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Abstract

In this paper, we investigate the total colorings of the join graphs G =
G1 +G2, where G1 and G2 are graphs with maximum degree at most two.
We prove that

(1) when both G1 and G2 are bipartite graphs with maximum degree
at most two, then G is Type 1 if and only if G is not isomorphic to
Kn,n (n = 1, 2, . . .) or to K4, and

(2) Cm + Cn is Type 2 if and only if m = n and n is odd.
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1 Introduction

All graphs in this paper will be finite simple graphs. Given two graphs G1 and
G2, we define their join graph, denoted by G1 + G2, to be the graph with vertex set
V (G1)∪V (G2) and edge set {uv | uv ∈ E(G1)∪E(G2) where u ∈ V (G1), v ∈ V (G2)}.
We note that G1 + G2 is a complete bipartite graph if both G1 and G2 are sets of
independent vertices. Let Cn and Pn be the cycle and path of n vertices, respectively.

An edge coloring of a graph G is a map f : E(G) → C, where C is the set of colors,
such that no two edges with the same color are incident with the same vertex. The
chromatic index or edge chromatic number χ

′
(G) of G is the least value of |C| for

which G has an edge coloring. In [16] Vizing showed that ∆(G) ≤ χ′(G) ≤ ∆(G)+1
for every graph G with maximum degree ∆(G). A fairly long-standing problem has
been to classify which graphs G are Class one (χ′(G) = ∆(G)) and which are Class
two (χ′(G) = ∆(G) + 1).

A total coloring of a graph G is a coloring of the vertices and edges of G such that
no two edges incident with the same vertex receive the same color, no two adjacent
vertices receive the same color, and no incident edge and vertex receive the same
color. The total chromatic number χ

′′
(G) of a graph G is the least number of colors

needed in a total coloring of G.
For the total chromatic number, there is no known analogue of Vizing’s theorem

about the chromatic index. Instead we have the Total Chromatic Number Conjecture
(TCC) of Behzad [1] and Vizing [17] that

∆(G) + 1 ≤ χ
′′
(G) ≤ ∆(G) + 2.

The lower bound here is very easy to prove. This conjecture, now more than thirty
years old, has been verified when ∆(G) ≥ 3

4
|V (G)| by Hilton and Hind [9], and when

∆(G) ≤ 5 by Kostochka [13]. It has recently been shown by Molloy and Reed [14]
that there is a constant c such that χ

′′
(G) ≤ ∆(G) + c.

A graph G is called Type 1 if χT (G) = ∆(G) + 1 and Type 2 otherwise. To
classify Type 1 and Type 2 graphs, Chetwynd and Hilton [4], introduced the following
concepts. They defined the deficiency of a graph G, denoted by def(G), to be

def(G) =
∑

v∈V (G)

(∆(G) − dG(v)).

A vertex coloring of a graph G with ∆(G) + 1 colors is called conformable if the
number of color classes of parity different from that of |V (G)| is at most def(G). Note
that empty color classes are permitted in this definition. A graph G is conformable
if it has a conformable vertex coloring. It is not very hard to see that G is Type 2 if
G is non-conformable. The Conformability Conjecture of Chetwynd and Hilton [4],
modified by Hamilton, Hilton and Hind [6] is:

Conjecture 1 Let G be a graph such that ∆(G) ≥ 1
2
(|V (G)| + 1). Then G is Type

2 if and only if G contains a subgraph H with ∆(G) = ∆(H) which is either non-
conformable, or, when ∆(G) is even, consists of K∆(G)+1 with one edge subdivided.
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Conjecture 1 has been verified for several cases when ∆(G) is big and close to
the order of G (see [8], [3], [19], [18], [10], [6] and [11]). It would be interesting to
provide nontrivial evidence for Conjecture 1 when ∆(G) is close to one half of the
order of G.

A good characterization of all Type 1 graphs is unlikely as Sanchez-Arroyo [15]
showed that the problem of determining the total chromatic number of a graph is
NP-hard. Not only that, there are few results about the total chromatic numbers of
even very nice graphs, for example, the complete multipartite graphs. In [2], it was
determined which complete bipartite graphs are Type 1. It is natural to ask which
graphs G, obtained by adding edges to a complete bipartite graph, are Type 1. Such
a graph G can be represented as a join of two graphs.

In this paper, we determine the total chromatic numbers of graphs of the form
G1 +G2, where G1 and G2 are graphs of maximum degrees at most two. Our results
generalize Behzad, Chartrand and Cooper’s classical result [2] and also provide evi-
dence to support Conjecture 1 when ∆(G) is close to 1

2
|V (G)|, as we note that the

maximum degrees of these graphs are close to half of the order of the graphs.

2 Useful lemmas

The following results will be used in this paper.

Lemma 2.1 (Behzad, Chartrand and Cooper [2]) Let Km,n be the complete bipartite
graph. Then Km,n is Type 1 if m �= n, and Type 2 otherwise.

Lemma 2.2 (König’s Theorem) If G is bipartite graph with maximum degree ∆(G),
then χ

′
(G) = ∆(G).

We use Ḡ and α′(G) to denote the complement and the edge independence number
of G, respectively.

Lemma 2.3 (see [5]) Let G be a graph of even order 2n. If |E(Ḡ)| + α′(Ḡ) ≤
n(2n − ∆(G)) − 1, then G is non-conformable and therefore Type 2.

Let Bn denote a copy of Kn,n with partite sets {x1, . . . , xn} and {y1, . . . , yn}. Let
Hn be the graph obtained from Bn by adding the edges

x1x2, x3x4, . . . , xk−1xk and y1y2, y3y4, . . . , yk−1yk,

where k = n if n is even, and k = n − 1 otherwise. Note that if n ≥ 2 then
∆(Hn) = n + 1.

Lemma 2.4 (a) For n = 3, 4, 5, Hn has a totally 4-colorable spanning subgraph Fn

such that Hn − E(Fn) is an (n − 2)-regular bipartite subgraph of Bn, the edges of
which are properly colorable with n − 2 colors. Moreover the two colorings together
give a total coloring of Hn which is Type 1.

(b) H6 has a totally 6-colorable 5-regular spanning subgraph F6 such that H6 −
E(F6) is a 2-regular bipartite subgraph of B6. Again the two colorings together give
a total coloring of H6 which is Type 1.
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Proof. (a) For n = 5, assign colors to the vertices and edges of H5 − E(B5) as
follows:

vertices x1, . . . , x5 get colors 1, 2, 1, 2, 1,
vertices y1, . . . , y5 get colors 3, 4, 3, 4, 3,
edges x1x2, x3x4 get colors 3, 4,
edges y1y2, y3y4 get colors 1, 2.

For n = 3, 4, give each vertex and edge of Hn −E(Bn) the same color as the element
with the same label in H5. Color the remaining edges of Fn as in the following tables.
(Here a φ means there is no edge joining the two vertices, a * means that the edge
remains uncolored, that is, it is not in Fn.)

x1 x2 x3 y1 y2 y3

x1 1 3 φ * 2 4
x2 3 2 φ 4 * 1
x3 φ φ 1 2 3 *
y1 * 4 2 3 1 φ
y2 2 * 3 1 4 φ
y3 4 1 * φ φ 3

Table F3

x1 x2 x3 x4 y1 y2 y3 y4

x1 1 3 φ φ * 2 4 *
x2 3 2 φ φ 4 * * 1
x3 φ φ 1 4 2 * * 3
x4 φ φ 4 2 * 3 1 *
y1 * 4 2 * 3 1 φ φ
y2 2 * * 3 1 4 φ φ
y3 4 * * 1 φ φ 3 2
y4 * 1 3 * φ φ 2 4

Table F4

x1 x2 x3 x4 x5 y1 y2 y3 y4 y5

x1 1 3 φ φ φ 4 * * * 2
x2 3 2 φ φ φ * * * 1 4
x3 φ φ 1 4 φ * 2 * 3 *
x4 φ φ 4 2 φ * 3 1 * *
x5 φ φ φ φ 1 2 * 4 * *
y1 4 * * * 2 3 1 φ φ φ
y2 * * 2 3 * 1 4 φ φ φ
y3 * * * 1 4 φ φ 3 2 φ
y4 * 1 3 * * φ φ 2 4 φ
y5 2 4 * * * φ φ φ φ 3

Table F5
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It is easy to check that this defines total colorings of appropriate graphs Fn. In
view of Lemma 2.2, the edges of the (n−2)-regular bipartite graphs Hn−E(Fn) can
be properly colored with the n− 2 colors 5, . . . , n+2, thereby giving a total coloring
of Hn with n + 2 = ∆(Hn) + 1 colors, for n = 3, 4 and 5.
(b) The argument for n = 6 is very similar. Assign colors to the vertices and edges
of H6 − E(B6) as follows:

vertices x1, . . . , x6 get colors 1, 2, 1, 3, 2, 3,
vertices y1, . . . , y6 get colors 4, 5, 4, 6, 5, 6,
edges x1x2, x3x4, x5x6 get colors 4, 5, 6,
edges y1y2, y3y4, y5y6 get colors 3, 2, 1.

Color the remaining edges of F6 as in the following table.

x1 x2 x3 x4 x5 x6 y1 y2 y3 y4 y5 y6

x1 1 4 φ φ φ φ * * 3 5 6 2
x2 4 2 φ φ φ φ 1 * 6 * 3 5
x3 φ φ 1 5 φ φ 2 6 * * 4 3
x4 φ φ 5 3 φ φ 6 1 * 4 2 *
x5 φ φ φ φ 2 6 5 4 1 3 * *
x6 φ φ φ φ 6 3 * 2 5 1 * 4
y1 * 1 2 6 5 * 4 3 φ φ φ φ
y2 * * 6 1 4 2 3 5 φ φ φ φ
y3 3 6 * * 1 5 φ φ 4 2 φ φ
y4 5 * * 4 3 1 φ φ 2 6 φ φ
y5 6 3 4 2 * * φ φ φ φ 5 1
y6 2 5 3 * * 4 φ φ φ φ 1 6

Table F6

It is easy to check that this defines a total coloring of an appropriate graph F6,
and the conclusion that H6 is Type 1 follows as in (a). �

Lemma 2.5 Hn is Type 1 for all n ≥ 3.

Proof. We have seen in Lemma 2.4 that this holds if n ≤ 6, so suppose n ≥ 7. Let
k = �(n + 1)/4	.

If n �≡ 2 (mod 4), then Hn has a spanning subgraph that is the union of vertex-
disjoint subgraphs S1, . . . , Sk that are all isomorphic to F4, except that, if n is odd,
exactly one of them is isomorphic to F3 or F5. By Lemma 2.4, these graphs are all
totally 4-colorable. If they are all colored with colors 1, . . . , 4 as in Lemma 2.4, then
the graph of the uncolored edges of Hn is an (n − 2)-regular bipartite graph whose
edges can be colored with the n − 2 colors 5, . . . , n + 2 by Lemma 2.2. Since the
sets of colors used on x1, . . . , xn and on y1, . . . , yn are disjoint, the result is a total
coloring of Hn with n + 2 = ∆(Hn) + 1 colors, showing that Hn is Type 1.

If n ≡ 2 (mod 4), then Hn has a spanning subgraph that is the union of vertex-
disjoint subgraphs S1, . . . , Sk that are all isomorphic to H4, except for Sk that is
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isomorphic to H6. We totally color a 5-regular spanning subgraph F6 of Sk using
colors 1, 2, 3, 4, 5, 6 and totally color a 3-regular spanning subgraph F4 of Si (i =
1, . . . , k − 1) using colors 1, 2, 5, 4 as we did in Lemma 2.4 (note that the color 3 has
been changed to color 5). We then color two matchings in Si using colors 3 and 6
obtaining a totally 6-colored 5-regular spanning subgraph F ′

4 of Si for i = 1, . . . , k−1.
The remaining uncolored edges in Hn form an (n− 4)-regular bipartite graph which
can be colored by the n − 4 colors 7, 8, . . . , n + 2.

This completes the proof. �

The following lemma is an easy observation.

Lemma 2.6 Let G be a Type 1 graph and H a spanning subgraph of G such that
∆(H) = ∆(G). Then H is Type 1.

3 Type 1 join graphs

One of our main results is the following.

Theorem 3.1 Let G = G1 + G2 where both G1 and G2 are bipartite graphs with
maximum degree at most two. Then G is Type 1 if and only if G is not isomorphic
to Kn,n (n = 1, 2, . . .) or to K4.

To prove Theorem 3.1, we need a number of lemmas.

Lemma 3.2 Let G = G1 + G2, where the maximum degree of Gi is at most one for
i = 1, 2. Then G is Type 1 if and only if G is not isomorphic to K4 or Kn,n for any
positive integer n.

Proof. Without loss of generality, let |V (G1)| ≤ |V (G2)| = n. Furthermore, we as-
sume that we cannot add any vertices or edges to G without increasing its maximum
degree or violating the hypotheses of the lemma. Then |V (G1)| = |V (G2)| = n, or
|V (G2)| = n, |V (G1)| = n − 1 and G2 contains �n

2
	 independent edges.

If ∆(G1) = ∆(G2) = 0, then G ∼= Kn,n, which is known to be a Type 2 graph.
If ∆(G1) = 0 and ∆(G2) = 1, then |V (G1)| = n − 1 and |V (G2)| = n, and we may
color the vertices of G1 and the edges of G2 with color 1. The edges of the Kn−1,n

with vertex sets V (G1) and V (G2) may be colored with the colors in 2, . . . , n + 1 by
Lemma 2.2, and each vertex v of G2 may be colored with the color in {2, . . . , n + 1}
that is not used on edges incident with v. This gives a total coloring of G with
∆(G) + 1 = n + 1 colors, so G is Type 1. Finally, suppose that ∆(G1) = ∆(G2) = 1.
If n = 2 then G ∼= K4, which is Type 2. If n ≥ 3, then we must have G ∼= Hn since we
have assumed that we cannot add any further edges to G without increasing ∆(G).
Therefore, G is Type 1 by Lemma 2.5.

This completes the proof of the lemma. �

Lemma 3.3 Let G = G1 + G2 where both G1 and G2 are bipartite graphs with
maximum degree two. Then G is Type 1.
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Proof. Without loss of generality, let |V (G1)| ≤ |V (G2)| = n. Then ∆(G) = n + 2,
where evidently n ≥ 3. Assume that we cannot add any vertices or edges to G
without increasing its maximum degree or violating the hypotheses of the lemma.
Then |V (G1)| = |V (G2)| = n, and each of G1 and G2 is a disjoint union of even
cycles and at most one path. Let V (G1) = {x1, . . . , xn} and V (G2) = {y1, . . . , yn},
and assume that each cycle or path occupies a consecutive set of vertices of G1 or
G2 in the obvious way, with the path first, then cycles according to their lengths,
shorter cycles following longer ones. There exist matchings M1 and M2 of G1 and
G2, respectively, such that the graph G′ = G − (M1 ∪ M2) is isomorphic to Hn.

If n �≡ 2 (mod 4), then we can totally (n + 2)-color G′, as in Lemma 2.5, so that
the vertices of G1 are colored alternately 1 and 2, and the vertices of G2 are colored
alternately 3 and 4. Since no edge in M1∪M2 joins two vertices with the same color,
if we give all these edges the color n + 3 then we obtain a total coloring of G with
n + 3 = ∆(G) + 1 colors; thus G is Type 1.

If n ≡ 2 (mod 4), then we can totally (n + 2)-color G′, as in Lemma 2.5, so
that the vertices {x1, x2, . . . , } of G1 have colors 1, 2, 1, 3, 2, 3, 1, 2, 1, 2, . . . and the
vertices {y1, y2, . . . , } of G2 have colors 4, 5, 4, 6, 5, 6, 4, 5, 4, 5, . . . (in increasing order
of subscript). It is easy to check that no edges of M1 (M2) join two vertices of X
(Y ) with the same color. We color the edges in M1 ∪ M2 with the color n + 3, the
result is a total (n + 3)-coloring of a graph isomorphic to G. This shows that G is
Type 1. �

Lemma 3.4 Let G = G1 + G2 where G1 and G2 are bipartite graphs with n− 1 and
n vertices respectively, and ∆(G1) = 1 and ∆(G2) = 2. Then G is Type 1.

Proof. Let V (G1) = {x1, . . . , xn−1} and V (G2) = {y1, . . . , yn}, where evidently
n ≥ 3. Without loss of generality, we may assume that G1 has edges x1x2, x3x4, . . . ,
xk−1xk, where k = n−1 if n−1 is even, and k = n−2 otherwise, and G2 is a disjoint
union of even cycles and, possibly, one path. Note that ∆(G) = n + 1, and so we
must totally color G with n + 2 colors. Let B = G − (E(G1) ∪ E(G2)).

Claim. Using just colors 1, 2, 3, 4, one can totally color a subset of V (G) ∪ E(G)
consisting of all vertices and edges of G1, all edges of G2, two vertices a, b of G2, and
a set of 2n− 2 edges of B forming a subgraph in which every vertex of G has degree
2 except for a and b, which both have degree 1.

If one can do this, then the proof of the lemma is easily completed as follows.
Form G∗ from G by deleting all the colored edges and adding a new vertex x∗ that
is adjacent to all vertices of V (G2) \ {a, b}. G∗ is an (n− 2)-regular bipartite graph,
and so its edges can be properly colored with the n− 2 colors 5, . . . , n+2 by Lemma
2.2. This causes colors to be assigned to all vertices and edges of G except for the
vertices in V (G2) \ {a, b}; give each such vertex y the color of the edge x∗y. This
gives the required total coloring of G with n + 2 colors, and this will complete the
proof of the lemma.

Proof of the Claim. We shall color the edges of G2 with colors 1, 2 and 3. A
vertex y of G2 will be said to have type c (c ∈ {1, 2, 3}) if there is no edge of color
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c incident with y. (A vertex with degree less than 2 in G2 will have more than one
type.) If yj, yk are vertices of G2 of different types, say of types 2 and 3 respectively,
and xixi+1 ∈ E(G1), then the vertices and edges yjxi, xi, xixi+1, xi+1, xi+1yk can
be colored with colors 2, 3, 1, 2, 3, respectively; this is called the standard coloring
method.

There are three cases to consider.
Case 1: n = 4k.

For n = 4, the graph G2 is a 4-cycle y1y2y3y4 and G1 is a K2 with vertices x1,
x2 together with a single vertex x3. A total coloring of G is shown by the following
table.

y1 y2 y3 y4 x1 x2 x3

y1 6 1 φ 3 2 4 5
y2 1 4 2 φ 5 6 3
y3 φ 2 5 1 4 3 6
y4 3 φ 1 4 6 5 2
x1 2 5 4 6 3 1 φ
x2 4 6 3 5 1 2 φ
x3 5 3 6 2 φ φ 1

Suppose now n ≥ 8. We will color E(G2) so that 2k vertices of G2 have type 2
and 2k have type 3. To do this, for each cycle whose length is a multiple of 4, and for
the path component of G2 if there is one, color the edges 1, 2, 1, 3, 1, 2, 1, 3, . . .. If G2

has cycles of length 2 (mod 4), then the number of these cycles is even if G2 does not
have a path component. Color half of the cycles with colors 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, . . .,
and half with colors 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, . . .. If G2 has a path component, then the
path component is a K2, and there are odd number of, say 2p + 1, cycles of length 2
(mod 4). Color p of these cycles with colors 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, . . ., and the rest
with colors 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, . . .. Color the path component K2 by the color 1. It
is easy to see that this edge coloring of G2 has the property that half of the vertices
of G2 have type 2 while the other half have type 3. Let a, b be two nonadjacent
vertices of types 2 and 3 respectively, and color a, axn−1, xn−1, xn−1b, b with colors
4, 2, 1, 3, 4 respectively. Use the n − 2 vertices in V (G2) \ {a, b} and the standard
coloring method to color the remaining vertices and edges of G1 and n − 2 further
edges of B. To complete the proof of the claim in this case, we take a matching of
n − 2 uncolored edges between V (G1) \ {xn−1} and V (G2) \ {a, b}, and give these
edges color 4.
Case 2: n = 4k + 2.

We first assume that G2 has a cycle C of length 2 (mod 4). Color the edges of
C by the colors 1, 2, 3, 1, 2, 3 or 1, 2, 3, 1, 2, 3, 1, 2, 1, 3, 1, 2, 1, 3, . . . if |C| > 6. G2 −C
has order divisible by 4, so, as in Case 1, the edges of G2−C can be colored by colors
1, 2, 3 so that half of the vertices in V (G2 −C) have type 2 and half have type 3. In
C, there are two vertices of type 1, denoted by a and b, respectively. Note that a
and b are separated by at least two edges in C. Also note that half of the vertices in
C − {a, b} have type 2 and the other half have type 3. Therefore, the edge coloring
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of G2 has the property that half of the vertices of G2 − {a, b} have type 2 and half
have type 3.

Next, if G does not have a cycle C of length 2(mod 4), then G2 has a path
component which is a K2. Color the edge of the K2 by the color 1. G2 − K2 has
order divisible by 4, so that, as in Case 1, the edges of G2 − K2 can be colored by
colors 1, 2, 3 in such a way that half of the vertices in V (G2 − C) have type 2 and
half have type 3. Therefore, the edge coloring of G2 has the property that half of
the vertices have type 2 and half have type 3.

Let a and b be two vertices of different types which are not adjacent. We now
use the n − 2 vertices from G2 − {a, b} and the standard coloring method to color
n − 2 edges of B and all vertices and edges of G1 except for xn−1. Give color 2 to
xn−1 and color 1 to edge xn−1b. As in Case 1, choose a matching of n − 1 uncolored
edges between V (G1) and V (G2) \ {b}, and give these edges the color 4. We note
that axn−1 is colored with color 4. Color the vertex a with 1 and the vertex b with 4.
Case 3: n is odd.

In this case, G2 has a path component P . If n−|P | ≡ 0(mod 4), then as in Case
1, we can color the edges in G2 − P with colors 1, 2, 3 such that half of the vertices
in V (G2) − V (P ) have type 2 and half have type 3. Let a be an end vertex of P .
The edges of P − {a} can also be colored by 1, 2, 3 such that a has type 1 and half
of the vertices of P − {a} have type 2 and half have type 3. Let b be any vertex in
G2 −{a}. Use the vertices of V (G2) \ {a} and the standard coloring method to color
all vertices and edges of G1 and n−1 edges of B; note that no vertex of G1 gets color
1. Choose a matching of n− 1 uncolored edges between V (G1) and V (G2) \ {b}, and
give these edges color 4. Color a with 1 and b with 4.

If n − |P | ≡ 2 (mod 4), then G2 has a cycle C of length 4t + 2 for some t. Let
c be an end vertex of P . Then by Case 2, we can color G2 − {c} by colors 1, 2, 3
such that there are non-adjacent vertices, say a and b in C, half of the vertices in
G2 − {a, b, c} have type 2, the other half have type 3, and the vertices a and b have
type 1. Now apply the standard coloring to G2 − {a, b, c} to color n − 3 edges of
B and color the edges x1x2, x3x4, . . . , xn−4xn−3 with color 1. Next, color a, b both
with 1 (their type), both edges axn−2, bxn−1 with 4, and the edges cxn−2, cxn−1 with
2 and 3 respectively, xn−2xn−1 with 1, and xn−2 and xn−1 with 3 and 2, respectively.
Finally, color a matching of {x1, . . . , xn−3} and Y − {a, b, c} consisting of edges that
have not been colored with the color 4. Then we have produced a coloring required
in the claim.

This completes the proof of the claim, and also the proof of Lemma 3.4. �

Lemma 3.5 Let G = G1 + G2 where G1 and G2 are bipartite graphs with n− 2 and
n vertices respectively, and ∆(G1) = 0 and ∆(G2) = 2. Then G is Type 1.

Proof. Let V (G1) = {x1, . . . , xn−2} and V (G2) = {y1, . . . , yn}. Without loss of
generality, we may assume that G2 is the disjoint union of even cycles and, possibly,
one path. Note that ∆(G) = n, and so we must totally color G with n + 1 colors.
Let M be a maximum matching (with �n

2
	 edges) of G2 chosen so that G2 − M has

no vertex of degree 2. Use color n+1 to color the vertices of G1 and the edges of M .
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Color the remaining edges of G2 with the colors 1, . . . , �n
2
	. Assign the remaining

colors to vertices of G2 so that each color is assigned to two non-adjacent vertices,
and each vertex receives exactly one color if n is even, and the vertex which is isolated
in G2 −M receives two colors (one of which may be discarded later) if n is odd; this
is easy to do if one starts by giving one color to each pair of diametrically opposite
vertices in each even cycle of G2.

To color the edges of G between G1 and G2, form a bipartite graph J with vertex
sets {c1, . . . , cn} (corresponding to the colors 1, . . . , n) and {y′

1, . . . , y
′
n}, and join ci

to y′
j if the i-th color is not present so far at yj in G. Then J is a regular graph of

degree n − 2, and so, by Lemma 2.2, can be properly edge-colored with the n − 2
colors 1, 2, . . . , n − 2. If an edge ciy

′
j is colored k, then color the edge of G joining

the vertices yj and xk with color i. The result is the required total (n + 1)-coloring
of G. �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1.

Proof. If G1 and G2 both have maximum degree at most 1, then the result follows
from Lemma 3.2; so we may assume without loss of generality that ∆(G2) = 2. We
may assume that we cannot add any vertices or edges to G without increasing its
maximum degree or violating the hypotheses of the theorem; thus, |V (G1)| + 2 =
|V (G2)|+∆(G1). If ∆(G1) = 2 then the result follows from Lemma 3.3, if ∆(G1) = 1
then it follows from Lemma 3.4, and if ∆(G1) = 0 then it follows from Lemma 3.5.
This completes the proof of Theorem 3.1. �

4 Type 2 join graphs

We have determined the total chromatic number of G1 + G2 where G1 and G2 are
bipartite graphs of maximum degree at most 2. One natural question now is, what
is the total chromatic number of G1 + G2 when G1 and G2 are not bipartite graphs.
We have the following general result.

Lemma 4.1 Let G = G1 + G2 be regular with |V (G1)| and |V (G2)| both odd. Then
G is Type 2.

Proof. Let V (G)| = 2n. Then |E(Ḡ)| = 2n(2n−1)
2

− n∆(G) and α′(Ḡ) ≤ n − 1.

Therefore, |E(Ḡ)| + α′(Ḡ) ≤ 2n(2n−1)
2

− n∆(G)) + n − 1 = n(2n − ∆(G)) − 1. By
Lemma 2.3, G is a Type 2 graph. �

Corollary 4.2 Suppose G = G1 + G2 where both |V (G1)| = |V (G2)| = n, and both
G1 and G2 are unions of cycles. Then G is Type 2 if n is odd.

Now we have our second main result.

Theorem 4.3 The graph G = Cm +Cn is Type 2 if and only if m = n and n is odd.
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Proof. If m = n and n is odd, then G is Type 2 by Corollary 4.2.

To show the necessity, we need only to show that G is Type 1 if m �= n by
Theorem 3.1.

Without loss of generality, let m < n, Cm = x1x2 · · · xmx1 and Cn = y1y2 · · · yny1.
Then ∆(G) + 1 = n + 3. Let B = G − (E(Cm) ∪ E(Cn)). We give a total coloring
of G using n + 3 colors as follows.

1. Let M = {xiyi : i = 1, . . . , m}, which is a matching of B, and let K =
M ∪ E(Cm) ∪ E(Cn). We totally color the edges in K and the vertices in
V (Cm) ∪ {yn} with colors 1, 2, 3, 4, as follows.

Color the vertices x1, x2, . . . , xm alternately with colors 1 and 3 (starting with
1) except that, if m is odd, xm gets color 2 instead of color 1.

Color the edges x1x2, x2x3, . . . , xmx1 alternately with colors 2 and 4 (starting
with 2) except that, if m is odd, xmx1 gets color 3 instead of color 2.

Give each edge xiyi of M the unique color that is available to it, which for
2 ≤ i ≤ m−1 will be whichever of colors 1 and 3 has not been given to xi; note
that xmym always has color 1. Color the edge x1y1 with color 3 or 4 whichever
is missing at x1.

Color the edges y1y2, y2y3, . . . , ym−1ym alternately with colors 2 and 4 (starting
with 2), and give yny1 the same color as xmx1.

If m is odd, ym−1ym has color 4, xmx1 and yny1 have color 3, and the vertices
of Cm have colors 1, 2 and 3. Color the edges ymym+1, . . . , yn−1yn alternately
with colors 2 and 3, ending with color 2, and give yn color 4.

If m is even, ym−1ym has color 2, xmx1 and yny1 have color 4, and all the vertices
of Cm have colors 1 and 3. Color the edges ymym+1, . . . , yn−1yn alternately with
colors 3 and 4, ending with color 3, and give yn color 2.

2. Let G′ = G − K = B − M ; note that G′ is bipartite and ∆(G′) = n − 1.
Form a new graph G∗ from G′ by adding a new vertex x∗ that is adjacent
to all vertices of Cn except for yn. By considering separately the cases when
m = n − 1 and m ≤ n − 2, one sees easily that ∆(G∗) = ∆(G′) = n − 1.
Moreover G∗ is bipartite, and so its edges can be properly colored with the
n − 1 colors 5, . . . , n + 3. This causes colors to be assigned to all vertices and
edges of G except for the vertices in V (Cn) \ {yn}; give each such vertex yi the
color of the edge x∗yi.

It is easy to see that this gives a proper total coloring of G with n+3 = ∆(G)+1
colors. Therefore this shows that G is Type 1.

This completes the proof of Theorem 4.2. �

Acknowledgments: We thank the referees for their valuable comments.
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