 3t). Thus we arrive
at a 3-valent sixangulation T3t of the torus and a 3-valent sixangulation Q3t of the
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Klein bottle, respectively. Let V denote the vertex set of T3t or Q3t, respectively.

Let A := {(1 + 3l, 3m) | 0 ≤ l, m ≤ 3t},
B := {(2 + 3l, 1 + 3m) | 0 ≤ l, m ≤ 3t}, and

C := {(3l, 2 + 3m) | 0 ≤ l ≤ 3t − 1, 0 ≤ m ≤ 3t}.

Obviously, A, B, C are pairwise vertex disjoint, and each of the three sets A, B, and
C contains precisely one vertex from each 6-face of T3t or Q3t, respectively.

We successively replace each vertex of V , or of V � A, or of V � (A ∪ B), or of
V �(A∪B∪C) by a triangle such that the new triangle meets no old vertex. By this
procedure 3-valent graphs T 0

3t, T A
3t , T AB

3t , T ABC
3t of the torus and Q0

3t,QA
3t,QAB

3t ,QABC
3t

of the Klein bottle are obtained, respectively; all new faces are triangles, and each
old face has size 12, 11, 10 or 9, respectively. Next in each 12-, 11-, 10-, or 9-face
α a new vertex is inserted and joined with all vertices of the boundary of α. In the
triangulations so obtained, T̃ 0

3t, T̃ A
3t , T̃ AB

3t , T̃ ABC
3t of the torus and Q̃0

3t, Q̃A
3t, Q̃AB

3t , Q̃ABC
3t

of the Klein bottle the new vertices have degree 12, 11, 10, or 9, respectively, and
each other vertex has degree 5.

If the number of vertices is large enough then for any real constant c the con-
structed triangulations have a positive charge > c|χ(M)|.

By construction, each 4-cycle of T̃ 0
3t, T̃ A

3t , T̃ AB
3t , T̃ ABC

3t and Q̃0
3t, Q̃A

3t, Q̃AB
3t , Q̃ABC

3t

contains a vertex of degree 12, 11, 10, or 9, respectively. Hence the weight of each
4-cycle is ≥ 27,≥ 26,≥ 25, or ≥ 24, respectively. This shows that the bounds of
Theorem 9 for the torus and the Klein bottle are tight.

B2. The lower bounds for T4, K1,3, and P4 in maps of large order and large
positive charge.

Finally, we choose s so that in Ts and Qs at least c|χ(M)| edges can be found
with the property that any two of these edges have a distance at least 5. We switch
these edges, i.e., if e is one of these edges then we delete this edge and in the 4-face α
obtained, we add a new edge joining the vertices of α not incident with the deleted
edge e. The endvertices of e are 5-vertices and the two newly joined vertices are
7-vertices. Hence the obtained map T̃s or Q̃s, respectively, has a positive charge
≥ 2c|χ(M)|.

Each connected subgraph of order m, 1 ≤ m ≤ 4, has a weight ≥ 6m − 1. Hence
each P4, K1,3 and T4 has a weight w(P4) ≥ 25, w(K1,3) ≥ 23, and w(T4) ≥ 23. This
shows the validity of the lower bounds in Theorem 7 and Corollary 8 in maps of large
positive charge on the torus and the Klein bottle.

Since Ts and Qs are 6-regular graphs each connected subgraph U of order m has
weight 6m. Hence each P4, K1,3 and T4 has a weight w(P4) ≥ 27, w(K1,3) ≥ 24, and
w(T4) ≥ 24. This shows the lower bounds in Theorem 5 and Corollary 6 in maps of
larger order on the torus and the Klein bottle. We remark that the positive charge
of Ts and Qs is zero.
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−→ −→
Fig. 5 Fig. 6 Fig. 7

C. Polyhedral maps on compact 2-manifolds of Euler characteristic
χ(M) ≤ −2.

Let H be one of the toroidal triangulation �̃4t of section B1, T 0
3t, T A

3t , T AB
3t , or T ABC

3t

of section B2, or T̃s, or Ts of section B2.
The required polyhedral map on an orientable compact 2-manifold Sg of genus

g ≥ 2 will be constructed from the toroidal triangulation H.
We choose 2g − 3 triangles of H so that any two of them have a distance ≥ 5

in H (this is possible if the number of vertices is large enough). In H from each of
these triangles β we delete the interior part so that the bounding 3-cycle of β bounds
now a hole of the torus. We join repeatedly two holes of H by a handle, and g − 1
handles are added to the torus in this way.

The handles are triangulated in the following way: if [x1x2x3x1] and [y1y2y3y1] are
the bounding cycles of some handle which are around the handle in the same cyclic
order then add the cycle [x1y1x2y2x3y3x1]. The polyhedral triangulations of Sg thus
obtained also fulfil the degree requirements of sections B1, B2, or B3, respectively.

Let K be one of the triangulations of the Klein bottle P4t of section B1, Q0
3t, QA

3t,
QAB

3t , or QABC
3t of section B2, or Q̃s, or Qs of section B3.

The required polyhedral map on an unorientable compact 2-manifold Nq of genus
q ≥ 3 will be constructed from the triangulation K of the Klein bottle.

We choose q− 2 triangles of K so that any two of them have a distance ≥ 5 in K.
Let β be one of these triangles with bounding cycle [x1x2x3x1] and β1, β2, β3 the

three neighbouring triangles in K with bounding cyles [y1x3x2], [y2x1x3] and [y3x2x1]
(see Fig. 5). In K we delete the separating edges x1x2, x2x3 and x3x1. A greater face
F with bounding 6-cycle C = [x1y3x2y1x3y2x1] is obtained (for the notation see Fig.
5).

In F a crosscap is placed and the edges x1x2, x2x3, and x3x1 are again added
so that the interior of C is subdivided into three quadrangles (see Fig. 6). These
quadrangles are subdivided by the edges xiyi, i = 1, 2, 3 (see Fig. 7).

The polyhedral triangulations of Nq so obtained fulfil the degree requirements of
sections B1, B2, or B3, respectively.
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[5] J. Ivančo, The weight of a graph, Ann. Discrete Math. 51 (1992), 113–116.

[6] S. Jendrol’ and T. Madaras, On light subgraphs in plane graphs of minimum
degree five, Discussiones Math. Graph Theory 16 (1996), 207–217.

[7] S. Jendrol’, T. Madaras, R. Soták and Z. Tuza, On light cycles in plane
triangulations, Discrete Math. 197/198 (1999), 453–467.

[8] S. Jendrol’ and H.-J. Voss, A local property of polyhedral maps on compact
2-dimensional manifolds, Discrete Math. 212 (2000), 111–120.

[9] S. Jendrol’ and H.-J. Voss, Light subgraphs of graphs embedded in 2-
dimensional manifolds of Euler characteristic ≤ 0 — a survey, In “Paul
Erdös and his Mathematics II”, (G. Halász, L. Lovász, M. Simonovits,
V.T. Sós. Eds.), Bolyai Society Mathematical Studies, Vol. 11 Springer,
Budapest, 2002, 375–411.

[10] S. Jendrol’ and H.-J. Voss, Light subgraphs of graphs embedded in the
plane and in the projective plane — a survey, (submitted), Preprint Inst.
of Algebra MATH-AL-2-2001, TU-Dresden.

[11] S. Jendrol’ and H.-J. Voss, Light subgraphs of order ≤ 3 in large maps on
compact 2-manifolds of minimum degree 5, (submitted).

[12] S. Jendrol’ and H.-J. Voss, The 5-cycle C5 is light in large maps of minimum
degree 5 on compact 2-manifolds, Buletinul Academii de Stiinte a Republici
Moldova - Matematica 3 (40) (2002), 106–124.

[13] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Math. Čas.
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