Extreme tournaments with given primitive exponents

Tan Shangwang

Department of Mathematics
University of Petroleum
Shandong 257062
China

Liu Bolian*

Department of Mathematics
South China Normal University
Guangdong 510631
China

Zhang Delong
Department of Information and Computer Science
Guangxi Institute of Technology
Guangxi 545006
China

Abstract

Let $e\left(T_{n}\right)$ be the primitive exponent of a primitive tournament T_{n} of order n. In this paper, we obtain the following results. 1. Let T_{n} be a regular or almost regular tournament of order $n \geq 7$; then $e\left(T_{n}\right)=3$. 2. Let $k \in\{n, n+1, n+2\}$. We give the sufficient and necessary conditions for T_{n} such that $e\left(T_{n}\right)=k$, and obtain all T_{n} 's such that $e\left(T_{n}\right)=k$.

1 Introduction

A tournament matrix of order n is a $(0,1)$ matrix M of order n such that $M+M^{t}=$ $J_{n}-I_{n}$, where J_{n} is the matrix of all 1's with order n, I_{n} the identity matrix of order

[^0]n and M^{t} the transpose of M. Let $T_{n}=(V, E)$ be a tournament of order n. Then the adjacency matrix of T_{n} is a tournament matrix of order n. Conversely, the digraph whose adjacency matrix is a tournament matrix must be a tournament. Now let M denote the tournament matrix of order n and T_{n} the corresponding tournament. For $T_{n}=(V, E)$, the score of node $v \in V$ is the number of nodes dominated by v and is denoted by $s(v)$. If n is even and each node of T_{n} has score $\frac{n}{2}$ or $\frac{n-2}{2}$, then T_{n} is called almost regular. If n is odd and each node of T_{n} has score $\frac{n-1}{2}$, then T_{n} is called regular. The diameter of a strongly connected tournament T_{n} is the least integer d such that for every ordered pair of nodes v and u of T_{n}, there exists a nontrivial path of length at most d from v to u.

Let $D=(V, E)$ be a digraph. If there exists a positive integer k such that there exists a walk of length k from v to u for every ordered pair of nodes v and u of V, then D is called primitive, and the least such integer k is called the primitive exponent of D, denoted by $e(D)$. The conditions that a tournament is primitive, the bounds of primitive exponent, and the primitive exponent set, have been obtained in [1] or [2] as follows.

Theorem A Let T_{n} be the tournament of order n.
(i) T_{n} is primitive if and only if $n \geq 4$ and T_{n} is strongly connected.
(ii) If $n \geq 5$ and T_{n} is primitive, then $d\left(T_{n}\right) \leq e\left(T_{n}\right) \leq d\left(T_{n}\right)+3$, where $d\left(T_{n}\right)$ denotes the diameter of T_{n}.
(iii) Suppose that $n \geq 6$, then the primitive exponent set of primitive tournaments of order n is $\{3,4, \ldots, n+1, n+2\}$.

For the given primitive exponent e, it is very difficult to find all primitive tournaments T_{n} of order n such that $e\left(T_{n}\right)=e$. This problem is equivalent to finding all solutions of the Boolean matrix equation $M^{e}=J_{n}$. It is called the $M S$ problem in [3]. In this paper, we obtain all solutions for $e=n, n+1, n+2$ and partial solutions for $e=3$.

2 The results and proof

Lemma 1 Let $T_{n}=(V, E)$ be a tournament of order $n \geq 7$ in which $V=$ $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. If each score $s\left(v_{i}\right)(i=1,2, \cdots, n)$ satisfies $\frac{n-1}{2} \leq s\left(v_{i}\right) \leq \frac{n}{2}$, then for every ordered pair of nodes v and u of T_{n}, there exists a path of length 3 from v to u.

Proof. From a result of [5], T_{n} is strongly connected. Hence each vertex of T_{n} is contained in a cycle of length 3 (see [1]).

Now let v_{i} and v_{j} be two distinct vertices of T_{n}. We prove that there exist paths of length 3 from v_{i} to v_{j}. Let $\# S$ denote the cardinality of set $S, N\left(v_{i}\right)=$ $\left\{u \mid \overrightarrow{v_{i} u} \in E, u \in V\right\}$ and $\tilde{N}\left(v_{i}\right)=\left\{u \mid \overrightarrow{u v_{i}} \in E, u \in V\right\}$.

Case 1 Assume $\overrightarrow{v_{i} v_{j}} \in E$. Hence we have

Figure 1.

$$
\#\left(N\left(v_{i}\right)-v_{j}\right) \geq \frac{n-3}{2} \geq 2(n \geq 7), \quad \# \tilde{N}\left(v_{i}\right)=n-1-s\left(v_{i}\right) \geq \frac{n-2}{2}
$$

If there are two distinct vertices v and u in $N\left(v_{i}\right)-v_{j}$ which dominate vertex v_{j}, without loss of generality, assume $\overrightarrow{v u} \in E$. Then $v_{i} v u v_{j}$ is a path of length 3 from v_{i} to v_{j}.

If there is at most one vertex of $N\left(v_{i}\right)-v_{j}$ which dominates v_{j}, then v_{j} dominates at least $\#\left(N\left(v_{i}\right)-v_{j}\right)-1 \geq \frac{n-5}{2}$ vertices of $N\left(v_{i}\right)-v_{j}$. Thus, at most two vertices of $\tilde{N}\left(v_{i}\right)$ are dominated by v_{j}, so v_{j} is dominated by at least $\# \tilde{N}\left(v_{i}\right)-2 \geq \frac{n-6}{2}>0$ vertices of $\tilde{N}\left(v_{i}\right)$; let u be such a vertex of $\tilde{N}\left(v_{i}\right)$. If $N\left(v_{i}\right)-v_{j} \subseteq N(u)$, then

$$
\left.s(u) \geq \#\left(N\left(v_{i}\right)-v_{j}\right)\right)+2 \geq \frac{n+1}{2}>\frac{n}{2},
$$

a contradiction. Therefore u is dominated by at least one vertex of $N\left(v_{i}\right)-v_{j}$; denote such a vertex by v, so $v_{i} v u v_{j}$ is a path of length 3 from v_{i} to v_{j}.

Case 2 This case is $\overrightarrow{v_{i} v_{j}} \notin E$.
Let $N\left(v_{i}\right)$ replace $N\left(v_{i}\right)-v_{j}$ in Case 1. The other discussions are analogous to Case 1. We thus have completed the proof.

Notice that $3 \leq d\left(T_{n}\right) \leq n-1$ if T_{n} is a strongly connected tournament of order n. Hence from Lemma 1 and Theorem A, we obtain the following result.

Theorem 2 Let T_{n} be a regular or almost regular tournament of order $n \geq 7$. Then T_{n} is primitive and $e\left(T_{n}\right)=3$.

According to the appendix of tournaments of order $k(3 \leq k \leq 6)$ in [1], we easily find that Theorem 2 does not hold for $n=5,6$. From Lemma 1 and this appendix, we also obtain the following result.

Corollary 3 Suppose that T_{n} is a regular or almost regular tournament of order $n \geq 3$. Then $d\left(T_{n}\right)=3$.

Lemma 4 Let T_{n} be a strongly connected tournament of order $n \geq 5$. Then $d\left(T_{n}\right)=$ $n-1$, if and only if $T_{n} \cong T_{n}^{*}$, where the sign "œ" denotes isomorphism. T_{n}^{*} is a tournament of order n shown in Fig. 1, where not all arcs are included in the drawing; the sign " \Rightarrow " means that an arc not drawn is oriented from the left node to the right node.

Figure 2.

Proof. Clearly, the diameter of T_{n}^{*} is equal to $n-1$. Hence the sufficiency of the lemma holds.

Now we prove the necessity of the lemma. Let $T_{n}=(V, E)$ be a strongly connected tournament of order n and diameter $n-1$. By the definition of diameter, there exist two distinct nodes of V, say v_{1} and v_{n}, such that the shortest path from v_{n} to v_{1} has length $n-1$. Let $P\left(v_{n}, v_{1}\right)=v_{n} v_{n-1} \cdots v_{1}$ be such a shortest path. Clearly, all vertices of T_{n} are contained in the path. If there are positive integers $i, j(i+2 \leq j)$ such that $\overrightarrow{v_{j} v_{i}} \in E$, then $v_{n} v_{n-1} \cdots v_{j} v_{i} v_{i-1} \cdots v_{1}$ is a path of length $n-(j-i) \leq n-2$ from v_{n} to v_{1}, a contradiction to the length $n-1$ of the shortest path $P\left(v_{n}, v_{1}\right)$. Hence for arbitrary i and j with $1 \leq i \leq n-2$ and $i+2 \leq j$, we always have $\overrightarrow{v_{i} v_{j}} \in E$. Therefor we obtain $T_{n} \cong T_{n}^{*}$. This completes the proof.

It was pointed out in [1] that $e\left(T_{n}^{*}\right)=n+2$ if $n \geq 5$. The following result indicates that T_{n}^{*} is the unique tournament with order $n \geq 5$ and primitive exponent $n+2$.

Theorem 5. Let T_{n} be a strongly connected tournament of order $n \geq 5$. Then $e\left(T_{n}\right)=n+2$, if and only if $T_{n} \cong T_{n}^{*}$.

Proof. If $e\left(T_{n}\right)=n+2$, then $d\left(T_{n}\right) \geq n-1$ by Theorem A. Thus we have $d\left(T_{n}\right)=n-1$. By Lemma 4, we obtain $T_{n} \cong T_{n}^{*}$. If $T_{n} \cong T_{n}^{*}$, then $e\left(T_{n}\right)=n+2$ by $e\left(T_{n}^{*}\right)=n+2$ (see [1]). The proof is complete.

Let $T_{n, i}^{(1)}(1 \leq i \leq n-3), T_{n, i}^{(2)}(1 \leq i \leq n-2)$ and $T_{n, i}^{(3)}(2 \leq i \leq n-3)$ be the tournaments of order n shown in Fig. 2.

Figure 3.
Lemma 6 Let T_{n} be a strongly connected tournament of order $n \geq 6$. Then $d\left(T_{n}\right)=$ $n-2$ if and only if $T_{n} \cong T_{n, i}^{(k)}(k=1,2,3)$.

Proof. It is easy to find $d\left(T_{n, i}^{(k)}\right)=n-2(k=1,2,3)$, so the sufficiency of the lemma holds.

Now we prove necessity. Let $T_{n}=(V, E)$ be a strongly connected tournament with order n and diameter $n-2$. By the definition of diameter, there exist two distinct vertices of V, say v_{1} and v_{n-1}, such that the shortest path from v_{n-1} to v_{1} has length $n-2$; let $P\left(v_{n-1}, v_{1}\right)=v_{n-1} v_{n-2} \cdots v_{1}$ be such a shortest path. So for arbitrary $i, j(1 \leq i \leq n-3, i+2 \leq j \leq n-1)$, we always have $\overrightarrow{v_{i} v_{j}} \in E$. Clearly, there is only one node not contained in $P\left(v_{n-1}, v_{1}\right)$; denote it by v. Since T_{n} is a strongly connected tournament, there are two distinct vertices $v_{i}, v_{j} \in V$ such that $\overrightarrow{v v_{i}}, \overrightarrow{v_{j}} \vec{v} \in E$. Let

$$
k=\min \left\{t: \overrightarrow{v v_{t}} \in E, v_{t} \in V\right\} \geq 1, \quad l=\max \left\{t: \overrightarrow{v_{t}} \boldsymbol{v} \in E, v_{t} \in V\right\} \leq n-1
$$

Suppose that $k<l$. Then the structure of T_{n+1} is illustrated in Fig. 3, where the arcs not drawn between v and $v_{j}(k+1 \leq j \leq l-1)$ may be oriented arbitrarily, and the sign $W \Rightarrow Q$ means that each vertex of W dominates each of Q. If $l \geq k+3$, then

$$
v_{n-1} v_{n-2} \cdots v_{l+1} v_{l} v v_{k} v_{k-1} \cdots v_{1}
$$

is a path of length $n-(l-k) \leq n-3$ from v_{n-1} to v_{1}, a contradiction to the length $n-2$ of the shortest path $P\left(v_{n-1}, v_{1}\right)$. Hence we have $k+1 \leq l \leq k+2$. Notice that $l \leq n-1$. We have $1 \leq k \leq n-3$ if $l=k+2$, and thus we always have $T_{n} \cong T_{n, k}^{(1)}$ for arbitrary orientation of the arc between v and v_{k+1}; we have $1 \leq k \leq n-2$ if $l=k+1$, and thus we obtain $T_{n} \cong T_{n, k}^{(2)}$.

Suppose that $k>l$. According to the definitions of k and l, we have $k=l+1$, $\overrightarrow{v_{i} v} \in E$ and $\overrightarrow{v v_{j}} \in E$ for $1 \leq i \leq l, k \leq j \leq n$ (The corresponding drawing of tournament is obtained by only exchanging the locations of v_{k} and v_{l} in Fig. 3.) If $l=1$ or $l=n-2$, then $d\left(T_{n}\right)=n-1$, a contradiction to $d\left(T_{n}\right)=n-2$. Therefore we have $2 \leq l \leq n-3$. So $T_{n} \cong T_{n, k}^{(3)}$ is obtained. The proof is completed.

It was pointed out in [1] that $e\left(T_{n, n-3}^{(3)}\right)=n+1$ if $n \geq 6$. Indeed, we have the better results.

Theorem 7 Let T_{n} be a strongly connected tournament of order $n \geq 6$. Then $e\left(T_{n}\right)=n+1$ if and only if $T_{n} \cong T_{n, i}^{(k)}(k=1,2,3)$.

Figure 4.

Proof. For $T_{n, i}^{(1)}$, it is easy to find that there do not exist walks of lengths $n, n-1$ and $n-2$ from v_{n} to v_{1}, v_{2} and v_{3}, respectively. Therefore we obtain $e\left(T_{n, i}^{(1)}\right) \neq$ $n, n-1, n-2$. By Theorem A, we have $e\left(T_{n, i}^{(1)}\right)=n+1$. By the same discussion, we have $e\left(T_{n, i}^{(2)}\right)=n+1$ and $e\left(T_{n, i}^{(3)}\right)=n+1$. Thus the sufficiency of the theorem holds. If $e\left(T_{n}\right)=n+1$, then $d\left(T_{n}\right) \geq n-2$ by Theorem A; again by Lemma 4 and Theorem 5, we have $d\left(T_{n}\right)=n-2$; by Lemma 6 , we obtain $T_{n} \cong T_{n, i}^{(k)}(k=1,2,3)$. The proof is completed.

Let $G T_{n, k}^{(1)}, G T_{n, k}^{(2)}, G T_{n, k}^{(3)}$ and $G T_{n, l, k}$ be the tournaments of order $n \geq 7$ shown in Fig. 4, where $G T_{n, k}^{(1)}$ satisfies $2 \leq k \leq n-4$, or $k=1$ and either $\overrightarrow{v_{k+1} u} \in E$ or $\overrightarrow{v_{k+2} u} \in E$, or $k=n-3$ and either $\overrightarrow{v v_{k-1}} \in E$ or $\overrightarrow{v v_{k}} \in E ; G T_{n, k}^{(2)}$ satisfies $1 \leq k \leq n-4 ; G T_{n, k}^{(3)}$ satisfies $1 \leq k \leq n-5 ; G T_{n, l, k}$ satisfies $2 \leq l \leq k \leq n-3$. The sign " $x---y$ " is understood to mean that the orientation of the arc between

Figure 5.
x and y is arbitrary.
Lemma 8 Let T_{n} be a strongly connected tournament of order $n \geq 7$. Then $d\left(T_{n}\right)=$ $n-3$ if and only if $T_{n} \cong G T_{n, k}^{(m)}(1 \leq m \leq 3)$ or $T_{n} \cong G T_{n, l, k}$.

Proof. It is easy to find that $d\left(G T_{n, k}^{(m)}\right)=n-3(m=1,2,3)$ and $d\left(G T_{n, l, k}\right)=n-3$. Thus the sufficiency of the lemma holds. Now we prove the necessity of the lemma. Let $T_{n}=(V, E)$ be a strongly connected tournament with order $n \geq 7$ and diameter $d\left(T_{n}\right)=n-3$. By the definition of diameter, there exist two distinct vertices $v_{1}, v_{n-2} \in V$ such that the shortest path from v_{n-2} to v_{1} has length $n-3$; let $P\left(v_{n-2}, v_{1}\right)=v_{n-2} v_{n-3} \cdots v_{1}$ be such a shortest path. So we always have $\overrightarrow{v_{i} v_{j}} \in E$ for $i, j(1 \leq i \leq n-3, i+2 \leq j \leq n-1)$. Clearly, there are only two vertices not contained in $P\left(v_{n-2}, v_{1}\right)$; denote them by v and u, without loss of generality, let $\overrightarrow{v u} \in E$. Since T_{n} is strongly connected, there are two vertices $v_{i}, v_{j} \in V$ such that $\overrightarrow{v_{i}}, \overrightarrow{u v_{j}} \in E$. Let $k=\min \left\{t: \overrightarrow{u v_{t}} \in E, 1 \leq t \leq n-2\right\}$, and $l=\max \left\{t: \overrightarrow{v_{t}} \vec{v} \in E, 1 \leq t \leq n-2\right\}$.

Case 1 Assume $l>k$.
According to the definitions of k and l, T_{n} is illustrated in Fig. 5, where all arcs between v and $v_{i}(1 \leq i \leq l-1), u$ and $v_{j}(k+1 \leq j \leq n-2)$ are not pictured. If $l \geq k+4$, then $v_{n-2} v_{n-3} \cdots v_{l} v u v_{k} v_{k-1} \cdots v_{1}$ is a path of length $n-(l-k) \leq n-4$ from v_{n-2} to v_{1}, and this is a contradiction to the length $n-3$ of the shortest path $P\left(v_{n-2}, v_{1}\right)$. Hence $k+1 \leq l \leq k+3$.

Suppose that $l=k+1$. If there exists a node $v_{i}(1 \leq i \leq k-2)$ such that $\overrightarrow{v v}_{i} \in E$, then $v_{n-2} v_{n-3} \cdots v_{k+1} v v_{i} v_{i-1} \cdots v_{1}$ is a path of length $n-2-(k-i) \leq n-4$ from v_{n-2} to v_{1}; this is a contradiction. Thus for each $i(1 \leq i \leq k-2)$, we always have $\overrightarrow{v_{i} \vec{v}} \in E$. In the same way, we always have $\overrightarrow{u v_{j}} \in E$ for each $j(k+3 \leq j \leq n-2)$. If $k=1$ and $\overrightarrow{u v_{k+1}}, \overrightarrow{u v_{k+2}} \in E$, or $k=n-3$ and $\overrightarrow{v_{k-1} v}, \overrightarrow{v_{k} v} \in E$, then $d\left(T_{n}\right)=n-2$, a contradiction. Hence we have $2 \leq k \leq n-4$, or $k=1$ and either $\overrightarrow{v_{k+1} u} \in E$ or $\overrightarrow{v_{k+2} u} \in E$, or $k=n-3$ and either $\overrightarrow{v v_{k-1}} \in E$ or $\overrightarrow{v v_{k}} \in E$. Thus we obtain $T_{n} \cong G T_{n, k}^{(1)}$.

Suppose that $l=k+2$. By a similar discussion to the case $l=k+1$, we have $\overrightarrow{v_{i} v} \in E$ for each $i(1 \leq i \leq k-1), \overrightarrow{u v_{j}} \in E$ for each $j(k+3 \leq j \leq n-2)$ and $1 \leq k \leq n-4$. Hence we obtain $T_{n} \cong G T_{n, k}^{(2)}$.

Suppose that $l=k+3$. By a similar discussion to the case $l=k+1$, we have $\overrightarrow{v_{i} v} \in E$ for each $i(1 \leq i \leq k), \overrightarrow{u v_{j}} \in E$ for each $j(k+3 \leq j \leq n-2)$ and $1 \leq k \leq n-5$. Hence we obtain $T_{n} \cong G T_{n, k}^{(3)}$.

Figure 6.
Case 2 Assume $l \leq k$.
By the definitions of k and l, T_{n} is illustrated in Fig. 6, where all arcs between u and $v_{j}(k+1 \leq j \leq n-2), v$ and $v_{i}(1 \leq i \leq l-1)$ are not pictured. By a similar discussion to $l=k+1$ in case 1 , we always have $\overrightarrow{v_{i} \vec{v}} \in E$ for each $i(1 \leq i \leq l-3)$ and $\overrightarrow{u v_{j}} \in E$ for each $j(k+3 \leq j \leq n-2)$. If $l=1$ or $k=n-2$, then $d\left(T_{n}\right)=n-2$, a contradiction. Thus we have $2 \leq l \leq k \leq n-3$. Thus we obtain $T_{n} \cong G T_{n, l, k}$. This completes the proof.

Lemma 9 Suppose that $n \geq 8$ and $T \in\left\{G T_{n, k}^{(1)}, G T_{n, k}^{(2)}, G T_{n, k}^{(3)}, G T_{n, l, k}\right\}$. Then $e(T)=$ n if and only if T are those tournaments of order n shown in Fig. 7.

Proof. Clearly, all tournaments in Fig. 7 are strongly connected. From Theorem A, they are primitive. For the tournament $B T_{n}^{(1)}$, there are only paths of lengths $n-3$ or $n-2$ from v_{n-2} to v, lengths $n-4$ or $n-3$ from v_{n-2} to v_{2} and lengths $n-5$ or $n-4$ from v_{n-2} to v_{3}. Hence there are no walks of length $n-1, n-2$ and $n-3$ from v_{n-2} to v, v_{2} and v_{3}, respectively. Therefore we have $e\left(B T_{n}^{(1)}\right) \neq n-1, n-2, n-3$. Again by Theorem A, we obtain $e\left(B T_{n}^{(1)}\right)=n$. By a similar discussion to that above, the primitive exponents of the other tournaments in Fig. 7 are n, too. The sufficiency of the lemma holds.

Now we prove the necessity. Let x and y be two vertices of a primitive tournament G and $C(x, k)$ some cycle of length k containing x. The sign $l \exists P(x, y)$ means that there exists some path $P(x, y)$ with length l from x to y. We have the following fact.

If the integer m satisfies $3 \leq m-l \exists P(x, y) \leq n$, then $P(x, y)+C(y, m-l \exists P(x, y))$ is a walk of length m from x to y. Therefore in order to prove $e(G) \leq m$, we only need prove that there exists a walk of length m from x to y for each pair of vertices x and y such that $l \exists P(x, y) \geq m-3$.
(1) Assume $T=G T_{n, k}^{(1)}$.

Clearly, T always has a path $v_{n-2} v_{n-3} \cdots v_{k+1} v u v_{k} \cdots v_{1}$ of length $n-1$ from v_{n-2} to v_{1}.

Assume $3 \leq k \leq n-5$. Then $l \exists P(x, y) \leq n-4$ always holds if $(x, y) \neq\left(v_{n-2}, v_{1}\right)$. Thus $e(T) \leq n-1$.

Assume $k=2$. Clearly, $l \exists P(x, y) \leq n-4$ always holds if $(x, y) \neq\left(v_{n-2}, v_{1}\right)$, $\left(v_{n-2}, u\right)$. If $\overrightarrow{v_{4} u} \in E$, or $\overrightarrow{v_{3} \vec{u}} \in E$, or $\overrightarrow{v_{1} v} \in E$, or $\overrightarrow{v v_{2}} \in E$, then from v_{n-2} to u there are the following paths with lengths $n-5, n-4, n-1$ and $n-1$, respectively.

EXTREME TOURNAMENTS WITH GIVEN PRIMITIVE EXPONENTS 89

Figure 7.
$v_{n-2} v_{n-3} \cdots v_{4} u, v_{n-2} v_{n-3} \cdots v_{4} v_{3} u, v_{n-2} v_{n-3} \cdots v_{4} v_{3} v_{2} v_{1} v u, v_{n-2} v_{n-3} \cdots v_{4} v_{3} v v_{2} v_{1} u$.

Thus we assume $\overrightarrow{u v_{4}}, \overrightarrow{u v_{3}}, \overrightarrow{v v_{1}}, \overrightarrow{v_{2} v} \in E$. But $v_{n-2} v_{n-3} \cdots v_{4} v_{3} v_{2} v v_{1} u$ is a path of length $n-1$ from v_{n-2} to u. The discussion above indicates that $e(T) \leq n-1$ always holds when $k=2$. By the similar discussion with $k=2, e(T) \leq n-1$ also always holds if $k=n-4$. Hence we obtain $k \notin\{2,3, \cdots, n-4$,$\} .$

Assume $k=1$. Clearly, $l \exists P(x, y) \leq n-4$ when $(x, y) \neq\left(v_{n-2}, v_{1}\right),\left(v_{n-2}, u\right)$, $\left(v_{n-2}, v\right),\left(v_{n-3}, u\right)$. Firstly, let $\overrightarrow{v_{2} u} \in E$; then $l \exists P\left(v_{n-3}, u\right)=n-4$. If $\overrightarrow{v_{1} v} \in E$, then there exist paths of length $n-1$ from v_{n-2} to u and v. So we have $e(T) \leq n-1$, a contradiction. Hence we have $\overrightarrow{v v_{1}} \in E$, i.e., $T \cong B T_{n}^{(1)}$. Secondly, let $\overrightarrow{u v_{2}} \in E$. Then $\overrightarrow{v_{3} u} \in E$ must hold and we easily find $\overrightarrow{v v_{1}} \in E$. Hence $T \cong B T_{n}^{(2)}$.

Assume $k=n-3$. By a similar discussion to the case $k=1, T \cong B T_{n}^{(3)}$ or $T \cong B T_{n}^{(4)}$ hold.
(2) Assume $T=G T_{n, k}^{(2)}$.

By a similar discussion to case $3 \leq k \leq n-5$ of (1), we have $k=1, n-4$. Firstly, suppose that $k=1$. Obviously, $l \exists P(x, y) \leq n-4$ always holds if $(x, y) \neq$ $\left(v_{n-2}, u\right),\left(v_{n-2}, v_{1}\right)$ and there always exists a path of length $n-1$ from v_{n-2} to v_{1} for arbitrary orientation of the arcs among v_{2} and u, v. Hence in order to make $e(T)=n$, T must not have walks of length $n-1$ from v_{n-2} to u. Notice that from v_{n-2} to u there is a path $v_{n-2} \cdots v_{3} v_{2} v_{1} v u$ of length $n-1$ if $\overrightarrow{v_{1} v} \in E$ and a path $v_{n-2} \cdots v_{4} v_{3} u$ of length $n-4$ if $\overrightarrow{v_{3} u} \in E$. Hence $\overrightarrow{v_{1}}, \overrightarrow{u v_{3}} \in E$. So we have $T \cong B T_{n}^{(5)}$. Secondly, suppose that $k=n-4$. By a similar discussion to case $k=1$, we have $T \cong B T_{n}^{(6)}$.
(3) Assume $T=G T_{n, k}^{(3)}$.

If $(x, y) \neq\left(v_{n-2}, v_{1}\right)$, then $l \exists P(x, y) \leq n-4$. Hence in order to make $e(T)=n, T$ must not have walks of length $n-1$ from v_{n-2} to v_{1}. Since $v_{n-2} \cdots v_{k+3} v u v_{k+2} v_{k+1} \cdots$ $\cdots v_{1}$ is a path of length $n-1$ from v_{n-2} to v_{1} when $\overrightarrow{u v_{k+2}} \in E$, we must have $\overrightarrow{v_{k+2} u} \in E$. Since there is always a path of length $n-1$ from v_{n-2} to v_{1} for arbitrary orientation of the arc between u and v_{k+1} when $\overrightarrow{v v_{k+2}} \in E$, we must have $\overrightarrow{v_{k+2} v} \in E$. Since $v_{n-2} \cdots v_{k+3} v_{k+2} v u v_{k+1} \cdots v_{1}$ is a path of length $n-1$ from v_{n-2} to v_{1} when $\overrightarrow{u v_{k+1}} \in E$, we must have $\overrightarrow{v_{k+1} u} \in E$. Since $v_{n-2} \cdots v_{k+3} v_{k+2} v_{k+1} v u v_{k} \cdots v_{1}$ is a path of length $n-1$ from v_{n-2} to v_{1} when $\overrightarrow{v_{k+1} v} \in E$, we must have $\overrightarrow{v v_{k+1}} \in E$. Clearly, $v_{n-2} \cdots v_{k+3} v_{k+2} v v_{k+1} u v_{k} \cdots v_{1}$ is a path of length $n-1$ from v_{n-2} to v_{1}, too. By the discussion above, we know that there is always a walk of length $n-1$ from v_{n-2} to v_{1} for arbitrary orientation of the arc among v, u and v_{k+1}, v_{k+2}. Hence this case cannot happen.
(4) Assume $T=G T_{n, l, k}$.

Obviously, we have $T \cong B T_{n, 2, k}^{(4)}$ if $l=2$ and $T \cong B T_{n, l, n-3}^{(5)}$ if $k=n-3$. Now assume $3 \leq l \leq k \leq n-4$.
(i) Let $\overrightarrow{v v_{l-1}} \in E$. If $(x, y) \neq\left(v_{n-2}, v_{1}\right)$, then $l \exists P(x, y) \leq n-4$. When $\overrightarrow{v_{k+1} u} \in E$ or $\overrightarrow{u v_{k+1}}, \overrightarrow{v_{k+2} u} \in E$, there is a path of length $n-1$ from v_{n-2} to v_{1}. Hence $e(T) \leq$ $n-1$, a contradiction. So we have $\overrightarrow{u v_{k+1}}, \overrightarrow{u v_{k+2}} \in E$. Therefor we obtain $T \cong B T_{n, l, k}^{(1)}$.
(ii) Let $\overrightarrow{v_{l-1} v} \in E$. By a similar discussion to (i), we have $\overrightarrow{v v_{l-2}}, \overrightarrow{u v_{k+1}}, \overrightarrow{u v_{k+2}} \in E$ or $\overrightarrow{v_{l-2} v} \in E$. So we obtain $T \cong B T_{n, l, k}^{(2)}$ or $T \cong B T_{n, l, k}^{(3)}$. We have completed this proof.

Theorem 10 Let T_{n} be a strongly connected tournament of order $n \geq 8$. Then $e\left(T_{n}\right)=n$, if and only if $T_{n} \cong B T_{n}^{(i)}(1 \leq i \leq 6)$ or $T_{n} \cong B T_{n, l, k}^{(i)}(1 \leq i \leq 5)$.

Proof. If $e\left(T_{n}\right)=n$, then we have $d\left(T_{n}\right)=n-3$ from Theorem A, Theorem 5 and Theorem 7. Hence again by Lemma 8 and Lemma 9 , we obtain $T_{n} \cong B T_{n}^{(i)}$ $(1 \leq i \leq 6)$ or $T_{n} \cong B T_{n, l, k}^{(i)}(1 \leq i \leq 5)$, i.e., the necessity of the theorem holds. The sufficiency of the theorem is obvious by Lemma 9. This completes the proof.

Using a more careful discussion similar to Lemma 9, it is easy to obtain all T_{7} with $e\left(T_{7}\right)=7$.

References

1. J. W. Moon, Topics on tournaments, Holt, Rinehart and Winston, New York - Montreal - London, 1968.
2. J. W. Moon and N. J. Pullman, On the powers of tournament matrices, J. Combinatorial Theory 3 (1967), 1-9.
3. Liu Bo-Lian, Combinatorial matrix theory, Science Press, Beijing, 1996.
4. D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, Theory and application, Academic Press Inc., New York - London, 1980.
5. Li Jiong-Sheng, Degree sequences of graphs, Adv. in Math. (China) 23 (1994), no. $3,384-390$.

[^0]: * Supported by NSF of China and NSF of Guangdong

