Some bicyclic antiautomorphisms of directed triple systems

Neil P. Carnes Anne Dye James F. Reed
Department of Mathematics, Computer Science and Statistics
McNeese State University
Lake Charles, LA 70609-2340
U.S.A.

Abstract

A transitive triple, (a, b, c), is defined to be the set $\{(a, b),(b, c),(a, c)\}$ of ordered pairs. A directed triple system of order $v, \operatorname{DTS}(v)$, is a pair (D, β), where D is a set of v points and β is a collection of transitive triples of pairwise distinct points of D such that any ordered pair of distinct points of D is contained in precisely one transitive triple of β. An antiautomorphism of a directed triple system, (D, β), is a permutation of D which maps β to β^{-1}, where $\beta^{-1}=\{(c, b, a) \mid(a, b, c) \in \beta\}$. In this paper we give necessary and sufficient conditions for the existence of a directed triple system of order v admitting an antiautomorphism consisting of two cycles, where one cycle is twice the length of the other.

1 Introduction

A Steiner triple system of order $v, \operatorname{STS}(v)$, is a pair (S, β), where S is a set of v points and β is a collection of 3 -element subsets of S, called blocks, such that any pair of distinct points of S is contained in precisely one block of β. Kirkman [6] showed that there is an $\operatorname{STS}(v)$ if and only if $v \equiv 1$ or $3(\bmod 6)$ or $v=0$.

An automorphism of (S, β) is a permutation of S which maps β to itself. An automorphism, α, of (S, β) is called cyclic if the permutation defined by α consists of a single cycle of length v. Peltesohn [10] proved that an $\operatorname{STS}(v)$ having a cyclic automorphism exists if and only if $v \equiv 1$ or $3(\bmod 6)$ and $v \neq 9$. An automorphism, α, of (S, β) is called bicyclic if the permutation defined by α consists of two cycles. Calahan-Zijlstra and Gardner [1] have shown that there exists an $\operatorname{STS}(v)$ admitting a bicyclic automorphism having cycles of length M and N, with $1<M \leq N$, if and only if $M \equiv 1$ or $3(\bmod 6), M \neq 9, M \mid N$, and $M+N \equiv 1$ or $3(\bmod 6)$.

A transitive triple, (a, b, c), is defined to be the set $\{(a, b),(b, c),(a, c)\}$ of ordered pairs. A directed triple system of order $v, \operatorname{DTS}(v)$, is a pair (D, β), where D is a set of v points and β is a collection of transitive triples of pairwise distinct points of D, called triples, such that any ordered pair of distinct points of D is contained
in precisely one element of β. Hung and Mendelsohn [4] have shown that necessary and sufficient conditions for the existence of a $\operatorname{DTS}(v)$ are that $v \equiv 0$ or $1(\bmod 3)$.

For a $\operatorname{DTS}(v),(D, \beta)$, we define β^{-1} by $\beta^{-1}=\{(c, b, a) \mid(a, b, c) \in \beta\}$. Then $\left(D, \beta^{-1}\right)$ is a $\operatorname{DTS}(v)$ and is called the converse of (D, β). A $\operatorname{DTS}(v)$ which is isomorphic to its converse is said to be self-converse. Kang, Chang, and Yang [5] have shown that a self-converse $\operatorname{DTS}(v)$ exists if and only if $v \equiv 0$ or $1(\bmod 3)$ and $v \neq 6$. An automorphism of (D, β) is a permutation of D which maps β to itself. An antiautomorphism of (D, β) is a permutation of D which maps β to β^{-1}. Clearly, a $\operatorname{DTS}(v)$ is self-converse if and only if it admits an antiautomorphism.

An automorphism, α, on a $\operatorname{DTS}(v)$ is called d-cyclic if the permutation defined by α consists of a single cycle of length d and $v-d$ fixed points. Necessary and sufficient conditions for the existence of a $\operatorname{DTS}(v)$ admitting a d-cyclic automorphism have been given by Micale and Pennisi [8]. An automorphism, α, on a $\operatorname{DTS}(v)$ is called f-bicyclic if the permutation defined by α consists of two cycles each of length $N=(v-f) / 2$ and f fixed points. Micale and Pennisi [7] have given conditions for the existence of f-bicyclic directed triple systems.

An antiautomorphism, α, on a $\operatorname{DTS}(v)$ is called d-cyclic if the permutation defined by α consists of a single cycle of length d and $v-d$ fixed points. Necessary and sufficient conditions for the existence of a $\operatorname{DTS}(v)$ admitting a d-cyclic antiautomorphism have been given by Carnes, Dye, and Reed [2]. We call an antiautomorphism, α, on a $\operatorname{DTS}(v) f$-bicyclic if the permutation defined by α consists of two cycles each of length $N=(v-f) / 2$ and f fixed points. A bicyclic antiautomorphism of a $\operatorname{DTS}(v)$ is an antiautomorphism, α, which consists of two cycles of length M and N respectively, where $v=M+N$. Carnes, Dye, and Reed [3] gave necessary and sufficient conditions for the case where $M=N$.

We now consider the case where $N>M$.

2 Preliminaries

If K is the length of a cycle, $K \in\{M, N\}$, we let the cycles be $\left(0_{i}, 1_{i}, 2_{i}, \ldots,(K-1)_{i}\right)$, $i \in\{0,1\}$. Let $\Delta=\{0,1,2, \ldots,(K-1)\}$. We shall use all additions modulo K in the triples. For $a_{i}, b_{j}, c_{k} \in D, i, j, k \in\{0,1\},\left(a_{i}, b_{j}, c_{k}\right) \in \beta$, let the orbit of $\left(a_{i}, b_{j}, c_{k}\right)$ be $\left\{\left((a+t)_{i},(b+t)_{j},(c+t)_{k}\right) \mid t \in \Delta, t\right.$ even $\} \cup\left\{\left((c+t)_{k},(b+t)_{j},(a+t)_{i}\right) \mid t \in \Delta, t\right.$ odd $\}$. Clearly, the orbits of the elements of β yield a partition of β.

We say that a collection of triples, $\bar{\beta}$, is a collection of base triples of a $\operatorname{DTS}(v)$ under α if the orbits of the triples of $\bar{\beta}$ produce β and exactly one triple of each orbit occurs in $\bar{\beta}$. Also, we say that the reverse of the triple (a, b, c) is the triple (c, b, a).

Let $\left(S, \beta^{\prime}\right)$ be an $\operatorname{STS}(v)$. Let $\beta=\left\{(a, b, c),(c, b, a) \mid\{a, b, c\} \in \beta^{\prime}\right\}$. Then (S, β) is called the corresponding $\operatorname{DTS}(v)$, and the identity map on the point set is an antiautomorphism. This yields a self-converse $\operatorname{DTS}(v)$ for $v \equiv 1$ or $3(\bmod$ $6)$. For $v \equiv 1(\bmod 6)$ the cyclic $\operatorname{STS}(v)$ from Peltesohn's constructions [10] has no orbits of length less than v, hence the corresponding $\operatorname{DTS}(v)$ admits a cyclic antiautomorphism.

In the constructions of the base triples, we also use the following systems. An
(A, n)-system is a collection of ordered pairs $\left(a_{r}, b_{r}\right)$ for $r=1,2, \ldots, n$ that partition the set $\{1,2, \ldots, 2 n\}$, such that $b_{r}=a_{r}+r$ for $r=1,2, \ldots, n$. Skolem [11] showed that an (A, n)-system exists if and only if $n \equiv 0$ or $1(\bmod 4)$. A (B, n)-system is a collection of ordered pairs $\left(a_{r}, b_{r}\right)$ for $r=1,2, \ldots, n$ that partition the set $\{1,2, \ldots, 2 n-1,2 n+1\}$, such that $b_{r}=a_{r}+r$ for $r=1,2, \ldots, n$. O'Keefe [9] showed that a (B, n)-system exists if and only if $n \equiv 2$ or $3(\bmod 4)$. In either case, the triples used in the constructions will be of the form $\left(0_{i},\left(a_{r}+n\right)_{i},\left(b_{r}+n\right)_{i}\right)$ for $r=1,2, \ldots, n$, where $i=0$ in the cycle of length M and $i=1$ in the cycle of length N.

3 Necessary conditions

The types of cyclic triples possible are:

1) Type 1: $\left(x_{0}, y_{0}, z_{0}\right)$ where x_{0}, y_{0}, z_{0} are in the cycle of length M;
2) Type 2: $\left(x_{1}, y_{1}, z_{1}\right)$ where x_{1}, y_{1}, z_{1} are in the cycle of length N;
3) Type 3: $\left(x_{0}, y_{1}, z_{1}\right)$ or $\left(y_{1}, x_{0}, z_{1}\right)$ or $\left(y_{1}, z_{1}, x_{0}\right)$ where x_{0} is in the cycle of length M and y_{1}, z_{1} are in the cycle of length N;
4) Type 4: $\left(x_{0}, y_{0}, z_{1}\right)$ or $\left(x_{0}, z_{1}, y_{0}\right)$ or $\left(z_{1}, x_{0}, y_{0}\right)$ where x_{0}, y_{0} are in the cycle of length M and z_{1} is in the cycle of length N.

Lemma 3.1 If a DTS(v) admits a bicyclic antiautomorphism with cycles of length M and N, where $1<M<N$, and a type 4 triple occurs, then M is odd and $N=2 M$.

Proof: If the triple $\left(x_{0}, y_{0}, z_{1}\right)$ occurs and M is even, then $\alpha^{M}\left(\left(x_{0}, y_{0}, z_{1}\right)\right)=\left(x_{0}, y_{0}\right.$, $\left.(z+M)_{1}\right)$. But then $z+M=z$, so that $N \mid M$, a contradiction.

If the triple $\left(x_{0}, y_{0}, z_{1}\right)$ occurs and M is odd, then $\alpha^{2 M}\left(\left(x_{0}, y_{0}, z_{1}\right)\right)=\left(x_{0}, y_{0},(z+\right.$ $2 M)_{1}$). But then $z+2 M=z$, so that $N=2 M$.

The proof is similar for the other type 4 triples.
Lemma 3.2 Let (D, β) be a $D T S(v)$ admitting a bicyclic antiautomorphism, where $v=M+N, N=2 M, M$ and N being the lengths of the cycles. Then If M is even, $M \equiv 4(\bmod 12)$.
Proof: Let $a_{0}, b_{0}, c_{0} \in D$. Then $\alpha^{M}\left(a_{0}, b_{0}, c_{0}\right)=\left(a_{0}, b_{0}, c_{0}\right)$. Also if two points of a triple are in the cycle of length M, then all three must be, otherwise there would be two distinct triples with a common ordered pair after applying α^{M}, a contradiction. Hence we have a cyclic subsystem. Carnes, Dye, and Reed have shown in Lemmas 1 and 2 of [2] that if M is even then $M \equiv 4(\bmod 12)$.

Lemma 3.3 If a DTS(v) admits a bicyclic antiautomorphism with cycles of length M and N, where $1<M<N$, then $M \mid N$.

Proof: For $N \neq 2 M$ a type 3 triple must occur. Without loss of generality, assume the triple $\left(x_{0}, y_{1}, z_{1}\right)$ occurs.

If N is even, we have $\alpha^{N}\left(\left(x_{0}, y_{1}, z_{1}\right)\right)=\left((x+N)_{0}, y_{1}, z_{1}\right)$. But then $x+N=x$, so that $M \mid N$.

If N is odd, then $\alpha^{2 N}\left(\left(x_{0}, y_{1}, z_{1}\right)\right)=\left((x+2 N)_{0}, y_{1}, z_{1}\right)$. But then $x+2 N=x$, so that $M \mid 2 N$. In the case where M is odd, we have $M \mid N$. In the case where M is even, we must have $M \equiv 4(\bmod 12)$. Since $M \mid 2 N$ we have that N is even, a contradiction.

In the remainder of this paper we consider the case where $N=2 M$.

$4 M$ even

Lemma 4.1 If $v=M+N, N=2 M$, and $M \equiv 4(\bmod 12)$, there exists a DTS (v) which admits a bicyclic antiautomorphism where $v=M+N, N=2 M, M$ and N being the lengths of the cycles.

Proof: Let $M=12 k+4, N=24 k+8$.
For $k=0$ the base triples are $\left(0_{1}, 4_{1}, 2_{1}\right)$, and the following with their reverses: $\left(0_{0}, 0_{1}, 3_{1}\right),\left(0_{0}, 1_{1}, 2_{1}\right)$, and the triples for a cycle of length 4 in [2].

For $k \geq 1$ the base triples are $\left(0_{1},(12 k+4)_{1},(6 k+2)_{1}\right)$, along with the following and their reverses:
$\left(0_{0},(6 k-t+1)_{1},(6 k+t+2)_{1}\right)$ for $t=0,1, \ldots, 6 k+1$,
$\left(0_{1},(6 k-2 t)_{1},(6 k+2 t+4)_{1}\right)$ for $t=0,1, \ldots, k-1$, $\left(0_{1},(10 k-2 t+2)_{1},(10 k+2 t+4)_{1}\right)$ for $t=0,1, \ldots, k-1$, and the triples for a cycle of length M in [2].

$5 M$ odd

Lemma 5.1 If $v=M+N$ and $M \equiv 1(\bmod 12)$, there exists a DTS(v) which admits a bicyclic antiautomorphism where $v=M+N, N=2 M, M$ and N being the lengths of the cycles.

Proof: Let $M=12 k+1, N=24 k+2$.
For $k=0$ the base triples are $\left(0_{1}, 0_{0}, 1_{1}\right)$ and $\left(1_{1}, 0_{0}, 0_{1}\right)$.
For $k \geq 2, k$ even, the base triples are the following, along with their reverses:
$\left(0_{1}, 0_{0},(12 k+1)_{1}\right)$,
$\left(0_{0},(3 k-t)_{1},(9 k+t+1)_{1}\right)$ for $t=0,1, \ldots, 3 k-1$,
$\left(0_{0},(9 k-t)_{1},(15 k+t+2)_{1}\right)$ for $t=0,1, \ldots, 3 k-1$,
and the triples in the cycle of length M from the corresponding $\operatorname{DTS}(M)$ of a cyclic $\operatorname{STS}(M)$. The remaining triples in the cycle of length N are formed using an $(A, 2 k)-$ system.

For $k=1$ the base triples are the following, along with their reverses: $\left(0_{1}, 0_{0}, 13_{1}\right),\left(0_{0}, 1_{1}, 12_{1}\right),\left(0_{0}, 2_{1}, 11_{1}\right),\left(0_{0}, 7_{1}, 19_{1}\right),\left(0_{0}, 8_{1}, 18_{1}\right),\left(0_{0}, 9_{1}, 17_{1}\right)$, $\left(0_{0}, 10_{1}, 16_{1}\right)$, and the triples in the cycle of length 13 from the corresponding DTS(13) of a cyclic STS(13). The remaining triples in the cycle of length N are formed using a $(B, 2)$-system.

For $k \geq 3, k$ odd, the base triples are the following, along with their reverses: $\left(0_{1}, 0_{0},(12 k+1)_{1}\right)$,
$\left(0_{0},(3 k-t-1)_{1},(9 k+t+2)_{1}\right)$ for $t=0,1, \ldots, 3 k-2$,
$\left(0_{0},(9 k-t+1)_{1},(15 k+t+1)_{1}\right)$ for $t=0,1, \ldots, 3 k$,
and the triples in the cycle of length M from the corresponding $\operatorname{DTS}(M)$ of a cyclic $\operatorname{STS}(M)$. The remaining triples in the cycle of length N are formed using a ($B, 2 k)$ system.

Lemma 5.2 If $v=M+N$ and $M \equiv 3(\bmod 12)$, there exists a DTS(v) which admits a bicyclic antiautomorphism where $v=M+N, N=2 M, M$ and N being the lengths of the cycles.

Proof: Let $M=12 k+3, N=24 k+6$.
For $k=0$, the base triples are the following:
$\left(0_{1}, 2_{0}, 3_{1}\right),\left(3_{1}, 2_{0}, 0_{1}\right),\left(0_{1}, 1_{1}, 2_{1}\right),\left(0_{0}, 1_{0}, 3_{1}\right),\left(0_{0}, 2_{1}, 0_{1}\right)$.
For $k \geq 2, k$ even, the base triples include the following:
$\left(0_{0},(6 k+1)_{0},(12 k+2)_{1}\right),\left(0_{0},(6 k+1)_{1},(18 k+3)_{1}\right),\left(0_{0},(24 k+5)_{1},(6 k)_{1}\right)$,
$\left(0_{0},(18 k+6)_{1},(6 k+2)_{1}\right),\left(1_{0},(12 k+2)_{1},(6 k+3)_{1}\right),\left(0_{0},(6 k+3)_{1},(12 k+1)_{1}\right)$,
$\left.\left((6 k-1)_{1}, 0_{1},(6 k+1)_{1}\right),\left(0_{1},(6 k-2)_{1},(6 k)_{1}\right)\right)$.
Also included are the following triples and their reverses:
$\left(0_{1},(12 k+2)_{0},(12 k+3)_{1}\right),\left(0_{0}, 2_{1},(12 k+3)_{1}\right),\left(0_{1},(12 k-1)_{1},(24 k-1)_{1}\right)$,
$\left(0_{0},(3 k-t)_{1},(9 k+t+3)_{1}\right)$ for $t=0,1, \ldots, 3 k-3$,
$\left(0_{0},(9 k-t+2)_{1},(15 k+t+4)_{1}\right)$ for $t=0,1, \ldots, 3 k-2$.
The remaining triples in the cycle of length M are formed using an ($A, 2 k$)-system.
For $k=2$, the remaining triples are the following:
$\left(1_{1}, 5_{1}, 13_{1}\right),\left(0_{1}, 8_{1}, 9_{1}\right),\left(1_{1}, 6_{1}, 10_{1}\right),\left(0_{1}, 5_{1}, 6_{1}\right),\left(1_{1}, 4_{1}, 7_{1}\right)$.
For $k \geq 4, k$ even, the base triples also include the following:
$\left((6 k)_{1}, 6_{1}, 0_{1}\right),\left(0_{1}, 3_{1}, 6_{1}\right),\left(0_{1},(3 k-3)_{1},(6 k-6)_{1}\right)$.
For $k=4$ the remaining triples are the following, along with their reverses:
$\left(0_{1}, 15_{1}, 16_{1}\right),\left(0_{1}, 13_{1}, 17_{1}\right),\left(0_{1}, 14_{1}, 19_{1}\right),\left(0_{1}, 12_{1}, 20_{1}\right),\left(0_{1}, 11_{1}, 21_{1}\right)$.
For $k=6$, the remaining triples are the following, along with their reverses:
$\left(0_{1}, 25_{1}, 26_{1}\right),\left(0_{1}, 17_{1}, 21_{1}\right),\left(0_{1}, 24_{1}, 29_{1}\right),\left(0_{1}, 18_{1}, 27_{1}\right),\left(0_{1}, 20_{1}, 31_{1}\right)$,
$\left(0_{1}, 16_{1}, 28_{1}\right),\left(0_{1}, 19_{1}, 32_{1}\right),\left(0_{1}, 14_{1}, 22_{1}\right),\left(0_{1}, 23_{1}, 33_{1}\right)$.
For $k \geq 8, k$ even, the base triples also include the following, along with their reverses:
$\left(0_{1},(4 k-1)_{1},(6 k-3)_{1}\right)$,
$\left(0_{1},(3 k-t-4)_{1},(3 k+t+4)_{1}\right)$ for $t=0,1, \ldots, k-6$.
For $k=8$ the remaining triples are the following, along with their reverses:
$\left(0_{1}, 33_{1}, 44_{1}\right),\left(0_{1}, 34_{1}, 43_{1}\right),\left(0_{1}, 35_{1}, 36_{1}\right),\left(0_{1}, 23_{1}, 27_{1}\right),\left(0_{1}, 32_{1}, 37_{1}\right)$,
$\left(0_{1}, 26_{1}, 39_{1}\right),\left(0_{1}, 25_{1}, 40_{1}\right),\left(0_{1}, 24_{1}, 41_{1}\right),\left(0_{1}, 22_{1}, 38_{1}\right)$.
For $k \geq 10, k \equiv 0(\bmod 6)$ the remaining triples are the following, along with their reverses:
$\left(0_{1},(5 k-5)_{1},(5 k-4)_{1}\right),\left(0_{1},(3 k-1)_{1},(3 k+3)_{1}\right),\left(0_{1},(5 k-6)_{1},(5 k-1)_{1}\right)$,
$\left(0_{1},(3 k)_{1},(5 k-3)_{1}\right),\left(0_{1},(3 k+2)_{1},(5 k+1)_{1}\right),\left(0_{1},(3 k-2)_{1},(5 k-2)_{1}\right)$,
$\left(0_{1},(3 k+1)_{1},(5 k+2)_{1}\right)$,
$\left(0_{1},(5 k-3 t-8)_{1},(5 k+3 t+5)_{1}\right)$ for $t=0,1, \ldots, \frac{k-9}{3}$,
$\left(0_{1},(5 k-3 t-7)_{1},(5 k+3 t+4)_{1}\right)$ for $t=0,1, \ldots, \frac{k-9}{3}$,
$\left(0_{1},(5 k-3 t-9)_{1},(5 k+3 t)_{1}\right)$ for $t=0,1, \ldots, \frac{k-9}{3}$.

For $k \geq 10, k \equiv 2(\bmod 6)$ the remaining triples are the following, along with their reverses:
$\left(0_{1},(5 k-5)_{1},(5 k-4)_{1}\right),\left(0_{1},(3 k-1)_{1},(3 k+3)_{1}\right),\left(0_{1},(5 k-8)_{1},(5 k-3)_{1}\right)$,
$\left(0_{1},(3 k+2)_{1},(5 k-1)_{1}\right),\left(0_{1},(3 k+1)_{1},(5 k)_{1}\right),\left(0_{1},(3 k)_{1},(5 k+1)_{1}\right)$,
$\left(0_{1},(3 k-2)_{1},(5 k-2)_{1}\right)$,
$\left(0_{1},(5 k-3 t-7)_{1},(5 k+3 t+4)_{1}\right)$ for $t=0,1, \ldots, \frac{k-8}{3}$,
$\left(0_{1},(5 k-3 t-6)_{1},(5 k+3 t+3)_{1}\right)$ for $t=0,1, \ldots, \frac{k-8}{3}$,
$\left(0_{1},(5 k-3 t-11)_{1},(5 k+3 t+2)_{1}\right)$ for $t=0,1, \ldots, \frac{k-11}{3}$.

For $k \geq 10, k \equiv 4(\bmod 6)$ the remaining triples are the following, along with their reverses:
$\left(0_{1},(5 k-5)_{1},(5 k-4)_{1}\right),\left(0_{1},(5 k-7)_{1},(5 k-3)_{1}\right),\left(0_{1},(3 k-2)_{1},(3 k+3)_{1}\right)$,
$\left(0_{1},(3 k+1)_{1},(5 k-2)_{1}\right),\left(0_{1},(3 k)_{1},(5 k-1)_{1}\right),\left(0_{1},(3 k-1)_{1},(5 k)_{1}\right)$, $\left(0_{1},(3 k+2)_{1},(5 k+2)_{1}\right)$,
$\left(0_{1},(5 k-3 t-6)_{1},(5 k+3 t+3)_{1}\right)$ for $t=0,1, \ldots, \frac{k-7}{3}$,
$\left(0_{1},(5 k-3 t-8)_{1},(5 k+3 t+5)_{1}\right)$ for $t=0,1, \ldots, \frac{k-10}{3}$,
$\left(0_{1},(5 k-t-10)_{1},(5 k+3 t+1)_{1}\right)$ for $t=0,1, \ldots, \frac{k-10}{3}$.
For $k \geq 1, k$ odd, the base triples include the following:
$\left(0_{0},(6 k)_{0},(12 k+2)_{1}\right),\left((12 k+2)_{1},(6 k+2)_{1}, 0_{0}\right)$.
Also included are the following triples and their reverses:
$\left(0_{1},(12 k+2)_{0},(12 k+3)_{1}\right),\left(0_{0}, 0_{1},(12 k+1)_{1}\right),\left(0_{0},(3 k)_{1},(3 k+1)_{1}\right)$,
$\left(0_{0},(3 k-t-1)_{1},(9 k+t+3)_{1}\right)$ for $t=0,1, \ldots, 3 k-3$,
$\left(0_{0},(9 k-t+2)_{1},(15 k+t+5)_{1}\right)$ for $t=0,1, \ldots, 3 k-2$.
The remaining triples in the cycle of length M are formed using a ($B, 2 k$)-system.
For $k=1$ the remaining triples are the following:
$\left(0_{1}, 8_{1}, 14_{1}\right),\left(1_{1}, 13_{1}, 27_{1}\right),\left(0_{1}, 5_{1}, 12_{1}\right),\left(0_{1}, 3_{1}, 7_{1}\right),\left(1_{1}, 9_{1}, 4_{1}\right)$.
For $k \geq 3, k$ odd, the base triples also include $\left(0_{1},(3 k)_{1},(6 k)_{1}\right)$, along with the following triples and their reverses:
$\left(0_{0},(6 k+1)_{1},(6 k+3)_{1}\right),\left(0_{1},(12 k)_{1},(24 k+2)_{1}\right)$.
For $k=3$ the remaining triples are the following:
$\left(0_{1}, 16_{1}, 36_{1}\right),\left(0_{1}, 14_{1}, 29_{1}\right),\left(0_{1}, 8_{1}, 13_{1}\right),\left(0_{1}, 11_{1}, 17_{1}\right),\left(0_{1}, 12_{1}, 19_{1}\right)$.
For $k \geq 5, k$ odd, the base triples also include the following triples and their reverses:
$\left(0_{1},(2 k+3)_{1},(4 k+5)_{1}\right),\left(0_{1},(4 k+2)_{1},(6 k+2)_{1}\right),\left(0_{1},(4 k+3)_{1},(6 k+1)_{1}\right)$,
$\left(0_{1},(3 k+1)_{1},(3 k+4)_{1}\right),\left(0_{1},(3 k+2)_{1},(5 k+3)_{1}\right),\left(0_{1},(3 k+3)_{1},(5 k+2)_{1}\right)$,
$\left(0_{1},(3 k+5)_{1},(5 k+1)_{1}\right),\left(0_{1},(5 k-1)_{1},(5 k+4)_{1}\right)$,
$\left(0_{0},(3 k-t-1)_{1},(3 k+t+6)_{1}\right)$ for $t=0,1, \ldots, k-5$.
For $k \geq 7, k$ odd, the base triples also include the following and their reverses: $\left(0_{0},(5 k-2 t-3)_{1},(5 k+2 t+5)_{1}\right)$ for $t=0,1, \ldots, \frac{k-7}{2}$, $\left(0_{0},(5 k-2 t)_{1},(5 k+2 t+6)_{1}\right)$ for $t=0,1, \ldots, \frac{k-7}{2}$.

Lemma 5.3 If $v=M+N$ and $M \equiv 5(\bmod 12)$, there exists a DTS(v) which admits a bicyclic antiautomorphism where $v=M+N, N=2 M, M$ and N being the lengths of the cycles.
Proof: For $k=0$, the base triples are
$\left(0_{0}, 0_{1}, 1_{0}\right),\left(0_{0}, 2_{1}, 2_{0}\right),\left(1_{0}, 4_{1}, 0_{1}\right),\left(1_{0}, 3_{1}, 9_{1}\right)$
and the following with their reverses: $\left(0_{1}, 4_{0}, 5_{1}\right),\left(0_{1}, 1_{1}, 3_{1}\right)$.
For $k \geq 2, k$ even, the base triples include the following:
$\left(0_{0},(6 k+2)_{0},(12 k+4)_{1}\right),\left((12 k+4)_{1},(6 k+1)_{0}, 0_{0}\right),\left((6 k+3)_{1}, 0_{0}, 0_{1}\right)$, $\left(0_{1}, 0_{0},(18 k+7)_{1}\right)$.
Also included are the following triples and their reverses:
$\left(0_{1},(12 k+4)_{0},(12 k+5)_{1}\right),\left(0_{0},(12 k+3)_{1},(12 k+4)_{1}\right)$,
$\left(0_{0},(3 k-t)_{1},(9 k+t+5)_{1}\right)$ for $t=0,1, \ldots, 3 k-2$,
$\left(0_{0},(9 k-t+4)_{1},(15 k+t+6)_{1}\right)$ for $t=0,1, \ldots, 3 k$.
The remaining triples in the cycle of length M are formed using an $(A, 2 k)$-system.
For $k=2$, the remaining triples are the following, along with their reverses:
$\left(0_{1}, 6_{1}, 11_{1}\right),\left(0_{1}, 7_{1}, 9_{1}\right),\left(0_{1}, 8_{1}, 12_{1}\right),\left(0_{1}, 10_{1}, 13_{1}\right)$.
For $k \geq 4, k$ even, the base triples also include the following, along with their reverses:
$\left(0_{1},(2 k+2)_{1},(4 k+2)_{1}\right),\left(0_{1},(5 k+1)_{1},(5 k+4)_{1}\right),\left(0_{1},(3 k+2)_{1},(5 k+3)_{1}\right)$, $\left(0_{1},(3 k+3)_{1},(5 k+2)_{1}\right)$,
$\left(0_{1},(5 k-t-1)_{1},(5 k+t+5)_{1}\right)$ for $t=0,1, \ldots, k-4$.
For $k=4$, the remaining triples are the following, along with their reverses: $\left(0_{1}, 11_{1}, 13_{1}\right),\left(0_{1}, 12_{1}, 17_{1}\right),\left(0_{1}, 16_{1}, 20_{1}\right)$.

For $k \geq 6, k$ even, the base triples also include the following, along with their reverses:
$\left(0_{1},(4 k+1)_{1},(5 k)_{1}\right),\left(0_{1},\left(\frac{5}{2} k+2\right)_{1},\left(\frac{5}{2} k+4\right)_{1}\right)$,
$\left(0_{1},\left(\frac{5}{2} k-t+1\right)_{1},\left(\frac{7}{2} k+t+2\right)_{1}\right)$ for $t=0,1, \ldots, \frac{k-4}{2}$.
For $k=6$, the remaining triples are $\left(0_{1}, 18_{1}, 22_{1}\right)$ and its reverse.
For $k=8$, the remaining triples are the following, along with their reverses:
$\left(0_{1}, 22_{1}, 24_{1}\right),\left(0_{1}, 23_{1}, 28_{1}\right),\left(0_{1}, 25_{1}, 29_{1}\right)$.
For $k \geq 10, k \equiv 0(\bmod 4)$ the remaining triples are the following, along with their reverses:
$\left(0_{1},(3 k+1)_{1},(3 k+5)_{1}\right)$,
$\left(0_{1},(3 k-2 t-1)_{1},(3 k+2 t+4)_{1}\right)$ for $t=0,1, \ldots, \frac{k-8}{4}$,
$\left(0_{1},(3 k-2 t)_{1},(3 k+2 t+7)_{1}\right)$ for $t=0,1, \ldots, \frac{k-12}{4}$.
For $k \geq 10, k \equiv 2(\bmod 4)$ the remaining triples are the following, along with their reverses:
$\left(0_{1},(3 k)_{1},(3 k+4)_{1}\right)$,
$\left(0_{1},(3 k-2 t-2)_{1},(3 k+2 t+5)_{1}\right)$ for $t=0,1, \ldots, \frac{k-10}{4}$,
$\left(0_{1},(3 k-2 t+1)_{1},(3 k+2 t+6)_{1}\right)$ for $t=0,1, \ldots, \frac{k-10}{4}$.
For $k \geq 1, k$ odd, the base triples include the following:
$\left(0_{0},(6 k+2)_{0},(12 k+4)_{1}\right),\left((12 k+4)_{1},(6 k)_{0}, 0_{0}\right),\left(0_{0},(6 k+4)_{1},(9 k+4)_{1}\right)$, $\left((9 k+4)_{1},(6 k+2)_{1}, 0_{0}\right)$.
Also included are the following triples and their reverses:
$\left(0_{0}, 0_{1},(6 k+3)_{1}\right),\left(0_{1},(12 k+4)_{0},(12 k+5)_{1}\right)$,
$\left(0_{0},(3 k-t+1)_{1},(15 k+t+7)_{1}\right)$ for $t=0,1, \ldots, 3 k-1$,
$\left(0_{0},(9 k-t+3)_{1},(21 k+t+10)_{1}\right)$ for $t=0,1, \ldots, 3 k-2$.
The remaining triples in the cycle of length M are formed using a ($B, 2 k$)-system.
For $k=1$, the remaining triples are the following:
$\left(0_{1}, 2_{1}, 5_{1}\right),\left(0_{1}, 7_{1}, 11_{1}\right),\left(0_{1}, 6_{1}, 10_{1}\right),\left(1_{1}, 7_{1}, 9_{1}\right),\left(7_{1}, 0_{1}, 8_{1}\right),\left(1_{1}, 12_{1}, 11_{1}\right)$.

For $k \geq 3, k$ odd, the base triples also include the following:
$\left((3 k)_{1}, 0_{1},(3 k+2)_{1}\right),\left(0_{1}, 1_{1}, 2_{1}\right)$.
Also included are the following triples and their reverses:
$\left(0_{1},(4 k+3)_{1},(6 k+5)_{1}\right),\left(0_{1},(4 k+4)_{1},(6 k+4)_{1}\right)$.
For $k=3$, the remaining triples are the following, along with their reverses:
$\left(0_{1}, 17_{1}, 20_{1}\right),\left(0_{1}, 10_{1}, 14_{1}\right),\left(0_{1}, 13_{1}, 18_{1}\right),\left(0_{1}, 12_{1}, 19_{1}\right)$.
For $k=5$, the remaining triples are the following, along with their reverses:
$\left(0_{1}, 28_{1}, 31_{1}\right),\left(0_{1}, 27_{1}, 32_{1}\right),\left(0_{1}, 16_{1}, 20_{1}\right),\left(0_{1}, 13_{1}, 19_{1}\right),\left(0_{1}, 22_{1}, 29_{1}\right)$,
$\left(0_{1}, 18_{1}, 26_{1}\right),\left(0_{1}, 21_{1}, 30_{1}\right),\left(0_{1}, 14_{1}, 25_{1}\right)$.
For $k \geq 7, k$ odd, the base triples also include the following, along with their reverses:
$\left(0_{1},(3 k+1)_{1},(5 k+2)_{1}\right),\left(0_{1},(3 k+3)_{1},(4 k+2)_{1}\right),\left(0_{1},\left(\frac{7}{2} k+\frac{3}{2}\right)_{1},\left(\frac{11}{2} k+\frac{1}{2}\right)_{1}\right)$,
$\left(0_{1},\left(\frac{9}{2} k-t+\frac{7}{2}\right)_{1},\left(\frac{11}{2} k+t+\frac{7}{2}\right)_{1}\right)$ for $t=0,1, \ldots, \frac{k-3}{2}$,
$\left(0_{1},\left(\frac{5}{2} k-t+\frac{3}{2}\right)_{1},\left(\frac{7}{2} k+t+\frac{5}{2}\right)_{1}\right)$ for $t=0,1, \ldots, \frac{k-3}{2}$,
$\left(0_{1},(3 k-t-1)_{1},(3 k+t+4)_{1}\right)$ for $t=0,1, \ldots, \frac{k-7}{2}$.
For $k=7$, the remaining triples are the following, along with their reverses:
$\left(3_{1}, 38_{1}, 41_{1}\right),\left(4_{1}, 36_{1}, 40_{1}\right)$.
For $k=9$, the remaining triples are the following, along with their reverses: $\left(0_{1}, 46_{1}, 52_{1}\right),\left(0_{1}, 48_{1}, 51_{1}\right),\left(0_{1}, 45_{1}, 49_{1}\right)$.

For $k=11$, the remaining triples are the following, along with their reverses: $\left(0_{1}, 56_{1}, 59_{1}\right),\left(0_{1}, 58_{1}, 62_{1}\right),\left(0_{1}, 54_{1}, 60_{1}\right),\left(0_{1}, 55_{1}, 63_{1}\right)$.

For $k \geq 13, k \equiv 1(\bmod 6)$ the remaining triples are the following, along with their reverses:
$\left(0_{1},(5 k+1)_{1},(5 k+5)_{1}\right),\left(0_{1},(5 k+3)_{1},(5 k+6)_{1}\right)$,
$\left(0_{1},(5 k-3 t-1)_{1},(5 k+3 t+9)_{1}\right)$ for $t=0,1, \ldots, \frac{k-13}{6}$,
$\left(0_{1},(5 k-3 t)_{1},(5 k+3 t+8)_{1}\right)$ for $t=0,1, \ldots, \frac{k-13}{6}$,
$\left(0_{1},(5 k-3 t-2)_{1},(5 k+3 t+4)_{1}\right)$ for $t=0,1, \ldots, \frac{k-13}{6}$.
For $k \geq 13, k \equiv 3(\bmod 6)$ the remaining triples are the following, along with their reverses:
$\left(0_{1},(5 k+1)_{1},(5 k+7)_{1}\right),\left(0_{1},(5 k+3)_{1},(5 k+6)_{1}\right),\left(0_{1},(5 k)_{1},(5 k+4)_{1}\right)$,
$\left(0_{1},(5 k-3 t-2)_{1},(5 k+3 t+10)_{1}\right)$ for $t=0,1, \ldots, \frac{k-15}{6}$,
$\left(0_{1},(5 k-3 t-1)_{1},(5 k+3 t+9)_{1}\right)$ for $t=0,1, \ldots, \frac{k-15}{6}$,
$\left(0_{1},(5 k-3 t-3)_{1},(5 k+3 t+5)_{1}\right)$ for $t=0,1, \ldots, \frac{k-15}{6}$.
For $k \geq 13, k \equiv 5(\bmod 6)$ the remaining triples are the following, along with their reverses:
$\left(0_{1},(5 k+1)_{1},(5 k+4)_{1}\right),\left(0_{1},(5 k+3)_{1},(5 k+7)_{1}\right),\left(0_{1},(5 k-1)_{1},(5 k+5)_{1}\right)$, $\left(0_{1},(5 k)_{1},(5 k+8)_{1}\right)$,
$\left(0_{1},(5 k-3 t-3)_{1},(5 k+3 t+11)_{1}\right)$ for $t=0,1, \ldots, \frac{k-17}{k-17}$,
$\left(0_{1},(5 k-3 t-2)_{1},(5 k+3 t+10)_{1}\right)$ for $t=0,1, \ldots, \frac{k-17}{6}$,
$\left(0_{1},(5 k-3 t-4)_{1},(5 k+3 t+6)_{1}\right)$ for $t=0,1, \ldots, \frac{k-1_{7}}{6}$.
Lemma 5.4 If $v=M+N$ and $M \equiv 7(\bmod 12)$, there exists a DTS(v) which admits a bicyclic antiautomorphism where $v=M+N, N=2 M, M$ and N being the lengths of the cycles.

Proof: Let $M=12 k+7, N=24 k+14$.

For $k \geq 0, k$ even, the base triples are the following, along with their reverses:
$\left(0_{1}, 0_{0},(12 k+7)_{1}\right),\left(0_{0},(9 k+5)_{1},(15 k+9)_{1}\right)$,
$\left(0_{0},(3 k-t+1)_{1},(9 k+t+6)_{1}\right)$ for $t=0,1, \ldots, 3 k$,
$\left(0_{0},(9 k-t+4)_{1},(15 k+t+10)_{1}\right)$ for $t=0,1, \ldots, 3 k$,
and the triples in the cycle of length M from the corresponding $\operatorname{DTS}(M)$ of a cyclic $\operatorname{STS}(M)$. The remaining triples in the cycle of length N are formed using an $(A, 2 k+$ 1)-system.

For $k \geq 1, k$ odd, the base triples are the following, along with their reverses: $\left(0_{1}, 0_{0},(12 k+7)_{1}\right),\left(0_{0},(3 k+2)_{1},(9 k+5)_{1}\right)$, $\left(0_{0},(3 k-t+1)_{1},(9 k+t+6)_{1}\right)$ for $t=0,1, \ldots, 3 k$, $\left(0_{0},(9 k-t+4)_{1},(15 k+t+10)_{1}\right)$ for $t=0,1, \ldots, 3 k$,
and the triples in the cycle of length M from the corresponding $\operatorname{DTS}(M)$ of a cyclic $\operatorname{STS}(M)$. The remaining triples in the cycle of length N are formed using a ($B, 2 k+$ 1)-system.

Lemma 5.5 If $v=M+N$ and $M \equiv 9(\bmod 12)$, there exists a DTS(v) which admits a bicyclic antiautomorphism where $v=M+N, N=2 M, M$ and N being the lengths of the cycles.

Proof: Let $M=12 k+9, N=24 k+18$.
For $k \geq 0, k$ even, the base triples include the following:
$\left(0_{0},(6 k+4)_{0},(12 k+8)_{1}\right),\left(1_{0},(6 k+5)_{1},(18 k+13)_{1}\right),\left(1_{0},(6 k+4)_{1},(12 k+9)_{1}\right)$,
$\left(0_{0},(6 k+5)_{1},(18 k+15)_{1}\right),\left(1_{0},(12 k+8)_{1},(6 k+6)_{1}\right),\left(0_{0},(6 k+6)_{1},(12 k+7)_{1}\right)$.
Also included are the following, along with their reverses:
$\left(0_{0}, 2_{1},(12 k+9)_{1}\right),\left(0_{1},(12 k+8)_{0},(12 k+9)_{1}\right)$.
The remaining triples in the cycle of length M are formed using an $(A, 2 k+1)$-system.
For $k=0$, the remaining triples are the following:
$\left(0_{1}, 3_{1}, 6_{1}\right),\left(6_{1}, 0_{1}, 2_{1}\right),\left(5_{1}, 0_{1}, 4_{1}\right)$.
For $k \geq 2, k$ even, the following are also included, along with their reverses:
$\left(0_{0},(3 k-t+1)_{1},(9 k+t+8)_{1}\right)$ for $t=0,1, \ldots, 3 k-2$,
$\left(0_{0},(9 k-t+7)_{1},(15 k+t+11)_{1}\right)$ for $t=0,1, \ldots, 3 k$.
For $k=2$, the remaining triples are the following:
$\left(31_{1}, 1_{1}, 18_{1}\right),\left(0_{1}, 29_{1}, 59_{1}\right),\left(29_{1}, 0_{1}, 14_{1}\right),\left(7_{1}, 0_{1}, 15_{1}\right),\left(0_{1}, 8_{1}, 6_{1}\right),\left(6_{1}, 0_{1}, 10_{1}\right)$, $\left(0_{1}, 5_{1}, 9_{1}\right),\left(9_{1}, 0_{1}, 12_{1}\right),\left(10_{1}, 0_{1}, 11_{1}\right),\left(11_{1}, 12_{1}, 0_{1}\right),\left(5_{1}, 0_{1}, 3_{1}\right)$.

For $k \geq 4, k$ even, the base triples also include the following: $\left((6 k+5)_{1}, 0_{1},(6 k+2)_{1}\right),\left((6 k+1)_{1}, 0_{1}, 3_{1}\right),\left((6 k-2)_{1},(3 k-1)_{1}, 0_{1}\right)$.

For $k=4$, the remaining triples are the following, along with their reverses:
$\left(0_{1}, 10_{1}, 12_{1}\right),\left(0_{1}, 13_{1}, 18_{1}\right),\left(0_{1}, 14_{1}, 20_{1}\right),\left(0_{1}, 15_{1}, 24_{1}\right),\left(0_{1}, 16_{1}, 23_{1}\right)$, $\left(0_{1}, 17_{1}, 21_{1}\right),\left(0_{1}, 19_{1}, 27_{1}\right),\left(0_{1}, 53_{1}, 54_{1}\right)$.

For $k=6$, the remaining triples are the following, along with their reverses: $\left(0_{1}, 14_{1}, 27_{1}\right),\left(0_{1}, 15_{1}, 26_{1}\right),\left(0_{1}, 16_{1}, 25_{1}\right),\left(0_{1}, 18_{1}, 24_{1}\right),\left(0_{1}, 19_{1}, 23_{1}\right),\left(0_{1}, 20_{1}, 22_{1}\right)$, $\left(0_{1}, 21_{1}, 33_{1}\right),\left(0_{1}, 28_{1}, 36_{1}\right),\left(0_{1}, 29_{1}, 39_{1}\right),\left(0_{1}, 30_{1}, 35_{1}\right),\left(0_{1}, 31_{1}, 32_{1}\right),\left(0_{1}, 77_{1}, 155_{1}\right)$.

For $k \geq 8, k$ even, the remaining triples are the following, along with their reverses:
$\left(0_{1},(12 k+5)_{1},(12 k+6)_{1}\right),\left(0_{1},(4 k+2)_{1},(6 k+3)_{1}\right),\left(0_{1},(6 k-5)_{1},(6 k-3)_{1}\right)$,
$\left(0_{1},(6 k-4)_{1},(6 k)_{1}\right),\left(0_{1},(6 k-6)_{1},(6 k-1)_{1}\right)$,
$\left(0_{1},(3 k-t-2)_{1},(3 k+t+5)_{1}\right)$ for $t=0,1, \ldots, k-4$,
$\left(0_{1},(3 k-t+4)_{1},(5 k+t-4)_{1}\right)$ for $t=0,1,2,3,4$,
$\left(0_{1},(5 k-t-5)_{1},(5 k+t+1)_{1}\right)$ for $t=0,1, \ldots, k-8$.
For $k \geq 1, k$ odd, the base triples include the following:
$\left(0_{0},(6 k+3)_{0},(12 k+8)_{1}\right),\left(1_{0},(6 k+4)_{1},(18 k+14)_{1}\right),\left(1_{0},(6 k+5)_{1},(12 k+9)_{1}\right)$, $\left(0_{0},(6 k+3)_{1},(6 k+5)_{1}\right),\left(0_{1}, 2_{1},(12 k+8)_{1}\right),\left((12 k+6)_{1}, 0_{1},(6 k+4)_{1}\right)$,
$\left((3 k+5)_{1}, 1_{1},(3 k-1)_{1}\right),\left(0_{1},(3 k-2)_{1},(6 k+2)_{1}\right),\left(0_{1}, 3_{1}, 6_{1}\right)$.
Also included are the following, along with their reverses:
$\left(0_{1},(12 k+8)_{0},(12 k+9)_{1}\right),\left(0_{0}, 0_{1},(12 k+7)_{1}\right)$,
$\left(0_{0},(3 k-t+1)_{1},(9 k+t+7)_{1}\right)$ for $t=0,1, \ldots, 3 k-1$,
$\left(0_{0},(9 k-t+6)_{1},(15 k+t+11)_{1}\right)$ for $t=0,1, \ldots, 3 k$.
The remaining triples in the cycle of length M are formed using a ($B, 2 k+1$)-system.
For $k=1$ the remaining triples are $\left(0_{1}, 5_{1}, 9_{1}\right)$ and its reverse.
For $k=3$ the remaining triples are the following, along with their reverses: $\left(0_{1}, 16_{1}, 17_{1}\right),\left(0_{1}, 14_{1}, 18_{1}\right),\left(0_{1}, 10_{1}, 15_{1}\right),\left(0_{1}, 11_{1}, 19_{1}\right),\left(0_{1}, 12_{1}, 21_{1}\right)$.

For $k=5$ the remaining triples are the following, along with their reverses: $\left(0_{1}, 14_{1}, 26_{1}\right),\left(0_{1}, 15_{1}, 25_{1}\right),\left(0_{1}, 16_{1}, 23_{1}\right),\left(0_{1}, 17_{1}, 21_{1}\right),\left(0_{1}, 18_{1}, 27_{1}\right)$, $\left(0_{1}, 20_{1}, 28_{1}\right),\left(0_{1}, 22_{1}, 33_{1}\right),\left(0_{1}, 24_{1}, 29_{1}\right),\left(0_{1}, 30_{1}, 31_{1}\right)$.

For $k=7$ the remaining triples are the following, along with their reverses: $\left(0_{1}, 17_{1}, 31_{1}\right),\left(0_{1}, 18_{1}, 30_{1}\right),\left(0_{1}, 20_{1}, 29_{1}\right),\left(0_{1}, 21_{1}, 28_{1}\right),\left(0_{1}, 22_{1}, 27_{1}\right)$, $\left(0_{1}, 23_{1}, 39_{1}\right),\left(0_{1}, 24_{1}, 35_{1}\right),\left(0_{1}, 26_{1}, 41_{1}\right),\left(0_{1}, 32_{1}, 45_{1}\right),\left(0_{1}, 33_{1}, 43_{1}\right)$, $\left(0_{1}, 34_{1}, 42_{1}\right),\left(0_{1}, 36_{1}, 40_{1}\right),\left(0_{1}, 37_{1}, 38_{1}\right)$.

For $k=9$ the remaining triples are the following, along with their reverses: $\left(0_{1}, 21_{1}, 37_{1}\right),\left(0_{1}, 22_{1}, 36_{1}\right),\left(0_{1}, 23_{1}, 35_{1}\right),\left(0_{1}, 24_{1}, 34_{1}\right),\left(0_{1}, 26_{1}, 33_{1}\right)$, $\left(0_{1}, 27_{1}, 32_{1}\right),\left(0_{1}, 28_{1}, 47_{1}\right),\left(0_{1}, 29_{1}, 49_{1}\right),\left(0_{1}, 30_{1}, 48_{1}\right),\left(0_{1}, 38_{1}, 53_{1}\right)$, $\left(0_{1}, 39_{1}, 52_{1}\right),\left(0_{1}, 41_{1}, 42_{1}\right),\left(0_{1}, 43_{1}, 51_{1}\right),\left(0_{1}, 44_{1}, 55_{1}\right),\left(0_{1}, 45_{1}, 54_{1}\right)$, $\left(0_{1}, 46_{1}, 50_{1}\right),\left(0_{1}, 40_{1}, 57_{1}\right)$.

For $k=11$ the remaining triples are the following, along with their reverses: $\left(0_{1}, 25_{1}, 47_{1}\right),\left(0_{1}, 26_{1}, 46_{1}\right),\left(0_{1}, 27_{1}, 45_{1}\right),\left(0_{1}, 28_{1}, 44_{1}\right),\left(0_{1}, 29_{1}, 43_{1}\right)$, $\left(0_{1}, 30_{1}, 42_{1}\right),\left(0_{1}, 32_{1}, 40_{1}\right),\left(0_{1}, 33_{1}, 56_{1}\right),\left(0_{1}, 34_{1}, 58_{1}\right),\left(0_{1}, 35_{1}, 39_{1}\right)$, $\left(0_{1}, 36_{1}, 41_{1}\right),\left(0_{1}, 38_{1}, 57_{1}\right),\left(0_{1}, 49_{1}, 59_{1}\right),\left(0_{1}, 48_{1}, 69_{1}\right),\left(0_{1}, 50_{1}, 67_{1}\right)$, $\left(0_{1}, 51_{1}, 66_{1}\right),\left(0_{1}, 52_{1}, 65_{1}\right),\left(0_{1}, 53_{1}, 64_{1}\right),\left(0_{1}, 54_{1}, 63_{1}\right),\left(0_{1}, 55_{1}, 62_{1}\right)$, $\left(0_{1}, 60_{1}, 61_{1}\right)$.

For $k \geq 13, k$ odd, the base triples also include the following, along with their reverses:
$\left(0_{1},\left(\frac{9}{2} k+\frac{9}{2}\right)_{1},\left(\frac{9}{2} k+\frac{11}{2}\right)_{1}\right),\left(0_{1},(4 k+3)_{1},(5 k+3)_{1}\right),\left(0_{1},(4 k+2)_{1},(6 k+3)_{1}\right)$,
$\left(0_{1},(3 k+2)_{1},(5 k+4)_{1}\right),\left(0_{1},(3 k+1)_{1},(5 k+1)_{1}\right),\left(0_{1},(3 k+6)_{1},(5 k+5)_{1}\right)$,
$\left(0_{1},(3 k-1)_{1},(3 k+3)_{1}\right),\left(0_{1},(3 k)_{1},(3 k+5)_{1}\right)$,
$\left(0_{1},(3 k-t-3)_{1},(3 k+t+7)_{1}\right)$ for $t=0,1, \ldots, k-6$, $\left(0_{1},\left(\frac{9}{2} k-t+\frac{3}{2}\right)_{1},\left(\frac{11}{2} k+t+\frac{7}{2}\right)_{1}\right)$ for $t=0,1, \ldots, \frac{k-5}{2}$.

For $k=13$ the remaining triples are the following, along with their reverses: $\left(0_{1}, 61_{1}, 72_{1}\right),\left(0_{1}, 62_{1}, 71_{1}\right),\left(0_{1}, 65_{1}, 73_{1}\right),\left(0_{1}, 67_{1}, 74_{1}\right)$.

For $k=15$ the remaining triples are the following, along with their reverses: $\left(0_{1}, 70_{1}, 83_{1}\right),\left(0_{1}, 71_{1}, 82_{1}\right),\left(0_{1}, 74_{1}, 81_{1}\right),\left(0_{1}, 75_{1}, 84_{1}\right),\left(0_{1}, 77_{1}, 85_{1}\right)$.

For $k=17$ the remaining triples are the following, along with their reverses: $\left(0_{1}, 79_{1}, 94_{1}\right),\left(0_{1}, 80_{1}, 93_{1}\right),\left(0_{1}, 83_{1}, 92_{1}\right),\left(0_{1}, 84_{1}, 91_{1}\right),\left(0_{1}, 85_{1}, 96_{1}\right)$, $\left(0_{1}, 87_{1}, 95_{1}\right)$.

For $k=19$ the remaining triples are the following, along with their reverses: $\left(0_{1}, 88_{1}, 105_{1}\right),\left(0_{1}, 89_{1}, 104_{1}\right),\left(0_{1}, 92_{1}, 103_{1}\right),\left(0_{1}, 93_{1}, 101_{1}\right),\left(0_{1}, 94_{1}, 107_{1}\right)$, $\left(0_{1}, 95_{1}, 102_{1}\right),\left(0_{1}, 97_{1}, 106_{1}\right)$.

For $k=21$ the remaining triples are the following, along with their reverses: $\left(0_{1}, 97_{1}, 116_{1}\right),\left(0_{1}, 101_{1}, 112_{1}\right),\left(0_{1}, 103_{1}, 118_{1}\right),\left(0_{1}, 98_{1}, 115_{1}\right),\left(0_{1}, 102_{1}, 111_{1}\right)$, $\left(0_{1}, 104_{1}, 117_{1}\right),\left(0_{1}, 105_{1}, 113_{1}\right),\left(0_{1}, 107_{1}, 114_{1}\right)$.

For $k \geq 23, k \equiv 1(\bmod 8)$, the remaining triples are the following, along with their reverses:
$\left(0_{1},(5 k)_{1},(5 k+11)_{1}\right),\left(0_{1},(5 k-2)_{1},(5 k+7)_{1}\right),\left(0_{1},(5 k-1)_{1},(5 k+6)_{1}\right)$, $\left(0_{1},(5 k+2)_{1},(5 k+10)_{1}\right)$,
$\left(0_{1},(5 k-4 t-6)_{1},(5 k+4 t+9)_{1}\right)$ for $t=0,1, \ldots, \frac{k-17}{8}$,
$\left(0_{1},(5 k-4 t-5)_{1},(5 k+4 t+8)_{1}\right)$ for $t=0,1, \ldots, \frac{k-17}{8}$,
$\left(0_{1},(5 k-4 t-4)_{1},(5 k+4 t+15)_{1}\right)$ for $t=0,1, \ldots, \frac{k-25}{8}$,
$\left(0_{1},(5 k-4 t-3)_{1},(5 k+4 t+14)_{1}\right)$ for $t=0,1, \ldots, \frac{k-25}{8}$.
For $k \geq 23, k \equiv 3(\bmod 8)$, the remaining triples are the following, along with their reverses:
$\left(0_{1},(5 k-1)_{1},(5 k+12)_{1}\right),\left(0_{1},(5 k-3)_{1},(5 k+8)_{1}\right),\left(0_{1},(5 k+2)_{1},(5 k+11)_{1}\right)$, $\left(0_{1},(5 k)_{1},(5 k+7)_{1}\right),\left(0_{1},(5 k-2)_{1},(5 k+6)_{1}\right)$,
$\left(0_{1},(5 k-4 t-7)_{1},(5 k+4 t+10)_{1}\right)$ for $t=0,1, \ldots, \frac{k-19}{8}$,
$\left(0_{1},(5 k-4 t-6)_{1},(5 k+4 t+9)_{1}\right)$ for $t=0,1, \ldots, \frac{k-19}{8}$,
$\left(0_{1},(5 k-4 t-5)_{1},(5 k+4 t+16)_{1}\right)$ for $t=0,1, \ldots, \frac{k-27}{8}$,
$\left(0_{1},(5 k-4 t-4)_{1},(5 k+4 t+15)_{1}\right)$ for $t=0,1, \ldots, \frac{k-27}{8}$.
For $k \geq 23, k \equiv 5(\bmod 8)$, the remaining triples are the following, along with their reverses:
$\left(0_{1},(5 k)_{1},(5 k+8)_{1}\right),\left(0_{1},(5 k+2)_{1},(5 k+9)_{1}\right)$,
$\left(0_{1},(5 k-4 t-4)_{1},(5 k+4 t+7)_{1}\right)$ for $t=0,1, \ldots, \frac{k-13}{8}$,
$\left(0_{1},(5 k-4 t-3)_{1},(5 k+4 t+6)_{1}\right)$ for $t=0,1, \ldots, \frac{k-13}{8}$,
$\left(0_{1},(5 k-4 t-2)_{1},(5 k+4 t+13)_{1}\right)$ for $t=0,1, \ldots, \frac{k-21}{8}$,
$\left(0_{1},(5 k-4 t-1)_{1},(5 k+4 t+12)_{1}\right)$ for $t=0,1, \ldots, \frac{k-21}{8}$.
For $k \geq 23, k \equiv 7(\bmod 8)$, the remaining triples are the following, along with their reverses:
$\left(0_{1},(5 k)_{1},(5 k+9)_{1}\right),\left(0_{1},(5 k-1)_{1},(5 k+6)_{1}\right),\left(0_{1},(5 k+2)_{1},(5 k+10)_{1}\right)$,
$\left(0_{1},(5 k-4 t-5)_{1},(5 k+4 t+8)_{1}\right)$ for $t=0,1, \ldots, \frac{k-15}{8}$,
$\left(0_{1},(5 k-4 t-4)_{1},(5 k+4 t+7)_{1}\right)$ for $t=0,1, \ldots, \frac{k-15}{8}$,
$\left(0_{1},(5 k-4 t-3)_{1},(5 k+4 t+14)_{1}\right)$ for $t=0,1, \ldots, \frac{k-23}{8}$,
$\left(0_{1},(5 k-4 t-2)_{1},(5 k+4 t+13)_{1}\right)$ for $t=0,1, \ldots, \frac{k-23}{8}$.
Lemma 5.6 If $v=M+N$ and $M \equiv 11(\bmod 12)$, there exists a DTS(v) which admits a bicyclic antiautomorphism where $v=M+N, N=2 M, M$ and N being the lengths of the cycles.

Proof: Let $M=12 k+11, N=24 k+22$.
For $k \geq 0, k$ even, the base triples include the following:
$\left(0_{0},(6 k+5)_{0},(12 k+10)_{1}\right),\left((12 k+10)_{1},(6 k+4)_{0}, 0_{0}\right),\left(0_{0}, 0_{1},(6 k+6)_{1}\right)$, $\left(0_{1},(18 k+16)_{1}, 0_{0}\right)$.
Also included are the following, along with their reverses:
$\left((21 k+19)_{1}, 0_{0},(9 k+8)_{1}\right)$,
$\left(0_{0},(3 k-t+2)_{1},(15 k+t+14)_{1}\right)$ for $t=0,1, \ldots, 3 k+1$,
$\left(0_{0},(9 k-t+7)_{1},(21 k+t+20)_{1}\right)$ for $t=0,1, \ldots, 3 k$.
The remaining triples in the cycle of length M are formed using an $(A, 2 k+1)$-system.
The remaining triples in the cycle of length N are formed using a ($B, 2 k+2$)-system.
For $k \geq 1, k$ odd, the base triples include the following:
$\left(0_{0},(6 k+5)_{0},(12 k+10)_{1}\right),\left((12 k+10)_{1},(6 k+3)_{0}, 0_{0}\right)$,
$\left(0_{1},(6 k+6)_{0},(12 k+11)_{1}\right),\left(1_{1},(6 k+5)_{0},(12 k+12)_{1}\right)$.
Also included are the following, along with their reverses:
$\left(0_{0},(3 k+2)_{1},(6 k+4)_{1}\right),\left(0_{0}, 0_{1},(6 k+6)_{1}\right)$,
$\left(0_{0},(3 k-t+1)_{1},(15 k+t+14)_{1}\right)$ for $t=0,1, \ldots, 3 k$,
$\left(0_{0},(9 k-t+8)_{1},(21 k+t+20)_{1}\right)$ for $t=0,1, \ldots, 3 k$.
The remaining triples in the cycle of length M are formed using a ($B, 2 k+1$)-system.
For $k=1$, the remaining triples are the following, along with their reverses: $\left(0_{1}, 6_{1}, 9_{1}\right),\left(0_{1}, 7_{1}, 8_{1}\right),\left(0_{1}, 10_{1}, 14_{1}\right),\left(0_{1}, 11_{1}, 13_{1}\right)$.

For $k \geq 3, k$ odd, the base triples also include the following, along with their reverses:
$\left(0_{1},(3 k+3)_{1},(3 k+6)_{1}\right),\left(0_{1},(3 k+4)_{1},(3 k+5)_{1}\right)$, $\left(0_{1},(3 k-t+1)_{1},(3 k+t+7)_{1}\right)$ for $t=0,1, \ldots, k-2$.

For $k=3$, the remaining triples are the following, along with their reverses:
$\left(0_{1}, 19_{1}, 26_{1}\right),\left(0_{1}, 20_{1}, 25_{1}\right),\left(0_{1}, 18_{1}, 22_{1}\right),\left(0_{1}, 21_{1}, 23_{1}\right)$.
For $k \geq 5, k \equiv 1(\bmod 6)$, the base triples also include the following, along with their reverses:
$\left(0_{1},(5 k+5)_{1},(5 k+9)_{1}\right),\left(0_{1},(5 k+6)_{1},(5 k+8)_{1}\right)$,
$\left(0_{1},(5 k-3 t+3)_{1},(5 k+3 t+12)_{1}\right)$ for $t=0,1, \ldots, \frac{k-4}{3}$,
$\left(0_{1},(5 k-3 t+4)_{1},(5 k+3 t+11)_{1}\right)$ for $t=0,1, \ldots, \frac{k-4}{3}$,
$\left(0_{1},(5 k-3 t+2)_{1},(5 k+3 t+7)_{1}\right)$ for $t=0,1, \ldots, \frac{k-4}{3}$.
For $k \geq 5, k \equiv 3(\bmod 6)$, the base triples also include the following, along with their reverses:
$\left(0_{1},(5 k+3)_{1},(5 k+7)_{1}\right),\left(0_{1},(5 k+6)_{1},(5 k+8)_{1}\right)$,
$\left(0_{1},(5 k-3 t+4)_{1},(5 k+3 t+11)_{1}\right)$ for $t=0,1, \ldots, \frac{k-3}{3}$,
$\left(0_{1},(5 k-3 t+5)_{1},(5 k+3 t+10)_{1}\right)$ for $t=0,1, \ldots, \frac{k-3}{3}$,
$\left(0_{1},(5 k-3 t)_{1},(5 k+3 t+9)_{1}\right)$ for $t=0,1, \ldots, \frac{k-6}{3}$.
For $k \geq 5, k \equiv 5(\bmod 6)$, the base triples also include the following, along with their reverses:
$\left(0_{1},(5 k+4)_{1},(5 k+9)_{1}\right),\left(0_{1},(5 k+6)_{1},(5 k+10)_{1}\right),\left(0_{1},(5 k+5)_{1},(5 k+7)_{1}\right)$,
$\left(0_{1},(5 k-3 t+2)_{1},(5 k+3 t+13)_{1}\right)$ for $t=0,1, \ldots, \frac{k-5}{3}$,
$\left(0_{1},(5 k-3 t+3)_{1},(5 k+3 t+12)_{1}\right)$ for $t=0,1, \ldots, \frac{k-5}{3}$,
$\left(0_{1},(5 k-3 t+1)_{1},(5 k+3 t+8)_{1}\right)$ for $t=0,1, \ldots, \frac{k-5}{3}$.

6 Conclusion

By the lemmas in the previous sections, we have the following theorem.
Theorem 6.1 There exists a DTS(v) which admits a bicyclic antiautomorphism where $v=M+N, N=2 M, M$ and N being the lengths of the cycles, if and only if M is odd or $M \equiv 4(\bmod 12)$.

References

[1] R. Calahan-Zijlstra and R.B. Gardner, Bicyclic Steiner triple systems, Discrete Math. 128 (1994), 35-44.
[2] N.P. Carnes, A. Dye and J.F. Reed, Cyclic antiautomorphisms of directed triple systems, J. Combin. Designs 4 (1996), 105-115.
[3] N.P. Carnes, A. Dye and J.F. Reed, Bicyclic antiautomorphisms of directed triple systems, Australas. J. Combin. 19 (1999), 253-258.
[4] S.H.Y. Hung and N.S. Mendelsohn, Directed triple systems, J. Combin. Theory Ser. A 14 (1973), 310-318.
[5] Q. Kang, Y. Chang and G. Yang, The spectrum of self-converse DTS, J. Combin. Designs 2 (1994), 415-425.
[6] T.P. Kirkman, On a problem in combinations, Cambridge and Dublin Math. J. 2 (1847), 191-204.
[7] B. Micale and M. Pennisi, On the directed triple systems with a given automorphism, Australas. J. Combin. 15 (1997), 233-240.
[8] B. Micale and M. Pennisi, The spectrum of d-cyclic oriented triple systems, Ars Combinatoria 48 (1998), 219-223.
[9] E. O'Keefe, Verification of a confecture of Th. Skolem, Math. Scand. 9 (1961), 80-82.
[10] R. Peltesohn, Eine Lösung der beiden Heffterschen Differenzenprobleme, Compositio Math. 6 (1939), 251-257.
[11] Th. Skolem, On certain distributions of integers in pairs with given differences, Math. Scand. 5 (1957) 57-68.

