Extreme tournaments with given primitive exponents

TAN SHANGWANG

Department of Mathematics University of Petroleum Shandong 257062 China

LIU BOLIAN*

Department of Mathematics South China Normal University Guangdong 510631 China

ZHANG DELONG

Department of Information and Computer Science Guangxi Institute of Technology Guangxi 545006 China

Abstract

Let $e(T_n)$ be the primitive exponent of a primitive tournament T_n of order n. In this paper, we obtain the following results.

- 1. Let T_n be a regular or almost regular tournament of order $n \ge 7$; then $e(T_n) = 3$.
- 2. Let $k \in \{n, n+1, n+2\}$. We give the sufficient and necessary conditions for T_n such that $e(T_n) = k$, and obtain all T_n 's such that $e(T_n) = k$.

1 Introduction

A tournament matrix of order n is a (0, 1) matrix M of order n such that $M + M^t = J_n - I_n$, where J_n is the matrix of all 1's with order n, I_n the identity matrix of order

^{*} Supported by NSF of China and NSF of Guangdong

n and M^t the transpose of M. Let $T_n = (V, E)$ be a tournament of order n. Then the adjacency matrix of T_n is a *tournament matrix* of order n. Conversely, the digraph whose adjacency matrix is a tournament matrix must be a tournament. Now let M denote the tournament matrix of order n and T_n the corresponding tournament. For $T_n = (V, E)$, the score of node $v \in V$ is the number of nodes dominated by v and is denoted by s(v). If n is even and each node of T_n has score $\frac{n}{2}$ or $\frac{n-2}{2}$, then T_n is called *almost regular*. If n is odd and each node of T_n has score $\frac{n-1}{2}$, then T_n is called *regular*. The *diameter* of a strongly connected tournament T_n is the least integer d such that for every ordered pair of nodes v and u of T_n , there exists a nontrivial path of length at most d from v to u.

Let D = (V, E) be a digraph. If there exists a positive integer k such that there exists a walk of length k from v to u for every ordered pair of nodes v and u of V, then D is called *primitive*, and the least such integer k is called the *primitive* exponent of D, denoted by e(D). The conditions that a tournament is primitive, the bounds of primitive exponent, and the primitive exponent set, have been obtained in [1] or [2] as follows.

Theorem A Let T_n be the tournament of order n.

- (i) T_n is primitive if and only if $n \ge 4$ and T_n is strongly connected.
- (ii) If $n \ge 5$ and T_n is primitive, then $d(T_n) \le e(T_n) \le d(T_n) + 3$, where $d(T_n)$ denotes the diameter of T_n .
- (iii) Suppose that $n \ge 6$, then the primitive exponent set of primitive tournaments of order n is $\{3, 4, \ldots, n+1, n+2\}$.

For the given primitive exponent e, it is very difficult to find all primitive tournaments T_n of order n such that $e(T_n) = e$. This problem is equivalent to finding all solutions of the Boolean matrix equation $M^e = J_n$. It is called the MS problem in [3]. In this paper, we obtain all solutions for e = n, n+1, n+2 and partial solutions for e = 3.

2 The results and proof

Lemma 1 Let $T_n = (V, E)$ be a tournament of order $n \ge 7$ in which $V = \{v_1, v_2, \dots, v_n\}$. If each score $s(v_i)$ $(i = 1, 2, \dots, n)$ satisfies $\frac{n-1}{2} \le s(v_i) \le \frac{n}{2}$, then for every ordered pair of nodes v and u of T_n , there exists a path of length 3 from v to u.

Proof. From a result of [5], T_n is strongly connected. Hence each vertex of T_n is contained in a cycle of length 3 (see [1]).

Now let v_i and v_j be two distinct vertices of T_n . We prove that there exist paths of length 3 from v_i to v_j . Let #S denote the cardinality of set S, $N(v_i) = \{u \mid \overline{v_i u} \in E, u \in V\}$ and $\tilde{N}(v_i) = \{u \mid \overline{uv_i} \in E, u \in V\}$.

Case 1 Assume $\overrightarrow{v_iv_i} \in E$. Hence we have

Figure 1.

$$\#(N(v_i) - v_j) \ge \frac{n-3}{2} \ge 2(n \ge 7), \quad \#\tilde{N}(v_i) = n - 1 - s(v_i) \ge \frac{n-2}{2}.$$

If there are two distinct vertices v and u in $N(v_i) - v_j$ which dominate vertex v_j , without loss of generality, assume $\overline{vu} \in E$. Then $v_i vuv_j$ is a path of length 3 from v_i to v_j .

If there is at most one vertex of $N(v_i) - v_j$ which dominates v_j , then v_j dominates at least $\#(N(v_i) - v_j) - 1 \ge \frac{n-5}{2}$ vertices of $N(v_i) - v_j$. Thus, at most two vertices of $\tilde{N}(v_i)$ are dominated by v_j , so v_j is dominated by at least $\#\tilde{N}(v_i) - 2 \ge \frac{n-6}{2} > 0$ vertices of $\tilde{N}(v_i)$; let u be such a vertex of $\tilde{N}(v_i)$. If $N(v_i) - v_j \subseteq N(u)$, then

$$s(u) \ge \#(N(v_i) - v_j)) + 2 \ge \frac{n+1}{2} > \frac{n}{2},$$

a contradiction. Therefore u is dominated by at least one vertex of $N(v_i) - v_j$; denote such a vertex by v, so $v_i vuv_j$ is a path of length 3 from v_i to v_j .

Case 2 This case is $\overrightarrow{v_iv_j} \notin E$.

Let $N(v_i)$ replace $N(v_i) - v_j$ in Case 1. The other discussions are analogous to Case 1. We thus have completed the proof.

Notice that $3 \leq d(T_n) \leq n-1$ if T_n is a strongly connected tournament of order n. Hence from Lemma 1 and Theorem A, we obtain the following result.

Theorem 2 Let T_n be a regular or almost regular tournament of order $n \ge 7$. Then T_n is primitive and $e(T_n) = 3$.

According to the appendix of tournaments of order k ($3 \le k \le 6$) in [1], we easily find that Theorem 2 does not hold for n = 5, 6. From Lemma 1 and this appendix, we also obtain the following result.

Corollary 3 Suppose that T_n is a regular or almost regular tournament of order $n \ge 3$. Then $d(T_n) = 3$.

Lemma 4 Let T_n be a strongly connected tournament of order $n \ge 5$. Then $d(T_n) = n - 1$, if and only if $T_n \cong T_n^*$, where the sign " \cong " denotes isomorphism. T_n^* is a tournament of order n shown in Fig. 1, where not all arcs are included in the drawing; the sign " \Rightarrow " means that an arc not drawn is oriented from the left node to the right node.

Figure 2.

Proof. Clearly, the diameter of T_n^* is equal to n-1. Hence the sufficiency of the lemma holds.

Now we prove the necessity of the lemma. Let $T_n = (V, E)$ be a strongly connected tournament of order n and diameter n-1. By the definition of diameter, there exist two distinct nodes of V, say v_1 and v_n , such that the shortest path from v_n to v_1 has length n-1. Let $P(v_n, v_1) = v_n v_{n-1} \cdots v_1$ be such a shortest path. Clearly, all vertices of T_n are contained in the path. If there are positive integers i, j $(i+2 \leq j)$ such that $\overline{v_j v_i} \in E$, then $v_n v_{n-1} \cdots v_j v_i v_{i-1} \cdots v_1$ is a path of length $n - (j-i) \leq n-2$ from v_n to v_1 , a contradiction to the length n-1 of the shortest path $P(v_n, v_1)$. Hence for arbitrary i and j with $1 \leq i \leq n-2$ and $i+2 \leq j$, we always have $\overline{v_i v_j} \in E$. Therefor we obtain $T_n \cong T_n^*$. This completes the proof.

It was pointed out in [1] that $e(T_n^*) = n + 2$ if $n \ge 5$. The following result indicates that T_n^* is the unique tournament with order $n \ge 5$ and primitive exponent n+2.

Theorem 5. Let T_n be a strongly connected tournament of order $n \ge 5$. Then $e(T_n) = n + 2$, if and only if $T_n \cong T_n^*$.

Proof. If $e(T_n) = n+2$, then $d(T_n) \ge n-1$ by Theorem A. Thus we have $d(T_n) = n-1$. By Lemma 4, we obtain $T_n \cong T_n^*$. If $T_n \cong T_n^*$, then $e(T_n) = n+2$ by $e(T_n^*) = n+2$ (see [1]). The proof is complete.

Let $T_{n,i}^{(1)}$ $(1 \le i \le n-3)$, $T_{n,i}^{(2)}$ $(1 \le i \le n-2)$ and $T_{n,i}^{(3)}$ $(2 \le i \le n-3)$ be the tournaments of order *n* shown in Fig. 2.

Figure 3.

Lemma 6 Let T_n be a strongly connected tournament of order $n \ge 6$. Then $d(T_n) = n-2$ if and only if $T_n \cong T_{n,i}^{(k)}$ (k = 1, 2, 3).

Proof. It is easy to find $d(T_{n,i}^{(k)}) = n - 2$ (k = 1, 2, 3), so the sufficiency of the lemma holds.

Now we prove necessity. Let $T_n = (V, E)$ be a strongly connected tournament with order n and diameter n-2. By the definition of diameter, there exist two distinct vertices of V, say v_1 and v_{n-1} , such that the shortest path from v_{n-1} to v_1 has length n-2; let $P(v_{n-1}, v_1) = v_{n-1}v_{n-2}\cdots v_1$ be such a shortest path. So for arbitrary i, j $(1 \le i \le n-3, i+2 \le j \le n-1)$, we always have $\overline{v_i v_j} \in E$. Clearly, there is only one node not contained in $P(v_{n-1}, v_1)$; denote it by v. Since T_n is a strongly connected tournament, there are two distinct vertices $v_i, v_j \in V$ such that $\overline{vv_i}, \overline{v_j v} \in E$. Let

$$k = \min\left\{t : \overrightarrow{vv_t} \in E, v_t \in V\right\} \ge 1, \quad l = \max\left\{t : \overrightarrow{v_tv} \in E, v_t \in V\right\} \le n - 1.$$

Suppose that k < l. Then the structure of T_{n+1} is illustrated in Fig. 3, where the arcs not drawn between v and v_j $(k+1 \le j \le l-1)$ may be oriented arbitrarily, and the sign $W \Rightarrow Q$ means that each vertex of W dominates each of Q. If $l \ge k+3$, then

$$v_{n-1}v_{n-2}\cdots v_{l+1}v_lvv_kv_{k-1}\cdots v_1$$

is a path of length $n - (l - k) \le n - 3$ from v_{n-1} to v_1 , a contradiction to the length n-2 of the shortest path $P(v_{n-1}, v_1)$. Hence we have $k+1 \le l \le k+2$. Notice that $l \le n-1$. We have $1 \le k \le n-3$ if l = k+2, and thus we always have $T_n \cong T_{n,k}^{(1)}$ for arbitrary orientation of the arc between v and v_{k+1} ; we have $1 \le k \le n-2$ if l = k+1, and thus we obtain $T_n \cong T_{n,k}^{(2)}$.

Suppose that k > l. According to the definitions of k and l, we have k = l + 1, $\overrightarrow{v_iv} \in E$ and $\overrightarrow{vv_j} \in E$ for $1 \le i \le l$, $k \le j \le n$ (The corresponding drawing of tournament is obtained by only exchanging the locations of v_k and v_l in Fig. 3.) If l = 1 or l = n - 2, then $d(T_n) = n - 1$, a contradiction to $d(T_n) = n - 2$. Therefore we have $2 \le l \le n - 3$. So $T_n \cong T_{n,k}^{(3)}$ is obtained. The proof is completed. \Box

It was pointed out in [1] that $e(T_{n,n-3}^{(3)}) = n+1$ if $n \ge 6$. Indeed, we have the better results.

Theorem 7 Let T_n be a strongly connected tournament of order $n \ge 6$. Then $e(T_n) = n + 1$ if and only if $T_n \cong T_{n,i}^{(k)}$ (k = 1, 2, 3).

Proof. For $T_{n,i}^{(1)}$, it is easy to find that there do not exist walks of lengths n, n-1and n-2 from v_n to v_1 , v_2 and v_3 , respectively. Therefore we obtain $e(T_{n,i}^{(1)}) \neq$ n, n-1, n-2. By Theorem A, we have $e(T_{n,i}^{(1)}) = n+1$. By the same discussion, we have $e(T_{n,i}^{(2)}) = n+1$ and $e(T_{n,i}^{(3)}) = n+1$. Thus the sufficiency of the theorem holds. If $e(T_n) = n+1$, then $d(T_n) \geq n-2$ by Theorem A; again by Lemma 4 and Theorem 5, we have $d(T_n) = n-2$; by Lemma 6, we obtain $T_n \cong T_{n,i}^{(k)}$ (k = 1, 2, 3). The proof is completed.

Let $GT_{n,k}^{(1)}, GT_{n,k}^{(2)}, GT_{n,k}^{(3)}$ and $GT_{n,l,k}$ be the tournaments of order $n \geq 7$ shown in Fig. 4, where $GT_{n,k}^{(1)}$ satisfies $2 \leq k \leq n-4$, or k = 1 and either $\overline{v_{k+1}u} \in E$ or $\overline{v_{k+2}u} \in E$, or k = n-3 and either $\overline{vv_{k-1}} \in E$ or $\overline{vv_k} \in E$; $GT_{n,k}^{(2)}$ satisfies $1 \leq k \leq n-4$; $GT_{n,k}^{(3)}$ satisfies $1 \leq k \leq n-5$; $GT_{n,l,k}$ satisfies $2 \leq l \leq k \leq n-3$. The sign "x - - y" is understood to mean that the orientation of the arc between

Figure 5.

x and y is arbitrary.

Lemma 8 Let T_n be a strongly connected tournament of order $n \ge 7$. Then $d(T_n) = n-3$ if and only if $T_n \cong GT_{n,k}^{(m)}$ $(1 \le m \le 3)$ or $T_n \cong GT_{n,l,k}$.

Proof. It is easy to find that $d(GT_{n,k}^{(m)}) = n - 3$ (m = 1, 2, 3) and $d(GT_{n,l,k}) = n - 3$. Thus the sufficiency of the lemma holds. Now we prove the necessity of the lemma. Let $T_n = (V, E)$ be a strongly connected tournament with order $n \ge 7$ and diameter $d(T_n) = n - 3$. By the definition of diameter, there exist two distinct vertices $v_1, v_{n-2} \in V$ such that the shortest path from v_{n-2} to v_1 has length n - 3; let $P(v_{n-2}, v_1) = v_{n-2}v_{n-3} \cdots v_1$ be such a shortest path. So we always have $\overline{v_i v_j} \in E$ for i, j $(1 \le i \le n-3, i+2 \le j \le n-1)$. Clearly, there are only two vertices not contained in $P(v_{n-2}, v_1)$; denote them by v and u, without loss of generality, let $\overline{vu} \in E$. Since T_n is strongly connected, there are two vertices $v_i, v_j \in V$ such that $\overline{v_i v}, \overline{uv_j} \in E$. Let $k = \min\{t : \overline{uv_t} \in E, 1 \le t \le n-2\}$, and $l = \max\{t : \overline{v_t} v \in E, 1 \le t \le n-2\}$.

Case 1 Assume l > k.

According to the definitions of k and l, T_n is illustrated in Fig. 5, where all arcs between v and v_i $(1 \le i \le l-1)$, u and v_j $(k+1 \le j \le n-2)$ are not pictured. If $l \ge k+4$, then $v_{n-2}v_{n-3}\cdots v_lvuv_kv_{k-1}\cdots v_1$ is a path of length $n-(l-k) \le n-4$ from v_{n-2} to v_1 , and this is a contradiction to the length n-3 of the shortest path $P(v_{n-2}, v_1)$. Hence $k+1 \le l \le k+3$.

Suppose that l = k+1. If there exists a node v_i $(1 \le i \le k-2)$ such that $\overline{vv_i} \in E$, then $v_{n-2}v_{n-3}\cdots v_{k+1}vv_iv_{i-1}\cdots v_1$ is a path of length $n-2-(k-i) \le n-4$ from v_{n-2} to v_1 ; this is a contradiction. Thus for each i $(1 \le i \le k-2)$, we always have $\overline{v_i}\overline{v} \in E$. In the same way, we always have $\overline{uv_j} \in E$ for each j $(k+3 \le j \le n-2)$. If k = 1 and $\overline{uv_{k+1}}, \overline{uv_{k+2}} \in E$, or k = n-3 and $\overline{v_{k-1}}\overline{v}, \overline{v_k}\overline{v} \in E$, then $d(T_n) = n-2$, a contradiction. Hence we have $2 \le k \le n-4$, or k = 1 and either $\overline{v_{k+1}}\overline{u} \in E$ or $\overline{v_{k+2}}\overline{u} \in E$, or k = n-3 and either $\overline{vv_{k-1}} \in E$ or $\overline{vv_k} \in E$. Thus we obtain $T_n \cong GT_{n,k}^{(1)}$.

Suppose that l = k + 2. By a similar discussion to the case l = k + 1, we have $\overrightarrow{v_iv} \in E$ for each $i \ (1 \le i \le k - 1), \ \overrightarrow{uv_j} \in E$ for each $j \ (k + 3 \le j \le n - 2)$ and $1 \le k \le n - 4$. Hence we obtain $T_n \cong GT_{n,k}^{(2)}$.

Suppose that l = k + 3. By a similar discussion to the case l = k + 1, we have $\overrightarrow{v_iv} \in E$ for each i $(1 \leq i \leq k)$, $\overrightarrow{uv_j} \in E$ for each j $(k + 3 \leq j \leq n - 2)$ and $1 \leq k \leq n - 5$. Hence we obtain $T_n \cong GT_{n,k}^{(3)}$.

Figure 6.

Case 2 Assume $l \leq k$.

By the definitions of k and l, T_n is illustrated in Fig. 6, where all arcs between u and v_j $(k + 1 \le j \le n - 2)$, v and v_i $(1 \le i \le l - 1)$ are not pictured. By a similar discussion to l = k + 1 in case 1, we always have $\overline{v_i v} \in E$ for each $i(1 \le i \le l - 3)$ and $\overline{uv_j} \in E$ for each $j(k+3 \le j \le n-2)$. If l = 1 or k = n-2, then $d(T_n) = n-2$, a contradiction. Thus we have $2 \le l \le k \le n - 3$. Thus we obtain $T_n \cong GT_{n,l,k}$. This completes the proof.

Lemma 9 Suppose that $n \ge 8$ and $T \in \left\{ GT_{n,k}^{(1)}, GT_{n,k}^{(2)}, GT_{n,k}^{(3)}, GT_{n,l,k} \right\}$. Then e(T) = n if and only if T are those tournaments of order n shown in Fig. 7.

Proof. Clearly, all tournaments in Fig. 7 are strongly connected. From Theorem A, they are primitive. For the tournament $BT_n^{(1)}$, there are only paths of lengths n-3 or n-2 from v_{n-2} to v, lengths n-4 or n-3 from v_{n-2} to v_2 and lengths n-5 or n-4 from v_{n-2} to v_3 . Hence there are no walks of length n-1, n-2 and n-3 from v_{n-2} to v, v_2 and v_3 , respectively. Therefore we have $e(BT_n^{(1)}) \neq n-1, n-2, n-3$. Again by Theorem A, we obtain $e(BT_n^{(1)}) = n$. By a similar discussion to that above, the primitive exponents of the other tournaments in Fig. 7 are n, too. The sufficiency of the lemma holds.

Now we prove the necessity. Let x and y be two vertices of a primitive tournament G and C(x,k) some cycle of length k containing x. The sign $l \exists P(x,y)$ means that there exists some path P(x,y) with length l from x to y. We have the following fact.

If the integer m satisfies $3 \le m - l \exists P(x, y) \le n$, then $P(x, y) + C(y, m - l \exists P(x, y))$ is a walk of length m from x to y. Therefore in order to prove $e(G) \le m$, we only need prove that there exists a walk of length m from x to y for each pair of vertices x and y such that $l \exists P(x, y) \ge m - 3$.

(1) Assume $T = GT_{n,k}^{(1)}$.

Clearly, T always has a path $v_{n-2}v_{n-3}\cdots v_{k+1}v_{k}v_{k}\cdots v_{1}$ of length n-1 from v_{n-2} to v_{1} .

Assume $3 \le k \le n-5$. Then $l \exists P(x, y) \le n-4$ always holds if $(x, y) \ne (v_{n-2}, v_1)$. Thus $e(T) \le n-1$.

Assume k = 2. Clearly, $l \exists P(x, y) \leq n - 4$ always holds if $(x, y) \neq (v_{n-2}, v_1)$, (v_{n-2}, u) . If $\overrightarrow{v_4 u} \in E$, or $\overrightarrow{v_3 u} \in E$, or $\overrightarrow{v_1 v} \in E$, or $\overrightarrow{vv_2} \in E$, then from v_{n-2} to u there are the following paths with lengths n - 5, n - 4, n - 1 and n - 1, respectively.

Figure 7.

 $v_{n-2}v_{n-3}\cdots v_4u, \ v_{n-2}v_{n-3}\cdots v_4v_3u, \ v_{n-2}v_{n-3}\cdots v_4v_3v_2v_1vu, \ v_{n-2}v_{n-3}\cdots v_4v_3vv_2v_1u.$

Thus we assume $\overline{uv_4}, \overline{uv_3}, \overline{vv_1}, \overline{v_2v} \in E$. But $v_{n-2}v_{n-3}\cdots v_4v_3v_2vv_1u$ is a path of length n-1 from v_{n-2} to u. The discussion above indicates that $e(T) \leq n-1$ always holds when k = 2. By the similar discussion with k = 2, $e(T) \leq n-1$ also always holds if k = n-4. Hence we obtain $k \notin \{2, 3, \dots, n-4\}$.

Assume k = 1. Clearly, $l \exists P(x, y) \leq n - 4$ when $(x, y) \neq (v_{n-2}, v_1), (v_{n-2}, u), (v_{n-2}, v), (v_{n-3}, u)$. Firstly, let $\overline{v_2 u} \in E$; then $l \exists P(v_{n-3}, u) = n - 4$. If $\overline{v_1 v} \in E$, then there exist paths of length n - 1 from v_{n-2} to u and v. So we have $e(T) \leq n - 1$, a contradiction. Hence we have $\overline{vv_1} \in E$, i.e., $T \cong BT_n^{(1)}$. Secondly, let $\overline{uv_2} \in E$. Then $\overline{v_3 u} \in E$ must hold and we easily find $\overline{vv_1} \in E$. Hence $T \cong BT_n^{(2)}$.

Assume k = n - 3. By a similar discussion to the case $k = 1, T \cong BT_n^{(3)}$ or $T \cong BT_n^{(4)}$ hold.

(2) Assume $T = GT_{nk}^{(2)}$.

By a similar discussion to case $3 \leq k \leq n-5$ of (1), we have k = 1, n-4. Firstly, suppose that k = 1. Obviously, $l \exists P(x, y) \leq n-4$ always holds if $(x, y) \neq (v_{n-2}, u), (v_{n-2}, v_1)$ and there always exists a path of length n-1 from v_{n-2} to v_1 for arbitrary orientation of the arcs among v_2 and u, v. Hence in order to make e(T) = n, T must not have walks of length n-1 from v_{n-2} to u. Notice that from v_{n-2} to u there is a path $v_{n-2} \cdots v_3 v_2 v_1 v u$ of length n-1 if $\overline{v_1 v} \in E$ and a path $v_{n-2} \cdots v_4 v_3 u$ of length n-4 if $\overline{v_3 u} \in E$. Hence $\overline{vv_1}, \overline{uv_3} \in E$. So we have $T \cong BT_n^{(5)}$. Secondly, suppose that k = n-4. By a similar discussion to case k = 1, we have $T \cong BT_n^{(6)}$.

(3) Assume $T = GT_{n\,k}^{(3)}$.

If $(x, y) \neq (v_{n-2}, v_1)$, then $l \exists P(x, y) \leq n-4$. Hence in order to make e(T) = n, Tmust not have walks of length n-1 from v_{n-2} to v_1 . Since $v_{n-2} \cdots v_{k+3}vuv_{k+2}v_{k+1}\cdots \cdots v_1$ is a path of length n-1 from v_{n-2} to v_1 when $\overline{uv_{k+2}} \in E$, we must have $\overline{v_{k+2}u} \in E$. Since there is always a path of length n-1 from v_{n-2} to v_1 for arbitrary orientation of the arc between u and v_{k+1} when $\overline{vv_{k+2}} \in E$, we must have $\overline{v_{k+2}v} \in E$. Since $v_{n-2}\cdots v_{k+3}v_{k+2}vuv_{k+1}\cdots v_1$ is a path of length n-1 from v_{n-2} to v_1 when $\overline{uv_{k+1}} \in E$, we must have $\overline{v_{k+1}u} \in E$. Since $v_{n-2}\cdots v_{k+3}v_{k+2}v_{k+1}vuv_k\cdots v_1$ is a path of length n-1 from v_{n-2} to v_1 when $\overline{v_{k+1}v} \in E$, we must have $\overline{vv_{k+1}} \in E$. Clearly, $v_{n-2}\cdots v_{k+3}v_{k+2}vv_{k+1}uv_k\cdots v_1$ is a path of length n-1 from v_{n-2} to v_1 , too. By the discussion above, we know that there is always a walk of length n-1 from v_{n-2} to v_1 for arbitrary orientation of the arc among v, u and v_{k+1}, v_{k+2} . Hence this case cannot happen.

(4) Assume $T = GT_{n,l,k}$.

Obviously, we have $T \cong BT_{n,2,k}^{(4)}$ if l = 2 and $T \cong BT_{n,l,n-3}^{(5)}$ if k = n - 3. Now assume $3 \le l \le k \le n - 4$.

(i) Let $\overline{vv_{l-1}} \in E$. If $(x, y) \neq (v_{n-2}, v_1)$, then $l \exists P(x, y) \leq n-4$. When $\overline{v_{k+1}u} \in E$ or $\overline{uv_{k+1}}, \overline{v_{k+2}u} \in E$, there is a path of length n-1 from v_{n-2} to v_1 . Hence $e(T) \leq n-1$, a contradiction. So we have $\overline{uv_{k+1}}, \overline{uv_{k+2}} \in E$. Therefor we obtain $T \cong BT_{n,k}^{(1)}$. (ii) Let $\overline{v_{l-1}v} \in E$. By a similar discussion to (i), we have $\overline{vv_{l-2}}, \overline{uv_{k+1}}, \overline{uv_{k+2}} \in E$ or $\overline{v_{l-2}v} \in E$. So we obtain $T \cong BT_{n,l,k}^{(2)}$ or $T \cong BT_{n,l,k}^{(3)}$. We have completed this proof.

Theorem 10 Let T_n be a strongly connected tournament of order $n \ge 8$. Then $e(T_n) = n$, if and only if $T_n \cong BT_n^{(i)}$ $(1 \le i \le 6)$ or $T_n \cong BT_{n,l,k}^{(i)}$ $(1 \le i \le 5)$.

Proof. If $e(T_n) = n$, then we have $d(T_n) = n - 3$ from Theorem A, Theorem 5 and Theorem 7. Hence again by Lemma 8 and Lemma 9, we obtain $T_n \cong BT_n^{(i)}$ $(1 \le i \le 6)$ or $T_n \cong BT_{n,l,k}^{(i)}$ $(1 \le i \le 5)$, i.e., the necessity of the theorem holds. The sufficiency of the theorem is obvious by Lemma 9. This completes the proof. \Box

Using a more careful discussion similar to Lemma 9, it is easy to obtain all T_7 with $e(T_7) = 7$.

References

- J. W. Moon, Topics on tournaments, Holt, Rinehart and Winston, New York – Montreal – London, 1968.
- J. W. Moon and N.J. Pullman, On the powers of tournament matrices, J. Combinatorial Theory 3 (1967), 1–9.
- 3. Liu Bo-Lian, Combinatorial matrix theory, Science Press, Beijing, 1996.
- D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, Theory and application, Academic Press Inc., New York – London, 1980.
- Li Jiong-Sheng, Degree sequences of graphs, Adv. in Math. (China) 23 (1994), no. 3, 384–390.

(Received 26 Mar 2002)