Graph designs, packings and coverings of λK_v with a graph of six vertices and containing a triangle

Zhihe Liang^{*}

Department of Mathematics Hebei Normal University Shijiazhuang 050016, P. R. China

Abstract

Let λK_v be the complete multigraph with v vertices, where any two distinct vertices x and y are joined by λ edges (x, y). Let G be a finite simple graph. A G-design (G-packing, G-covering) of λK_v , denoted by (v, G, λ) -GD $((v, G, \lambda)$ -PD, (v, G, λ) -CD), is a pair (X, \mathcal{B}) where X is the vertex set of K_v and \mathcal{B} is a collection of subgraphs of K_v , called *blocks*, such that each block is isomorphic to G and any two distinct vertices in K_v are joined in exactly (at most, at least) λ blocks of \mathcal{B} . In this paper, we determine the existence spectrum for the G-designs of λK_v , $\lambda > 1$, and construct the maximum packings and the minimum coverings of λK_v with G for any positive integer λ , where the graph G has six vertices and contains a triangle.

1 Introduction

A complete multigraph of order v and index λ , denoted by λK_v , is a graph with v vertices, where any two distinct vertices x and y are joined by λ edges (x, y). Let G be a finite simple graph. A G-design (G-packing, G-covering) of λK_v , denoted by (v, G, λ) -GD $((v, G, \lambda)$ -PD, (v, G, λ) -CD), is a pair (X, \mathcal{B}) where X is the vertex set of K_v and \mathcal{B} is a collection of subgraphs of K_v , called blocks, such that each block is isomorphic to G and any two distinct vertices in K_v are joined in exactly (at most, at least) λ blocks of \mathcal{B} . A G-packing (G-covering) is said to be maximum (minimum), denoted by (v, G, λ) -MPD (MCD), if no other such G-packing (G-covering) has more (fewer) blocks. The number of blocks in a maximum G-packing (minimum G-covering), denoted by $p(v, G, \lambda)(c(v, G, \lambda))$, is called the packing (covering) number. It is well known that

$$p(v, G, \lambda) \le \lfloor \frac{\lambda v(v-1)}{2e(G)} \rfloor \le \lceil \frac{\lambda v(v-1)}{2e(G)} \rceil \le c(v, G, \lambda),$$

^{*} Research supported by NSFHB and Hebei Normal University Foundation

where e(G) denotes the number of edges in G, $\lfloor x \rfloor$ denotes the greatest integer y such that $y \leq x$ and $\lceil x \rceil$ denotes the least integer y such that $y \geq x$. A (v, G, λ) -PD $((v, G, \lambda)$ -CD) is said to be *optimal* and denoted by (v, G, λ) -OPD $((v, G, \lambda)$ -OCD) if the left (right) equality holds. Obviously, there exists a (v, G, λ) -GD if and only if $p(v, G, \lambda) = c(v, G, \lambda)$ and a (v, G, λ) -GD can be regarded as (v, G, λ) -OPD or (v, G, λ) -OCD.

By a $L_{\lambda}(\mathcal{D})$ of a packing \mathcal{D} , called the leave edge graph, we mean that it is a subgraph of λK_v and its edges are the supplement of \mathcal{D} in λK_v . The number of edges in $L_{\lambda}(\mathcal{D})$ is denoted by $|L_{\lambda}(\mathcal{D})|$. Especially, when \mathcal{D} is maximum, $|L_{\lambda}(\mathcal{D})|$ is called leave edge number and is denoted by $l_{\lambda}(v)$. Similarly, the repeat edge graph $R_{\lambda}(\mathcal{D})$ of a covering \mathcal{D} is a subgraph of λK_v and its edges are the supplement of λK_v in \mathcal{D} . When \mathcal{D} is minimum, $|R_{\lambda}(\mathcal{D})|$ is called the repeat edge number and is denoted by $r_{\lambda}(v)$. Generally, the symbols $L_{\lambda}(\mathcal{D}), l_{\lambda}(v), R_{\lambda}(\mathcal{D})$ and $r_{\lambda}(v)$ can be denoted by $L_{\lambda}, l_{\lambda}, R_{\lambda}$ and r_{λ} , briefly.

Many researchers have been involved in graph design, graph packing and graph covering of λK_v with five vertices or less (see [1–10]).

Yin [11] listed the spectrum of graph designs of K_v with six vertices and $e(G) \leq 6$. (See Table A.)

note	G_1	G_2	G_3
graph	$\overset{a \ b \ c}{\underset{d \ e}{\overset{f}{}}}$	a b d c f	
spectrum	$v \equiv 0, 1 \pmod{5},$	$v \equiv 0, 1 \pmod{5},$	$v \equiv 0, 1, 4, 9 \pmod{12},$
	v > 6	$v \ge 6$	$v \ge 6$
note	G_4	G_5	G_6
graph	a b d e	$\Delta_{a c d e}^{b f}$	$\mathbf{L}^{\mathbf{a}}_{\mathbf{b}} \mathbf{c}^{\mathbf{d}}_{\mathbf{e}}$
spectrum	$v \equiv 0, 1, 4, 9 \pmod{12},$	$v \equiv 0, 1, 4, 9 \pmod{12},$	$v \equiv 0, 1, 4, 9 \pmod{5},$
	$v \ge 6$	$v \ge 6$	$v \ge 6$
note	G_7	G_8	G_9
graph	$c \rightarrow d$ a b e f	a c f	$\Delta \mathbf{b} \mathbf{e}$ a c d f
spectrum	$v \equiv 0, 1, 4, 9 \pmod{12}, v \ge 6$	$v \equiv 0, 1, 4, 9 \pmod{12}, v \ge 6$	$v \equiv 0, 1, 4, 9 \pmod{12},$ $v \ge 6$

Table A

Throughout this paper, the graph G is denoted by [a, b, c, d, e, f]. In what follows, the notations $(a, b \in Z)$: $[a, b] = \{x \in Z \mid a \leq x \leq b\}, [a, b]_k = \{x \in Z \mid a \leq x \leq b\}$

 $b, x \equiv a \pmod{k}$ for $a, b \in Z$, $[a, b, \dots, c] + i = [a + i, b + i, \dots, c + i]$ and $(Z_n)_m = \{i_m \mid i \in Z_n\}$ are used frequently. The edge set $\{(a_1, a_2), (a_2, a_3), \dots, (a_{n-1}, a_n)\}$ is denoted by (a_1, a_2, \dots, a_n) .

In this paper, we prove the following theorem:

Theorem For $i \in [1, 9]$, the $p(v, G_i, \lambda)$ and $c(v, G_i, \lambda)$ are determined.

Example We construct $(14, G_i, 1)$ -OPD $(i \in [3, 9])$ on the set $Z_{13} \cup \{a\}$ as follows: <u>i=3</u> [5, 9, 3, 8, 11, 4] + i, $i \in [0, 9]$, [7, 10, a, 0, 6, 12], [6, 9, a, 1, 0, 11], [5, 8, a, 2, 6, 4], [3, 7, 1, 2, 0, 6], [4, 8, 2, 3, a, 7]. Leave edge: (0, 5).

 $\underbrace{\mathbf{i=4}}_{[2,1,6,a,10,11]} \ [5,2,7,a,8,9] + i, \ i \in [0,9], \ [4,1,7,3,2,a], \ [0,2,8,4,3,a], \ [12,a,5,0,6,3], \ [2,1,6,a,10,11], \ [5,2,7,a,8,9]. \ \text{Leave edge:} \ (2,6).$

 $\underline{\mathbf{i=5}} \ [5,9,3,4,7,12]+i, \ i\in[0,9]-\{1\}, \ [6,10,4,5,2,1], \ [8,2,4,1,a,12],$

[1,3,7,a,8,5], [4,9,a,0,2,6], [5,10,a,11,6,3], [2,3,a,6,0,1]. Leave edge: (0,8).

 $\underline{\mathbf{i=6}} \ [11, 8, 3, 9, 5, 4] + i, \ i \in [0, 9], \ [12, a, 1, 7, 3, 2], \ [11, a, 4, 8, 2, 0], \ [6, 0, a, 10, 7, 2], \ [4, 3, a, 9, 6, 1], \ [6, 2, a, 8, 5, 0]. \ \text{Leave edge:} \ (1, 2).$

 $\underline{i=7} \ [9,3,4,8,6,11] + i, \ i \in [0,9] - \{1\}, \ [a,0,1,5,3,8], \ [a,3,5,10,2,8], \ [a,3,5,10,2,2], \ [a,3,5,10,2,2], \ [a,3,5,10,2,2], \ [a,3,5,10,2,2],$

 $[a,5,7,12,4,10], \ [10,a,1,2,7,3], \ [11,a,2,4,6,0], \ [12,a,4,1,9,5]. \ \text{Leave edge:} \ (a,8).$

 $\underline{\mathbf{i=8}} \quad [4,8,2,3,5,7] + i, \ i \in [0,9], \ [1,5,12,a,2,4], \ [a,7,1,2,3,4], \ [2,6,a,4,5,8], \ [0,3,a,9,10,11], \ [1,6,0,2,5,12]. \ \text{Leave edge:} \ (3,7).$

 $\underline{\mathbf{i=9}} \ [5,10,4,8,6,11]+i, \ i\in[0,9], [2,7,1,5,8,a], [3,8,2,a,0,1], [3,4,9,a,11,12], \\ [7,10,a,6,2,4], [7,5,3,a,4,8]. \ \text{Leave edge:} \ (6,9).$

Let the bipartite graph G have six vertices and let its edge number be not greater than 6. The G-design, maximum G-packing and minimum G-covering of λK_v was solved by Z. Liang [13]. When six vertex graph G contains a triangle and $e(G) \leq 6$, we give the G-design, maximum G-packing and minimum G-covering of λK_v in this paper.

2 Recursion

By K_{n_1,n_2,\cdots,n_h} we mean the complete multipartite graph with h parts of sizes n_1, n_2, \cdots, n_h . Let $X = \bigcup_{1 \le i \le h} X_i$ be the vertex set of K_{n_1,n_2,\cdots,n_h} where X_i $(1 \le i \le h)$ are disjoint sets with $|X_i| = n_i$ and $v = \sum_{1 \le i \le h} n_i$. For any fixed graph G, if K_{n_1,n_2,\cdots,n_h} can be decomposed into edge-disjoint subgraphs isomorphic to G, then we call $(X, \mathcal{G}, \mathcal{A})$ a holey G-design, where $\mathcal{G} = \{X_1, X_2, \cdots, X_h\}$, and \mathcal{A} is the collection of all subgraphs called G-blocks (or simply blocks). Each set $X_i(1 \le i \le h)$ is said to be a hole and the multiset $\{n_1, n_2, \cdots, n_h\}$ is called the type of the holey G-design. We denote the design by G-HGD $(n_1^1n_2^1\cdots n_h^1)$ (or $K_{n_1,n_2,\cdots,n_h}/G$) and use an "exponential" notation to describe its type in general: a type $1^i 2^j 3^k \cdots$, denotes i occurrences of 1, j occurrences of 2, etc. A G-HGD $(1^{v-w}w^1)$ is called an *incomplete* G-design, denoted by (v, w, G)-IGD. Obviously, a (v, G, 1)-GD is a G-HGD (1^v) , which can be thought of as a (v, w, G)-IGD with w = 0 or 1.

Let S be a finite set and $H = \{S_1, S_2, \dots, S_n\}$ be a partition of S. A holey Latin square having partition H is an $|S| \times |S|$ array L indexed by $S \times S$, satisfying the

following condition:

1) every cell of L either contains an element of S or is empty;

2) every element of S occurs at most once in any row or any column of L;

3) the subarrays (called holes) indexed by $S_i \times S_i$ are empty for $1 \le i \le n$;

4) element $s \in S$ occurs in row s or column t if and only if $(s,t) \in (S \times S) \setminus (\bigcup_{i \in [1,n]} S_i \times S_i)$.

The order of L is |S|, and the type of L is the multiset $T = \{|S_i| : i \in [1, n]\}$. A holey Latin square is called *symmetric* if the element in cell (i, j) is the element in cell (j, i) for all i and j. We simply write HSL(T) for a holey symmetric Latin square of type T.

Theorem 2.1 [12] There exist $HSL(2^n)$ for all $n \ge 3$.

Theorem 2.2 Let $v = 2ne(G_i)$. There exist G_i -HGD $((2e(G_i))^n)$ for $n \ge 3$ and $i \in [1,9]$.

Proof By Theorem 2.1, let $A = (a_{ij})$ be a $\text{HSL}(2^n)$, S = [1, 2n] and $H = \{S_t : S_t = \{2t-1, 2t\}, t \in [1, n]\}$. Vertex set $X = Z_{e(G_i)} \times S$, hole set $\mathcal{G} = \{Z_{e(G_i)} \times S_t : t \in [1, n]\}$. We construct \mathcal{A} as follows:

 $\begin{array}{l} \underline{\text{for } G_1} \ [(1,i),(3,a_{ij}),(1,j),(0,i),(0,j),(1,a_{ij})] \ (\text{mod } 5,-); \\ \underline{\text{for } G_2} \ [(0,i),(1,j),(3,j),(2,i),(2,j),(0,a_{ij})] \ (\text{mod } 5,-); \\ \underline{\text{for } G_3} \ [(0,j),(1,a_{ij}),(0,i),(3,j),(5,i),(2,j)] \ (\text{mod } 6,-); \\ \underline{\text{for } G_4} \ [(5,j),(2,i),(2,j),(0,a_{ij}),(1,i),(1,j)] \ (\text{mod } 6,-); \\ \underline{\text{for } G_5} \ [(1,a_{ij}),(0,i),(0,j),(2,i),(4,j),(1,i)] \ (\text{mod } 6,-); \\ \underline{\text{for } G_6} \ [(4,j),(2,i),(0,a_{ij}),(1,i),(1,j),(4,i)] \ (\text{mod } 6,-); \\ \underline{\text{for } G_7} \ [(4,j),(1,i),(0,a_{ij}),(2,i),(1,j),(3,i)] \ (\text{mod } 6,-); \\ \underline{\text{for } G_8} \ [(1,i),(1,j),(0,a_{ij}),(2,i),(2,j),(3,i)] \ (\text{mod } 6,-); \\ \underline{\text{for } G_9} \ [(1,i),(1,j),(0,a_{ij}),(2,i),(4,j),(5,j)] \ (\text{mod } 6,-). \\ \hline \text{Then } (X, \mathcal{G}, \mathcal{A}) \ \text{is a } G_i \text{-HGD}((2e(G_i))^n), i \in [1,9]. \\ \end{array}$

Theorem 2.3 If both $(2e(G_i) + w, w, G_i)$ -IGD and $(2e(G_i) + w, G_i, 1)$ -MPD(MCD) exist, then a $(2ne(G_i) + w, G_i, 1)$ -MPD(MCD) exists for $n \ge 3$ and $i \in [1, 9]$.

Proof By Theorem 2.2, there exists G_i - $HGD((2e(G_i))^n)=(X, \mathcal{G}, \mathcal{A})$ for $i \in [1, 9]$. Let $Y=(Z_n \times Z_{2e(G_i)}) \cup \{\infty_1, \infty_2, \cdots, \infty_w\}, Y_j=(\{j\} \times Z_{2e(G_i)}) \cup \{\infty_1, \infty_2, \cdots, \infty_w\},$ for $j \in Z_n$. On Y_j $(j \in Z_n^*)$, let $(2e(G_i) + w, w, G_i)$ - $IGD=(Y_j, \mathcal{A}_j)$. On Y_0 , let $(2e(G_i) + w, G_i, 1)$ - $MPD=(Y_0, \mathcal{A}_0)$. Since $|\mathcal{A}| = 2n(n-1)e(G_i)$,

$$\left|\bigcup_{1\leq j\leq n-1}\mathcal{A}_{j}\right| = (n-1)(2e(G_{i})+2w-1)$$

and $|\mathcal{A}_0| = (2e(G_i) + 2w - 1) + \lfloor \frac{w(w-1)}{2e(G_i)} \rfloor$,

$$|\mathcal{A}| + |\bigcup_{1 \le j \le n-1} \mathcal{A}_j| + |\mathcal{A}_0| = 2n^2 e(G_i) + 2nw - n + \lfloor \frac{w(w-1)}{2e(G_i)} \rfloor$$

$$= \lfloor \frac{(2ne(G_i) + w)(2ne(G_i) + w - 1)}{2e(G_i)} \rfloor.$$

Therefore $(Y, \mathcal{A} \cup (\bigcup_{0 \le j \le n-1} \mathcal{A}_j))$ is a $(2ne(G_i) + w, G_i, 1)$ -MPD.

In the same way we can prove an MCD exists.

Theorem 2.4 Let l be the leave edge number of the (n, G, 1)-OPD and $\overline{\lambda} = e(G)/gcd(e(G), l)$. If there exist (n, G, λ) -OPD and (n, G, λ) -OCD for $1 \le \lambda \le \overline{\lambda}$, then there exist (n, G, λ) -OPD and (n, G, λ) -OCD for any positive integer λ .

The following theorem is a modified version of Theorem 4 in Section 3 of [14].

Theorem 2.5 Given positive integers v, λ and μ , let X be a v-set.

(1) Suppose that there exists a (v, G, λ) -MPD = (X, \mathcal{D}) with leave edge graph $L_{\lambda}(\mathcal{D})$, and a (v, G, μ) -MPD = (X, \mathcal{E}) with leave edge graph $L_{\mu}(\mathcal{E})$. If $|L_{\lambda}(\mathcal{D})| + |L_{\mu}(\mathcal{E})| = l_{\lambda+\mu}(v) < e(G)$, then there exists a $(v, G, \lambda + \mu)$ -MPD with leave edge graph $L_{\lambda}(\mathcal{D}) \cup L_{\mu}(\mathcal{E})$.

(2) Suppose that there exists a (v, G, λ) -MCD = (X, \mathcal{D}) with repeat edge graph $R_{\lambda}(\mathcal{D})$ and a (v, G, μ) -MCD = (X, \mathcal{E}) with repeat edge graph $R_{\mu}(\mathcal{E})$. If $|R_{\lambda}(\mathcal{D})| + |R_{\mu}(\mathcal{E})| = r_{\lambda+\mu}(v) < e(G)$, then there exists a $(v, G, \lambda+\mu)$ -MCD with repeat edge graph $R_{\lambda}(\mathcal{D}) \cup R_{\mu}(\mathcal{E})$.

(3) Suppose that there exists a (v, G, λ) -MPD = (X, \mathcal{D}) with leave edge graph $L_{\lambda}(\mathcal{D})$ and a (v, G, μ) -MCD = (X, \mathcal{E}) with repeat edge graph $R_{\mu}(\mathcal{E})$. If $R_{\mu}(\mathcal{E}) \subset L_{\lambda}(\mathcal{D})$ and $|L_{\lambda}(\mathcal{D})| - |R_{\mu}(\mathcal{E})| = l_{\lambda+\mu}(v) < e(G)$, then there exists a $(v, G, \lambda + \mu)$ -MPD with leave edge graph $L_{\lambda}(\mathcal{D}) \setminus R_{\mu}(\mathcal{E})$.

(4) Suppose that there exists a (v, G, λ) -MCD = (X, \mathcal{D}) with repeat edge graph $R_{\lambda}(\mathcal{D})$ and a (v, G, μ) -MPD = (X, \mathcal{E}) with leave edge graph $L_{\mu}(\mathcal{E})$. If $L_{\mu}(\mathcal{E}) \subset R_{\lambda}(\mathcal{D})$ and $|R_{\lambda}(\mathcal{D})| - |L_{\mu}(\mathcal{E})| = r_{\lambda+\mu}(v) < e(G)$, then there exists a $(v, G, \lambda + \mu)$ -MCD with repeat edge graph $R_{\lambda}(\mathcal{D}) \setminus L_{\mu}(\mathcal{E})$.

If we replace MPD and MCD by OPD and OCD respectively, then the theorem is also true.

Corollary 2.6 If there exist (v, G, λ_1) -GD and (v, G, λ_2) -GD, then there exists a $(v, G, \lambda_1 + \lambda_2)$ -GD.

3 Incomplete graph designs

Theorem 3.1 Let G be a graph and n a positive integer satisfying n(n-1) < 2e(G). A (v, G, 1)-OPD exists and its leave edge graph is K_n if and only if there exists a (v, n, G)-IGD.

Theorem 3.2 For $w \in \{2, 3, 4, 7, 8, 9\}$ and $G \in \{G_1, G_2\}$, there exists a (10 + w, w, G)-IGD.

Proof When w = 2, 3, see the proof of Theorem 4.4. When $w \in \{4, 7, 8, 9\}$, we can construct a (10 + w, w, G)-IGD (see the Appendix).

Theorem 3.3 When $w \in \{2, 3, 5, 6, 7, 8, 10, 11\}$, there exists a $(12 + w, w, G_i)$ -IGD for $i \in [3, 9]$.

Proof When w = 2, it follows from Example and Theorem 3.1 that the theorem

is true. When $w \in \{3, 5, 6, 7, 8, 10, 11\}$, a $(12 + w, w, G_i)$ -IGD for $i \in [3, 9]$ can be directly constructed (see the Appendix).

Theorem 3.4 When $i \in [1,9]$, if a (v, G, 1)-MPD(MCD) exists for $6 \le v < 6e(G_i)$, then a (v, G, 1)-MPD(MCD) exists for any $v \ge 6$.

4 Packing and covering

Let P be the spectrum for the existence (v, G, 1)-GD. In this section, we discuss (v, G, λ) -PD and (v, G, λ) -CD when v does not satisfy P.

Theorem 4.1 If there exists a (v, G, 1)-OPD(OCD) and $l_1 = 1$ $(r_1 = 1)$, then there exists a (v, G, λ) -OCD(OPD).

Theorem 4.2 (1). If there exists a (v, G, 1)-GD, then a (v, G, λ) -OCD(OPD) exists for $\lambda \geq 1$.

(2). Let G be a graph. If a (v, G, 1)-OPD = (X, A) exists, and $L_1 \subset G$, then a (v, G, 1)-OCD exists.

Proof The following proves case (2). We take $R_1 = G \setminus L_1$; then $R_1 \cup L_1 = G$. The block of the graph G is denoted by [a, b, c, d, e, f]. Then $(X, A \cup \{[a, b, c, d, e, f]\})$ is a (v, G, 1)-OCD, and its repeat edge graph is R_1 .

Lemma 4.3 There does not exist a $(v, G_1, 1)$ -OPD(OCD) for v = 6, 7, that is, $p(6, G_1, 1) = 2$, $c(6, G_1, 1) = 4$, $p(7, G_1, 1) = 3$ and $c(7, G_1, 1) = 6$.

Proof Let Z_6 be the vertex set of K_6 . Since $(Z_6, \{[2, 4, 5, 0, 1, 3], [0, 4, 1, 2, 3, 5]\})$ is a $(6, G_1, 1)$ -PD and $(Z_6, \{[2, 4, 5, 0, 1, 3], [5, 0, 2, 1, 3, 4], [4, 0, 1, 2, 3, 5], [3, 4, 0, 5, 1, 2]\})$ is a $(6, G_1, 1)$ -CD, $p(6, G_1, 1) = 2$ and $c(6, G_1, 1) = 4$. The leave edges are (3, 4), (2, 0, 5, 1, 2), and repeated edges are (2, 5), (1, 3, 4, 0, 1).

Let X be the vertex set of K_7 . Suppose that there exists a $(7, G_1, 1)$ -OPD. Then the number of blocks is four, with leave an edge. Without loss of generality, let the leave edge be ab. The types of vertices a and b are $2^{2}1^{1}$ and $2^{1}1^{3}$. The types of other vertices are $2^{2}1^{2}$ and 2^{3} . Vertex numbers of these types can be $\{0, 2, 1, 4\}$, $\{1, 1, 2, 3\}$ or $\{2, 0, 3, 2\}$. No type can give rise to a $(7, G_1, 1)$ -OPD. Since $(Z_7, \{[2, 6, 5, 0, 1, 3], [0, 6, 3, 1, 2, 4], [1, 6, 4, 2, 3, 5]\})$ is a $(7, G_1, 1)$ -PD, we have $p(7, G_1, 1) = 3$ and the leave edges are (0, 4, 5, 0), (3, 4), (0, 2), (1, 5). No leave edge graph of $(7, G_1, 1)$ -MPD can be covered by two blocks, therefore there is no $(7, G_1, 1)$ -OCD. Since $(Z_7, \{[6, 2, 5, 0, 1, 4], [6, 4, 5, 1, 2, 3], [3, 4, 2, 1, 5, 6], [4, 5, 1, 0, 2, 6], [2, 1, 3, 0, 3, 5], [2, 4, 1, 0, 3, 6]\})$ is a $(7, G_1, 1)$ -CD, we have $c(7, G_1, 1) = 6$ and repeat edges are (1, 2, 4, 1), (1, 3), (6, 2), (4, 5), (1, 5) and (6, 0, 3).

Theorem 4.4 There exists a $(v, G_i, 1)$ -OPD(OCD) for i = 1, 2, except for (v, i) = (7, 1), (6, 1).

Proof $\underline{v} = 7$ On the set $X = Z_5 \cup \{a, b\}, (7, G_2, 1)$ -OPD = (X, A),

 $A: \ [a,2,b,4,0,1], \ [a,4,b,3,1,2], \ [4,2,1,a,0,3], \ [3,4,1,b,0,2], \ \text{leave edge is } ab.$

By Theorem 4.1, there exists a $(7, G_2, 1)$ -OCD.

 $\underline{v=8}$ On the set $X = Z_5 \cup \{a, b, c\}, (8, G_1, 1)$ -OPD = (X, A), A: [2, a, 3, 0, 1, 4], [b, a, 4, 1, 2, 3], [1, c, 3, b, 0, 2], [c, 0, a, b, 3, 4], [a, 1, b, c, 2, 4], leave edges: 03, bc, ca.

 $(8, G_1, 1)$ -OCD = $(X, A \cup \{[0, 3, 2, b, c, a]\})$, repeat edges: 32, ab.

 $(8, G_2, 1)$ -OPD = (X, A), A: [a, 3, c, 0, 1, 4], [a, 4, 0, 3, 1, 2], [c, 1, a, b, 0, 2], [a, 0, c, 3, 4, b], [b, 1, a, c, 2, 4], leave edges: 2a, a1, bc.

 $(8, G_2, 1)$ -OCD = $(X, A \cup \{[b, c, 4, a, 2, 1]\})$, repeat edges: 12, c4.

<u>v = 9</u> On the set $X = Z_7 \cup \{a, b\}$, $(9, G_1, 1)$ -OPD = (X, A), A: [a, 2, b, 0, 1, 3] (mod 7). $(9, G_2, 1)$ -OPD = (X, A), A: [a, 2, b, 0, 1, 3] (mod 7). Their leave edge is ab. By Theorem 4.1, there exists a $(9, G_i, 1)$ -OCD for i=1,2.

 $\underbrace{v = 12}_{A: [a, 9, 1, 0, 4, 3] + i, i \in Z_{10} \cup \{a, b\}, (12, G_1, 1)\text{-}\text{OPD} = (X, A), }_{A: [a, 9, 1, 0, 4, 3] + i, i \in Z_{10} \setminus \{0, 1\}, [a, 9, 1, 0, 5, b], [a, 10, 2, 4, 9, b], [4, 3, 0, 1, 6, b], [0, 4, 1, 2, 7, b], [1, 5, 4, 3, 8, b]. }$

 $(12, G_2, 1)$ -OPD = (X, A), A: [a, 8, 2, 0, 4, 3] + i, $i \in Z_{10} \setminus \{0, 1\}$, [a, 8, 4, 0, 5, b], [a, 9, 5, 1, 6, b], [4, 1, 0, 2, 7, b], [5, 4, 0, 3, 8, b], [1, 2, 3, 4, 9, b].

Their leave edge is ab. It follows from Theorem 4.1 that there exists a $(12, G_i, 1)$ -OCD for i=1,2.

<u>v = 13</u> On the set $X = Z_{10} \cup \{a, b, c\}, (13, G_1, 1)$ -OPD = (X, A),

A: [a, 5, 7, 0, 4, 3] + i, $i \in Z_{10}$, [1, c, 6, 0, 5, b] + i, $i \in [0, 4]$, leave edges: ab, ac, bc.

 $(13, G_1, 1)$ -OCD = $(X, A \cup \{[0, 1, 2, a, b, c]\})$, repeat edges: (0, 1, 2).

 $(13, G_2, 1)$ -OPD = (X, A), A: $[a, 5, c, 0, 4, 3] + i, i \in \mathbb{Z}_{10}, [5, 7, 3, 1, 6, b] + i, i \in [0, 3], [9, 1, 2, 0, 5, b],$ leave edges: ab, ac, bc.

 $(13, G_2, 1)$ -OCD = $(X, A \cup \{[2, 3, 0, b, a, c], [9, 1, b, 5, 0, 2]\} \setminus \{[9, 1, 2, 0, 5, b]\})$, repeat edges: (5, 2, 3).

 $\underline{v = 14}$ On the set $X = Z_{12} \cup \{a, b\}, (14, G_1, 1)$ -OPD = (X, A), A: [a, 5, 7, 0, 4, 3] (mod 12), [5, 10, 3, 0, 6, b], [11, 4, 9, 1, 7, b], [1, 6, 11, 2, 8, b], [7, 0, 5, 3, 9, b], [3, 8, 1, 4, 10, b], [9, 2, 7, 5, 11, b].

 $(14, G_2, 1)$ -OPD = (X, A), A: $[a, 5, 2, 0, 4, 3] \pmod{12}, [6, 11, 7, 2, 8, b] + i, i \in [0, 3], [10, 3, 5, 0, 6, b], [11, 4, 6, 1, 7, b]$. Their leave edge is ab. It follows from Theorem 4.1 that there exist $(14, G_i, 1)$ -OCD for i = 1, 2.

 $\underline{v = 17} \text{ On the set } X = Z_{15} \cup \{a, b\}, (17, G_1, 1) \text{-OPD} = (X, A), A: [a, 0, 5, 1, 8, 14] (mod 15), [1, b, 8, 0, 4, 3] + i, i \in [0, 6], [b, 0, 12, 7, 11, 10], [13, 2, 14, 8, 12, 11], [14, 3, 2, 9, 13, 12], [12, 1, 0, 10, 14, 13], [2, 1, 13, 11, 0, 14].$

 $(17, G_2, 1)$ -OPD = (X, A), A: $[a, 2, b, 0, 4, 3] \pmod{15}, [12, 7, 5, 0, 6, 13] + i, i \in [0, 6], [1, 8, 9, 7, 13, 5], [0, 7, 10, 8, 14, 6], [13, 4, 0, 9, 11, 2], [4, 11, 1, 10, 12, 3], [11, 13, 4, 14, 5, 12].$

Their leave edge is ab. It follows from Theorem 4.1 that there exist $(17, G_i, 1)$ -OCD for i = 1, 2.

 $\underline{v = 18}$ On the set $X = Z_{15} \cup \{a, b, c\}$, (18, G_1 , 1)-OPD = (X, A), A: [a, 1, 6, 0, 4, 3] (mod 15), [b, 1, c, 0, 7, 13] (mod 15), leave edges: ab, ac, bc.

 $(18, G_1, 1)$ -OCD = $(X, A \cup \{[0, 1, 2, a, b, c]\})$, repeat edges: (0, 1, 2).

 $(18, G_2, 1)$ -OPD = (X, A), A: $[a, 1, 5, 0, 4, 3] \pmod{15}$, $[b, 1, c, 0, 7, 13] \pmod{15}$, leave edges: ab, ac, bc.

 $(18, G_2, 1)$ -OCD = $(X, A \cup \{[1, 2, c, 0, 7, 13], [2, 3, 1, b, a, c]\} \setminus \{[b, 1, c, 0, 7, 13]\})$, re-

peat edges: (1, 2, 3).

<u>v = 19</u> On the set $X = Z_{17} \cup \{a, b\}$, $(19, G_1, 1)$ -OPD = (X, A), A: [b, 1, 7, 0, 4, 3] (mod 17), [a, 1, 6, 0, 7, 15] (mod 17), leave edge: ab.

 $(19, G_2, 1)$ -OPD = (X, A), A: $[b, 1, 6, 0, 4, 3] \pmod{17}, [a, 1, 5, 0, 7, 15] \pmod{17}$, leave edge: ab.

It follows from Theorem 4.1 that there exist $(19, G_i, 1)$ -OCD for i = 1, 2.

 $\underbrace{v = 22}_{i} \text{ On the set } X = Z_{22}, (22, G_1, 1) \text{-} \text{OPD} = (X, A), A: [12, 4, 13, 0, 1, 6] \pmod{22}, [4, 6, 17, 0, 3, 10] + i, i \in [0, 10], [2, 6, 10, 11, 14, 21] + i, i \in [0, 3], [10, 14, 18, 19, 0, 7] + i, i \in [0, 2], [21, 19, 1, 15, 18, 3] + i, i \in [0, 2], [15, 17, 21, 0, 2, 4], [16, 18, 20, 1, 3, 5], [13, 17, 19, 18, 21, 6], leave edge: (18, 0).$

 $(22, G_2, 1)$ -OPD = (X, A), A: $[12, 4, 9, 0, 1, 6] \pmod{22}$, $[4, 6, 11, 0, 3, 10] + i, i \in [0, 10]$, $[18, 20, 7, 11, 14, 21] + i, i \in [0, 3]$, $[4, 8, 11, 15, 18, 3] + i, i \in [0, 2]$, $[15, 17, 0, 18, 21, 6] + i, i \in [0, 2]$, $[15, 19, 6, 2, 4, 0] + i, i \in [0, 1]$, [18, 14, 3, 21, 2, 9], leave edge: (17, 21).

It follows from Theorem 4.1 that there exist $(22, G_i, 1)$ -OCD for i = 1, 2.

 $\underbrace{v = 23}_{23} \text{ On the set } X = Z_{23}, (23, G_1, 1) \text{-OPD} = (X, A), A: [12, 4, 13, 0, 1, 6] \pmod{23}, [19, 8, 10, 1, 4, 11] + i, i \in [0, 14], [2, 6, 10, 16, 19, 3] + i, i \in [0, 1], [1, 12, 8, 18, 21, 5] + i, i \in [0, 5], [15, 19, 0, 4, 6, 8] + i, i \in [0, 1], [18, 22, 3, 0, 2, 4], [17, 21, 2, 1, 3, 5], \text{ leave edges: } (11, 0), (7, 18, 14).$

 $(23, G_1, 1)$ -OCD = $(X, A \cup \{[11, 0, 1, 7, 18, 14]\})$, repeat edges: (0, 1), (7, 14).

 $\begin{array}{ll} (23,G_2,1)\text{-}\mathrm{OPD} \ = \ (X,A), \ A \colon \ [12,4,9,0,1,6] \ (\mathrm{mod} \ 23), \ [8,12,11,0,3,10] \ + \ i, \\ i \in [0,14], \ [8,10,3,15,18,2] \ + \ i, \ i \in [0,7], \ [16,18,6,2,4,0] \ + \ i, \ i \in [0,1], \ [18,20,10,6, \\ 8,4] \ + \ i, \ i \in [0,1], \ [\mathrm{lave edges:} \ (21,0), (20,22,1). \end{array}$

 $(23, G_2, 1)$ -OCD = $(X, A \cup \{[21, 0, 2, 22, 20, 1]\})$, repeat edges: (1, 20), (2, 22).

<u>v = 24</u> On the set $X = (Z_{11} \times Z_2) \cup \{a, b\}, (24, G_1, 1)$ -OPD = (X, A),

 $A = \{ [4_0, 0_1, 2_1, 0_0, 1_1, 2_0], [a, 0_1, 4_1, 0_0, 2_1, 3_1], [a, 2_0, 6_0, 0_0, 5_1, 1_0], [b, 1_0, 6_0, 0_1, 5_0, 2_0], [b, 5_1, 0_1, 6_0, 3_1, 6_1] \pmod{(11, -)} \}, \text{ leave edge: } ab.$

 $(24, G_2, 1)$ -OPD = $(X, A), A = [4_0, 0_1, 3_1, 1_1, 2_0, 0_0], [a, 0_1, 7_1, 3_1, 0_0, 2_1], [a, 2_0, 4_0, 0_0, 5_1, 1_0], [b, 1_0, 0_0, 5_0, 2_0, 0_1], [b, 5_1, 1_1, 6_1, 6_0, 3_1], \pmod{(11, -)}$, leave edge: *ab.* It follows from Theorem 4.1 that there exist $(24, G_i, 1)$ -OCD for i = 1, 2.

 $\underline{v=27}$ On the set $X = Z_{27}$, $(27, G_1, 1)$ -OPD = (X, A), A: [1, 12, 24, 0, 6, 13] and $[2, 10, 20, 0, 4, 9] \pmod{27}$, [16, 17, 19, 0, 1, 3] + i, $i \in [0, 10]$, [16, 19, 22, 11, 12, 14] + i, $i \in [0, 2]$, [1, 25, 22, 14, 15, 17] + i, $i \in [0, 1]$, leave edge: (0, 24).

 $(27, G_2, 1)$ -OPD = (X, A), A: $[1, 7, 10, 0, 4, 9] \pmod{27}$, [25, 26, 2, 0, 7, 19] + i, $i \in [11, 26]$, [15, 1, 2, 0, 7, 19] + i, $i \in [0, 10] \setminus \{0, 4\}$, [12, 15, 11, 0, 13, 24] + i, $i \in [0, 11]$, [11, 14, 23, 12, 25, 9], [14, 0, 12, 26, 10, 13], [15, 1, 26, 0, 7, 19], [25, 26, 3, 2, 0, 1], [19, 5, 3, 4, 11, 23], [8, 9, 7, 6, 4, 5], leave edge: (7, 8). It follows from Theorem 4.1 that there exist $(24, G_i, 1)$ -OCD for i = 1, 2.

 $\underline{v = 28}$ On the set $X = Z_{25} \cup \{a, b, c\}$, $(28, G_1, 1)$ -OPD = (X, A) and $(28, G_2, 1)$ -OPD = (X, A'), A = A': [6, 12, a, 0, 8, 18], [2, 13, b, 0, 1, 3] and [1, 13, c, 0, 4, 9] (mod 25), leave edge: (a, b, c, a).

58

<u>v = 29</u> On the set $X = Z_{27} \cup \{a, b\}$, $(29, G_1, 1)$ -OPD = (X, A), A: [1, 9, 19, 0, 6, 13], [2, 13, 25, 0, 1, 3] and $[a, 2, b, 0, 4, 9] \pmod{27}$, leave edge: ab.

 $(29, G_2, 1)$ -OPD = (X, A), A: [1, 9, 10, 0, 6, 13], [2, 13, 12, 0, 1, 3] and [a, 2, b, 0, 4, 9] (mod 27), leave edge: ab. It follows from Theorem 4.1 that there exist $(29, G_i, 1)$ -OCD for i = 1, 2.

By Theorem 2.3, Theorem 3.2 and Lemma 4.3, we find that the theorem is true. \Box **Theorem 4.5** There exist (v, G_i, λ) -OPD(OCD) for i = 1, 2, except for (v, i) = (7, 1).

Proof Set $A = \{[5, 3, 6, 0, 1, 4], [3, 4, 5, 6, 0, 2], [0, 5, 4, 1, 2, 3], [2, 4, 0, 1, 5, 6], [2, 6, 5, 0, 1, 3], [1, 6, 4, 2, 3, 5]\}, B = \{[6, 4, 3, 2, 5, 0], [0, 6, 3, 1, 2, 4]\}, C = \{[3, 6, 4, 2, 5, 0], [6, 3, 0, 1, 2, 4], [2, 5, 3, 0, 1, 4], [0, 6, 4, 1, 2, 3], [4, 5, 1, 6, 0, 2], [0, 3, 4, 1, 5, 6]\}.$ It is easy to verify that $(Z_7, A \cup B)$ is a $(7, G_1, 2)$ -OPD (leave edges: (1, 5), (0, 3)), and $(Z_7, A \cup C)$ is a $(7, G_1, 3)$ -OPD (leave edges: (0, 5), (3, 4, 2)), and $(Z_7, A \cup C \cup \{[5, 0, 1, 3, 4, 2]\})$ is a $(7, G_1, 3)$ -OCD (repeat edges: (0, 1), (2, 3)).

By Theorems 2.4–2.5 and following table, we find that $(7, G_1, \lambda)$ -OPD(OCD) exists for $\lambda > 1$.

Ta	\mathbf{b}	le	В
			_

λ	1	2	3	4
L_{λ}	G_7	$P_2 \cup P_2$	$P_3 \cup P_2$	$P_3 \cup P_3$
R_{λ}	$G_7 \cup P_2 \cup P_3$	$P_2 \cup P_3$	$P_2 \cup P_2$	P_2

When $v \equiv 2, 4 \pmod{5}$, the leave edge number is 1, and by Theorem 4.1 we know the theorem is true. When $v \equiv 3 \pmod{5}$, we have $l_1 = 1$, $bar\lambda = 5$. By Theorems 2.4–2.5, we can list the following table to obtain (v, G_i, λ) -OPD(OCD) for i = 1, 2and $\lambda > 1$. For G_1 :

Table C

λ	1	2	3	4
L_{λ}	1	1	••••	11
R_{λ}	11			1

λ	1	2	3	4
L_{λ}	\bigtriangleup	•••	∽∆	11
R_{λ}	••	••••	•••	¦ 1

For G_2 :

Table D

λ	1	2	3	4
L_{λ}	•••	•••		11
R_{λ}	11	<u> </u>	••	

λ	1	2	3	4
L_{λ}	\leq	1	Ļ	11
R_{λ}	••••	\Box	1	\leq

Theorem 4.6 Let $l_1 = e(G)/2$ be an integer.

(1) If there exist (v, G, 1)-OPD = (X, \mathcal{A}) and (v, G, 1)-OCD = (X, \mathcal{B}) , and $L_1(\mathcal{A}) \cong R_1(\mathcal{B})$, then there exist (v, G, λ) -OPD(OCD) for any positive integer λ .

(2) If there exist two (v, G, 1)-OPD and their leave edge graphs are L_1 and L'_1 , then when $L_1 \cup L'_1 = G$, there is a (v, G, λ) -OPD(OCD) for any positive integer λ .

(3) If (v, G, λ) -OPD exists for $\lambda = 1, 2$, and $L_1 \subset G$, then (v, G, λ) -OPD(OCD) exists for any positive integer λ .

Proof (1) When $\lambda = 1$, this is well-known. When $\lambda = 2$, we can construct an isomorphic mapping, which transforms \mathcal{B} to \mathcal{B}' , and $R_1(\mathcal{B}) \cong R_1(\mathcal{B}')$ and $L_1(\mathcal{A}) = R_1(\mathcal{B}')$ are satisfied. We take (X, \mathcal{A}) and (X, \mathcal{B}') ; then $(X, \mathcal{A} \cup \mathcal{B}')$ is a (v, G, 2)-GD. It follows from Theorem 2.4 that there exist (v, G, λ) -OPD(OCD) for any positive integer λ .

(2) Let a (v, G, 1)-OPD be (X, \mathcal{B}) and another be (X, \mathcal{B}') . We can construct an isomorphic mapping, which transforms \mathcal{B}' to \mathcal{B}'' , and $L_1 \cup L_1'' = G$ and $V(L_1 \cup L_1'') = V(G)$ are satisfied. If a block of the graph G is denoted by [a, b, c, d, e, f], then $(X, \mathcal{B} \cup \mathcal{B}'' \cup \{[a, b, c, d, e, f]\})$ is a (v, G, 2)-GD. Since $L_1 \cup L_1' = G$, $L_1 \subset G$. It follows from Theorem 4.2 that a (v, G, 1)-OCD exists. By Theorem 2.4 we find that there exists a (v, G, λ) -OPD(OCD) for any positive integer λ .

(3) This part of the theorem is also true.

Example On the set $X = (Z_3 \times Z_2) \cup \{a\}, (7, G_4, 1)$ -OPD = (X, A), A: $[a, 0_1, 1_1, 0_0, 1_0, 2_1] \mod (3, -)$. Leave edges: $a0_0, a1_0, a2_0$.

 $(X, A \cup \{[0_0, 1_1, 0_0, a, 1_0, 2_0]\})$ is a $(7, G_4, 1)$ -OCD. We construct an isomorphic mapping f satisfying $1_0 \mapsto 0_0, 2_0 \mapsto a, a \mapsto 1_1, 0_0 \mapsto 0_1$. It is easy to see that $L_1 \cong R_1$. By the above theorem we find that a $(7, G_4, \lambda)$ -OPD(OCD) exists for any positive integer λ .

We construct a $(7, G_8, 1)$ -OPD = (X, B) as follows: $[0_1, 1_1, 0_0, 1_0, 2_1, a] \mod (3, -)$. Leave edges: $a0_1, a1_1, a2_1$; and again construct $(7, G_8, 1)$ -OPD = (X, B') as

follows: Replace the first block in B by $[a, 0_1, 0_0, 1_0, 1_1, 2_1]$; leave edges: $(2_1, a, 1_1, 0_1)$. We construct an isomorphic mapping f satisfying $2_1 \mapsto 2_1$, $a \mapsto 0_0$, $1_1 \mapsto a$, $0_1 \mapsto 1_0$. Thus $(X, B \cup f(B') \cup \{[0_0, 2_1, a, 0_1, 1_1, 1_0\})$ is a $(7, G_8, 2)$ -GD. By the above theorem we find that a $(7, G_8, \lambda)$ -OPD(OCD) exists for any positive integer λ .

On the set Z_7 , let $A = \{[6, 3, 0, 1, 4, 2], [6, 4, 1, 2, 5, 0], [6, 5, 2, 0, 3, 1]\}$; then (Z_7, A) is a $(7, G_7, 1)$ -OPD, with leave edges: (0, 6, 1), (6, 2). $(Z_7, A \cup \{[5, 0, 6, 2, 1, 4]\})$ is a $(7, G_7, 1)$ -OCD, with repeated edges: (5, 0, 1, 4). B: $[2, 0, 6, 5, 3, 1] \pmod{7}$; then (Z_7, B) is a $(7, G_7, 2)$ -GD. Therefore a $(7, G_7, \lambda)$ -OPD(OCD) exists for any positive integer λ .

In the same way, we can obtain the following theorem: **Theorem 4.7** There exists a (v, G_i, λ) -OPD(OCD) for $i \in [3, 9]$.

5 Graph designs for $\lambda \ge 1$

Lemma 5.1 The necessary conditions for a (v, G, λ) -GD to exist are

(1) $\lambda v(v-1) \equiv 0 \pmod{2e(G)};$

(2) $\lambda(v-1) \equiv 0 \pmod{n}$, where $n = \gcd(\{d(u) | u \in V(G)\})$.

By Corollary 2.6, Section 4 and Table A, we easily get following theorem:

Theorem 5.2 If v satisfies the conditions in Lemma 5.1 and v > 6, then there exists a (v, G_i, λ) -GD for $i \in [1, 9]$ and $\lambda \ge 1$.

Acknowledgments The author is grateful to Professor Q. Kang for his support of this research.

References

- A.M. Assaf, On covering designs with block size 5 and index 5, Des. Codes Cryptogr. 5 (1995), 91–107.
- [2] A.M. Assaf, On packing designs with block size 5 and index $7 \le \lambda \le 21$, J. Combin. Math. Combin. Computing 26 (1998), 3–71.
- [3] A.M. Assaf, N. Shalaby and L.P.S. Singh, On packing designs with block size 5 and index 3 and 6, Ars Combinatoria 45 (1997), 143–156.
- [4] A.M. Assaf, N. Shalaby and J. Yin, Directed packings with block size 5, Australas. J. Combin. 17 (1998), 235–256.
- [5] F.E. Bennett, J. Yin, H. Zhang and R.J.R. Abel, Perfect Mendelsohn packing designs with block size 5, *Des. Codes Cryptogr.* 14 (1998), 5–22.
- [6] J.C. Bermond, C. Huang, A. Rosa and D. Sotteau, Decomposition of complete graphs into isomorphic subgraphs with five vertices, Ars Combinatoria 10 (1980), 211–254.

- [7] Y. Caro and R. Yuster, Covering graphs: the covering problem solved, J. Combin. Theory, Ser. A 83 (1988), 273–282.
- [8] H.L. Fu and C.C. Lindner, The Doyen-Wilson theorem for maximum packing of K_n with 4-cycles, *Discrete Math.* **183** (1998), 103–117.
- [9] D.G. Hoffman and K.S. Kirkpatrick, G-designs of order n and index λ where G has 5 vertices or less, Australas. J. Combin. 18 (1998), 13–37.
- [10] N. Shalaby and J. Yin, Nested optimal λ-packings and λ-coverings of pairs with triples, *Des. Codes Cryptogr.* 15 (1998), 271–278.
- [11] J.Yin and B.Gong, Existence of G-Designs with |V(G)| = 6, Combinatorial designs and applications (Huangshan, 1988), 201–218, Lecture Notes in Pure and Appl. Math. **126**, Dekker, New York, 1990.
- [12] G.N. Ge, Existence of holey LSSOM of type 2^n with application to G_7 -packing of K_n , J. Statist. Planning Inference (to appear).
- [13] Z. Liang, On G-Designs, G-packing and G-covering of λK_v with a bipartite graph G of six vertices, Australas. J. Combin. 25 (2002), 221–240.
- [14] Q. Kang and Z. Liang, Optimal packings and coverings of λDK_v with k-circuits, J. Combin. Math. Combin. Computing **39** (2001), 203–253.
- [15] J.A. Kennedy, Minimum coverings of K_n with hexagons, Australas. J. Combin. 16 (1997), 295–303.
- [16] C.J.Colbourn and J.H.Dinitz, The CRC handbook of Combinatorial Designs, CRC Press, 1996.

Appendix

Construction of (10 + w, w, G)-IGD for $w \in \{4, 7, 8, 9\}$:

Let $X = Z_{10} \cup \{a_1, a_2, \dots, a_w\}$ and (10 + w, w, G)-IGD = (X, \mathcal{A}) . We construct \mathcal{A} as follows:

 $\frac{w=4}{w=4}$ For G_1 : $[a, 2, b, 0, 1, 4] + i, i \in Z_{10}, [4, d, 7, 0, 5, c] + i, i \in [0, 2], [7, 9, 1, 3, 8, c], [6, 8, 0, 4, 9, c], [3, 5, 7, 0, 2, d], [2, 4, 6, 1, 3, d].$

For G_2 : $[2, a_1, 3, 0, 1, y] + i$, $i \in Z_{10}$, when i is even $y = a_2$; when i is odd $y = a_3$; $[6, 8, 3, 7, a_4, 2] + i$, $i \in [0, 4]$, [0, 4, 9, 3, 5, 1], [5, 7, 8, 2, 4, 6].

 $\begin{array}{l} 5,a_7]+i,\,i\in[0,4],\,[a_3,7,a_4,3,4,6]+i,\,i\in[0,4],\,[9,1,8,2,3,a_6],\,[a_1,2,a_2,8,9,a_5],\,[a_1,1,a_2,9,0,2],\,[9,3,5,1,2,4],\,[8,2,5,0,1,3]. \end{array}$

For G_2 : $[2, a_1, a_2, 0, 1, a_3] + 2i$, $i \in [0, 4]$, $[3, a_1, a_2, 1, 2, a_4] + 2i$, $i \in [0, 4]$, $[1, 6, a_5, 0, 3, a_6] + 2i$, $i \in [0, 4]$, $[6, 8, a_5, 1, 4, a_7] + 2i$, $i \in [0, 2]$, $[9, 3, a_5, 7, 0, a_7]$, $[4, 8, a_5, 9, 2, a_7]$, [0, 4, 9, 1, 3, 5], [3, 7, 8, 2, 4, 6], [6, 0, 1, 7, 9, 5].

 $\begin{array}{c|c} w = 8 \\ \hline w = 8 \\ \hline w = 8 \\ \hline w = a_1, y = a_2, z = a_3; \text{ when i is odd } x = a_4, y = a_5, z = a_6; \\ \hline (1, 5, 7, 0, 3, z] + i, i \in Z_{10}, \text{ when i is even} \\ \hline w = a_1, y = a_2, z = a_3; \text{ when i is odd } x = a_4, y = a_5, z = a_6; \\ \hline (1, a_7, 6, 0, 5, a_8] + i, i \in [0, 4]. \\ \hline \text{For } G_2: \\ \hline (2, a_1, a_2, 0, 1, y] + i, i \in Z_{10}, \\ \hline (1, 5, a_5, 0, 3, z] + i, i \in Z_{10}, \text{ when i is even} \\ \hline (3, 2, 3, 1) \\ \hline (3, 2, 3, 2) \\ \hline (3, 3, 2) \\ \hline$

 $y = \underline{a_3, z} = a_6; \text{ when i is odd } y = a_4, z = a_7; [0, 2, 8, 6, a_8, 1] + i, i \in [0, 3], [4, 6, 7, 5, a_8, 0].$

 $\begin{array}{c|c} w = 9 \\ \hline \text{For } G_1: & [2, x, 7, 0, 1, y] + i, \ i \in Z_{10}, \ [1, t, 6, 0, 3, z] + i, \ i \in Z_{10}, \ \text{when i is} \\ \text{even } x = a_1, y = a_2, z = a_3, t = a_4; \ \text{when i is odd} \ x = a_5, y = a_6, z = a_7, t = a_8; \\ [6, 4, 8, 0, 5, a_9] + i, \ i \in [0, 2], \ [7, 1, 9, 3, 8, a_9], \ [0, 8, 2, 4, 9, a_9], \ [4, 2, 6, 1, 3, 5], \ [2, 0, 4, 3, 7, 9]. \end{array}$

For G_2 : $[2, a_1, a_2, 0, 1, y] + i$, $i \in Z_{10}$, $[1, a_5, a_6, 0, 3, z] + i$, $i \in Z_{10}$, when i is even $y = a_3, z = a_7$; when i is odd $y = a_4, z = a_8$; $[4, 8, 7, 5, a_9, 0] + i$, $i \in [0, 4]$, [0, 4, 7, 3, 5, 1], [9, 3, 0, 2, 4, 6].

Construction of (12 + w, w, G)-IGD for $w \in \{3, 5, 6, 7, 8, 10, 11\}$:

Let $X = Z_{12} \cup \{a_1, a_2, \dots, a_w\}$ and (12 + w, w, G)-IGD = (X, \mathcal{A}) . We construct \mathcal{A} as follows:

 $\underbrace{w = 3}_{x = a_2; [5, a_1, 2, 7, 9, 6], [6, a_2, 3, 8, 2, 7]}_{[4, 2, 3, 9, 11, 1], [9, 8, 10, 11, 0, 4].$ for G_3 : $\begin{bmatrix} 5, x, 2, 6, a_3, 7 \end{bmatrix} + i, i \in \mathbb{Z}_{12} \setminus [0, 1]$, when i is even $x = a_1$; when i is odd $x = a_2$; $\begin{bmatrix} 5, a_1, 2, 7, 9, 6 \end{bmatrix}$, $\begin{bmatrix} 6, a_2, 3, 8, 2, 7 \end{bmatrix}$, $\begin{bmatrix} 5, 4, 6, 0, 10, a_3 \end{bmatrix}$, $\begin{bmatrix} 8, 6, 7, 5, 3, a_3 \end{bmatrix}$, $\begin{bmatrix} 2, 0, 1, 11, 5, 7 \end{bmatrix}$, $\begin{bmatrix} 4, 2, 3, 9, 11, 1 \end{bmatrix}$, $\begin{bmatrix} 9, 8, 10, 11, 0, 4 \end{bmatrix}$.

For G_4 : $[a_3, 11, x, 2, 7, 10] + i$, $i \in Z_{12} \setminus [0, 1]$, when i is even $x = a_1$; when i is odd $x = a_2$; $[7, 2, a_1, 11, 10, a_3]$, $[8, 3, a_2, 0, 11, a_3]$, [8, 2, 4, 3, 9, 11], [2, 10, 8, 9, 7, 11], [0, 6, 8, 7, 1, 5], [10, 0, 2, 1, 3, 11], [10, 4, 6, 5, 3, 11].

For G_5 : [6, x, 3, 11, 4, 2] + i, $i \in Z_{12}^*$, when i is even $x = a_1$; when i is odd $x = a_2$; $[6, a_1, 3, 2, 1, 0]$, $[0, a_3, 6, 7, 8, 9]$, $[1, 7, a_3, 11, 10, 9]$, $[9, a_3, 3, 4, 5, 6]$, $[4, 10, a_3, 5, 11, 0]$, $[8, a_3, 2, 4, 11, 3]$.

For G_6 : [1, 5, 10, x, 7, 9] + i, $i \in Z_{12}^*$, when i is even $x = a_1$; when i is odd $x = a_2$; $[0, 11, 10, a_1, 7, 9]$, $[2, 1, 0, a_3, 6, 7]$, $[10, 5, 1, a_3, 7, 8]$, $[4, 3, 2, a_3, 8, 9]$, $[6, 5, 4, 10, a_3, 11]$, $[11, 5, a_3, 3, 9, 10]$.

For G_7 : $[a_1, 1, 6, a_2, 3, a_3] + i$, $i \in Z_{12} \setminus [0, 2]$, $[3, a_1, 1, 0, 2, 4]$, $[8, a_2, 6, 3, 7, 2]$, $[5, a_3, 3, 1, 4, 10]$, [2, 3, 8, 7, 5, 11], [6, 0, 8, 9, 4, 5] + i, i = 0, 1, [8, 2, 10, 11, 6, 1], [9, 3, 11, 0, 7, 4].

For G_8 : $[3, x, 6, 4, 11, a_3] + i$, $i \in Z_{12}^*$, when i is even $x = a_1$; when i is odd $x = a_2$; $[6, a_1, 3, 2, 4, 9]$, [0, 4, 8, 2, 7, 9], [3, 7, 11, 0, 5, 6], [2, 6, 10, 4, 9, 11], $[4, 5, 6, 0, 7, a_3]$, [9, 5, 1, 0, 2, 7].

For G_9 : $[1, x, 4, 6, 11, a_3] + i$, $i \in \mathbb{Z}_{12}^*$, when i is even $x = a_1$; when i is odd $x = a_2$; $[1, a_1, 4, 6, 7, a_3]$, [0, 6, 11, 10, 4, 9], [8, 4, 0, 1, 2, 7], [1, 5, 9, 3, 2, 4], [2, 10, 6, 5, 4, 11], [3, 11, 7, 8, 9, 2].

 $\begin{array}{c} \hline w = 5 \\ i \text{ for } G_3: \ [x, 0, 1, y, 2, a_1] + i, \ i \in Z_{12}, \text{ when } i \text{ is even } x = a_2, \ y = a_3; \text{ when } i \text{ is odd } x = a_4, \ y = a_5; \ [4, 6, 0, 5, 10, 3] + i, \ i \in [0, 4], \ [3, 11, 5, 9, 6, 8], \ [1, 3, 10, 0, 9, 7], \ [11, 4, 2, 10, 6, 0], \ [1, 9, 11, 8, 0, 7]. \end{array}$

For G_4 : $[a_1, 0, x, 1, a_2, a_3] + i$, $i \in Z_{12}$, when i is even $x = a_4$; when i is odd $x = a_5$; [11, 6, 4, 0, 3, 5] + i, $i \in [0, 3]$, [7, 4, 8, 10, 3, 6], [7, 10, 2, 0, 8, 9], [5, 3, 11, 1, 9, 10], [6, 9, 11, 5, 8, 10], [9, 4, 2, 11, 7, 8].

For G_5 : $[x, 0, 1, y, 2, a_1] + i$, $i \in Z_{12}$, when i is even $x = a_2, y = a_3$; when i is odd $x = a_4, y = a_5$; [0, 2, 5, 1, 7, 11] + i, $i \in [0, 4]$, [5, 7, 10, 6, 8, 11], [2, 9, 11, 6, 0, 4], [9, 7, 0, 3, 10, 1], [11, 4, 1, 8, 10, 0].

For G_6 : $[2, x, 1, y, 0, a_1] + i$, $i \in Z_{12}$, when i is even $x = a_2, y = a_3$; when i is odd $x = a_4, y = a_5$; [8, 5, 0, 4, 6, 10] + i, $i \in [0, 4]$, [1, 10, 5, 11, 9, 2], [4, 7, 0, 10, 3, 1], [5, 2, 4, 11, 1, 8], [0, 2, 11, 6, 3, 5].

For G_7 : $[a_1, 0, 4, a_2, x, 8] + i$, $i \in Z_{12}$, when $i \in [0, 3]$, $x = a_3$, when $i \in [4, 7]$, $x = a_4$, when $i \in [8, 11]$, $x = a_5$; [11, 6, 5, 7, 0, 9] + i, i = 0, 1, 3, [11, 8, 7, 9, 2, 4], [0, 10, 9, 6, 4, 7], [4, 1, 0, 2, 11, 9], [8, 1, 3, 6, 2, 11], [10, 3, 5, 8, 4, 6], [4, 11, 10, 7, 5, 2].

For G_8 : $[x, 0, 1, a_1, a_2, a_3] + i$, $i \in Z_{12}$, when i is even $x = a_4$; when i is odd $x = a_5$; [1, 5, 7, 10, 11, 0] + i, $i \in [0, 3]$, [6, 4, 0, 2, 3, 10], [5, 9, 11, 1, 2, 3], [3, 8, 5, 0, 2, 10], [2, 7, 4, 1, 9, 11], [1, 3, 6, 9, 10, 11].

For G_9 : $[1, x, 0, 4, a_1, a_2] + i$, $i \in Z_{12}$, when i is even $x = a_3$; when i is odd $x = a_4$; $[a_5, 6, 0, 5, 2, 3] + i$, $i \in [0, 5] \setminus [3, 4]$, $[3, a_5, 9, 0, 2, 7] + i$, $i \in [0, 1]$, [1, 4, 11, 9, 6, 7], [10, 0, 3, 8, 5, 6], [9, 4, 2, 11, 6, 8].

 $\begin{array}{c} \hline w = 6 \\ i \text{ for } G_3: \ [x, 0, 1, y, 2, 5] + i, \ i \in Z_{12}, \text{ when } i \text{ is even } x = a_1, \ y = a_3; \text{ when } i \text{ is odd } x = a_2, \ y = a_4; \ [a_5, 6, 0, 3, 8, 2] + i, \ i \in [0, 5], \ [8, 6, a_6, 7, 10, 1], \ [a_6, 5, 0, 9, 6, 10], \ [a_6, 2, 9, 11, 8, 7], \ [a_6, 3, 10, 1, 6, 8], \ [a_6, 4, 11, 2, 7, 1]. \end{array}$

For G_4 : $[a_1, 0, x, 1, 5, a_2] + i$, $i \in Z_{12}$, when i is even $x = a_3$; when i is odd $x = a_4$; $[11, 6, a_5, 0, 2, 5] + i$, $i \in [0, 5]$, $[1, 4, a_6, 7, 9, 10]$, $[2, 5, a_6, 8, 6, 11]$, $[0, 9, a_6, 11, 1, 2]$, $[3, 0, a_6, 10, 1, 8]$, $[9, 6, 3, a_6, 1, 2]$.

For G_5 : [1, x, 0, 4, y, 5] + i, $i \in Z_{12}$, when i is even $x = a_1$, $y = a_3$; when i is odd $x = a_2$, $y = a_4$; $[6, a_5, 0, 2, 7, 4] + i$, $i \in [0, 5]$, $[2, a_6, 5, 0, 3, 10]$, $[3, a_6, 6, 8, 1, 4]$, $[10, 0, a_6, 11, 1, 6]$, $[7, 9, a_6, 8, 10, 1]$, $[2, 9, 11, 4, a_6, 1]$.

For G_6 : [2, x, 1, y, 0, 4] + i, $i \in Z_{12}$, when i is even $x = a_1$, $y = a_3$; when i is odd $x = a_2$, $y = a_4$; $[5, 3, 0, a_5, 6, 1] + i$, $i \in [0, 5]$, $[1, 11, 9, 0, 2, a_6]$, $[1, 10, 7, 0, a_6, 9]$, $[2, 11, 8, a_6, 1, 3]$, $[0, 5, a_6, 11, 4, 2]$, $[9, 6, a_6, 3, 10, 0]$.

For G_7 : $[a_1, 1, 0, a_2, 3, a_3] + i$, $i \in Z_{12}$, $[a_6, 4, a_5, 0, 8, 2] + i$, $i \in [0, 1]$, $[7, 0, a_4, 8, 4, 11] + i$, $i \in [0, 2]$, $[a_6, 6, a_5, 3, 10, 4]$, $[3, 7, a_5, 2, 11, 5]$, $[7, a_4, 3, 10, 11, 6]$, $[6, 0, a_6, 7, 8, 3]$, $[4, 9, a_6, 3, 1, 7]$, $[5, 10, a_6, 11, 2, 7]$.

For G_8 : $[x, 0, 1, a_1, a_2, a_3] + i$, $i \in Z_{12}$, when i is even $x = a_4$; when i is odd $x = a_5$; $[6, a_6, 0, 3, 4, 5] + i$, i = 2, 4, 5, $[9, a_6, 3, 5, 7, 8]$, $[7, a_6, 1, 3, 4, 5]$, [11, 6, 9, 0, 1, 2] + i, i = 0, 2, [10, 0, 7, 5, 9, 11], [6, 8, 10, 1, 2, 3], [4, 2, 0, 3, 5, 8], $[0, a_6, 6, 1, 3, 4]$.

For G_9 : $[1, x, 0, 4, a_1, a_2] + i$, $i \in Z_{12}$, when i is even $x = a_3$; when i is odd $x = a_4$; $[a_5, 7, 1, 6, 3, 4] + i$, $i \in [0, 4]$, $[a_5, 0, 6, a_6, 5, 7]$, $[2, a_6, 9, 11, 1, 6]$, $[3, a_6, 10, 0, 7, 9]$, $[11, a_6, 8, 1, 3, 10]$, $[1, 4, a_6, 0, 2, 3]$, [4, 11, 2, 5, 0, 3].

 $\begin{array}{|c|c|c|c|c|c|c|c|} \hline w = 7 \\ \hline w = 6; \\ \hline (1, 0), (5, 11) \\ \hline (1, 0), ($

For G_4 : $[a_1, 0, x, 5, a_2, a_3] + i$, $i \in Z_{12}$, when i is even $x = a_4$; when i is odd $x = a_5$; $[a_7, 3, 6, 2, 8, a_6] + i$, $i \in [0, 3]$, $[a_7, 7, 10, 6, 8, a_6] + i$, $i \in [0, 5]$, $[6, 4, 0, 2, 5, a_7]$, [7, 5, 3, 1, 2, 4], $[6, 0, a_6, 1, 7, a_7]$.

For G_5 : $[0, x, 1, y, 2, a_5] + i$, $i \in Z_{12}$, when i is even $x = a_1$, $y = a_3$; when i is odd $x = a_2$, $y = a_4$; $[8, a_6, 2, 7, 5, 9] + i$, $i \in [0, 2]$, $[6, 11, 9, 1, a_7, 7] + i$, $i \in [0, 4]$, $[0, 6, a_6, 1, 7, 4]$, $[1, 4, 6, 3, 7, a_6]$, $[3, 5, 0, a_7, 6, 2]$, $[11, a_6, 5, 10, 8, 4]$, [11, 4, 2, 5, 8, 0].

For G_6 : [1, x, 2, y, 9, 5] + i, $i \in Z_{12}^*$, $[7, 1, 3, z, 0, a_7] + i$, $i \in [0, 5] \setminus \{2\}$, $[8, 7, 9, z, 6, a_7] + i$, $i \in [0, 5]$, when i is even $x = a_1$, $y = a_2$, $z = a_5$; when i is odd $x = a_3$, $y = a_4$, $z = a_6$; $[1, a_1, 2, a_2, 9, 3]$, $[7, 6, 5, a_5, 2, a_7]$, [1, 2, 3, 4, 5, 9].

For G_7 : $[a_1, 0, x, 8, 4, a_2] + i$, when $i \in [0, 3]$, $x = a_3$; when $i \in [4, 7]$, $x = a_4$; when $i \in [8, 11]$, $x = a_5$; $[a_7, 0, 2, a_6, 5, 11] + i$, $i \in [0, 5]$, $[11, 0, 9, 8, a_6, 1]$, $[7, 8, a_6, 10, 11, 6]$, $[5, 6, a_7, 8, 7, 9]$; [6, 8, 10, 9, 1, 2]; $[a_7, 9, 11, 10, 2, 3]$, $[a_7, 10, 0, 7, 3, 4]$, $[a_7, 11, 1, 0, 4, 5]$.

For G_8 : $[0, x, 5, a_1, a_2, a_3] + i$, $i \in Z_{12}$, when i is even $x = a_4$; when i is odd $x = a_5$; $[5, a_7, 6, 8, 9, 10] + i$, $i \in [0, 5]$, $[9, a_6, 3, 5, 6, 7] + i$, $i \in [0, 2]$, [2, 3, 0, 1, 4, 11], [4, 5, 2, 1, 8, 6], $[3, 4, 1, a_6, 7, 5]$, $[0, 6, a_6, 2, 7, 8]$.

For G_9 : $[x, 7, 2, 6, a_1, a_2] + i$, $i \in Z_{12}^*$, $[3, y, 0, 2, a_7, 8] + i$, $i \in [0, 5] \setminus \{3\}$, $[9, y, 6, 8, a_7, 7] + i$, $i \in [0, 5]$, when i is even $x = a_3$, $y = a_5$; when i is odd $x = a_4$, $y = a_6$; $[a_3, 2, 7, 6, a_2, a_1]$, $[3, a_6, 6, 5, 11, a_7]$, [5, 4, 3, 2, 1, 6].

 $\underbrace{w = 8}_{i} \text{ For } G_3: [x, 1, 0, y, 11, 2] + i, \ i \in Z_{12}, [z, 8, 3, t, 0, 7] + i, \ i \in Z_{12} \setminus \{0, 1, 2, 4, 5, 6\}, \\ [z, 8, 3, 9, 6, 7] + i, \ i \in [0, 2], \ [z, 0, 7, t, 3, 11] + i, \ i \in [0, 2], \ [6, 3, 0, t, 4, 9] + i, \ i \in [0, 2], \text{ when } i \text{ is even } x = a_1, \ y = a_2, \ z = a_5, \ t = a_6; \text{ when } i \text{ is odd } x = a_3, \ y = a_4, \ z = a_7, \ t = a_8.$

For G_4 : $[a_1, 3, x, 4, 6, a_2] + i$, $i \in Z_{12} \setminus [0, 2]$, $[8, 0, y, 5, a_5, a_6] + i$, $i \in Z_{12} \setminus [0, 2]$, [8, 0, 3, 6, 4, 9] + i, $i \in [0, 2]$, $[a_2, 4, x, 3, a_1, 9] + i$, $i \in [0, 2]$, $[9, 0, y, 5, a_5, a_6] + i$, $i \in [0, 2]$, when i is even $x = a_3$, $y = a_7$; when i is odd $x = a_4$, $y = a_8$.

For G_5 : [x, 1, 0, 2, y, 3] + i, $i \in Z_{12}$, [z, 11, 4, 0, t, 9] + i, $i \in Z_{12} \setminus \{0, 1, 2, 4, 5, 6\}$, [0, 6, 3, 9, t, 1] + i, $i \in [0, 2]$, [11, z, 4, 0, 9, 6] + i, $i \in [0, 2]$, [11, z, 4, 0, t, 8] + i, $i \in [4, 6]$, when i is even $x = a_1$, $y = a_2$, $z = a_5$, $t = a_6$; when i is odd $x = a_3$, $y = a_4$, $z = a_7$, $t = a_8$.

For G_6 : [1, x, 0, y, 5, 9]+i, $i \in Z_{12}$, [11, z, 0, t, 1, 3]+i, $i \in Z_{12} \setminus \{0, 1, 2\}$, [11, z, 0, 6, 3, 9]+i, $i \in [0, 2]$, [6, 9, 0, t, 1, 3]+i, $i \in [0, 2]$, when i is even $x = a_1$, $y = a_2$, $z = a_5$, $t = a_6$; when i is odd $x = a_3$, $y = a_4$, $z = a_7$, $t = a_8$.

For G_7 : $[a_1, 0, 4, a_2, x, 8] + i$, when $i \in [0, 3]$, $x = a_3$; when $i \in [4, 7]$, $x = a_4$; when $i \in [8, 11]$, $x = a_5$; $[a_7, 6, 11, a_6, 8, a_8] + i$, $i \in [0, 5] \setminus \{1\}$, $[0, 1, a_7, 4, 2, 3]$, $[4, 5, a_6, 8, 6, 7]$, $[3, 9, a_6, 0, 10, 11]$; $[a_7, 0, 5, 11, 2, a_8]$, $[7, 1, 6, 0, 3, a_8]$, $[8, 2, 7, a_6, 4, a_8]$, $[a_7, 3, 8, 7, 5, a_8]$, $[3, 4, 9, 8, 6, a_8]$, $[a_7, 5, 10, 4, 7, a_8]$, $[a_7, 7, 0, 11, 9, a_8]$.

For G_8 : $[2, x, 0, a_1, a_2, a_3] + i$, when i = 4j, 4j + 1, $x = a_4$, when i = 4j + 2, 4j + 3, $x = a_5$, $j \in [0, 2]$, $[1, 9, 2, a_6, a_7, a_8] + i$, $i \in Z_{12} \setminus \{0, 1, 2\}$, [1, 2, 9, 0, 3, 6] + i, $i \in [0, 2]$, $[6, 0, 3, a_6, a_7, a_8] + i$, $i \in [0, 1]$, $[5, 8, 2, a_6, a_7, a_8]$.

For G_9 : $[1, x, 0, 2, a_1, a_2] + i$, $i \in Z_{12}$, $[5, y, 0, 4, a_5, a_6] + i$, $i \in Z_{12} \setminus \{0, 1, 2\}$, [5, y, 0, 9, 3, 6] + i, $i \in [0, 2]$, $[6, 3, 0, 4, a_5, a_6] + i$, $i \in [0, 2]$, when i is even $x = a_3, y = a_7$, when i is odd $x = a_4, y = a_8$.

 $\begin{array}{c} w = 10 \\ \hline w = 10 \\ \end{bmatrix} \text{ For } G_3: \ [0,3,x,9,a_1,6] + i, \text{ when } i \in [0,2], \ x = a_2, \text{ when } i \in [3,5], \ x = a_3, \\ \text{when } i \in [6,8], \ x = a_4, \text{ when } i \in [9,11], \ x = a_5; \ [5,y,0,z,1,2] + i, \ i \in Z_{12}, \text{ when } i \text{ is even } y = a_6, \ z = a_7, \text{ when } i \text{ is odd } y = a_8, \ z = a_9; \ [3,7,11,10,6,0], \ [11,a_{10},5,9,10,1], \\ [6,a_{10},0,8,7,4], \ [7,a_{10},1,9,8,0], \ [8,a_{10},2,6,7,1], \ [9,a_{10},3,2,10,4], \ [10,a_{10},4,5,6,8]. \end{array}$

For G_4 : $[a_1, 0, 3, x, 9, 6] + i$, when $i \in [0, 2]$, $x = a_2$, when $i \in [3, 5]$, $x = a_3$, when $i \in [6, 8]$, $x = a_4$, when $i \in [9, 11]$, $x = a_5$; $[10, 6, y, 1, a_6, a_7] + i$, $i \in Z_{12}^*$, when i is even $y = a_8$, when i is odd $y = a_9$; $[8, 6, a_{10}, 0, 1, 2] + i$, i = 1, 3, 4, [7, 8, 9, 10, 11, 6], $[5, 6, a_8, 1, a_6, a_7]$, $[7, 6, a_{10}, 0, 1, 2]$, $[6, 8, a_{10}, 2, 3, 4]$, $[7, 5, a_{10}, 11, 0, 1]$.

For G_5 : [0, 4, x, 8, y, 9] + i, when $i \in [0, 3]$, $x = a_1$, when $i \in [4, 7]$, $x = a_2$, when $i \in [8, 11]$, $x = a_3$; [9, z, 6, t, 5, 7] + i, $i \in Z_{12}^*$, when i is even $y = a_4$, $z = a_6$, $t = a_7$, when i is odd $y = a_5$, $z = a_8$, $t = a_9$; $[6, a_{10}, 0, 11, 4, 9] + i$, i = 0, 1, 2, 4, $[9, a_6, 6, a_7, 5, 4]$, $[5, a_{10}, 11, 10, 3, 2]$, [5, 6, 7, 8, 9, 10], $[3, a_{10}, 9, 2, 7, 0]$.

For G_6 : [1, x, 0, 4, y, 8] + i, when $i \in [0, 3]$, $y = a_3$, when $i \in [4, 7]$, $y = a_4$, when $i \in [8, 11]$, $y = a_5$; [10, z, 11, t, 2, 9] + i, $i \in Z_{12}^*$, when i is even $x = a_1$, $z = a_6$, $t = a_7$, when i is odd $x = a_2$, $z = a_8$, $t = a_9$; $[3, 2, 0, a_{10}, 6, 8] + i$, i = 0, 1, 2, 4, 5, $[6, 5, 3, a_{10}, 9, 8]$, $[10, a_6, 11, a_7, 2, 1]$, [1, 0, 11, 10, 9, 2].

For G_7 : $[a_1, 0, y, 8, 4, a_2] + i$, when $i \in [0, 3]$, $y = a_3$, when $i \in [4, 7]$, $y = a_4$, when $i \in [8, 11]$, $y = a_5$; $[a_6, 0, 2, a_7, 11, a_8] + i$, $i \in Z_{12} \setminus [0, 4]$, $[1, 4, 6, a_7, 3, a_8]$, $[a_8, 1, a_6, 4, 2, 0]$,

 $\begin{matrix} [a_8,2,a_7,4,3,5], & [a_8,0,3,a_6,1,7], & [a_6,0,5,a_7,11,a_8], & [2,5,a_9,3,10,a_{10}], & [9,4,a_9,6,11,a_{10}], \\ [11,2,a_9,0,7,a_{10}], & [7,0,a_{10},1,6,11], & [10,3,a_{10},8,9,2], & [8,2,a_{10},5,4,10], & [3,8,a_9,9,1,6]. \end{matrix}$

For G_8 : $[0, x, 5, a_1, a_2, a_3] + i$, $i \in Z_{12}$, $[0, y, 3, a_8, a_9, a_{10}] + i$, $i \in Z_{12}$, when i is even, $x = a_4, y = a_6$, when i is odd, $x = a_5, y = a_7$, [6, 4, 0, 8, 10, 11] + i, i = 0, 1, [8, 9, 10, 11, 4, 6], [11, 9, 5, 3, 4, 6], [1, 2, 3, 4, 9, 11], [4, 8, 2, 0, 6, 10], [6, 8, 7, 3, 9, 11].

For G_9 : $[0,4,x,8,a_1,a_2] + i$, when $i \in [0,3]$, $x = a_3$, when $i \in [4,7]$, $x = a_4$, when $i \in [8,11]$, $x = a_5$; $[3, y, 0, 5, a_7, a_6] + i$, $i \in Z_{12}$, when i is even, $y = a_8$, when i is odd, $y = a_9$, $[6, a_{10}, 0, 1, 2, 3] + 2i$, $i \in [1, 2]$, $[3, a_{10}, 9, 8, 7, 10]$, $[5, a_{10}, 11, 9, 7, 10]$, $[1, a_{10}, 7, 6, 4, 8]$, $[6, a_{10}, 0, 1, 11, 3]$, [10, 11, 0, 2, 1, 4].

 $\begin{array}{c|c} w = 11 \\ \hline w = 11 \\ \hline \text{For } G_3: \ [5, x, 0, y, 1, a_1] + i, i \in Z_{12}, \ [3, z, 0, t, 1, a_2] + i, i \in Z_{12}^*, \text{ when } i \\ \hline \text{is even } x = a_3, \ y = a_4, \ z = a_5, \ t = a_6, \text{ when } i \text{ is odd } x = a_7, \ y = a_8, \ z = a_9, \ t = a_{10}; \ [6, a_{11}, 0, 4, 5, 2] + i, \ i \in [0, 5], \ [3, a_5, 0, a_6, 1, 8], \ [6, 8, 10, 0, a_2, 2], \ [11, 0, 1, 2, 3, 9], \\ [7, 9, 11, 3, 4, 10]. \end{array}$

For G_4 : $[a_1, 0, x, 3, a_2, a_3] + i$, $i \in Z_{12}$, $[a_4, 0, y, 5, a_6, a_5] + i$, $i \in Z_{12}$, when i is even $x = a_7, y = a_8$, when i is odd $x = a_9, y = a_{10}$; $[5, 6, a_{11}, 0, 2, 4] + i$, i = 0, 1, 2, [3, 11, 0, 1, 2, 9], [0, 8, 6, 10, 9, 2], [8, 9, 11, 7, 3, 5], $[5, 9, a_{11}, 3, 2, 4]$, $[10, 11, a_{11}, 5, 3, 4]$, $[0, 10, a_{11}, 4, 6, 8]$.

For G_5 : $[5, x, 0, y, 1, a_1] + i$, $i \in Z_{12}$, $[3, z, 0, t, 1, a_2] + i$, $i \in Z_{12}$, when i is even $x = a_3, y = a_4, z = a_5, t = a_6$, when i is odd $x = a_7, y = a_8, z = a_9, t = a_{10}$; $[0, 4, 6, 5, a_{11}, 11] + i$, i = 0, 2, 5, [7, 5, 1, 9, 8, 0], [2, 10, 0, 11, 1, 3], [3, 11, 7, 9, 10, 6], $[10, 4, 8, a_{11}, 6, 7]$, $[5, 3, 4, 2, a_{11}, 0]$, $[9, a_{11}, 3, 2, 1, 0]$.

For G_6 : $[1, x, 0, y, 3, a_1] + i$, $i \in Z_{12}$, $[1, z, 0, t, 5, a_2] + i$, $i \in Z_{12}$, when i is even $x = a_3, y = a_4, z = a_5, t = a_6$, when i is odd $x = a_7, y = a_8, z = a_9, t = a_{10}$; $[2, 4, 0, a_{11}, 6, 10] + i$, i = 1, 2, 3, 4, [6, 10, 0, 1, 2, 3], [5, 4, 3, 1, 11, 0], [6, 7, 8, 10, 9, 11], $[2, 4, 0, a_{11}, 6, 5]$, $[7, 9, 5, a_{11}, 11, 10]$.

For G_7 : $[a_1, 0, x, 8, 4, a_2] + i$, when $i \in [0, 3]$, $x = a_3$, when $i \in [4, 7]$, $x = a_4$, when $i \in [8, 11]$, $x = a_5$; $[a_6, 0, 5, a_7, 2, a_8] + i$, $i \in Z_{12}$, $[a_{10}, 0, a_9, 5, 6, 7]$, $[a_{10}, 7, a_9, 9, 1, a_{11}]$, $[1, 2, a_9, 11, 8, 7]$, $[a_{11}, 2, a_{10}, 1, 3, a_9]$, $[a_9, 4, a_{10}, 8, 10, 11]$, $[a_{11}, 6, a_{10}, 9, 5, 11]$, $[9, 3, a_{11}, 8, 4, 5]$, $[a_9, 10, a_{11}, 7, 9, 8]$, $[a_{10}, 11, a_{11}, 5, 0, 1]$.

For G_8 : $[0, x, 5, a_1, a_2, a_3] + i$, $i \in Z_{12}$, $[0, y, 3, a_8, a_9, a_{10}] + i$, $i \in Z_{12}$, when i is even, $x = a_4, y = a_6$, when i is odd, $x = a_5, y = a_7$, $[6, a_{11}, 0, 1, 2, 4] + i$, i = 0, 3, 4, 5, $[7, a_{11}, 1, 9, 3, 5]$, $[8, a_{11}, 2, 3, 4, 1]$, [6, 7, 8, 9, 10, 0], [7, 9, 11, 0, 1, 3], [2, 6, 10, 0, 9, 11].

For G_9 : [8, x, 5, y, 1, 9] + i, $i \in Z_{12}^*$, [5, z, 0, t, 4, 8] + i, $i \in Z_{12}$, when i is even, $x = a_1, z = a_2$, when i is odd, $x = a_3, z = a_4$, when $i \in [0, 3]$, $y = a_5, t = a_6$, when $i \in [4, 7]$, $y = a_7, t = a_8$, when $i \in [8, 11]$, $y = a_9, t = a_{10}$; $[6, a_{11}, 0, 4, 2, 3] + i$, $i \in [1, 3]$, $[10, a_{11}, 4, 8, a_1, 6]$, $[7, 8, 9, 5, a_{11}, 11]$, $[1, 9, a_5, 5, a_1, 8]$, $[0, 6, a_{11}, 11, 3, 7]$, [1, 11, 0, 4, 2, 3], [11, 9, 10, 0, 2, 8], [1, 3, 2, 10, 8, 6].

(Received 19 Dec 2001; revised 6 Dec 2002)