Graph designs, packings and coverings of λK_{v} with a graph of six vertices and containing a triangle

Zhine Liang*
Department of Mathematics
Hebei Normal University
Shijiazhuang 050016, P. R. China

Abstract

Let λK_{v} be the complete multigraph with v vertices, where any two distinct vertices x and y are joined by λ edges (x, y). Let G be a finite simple graph. A G-design (G-packing, G-covering) of λK_{v}, denoted by $(v, G, \lambda)-\mathrm{GD}((v, G, \lambda)-\mathrm{PD},(v, G, \lambda)-\mathrm{CD})$, is a pair (X, \mathcal{B}) where X is the vertex set of K_{v} and \mathcal{B} is a collection of subgraphs of K_{v}, called blocks, such that each block is isomorphic to G and any two distinct vertices in K_{v} are joined in exactly (at most, at least) λ blocks of \mathcal{B}. In this paper, we determine the existence spectrum for the G-designs of $\lambda K_{v}, \lambda>1$, and construct the maximum packings and the minimum coverings of λK_{v} with G for any positive integer λ, where the graph G has six vertices and contains a triangle.

1 Introduction

A complete multigraph of order v and index λ, denoted by λK_{v}, is a graph with v vertices, where any two distinct vertices x and y are joined by λ edges (x, y). Let G be a finite simple graph. A G-design (G-packing, G-covering) of λK_{v}, denoted by $(v, G, \lambda)-\mathrm{GD}((v, G, \lambda)-\mathrm{PD},(v, G, \lambda)-\mathrm{CD})$, is a pair (X, \mathcal{B}) where X is the vertex set of K_{v} and \mathcal{B} is a collection of subgraphs of K_{v}, called blocks, such that each block is isomorphic to G and any two distinct vertices in K_{v} are joined in exactly (at most, at least) λ blocks of \mathcal{B}. A G-packing (G-covering) is said to be maximum (minimum), denoted by (v, G, λ)-MPD (MCD), if no other such G-packing (G-covering) has more (fewer) blocks. The number of blocks in a maximum G-packing (minimum G-covering), denoted by $p(v, G, \lambda)(c(v, G, \lambda))$, is called the packing (covering) number. It is well known that

$$
p(v, G, \lambda) \leq\left\lfloor\frac{\lambda v(v-1)}{2 e(G)}\right\rfloor \leq\left\lceil\frac{\lambda v(v-1)}{2 e(G)}\right\rceil \leq c(v, G, \lambda)
$$

[^0]where $e(G)$ denotes the number of edges in $G,\lfloor x\rfloor$ denotes the greatest integer y such that $y \leq x$ and $\lceil x\rceil$ denotes the least integer y such that $y \geq x$. A (v, G, λ)-PD $((v, G, \lambda)-\mathrm{CD})$ is said to be optimal and denoted by (v, G, λ)-OPD $((v, G, \lambda)-\mathrm{OCD})$ if the left (right) equality holds. Obviously, there exists a (v, G, λ)-GD if and only if $p(v, G, \lambda)=c(v, G, \lambda)$ and a (v, G, λ)-GD can be regarded as (v, G, λ)-OPD or (v, G, λ)-OCD.

By a $L_{\lambda}(\mathcal{D})$ of a packing \mathcal{D}, called the leave edge graph, we mean that it is a subgraph of λK_{v} and its edges are the supplement of \mathcal{D} in λK_{v}. The number of edges in $L_{\lambda}(\mathcal{D})$ is denoted by $\left|L_{\lambda}(\mathcal{D})\right|$. Especially, when \mathcal{D} is maximum, $\left|L_{\lambda}(\mathcal{D})\right|$ is called leave edge number and is denoted by $l_{\lambda}(v)$. Similarly, the repeat edge graph $R_{\lambda}(\mathcal{D})$ of a covering \mathcal{D} is a subgraph of λK_{v} and its edges are the supplement of λK_{v} in \mathcal{D}. When \mathcal{D} is minimum, $\left|R_{\lambda}(\mathcal{D})\right|$ is called the repeat edge number and is denoted by $r_{\lambda}(v)$. Generally, the symbols $L_{\lambda}(\mathcal{D}), l_{\lambda}(v), R_{\lambda}(\mathcal{D})$ and $r_{\lambda}(v)$ can be denoted by $L_{\lambda}, l_{\lambda}, R_{\lambda}$ and r_{λ}, briefly.

Many researchers have been involved in graph design, graph packing and graph covering of λK_{v} with five vertices or less (see [1-10]).

Yin [11] listed the spectrum of graph designs of K_{v} with six vertices and $e(G) \leq 6$. (See Table A.)

Table A

note	G_{1}	G_{2}	G_{3}
graph	$\overbrace{d}^{a b}$		${ }^{\mathrm{a}} \mathrm{Cl}_{\mathrm{c} \cdot \mathrm{~d}}^{\mathrm{f}}$
spectrum	$\begin{gathered} v \equiv 0,1(\bmod 5) \\ v>6 \end{gathered}$	$\begin{gathered} v \equiv 0,1(\bmod 5) \\ v \geq 6 \end{gathered}$	$\begin{gathered} v \equiv 0,1,4,9(\bmod 12) \\ v \geq 6 \end{gathered}$
note	G_{4}	G_{5}	G_{6}
graph			
spectrum	$\begin{gathered} v \equiv 0,1,4,9(\bmod 12) \\ v \geq 6 \end{gathered}$	$\begin{gathered} v \equiv 0,1,4,9(\bmod 12) \\ v \geq 6 \end{gathered}$	$\begin{gathered} v \equiv 0,1,4,9(\bmod 5) \\ v \geq 6 \end{gathered}$
note	G_{7}	G_{8}	G_{9}
graph			
spectrum	$\begin{gathered} v \equiv 0,1,4,9(\bmod 12) \\ v \geq 6 \end{gathered}$	$\begin{gathered} v \equiv 0,1,4,9(\bmod 12) \\ v \geq 6 \end{gathered}$	$\begin{gathered} v \equiv 0,1,4,9(\bmod 12) \\ v \geq 6 \end{gathered}$

Throughout this paper, the graph G is denoted by $[a, b, c, d, e, f]$. In what follows, the notations $(a, b \in Z):[a, b]=\{x \in Z \mid a \leq x \leq b\},[a, b]_{k}=\{x \in Z \mid a \leq x \leq$
$b, x \equiv a(\bmod k)\}$ for $a, b \in Z,[a, b, \cdots, c]+i=[a+i, b+i, \cdots, c+i]$ and $\left(Z_{n}\right)_{m}=$ $\left\{i_{m} \mid i \in Z_{n}\right\}$ are used frequently. The edge set $\left\{\left(a_{1}, a_{2}\right),\left(a_{2}, a_{3}\right), \cdots,\left(a_{n-1}, a_{n}\right)\right\}$ is denoted by $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$.

In this paper, we prove the following theorem:
Theorem For $i \in[1,9]$, the $p\left(v, G_{i}, \lambda\right)$ and $c\left(v, G_{i}, \lambda\right)$ are determined.
Example We construct (14, $\left.G_{i}, 1\right)$-OPD $(i \in[3,9])$ on the set $Z_{13} \cup\{a\}$ as follows: $\underline{i=3}[5,9,3,8,11,4]+i, i \in[0,9],[7,10, a, 0,6,12],[6,9, a, 1,0,11],[5,8, a, 2,6,4]$, $[3,7,1,2,0,6],[4,8,2,3, a, 7]$. Leave edge: $(0,5)$.
$\underline{\mathrm{i}=4}[4,5,9,3,6,8]+i, i \in[0,9],[4,1,7,3,2, a],[0,2,8,4,3, a],[12, a, 5,0,6,3]$, [2, 1, 6, a, 10, 11], $[5,2,7, a, 8,9]$. Leave edge: $(2,6)$.

$$
\underline{\mathrm{i}=5}[5,9,3,4,7,12]+i, i \in[0,9]-\{1\},[6,10,4,5,2,1],[8,2,4,1, a, 12],
$$

$[1,3,7, a, 8,5],[4,9, a, 0,2,6],[5,10, a, 11,6,3],[2,3, a, 6,0,1]$. Leave edge: $(0,8)$.
$\underline{\mathrm{i}=6}[11,8,3,9,5,4]+i, i \in[0,9],[12, a, 1,7,3,2],[11, a, 4,8,2,0],[6,0, a, 10,7,2]$, $[4,3, a, 9,6,1],[6,2, a, 8,5,0]$. Leave edge: $(1,2)$.
$\underline{\mathrm{i}=7}[9,3,4,8,6,11]+i, i \in[0,9]-\{1\},[a, 0,1,5,3,8],[a, 3,5,10,2,8]$, $[a, 5,7,12,4,10],[10, a, 1,2,7,3],[11, a, 2,4,6,0],[12, a, 4,1,9,5]$. Leave edge: $(a, 8)$.
$\underline{\mathrm{i}=8}[4,8,2,3,5,7]+i, i \in[0,9],[1,5,12, a, 2,4],[a, 7,1,2,3,4],[2,6, a, 4,5,8]$, [$0,3, a, 9,10,11],[1,6,0,2,5,12]$. Leave edge: $(3,7)$.
$\underline{\mathrm{i}=9}[5,10,4,8,6,11]+i, i \in[0,9],[2,7,1,5,8, a],[3,8,2, a, 0,1],[3,4,9, a, 11,12]$, $[7,10, a, 6,2,4],[7,5,3, a, 4,8]$. Leave edge: $(6,9)$.

Let the bipartite graph G have six vertices and let its edge number be not greater than 6 . The G-design, maximum G-packing and minimum G-covering of λK_{v} was solved by Z. Liang [13]. When six vertex graph G contains a triangle and $e(G) \leq 6$, we give the G-design, maximum G-packing and minimum G-covering of λK_{v} in this paper.

2 Recursion

By $K_{n_{1}, n_{2}, \cdots, n_{h}}$ we mean the complete multipartite graph with h parts of sizes $n_{1}, n_{2}, \cdots, n_{h}$. Let $X=\bigcup_{1 \leq i \leq h} X_{i}$ be the vertex set of $K_{n_{1}, n_{2}, \cdots, n_{h}}$ where $X_{i}(1 \leq$ $i \leq h)$ are disjoint sets with $\left|X_{i}\right|=n_{i}$ and $v=\sum_{1 \leq i \leq h} n_{i}$. For any fixed graph G, if $K_{n_{1}, n_{2}, \cdots, n_{h}}$ can be decomposed into edge-disjoint subgraphs isomorphic to G, then we call $(X, \mathcal{G}, \mathcal{A})$ a holey G-design, where $\mathcal{G}=\left\{X_{1}, X_{2}, \cdots, X_{h}\right\}$, and \mathcal{A} is the collection of all subgraphs called G-blocks (or simply blocks). Each set $X_{i}(1 \leq i \leq h)$ is said to be a hole and the multiset $\left\{n_{1}, n_{2}, \cdots, n_{h}\right\}$ is called the type of the holey G-design. We denote the design by G - $\operatorname{HGD}\left(n_{1}^{1} n_{2}^{1} \cdots n_{h}^{1}\right)\left(\right.$ or $\left.K_{n_{1}, n_{2}, \cdots, n_{h}} / G\right)$ and use an "exponential" notation to describe its type in general: a type $1^{i} 2^{j} 3^{k} \cdots$, denotes i occurrences of $1, j$ occurrences of 2 , etc. A $G-\operatorname{HGD}\left(1^{v-w} w^{1}\right)$ is called an incomplete G-design, denoted by (v, w, G)-IGD. Obviously, a $(v, G, 1)$-GD is a G - $\operatorname{HGD}\left(1^{v}\right)$, which can be thought of as a (v, w, G)-IGD with $w=0$ or 1 .

Let S be a finite set and $H=\left\{S_{1}, S_{2}, \cdots, S_{n}\right\}$ be a partition of S. A holey Latin square having partition H is an $|S| \times|S|$ array L indexed by $S \times S$, satisfying the
following condition:

1) every cell of L either contains an element of S or is empty;
2) every element of S occurs at most once in any row or any column of L;
3) the subarrays(called holes) indexed by $S_{i} \times S_{i}$ are empty for $1 \leq i \leq n$;
4) element $s \in S$ occurs in row s or column t if and only if $(s, t) \in(S \times$ $S) \backslash\left(\bigcup_{i \in[1, n]} S_{i} \times S_{i}\right)$.

The order of L is $|S|$, and the type of L is the multiset $T=\left\{\left|S_{i}\right|: i \in[1, n]\right\}$. A holey Latin square is called symmetric if the element in cell (i, j) is the element in cell (j, i) for all i and j. We simply write $\operatorname{HSL}(T)$ for a holey symmetric Latin square of type T.
Theorem $2.1[12]$ There exist $H S L\left(2^{n}\right)$ for all $n \geq 3$.
Theorem 2.2 Let $v=2 n e\left(G_{i}\right)$. There exist $G_{i}-\operatorname{HGD}\left(\left(2 e\left(G_{i}\right)\right)^{n}\right)$ for $n \geq 3$ and $i \in[1,9]$.
Proof By Theorem 2.1, let $A=\left(a_{i j}\right)$ be a $\operatorname{HSL}\left(2^{n}\right), S=[1,2 n]$ and $H=\left\{S_{t}: S_{t}=\right.$ $\{2 t-1,2 t\}, t \in[1, n]\}$. Vertex set $X=Z_{e\left(G_{i}\right)} \times S$, hole set $\mathcal{G}=\left\{Z_{e\left(G_{i}\right)} \times S_{t}: t \in[1, n]\right\}$. We construct \mathcal{A} as follows:

$$
\begin{aligned}
& \text { for } G_{1}\left[(1, i),\left(3, a_{i j}\right),(1, j),(0, i),(0, j),\left(1, a_{i j}\right)\right](\bmod 5,-) \text {; } \\
& \text { for } G_{2}\left[(0, i),(1, j),(3, j),(2, i),(2, j),\left(0, a_{i j}\right)\right](\bmod 5,-) \text {; } \\
& \text { for } G_{3}\left[(0, j),\left(1, a_{i j}\right),(0, i),(3, j),(5, i),(2, j)\right](\bmod 6,-) \text {; } \\
& \text { for } G_{4}\left[(5, j),(2, i),(2, j),\left(0, a_{i j}\right),(1, i),(1, j)\right](\bmod 6,-) \text {; } \\
& \text { for } G_{5}\left[\left(1, a_{i j}\right),(0, i),(0, j),(2, i),(4, j),(1, i)\right](\bmod 6,-) \text {; } \\
& \text { for } G_{6}\left[(4, j),(2, i),\left(0, a_{i j}\right),(1, i),(1, j),(4, i)\right](\bmod 6,-) \text {; } \\
& \text { for } G_{7}\left[(4, j),(1, i),\left(0, a_{i j}\right),(2, i),(1, j),(3, i)\right](\bmod 6,-) \text {; } \\
& \text { for } G_{8}\left[(1, i),(1, j),\left(0, a_{i j}\right),(2, i),(2, j),(3, i)\right](\bmod 6,-) \text {; } \\
& \text { for } G_{9}\left[(1, i),(1, j),\left(0, a_{i j}\right),(2, i),(4, j),(5, j)\right](\bmod 6,-) \text {. } \\
& \text { Then }(X, \mathcal{G}, \mathcal{A}) \text { is a } G_{i}-\operatorname{HGD}\left(\left(2 e\left(G_{i}\right)\right)^{n}\right), i \in[1,9] \text {. }
\end{aligned}
$$

Theorem 2.3 If both $\left(2 e\left(G_{i}\right)+w, w, G_{i}\right)$-IGD and $\left(2 e\left(G_{i}\right)+w, G_{i}, 1\right)-M P D(M C D)$ exist, then $a\left(2 n e\left(G_{i}\right)+w, G_{i}, 1\right)-M P D(M C D)$ exists for $n \geq 3$ and $i \in[1,9]$.
Proof By Theorem 2.2, there exists $G_{i^{-}} H G D\left(\left(2 e\left(G_{i}\right)\right)^{n}\right)=(X, \mathcal{G}, \mathcal{A})$ for $i \in[1,9]$. Let $Y=\left(Z_{n} \times Z_{2 e\left(G_{i}\right)}\right) \cup\left\{\infty_{1}, \infty_{2}, \cdots, \infty_{w}\right\}, Y_{j}=\left(\{j\} \times Z_{2 e\left(G_{i}\right)}\right) \cup\left\{\infty_{1}, \infty_{2}, \cdots, \infty_{w}\right\}$, for $j \in Z_{n}$. On $Y_{j}\left(j \in Z_{n}^{*}\right)$, let $\left(2 e\left(G_{i}\right)+w, w, G_{i}\right)-I G D=\left(Y_{j}, \mathcal{A}_{j}\right)$. On Y_{0}, let $\left(2 e\left(G_{i}\right)+w, G_{i}, 1\right)-M P D=\left(Y_{0}, \mathcal{A}_{0}\right)$. Since $|\mathcal{A}|=2 n(n-1) e\left(G_{i}\right)$,

$$
\left|\bigcup_{1 \leq j \leq n-1} \mathcal{A}_{j}\right|=(n-1)\left(2 e\left(G_{i}\right)+2 w-1\right)
$$

and $\left|\mathcal{A}_{0}\right|=\left(2 e\left(G_{i}\right)+2 w-1\right)+\left\lfloor\frac{w(w-1)}{2 e\left(G_{i}\right)}\right\rfloor$,

$$
|\mathcal{A}|+\left|\bigcup_{1 \leq j \leq n-1} \mathcal{A}_{j}\right|+\left|\mathcal{A}_{0}\right|=2 n^{2} e\left(G_{i}\right)+2 n w-n+\left\lfloor\frac{w(w-1)}{2 e\left(G_{i}\right)}\right\rfloor
$$

$$
=\left\lfloor\frac{\left(2 n e\left(G_{i}\right)+w\right)\left(2 n e\left(G_{i}\right)+w-1\right)}{2 e\left(G_{i}\right)}\right\rfloor .
$$

Therefore $\left(Y, \mathcal{A} \bigcup\left(\bigcup_{0 \leq j \leq n-1} \mathcal{A}_{j}\right)\right)$ is a $\left(2 n e\left(G_{i}\right)+w, G_{i}, 1\right)$-MPD.
In the same way we can prove an MCD exists.
Theorem 2.4 Let l be the leave edge number of the $(n, G, 1)-O P D$ and $\bar{\lambda}=$ $e(G) / \operatorname{gcd}(e(G), l)$. If there exist $(n, G, \lambda)-O P D$ and $(n, G, \lambda)-O C D$ for $1 \leq \lambda \leq \bar{\lambda}$, then there exist $(n, G, \lambda)-O P D$ and $(n, G, \lambda)-O C D$ for any positive integer λ.

The following theorem is a modified version of Theorem 4 in Section 3 of [14].
Theorem 2.5 Given positive integers v, λ and μ, let X be a v-set.
(1) Suppose that there exists a $(v, G, \lambda)-M P D=(X, \mathcal{D})$ with leave edge graph $L_{\lambda}(\mathcal{D})$, and $a(v, G, \mu)-M P D=(X, \mathcal{E})$ with leave edge graph $L_{\mu}(\mathcal{E})$. If $\left|L_{\lambda}(\mathcal{D})\right|+\left|L_{\mu}(\mathcal{E})\right|=$ $l_{\lambda+\mu}(v)<e(G)$, then there exists a $(v, G, \lambda+\mu)-M P D$ with leave edge graph $L_{\lambda}(\mathcal{D}) \cup$ $L_{\mu}(\mathcal{E})$.
(2) Suppose that there exists a $(v, G, \lambda)-M C D=(X, \mathcal{D})$ with repeat edge graph $R_{\lambda}(\mathcal{D})$ and a $(v, G, \mu)-M C D=(X, \mathcal{E})$ with repeat edge graph $R_{\mu}(\mathcal{E})$. If $\left|R_{\lambda}(\mathcal{D})\right|+\left|R_{\mu}(\mathcal{E})\right|=$ $r_{\lambda+\mu}(v)<e(G)$, then there exists a $(v, G, \lambda+\mu)-M C D$ with repeat edge graph $R_{\lambda}(\mathcal{D}) \cup$ $R_{\mu}(\mathcal{E})$.
(3) Suppose that there exists a $(v, G, \lambda)-M P D=(X, \mathcal{D})$ with leave edge graph $L_{\lambda}(\mathcal{D})$ and $a(v, G, \mu)-M C D=(X, \mathcal{E})$ with repeat edge graph $R_{\mu}(\mathcal{E})$. If $R_{\mu}(\mathcal{E}) \subset L_{\lambda}(\mathcal{D})$ and $\left|L_{\lambda}(\mathcal{D})\right|-\left|R_{\mu}(\mathcal{E})\right|=l_{\lambda+\mu}(v)<e(G)$, then there exists a $(v, G, \lambda+\mu)-M P D$ with leave edge graph $L_{\lambda}(\mathcal{D}) \backslash R_{\mu}(\mathcal{E})$.
(4) Suppose that there exists a $(v, G, \lambda)-M C D=(X, \mathcal{D})$ with repeat edge graph $R_{\lambda}(\mathcal{D})$ and $a(v, G, \mu)-M P D=(X, \mathcal{E})$ with leave edge graph $L_{\mu}(\mathcal{E})$. If $L_{\mu}(\mathcal{E}) \subset R_{\lambda}(\mathcal{D})$ and $\left|R_{\lambda}(\mathcal{D})\right|-\left|L_{\mu}(\mathcal{E})\right|=r_{\lambda+\mu}(v)<e(G)$, then there exists a $(v, G, \lambda+\mu)-M C D$ with repeat edge graph $R_{\lambda}(\mathcal{D}) \backslash L_{\mu}(\mathcal{E})$.

If we replace MPD and MCD by OPD and OCD respectively, then the theorem is also true.
Corollary 2.6 If there exist $\left(v, G, \lambda_{1}\right)-G D$ and $\left(v, G, \lambda_{2}\right)-G D$, then there exists a $\left(v, G, \lambda_{1}+\lambda_{2}\right)-G D$.

3 Incomplete graph designs

Theorem 3.1 Let G be a graph and n a positive integer satisfying $n(n-1)<2 e(G)$. A $(v, G, 1)-O P D$ exists and its leave edge graph is K_{n} if and only if there exists a $(v, n, G)-I G D$.
Theorem 3.2 For $w \in\{2,3,4,7,8,9\}$ and $G \in\left\{G_{1}, G_{2}\right\}$, there exists a $(10+$ $w, w, G)-I G D$.
Proof When $w=2,3$, see the proof of Theorem 4.4. When $w \in\{4,7,8,9\}$, we can construct a $(10+w, w, G)$-IGD (see the Appendix).
Theorem 3.3 When $w \in\{2,3,5,6,7,8,10,11\}$, there exists a $\left(12+w, w, G_{i}\right)$-IGD for $i \in[3,9]$.
Proof When $w=2$, it follows from Example and Theorem 3.1 that the theorem
is true. When $w \in\{3,5,6,7,8,10,11\}$, a $\left(12+w, w, G_{i}\right)$-IGD for $i \in[3,9]$ can be directly constructed (see the Appendix).
Theorem 3.4 When $i \in[1,9]$, if $a(v, G, 1)-M P D(M C D)$ exists for $6 \leq v<6 e\left(G_{i}\right)$, then $a(v, G, 1)-M P D(M C D)$ exists for any $v \geq 6$.

4 Packing and covering

Let P be the spectrum for the existence $(v, G, 1)$-GD. In this section, we discuss (v, G, λ) - PD and (v, G, λ)-CD when v does not satisfy P.
Theorem 4.1 If there exists a $(v, G, 1)-O P D(O C D)$ and $l_{1}=1\left(r_{1}=1\right)$, then there exists a $(v, G, \lambda)-O C D(O P D)$.
Theorem 4.2 (1). If there exists a $(v, G, 1)-G D$, then a $(v, G, \lambda)-O C D(O P D)$ exists for $\lambda \geq 1$.
(2). Let G be a graph. If a $(v, G, 1)-O P D=(X, A)$ exists, and $L_{1} \subset G$, then a ($v, G, 1)-O C D$ exists.
Proof The following proves case (2). We take $R_{1}=G \backslash L_{1}$; then $R_{1} \cup L_{1}=G$. The block of the graph G is denoted by $[a, b, c, d, e, f]$. Then ($X, A \cup\{[a, b, c, d, e, f]\})$ is a $(v, G, 1)$-OCD, and its repeat edge graph is R_{1}.
Lemma 4.3 There does not exist a $\left(v, G_{1}, 1\right)-O P D(O C D)$ for $v=6,7$, that is, $p\left(6, G_{1}, 1\right)=2, c\left(6, G_{1}, 1\right)=4, p\left(7, G_{1}, 1\right)=3$ and $c\left(7, G_{1}, 1\right)=6$.
Proof Let Z_{6} be the vertex set of K_{6}. Since $\left(Z_{6},\{[2,4,5,0,1,3],[0,4,1,2,3,5]\}\right)$ is a $\left(6, G_{1}, 1\right)-\mathrm{PD}$ and $\left(Z_{6},\{[2,4,5,0,1,3],[5,0,2,1,3,4],[4,0,1,2,3,5],[3,4,0,5,1,2]\}\right)$ is a $\left(6, G_{1}, 1\right)$-CD, $p\left(6, G_{1}, 1\right)=2$ and $c\left(6, G_{1}, 1\right)=4$. The leave edges are $(3,4),(2,0,5$, $1,2)$, and repeated edges are $(2,5),(1,3,4,0,1)$.

Let X be the vertex set of K_{7}. Suppose that there exists a $\left(7, G_{1}, 1\right)$-OPD. Then the number of blocks is four, with leave an edge. Without loss of generality, let the leave edge be $a b$. The types of vertices a and b are $2^{2} 1^{1}$ and $2^{1} 1^{3}$. The types of other vertices are $2^{2} 1^{2}$ and 2^{3}. Vertex numbers of these types can be $\{0,2,1,4\},\{1,1,2,3\}$ or $\{2,0,3,2\}$. No type can give rise to a $\left(7, G_{1}, 1\right)-O P D$. Since $\left(Z_{7},\{[2,6,5,0,1,3],[0,6,3,1,2,4],[1,6,4,2,3,5]\}\right)$ is a $\left(7, G_{1}, 1\right)-\mathrm{PD}$, we have $p\left(7, G_{1}, 1\right)=3$ and the leave edges are $(0,4,5,0),(3,4),(0,2),(1,5)$. No leave edge graph of $\left(7, G_{1}, 1\right)-M P D$ can be covered by two blocks, therefore there is no $\left(7, G_{1}, 1\right)$ OCD. Since $\left(Z_{7},\{[6,2,5,0,1,4],[6,4,5,1,2,3],[3,4,2,1,5,6],[4,5,1,0,2,6],[2,1,3\right.$, $0,3,5],[2,4,1,0,3,6]\})$ is a $\left(7, G_{1}, 1\right)-\mathrm{CD}$, we have $c\left(7, G_{1}, 1\right)=6$ and repeat edges are $(1,2,4,1),(1,3),(6,2),(4,5),(1,5)$ and $(6,0,3)$.
Theorem 4.4 There exists a $\left(v, G_{i}, 1\right)-O P D(O C D)$ for $i=1,2$, except for $(v, i)=$ $(7,1),(6,1)$.
Proof $\underline{v=7}$ On the set $X=Z_{5} \cup\{a, b\},\left(7, G_{2}, 1\right)-\mathrm{OPD}=(X, A)$,
$A:[a, 2, b, 4,0,1],[a, 4, b, 3,1,2],[4,2,1, a, 0,3],[3,4,1, b, 0,2]$, leave edge is $a b$.
By Theorem 4.1, there exists a $\left(7, G_{2}, 1\right)$-OCD.
$\underline{v=8}$ On the set $X=Z_{5} \cup\{a, b, c\},\left(8, G_{1}, 1\right)-\mathrm{OPD}=(X, A), A:[2, a, 3,0,1,4]$, $[b, a, 4,1,2,3],[1, c, 3, b, 0,2],[c, 0, a, b, 3,4],[a, 1, b, c, 2,4]$, leave edges: $03, b c, c a$.
$\left(8, G_{1}, 1\right)-\mathrm{OCD}=(X, A \cup\{[0,3,2, b, c, a]\})$, repeat edges: 32, ab.
$\left(8, G_{2}, 1\right)-\mathrm{OPD}=(X, A), A:[a, 3, c, 0,1,4],[a, 4,0,3,1,2],[c, 1, a, b, 0,2],[a, 0, c$, $3,4, b],[b, 1, a, c, 2,4]$, leave edges: $2 a, a 1, b c$.
$\left(8, G_{2}, 1\right)-\mathrm{OCD}=(X, A \cup\{[b, c, 4, a, 2,1]\})$, repeat edges: $12, c 4$.
$\underline{v=9}$ On the set $X=Z_{7} \cup\{a, b\},\left(9, G_{1}, 1\right)-\mathrm{OPD}=(X, A), A:[a, 2, b, 0,1,3]$ $(\bmod 7) .\left(9, G_{2}, 1\right)-\mathrm{OPD}=(X, A), A:[a, 2, b, 0,1,3](\bmod 7)$. Their leave edge is $a b$. By Theorem 4.1, there exists a $\left(9, G_{i}, 1\right)$-OCD for $\mathrm{i}=1,2$.
$\underline{v=12}$ On the set $X=Z_{10} \cup\{a, b\},\left(12, G_{1}, 1\right)-\mathrm{OPD}=(X, A)$, $A:[a, 9,1,0,4,3]+i, i \in Z_{10} \backslash\{0,1\},[a, 9,1,0,5, b],[a, 10,2,4,9, b],[4,3,0,1,6, b]$, $[0,4,1,2,7, b],[1,5,4,3,8, b]$.
$\left(12, G_{2}, 1\right)-\mathrm{OPD}=(X, A), A:[a, 8,2,0,4,3]+i, i \in Z_{10} \backslash\{0,1\},[a, 8,4,0,5, b]$, $[a, 9,5,1,6, b],[4,1,0,2,7, b],[5,4,0,3,8, b],[1,2,3,4,9, b]$.

Their leave edge is $a b$. It follows from Theorem 4.1 that there exists a $\left(12, G_{i}, 1\right)$ OCD for $\mathrm{i}=1,2$.
$\underline{v=13}$ On the set $X=Z_{10} \cup\{a, b, c\},\left(13, G_{1}, 1\right)-\mathrm{OPD}=(X, A)$,
$A: \quad \overline{[a, 5,7}, 0,4,3]+i, i \in Z_{10},[1, c, 6,0,5, b]+i, i \in[0,4]$, leave edges: $a b, a c, b c$.
$\left(13, G_{1}, 1\right)-\mathrm{OCD}=(X, A \cup\{[0,1,2, a, b, c]\})$, repeat edges: $(0,1,2)$.
$\left(13, G_{2}, 1\right)-\mathrm{OPD}=(X, A), A:[a, 5, c, 0,4,3]+i, i \in Z_{10},[5,7,3,1,6, b]+i, i \in$ $[0,3],[9,1,2,0,5, b]$, leave edges: $a b, a c, b c$.
$\left(13, G_{2}, 1\right)-\mathrm{OCD}=(X, A \cup\{[2,3,0, b, a, c],[9,1, b, 5,0,2]\} \backslash\{[9,1,2,0,5, b]\})$, repeat edges: $(5,2,3)$.
$\underline{v=14}$ On the set $X=Z_{12} \cup\{a, b\},\left(14, G_{1}, 1\right)-\mathrm{OPD}=(X, A), A:[a, 5,7,0,4,3]$ $(\bmod 12),[5,10,3,0,6, b],[11,4,9,1,7, b],[1,6,11,2,8, b],[7,0,5,3,9, b],[3,8,1,4,10$, $b],[9,2,7,5,11, b]$.
$\left(14, G_{2}, 1\right)-\mathrm{OPD}=(X, A), A:[a, 5,2,0,4,3](\bmod 12),[6,11,7,2,8, b]+i, i \in$ $[0,3],[10,3,5,0,6, b],[11,4,6,1,7, b]$. Their leave edge is $a b$. It follows from Theorem 4.1 that there exist $\left(14, G_{i}, 1\right)$-OCD for $i=1,2$.
$\underline{v=17}$ On the set $X=Z_{15} \cup\{a, b\},\left(17, G_{1}, 1\right)-\mathrm{OPD}=(X, A), A:[a, 0,5,1,8,14]$ $(\bmod 15),[1, b, 8,0,4,3]+i, i \in[0,6],[b, 0,12,7,11,10],[13,2,14,8,12,11],[14,3,2,9$, $13,12],[12,1,0,10,14,13],[2,1,13,11,0,14]$.
$\left(17, G_{2}, 1\right)-\mathrm{OPD}=(X, A), A:[a, 2, b, 0,4,3](\bmod 15),[12,7,5,0,6,13]+i, i \in$ $[0,6],[1,8,9,7,13,5],[0,7,10,8,14,6],[13,4,0,9,11,2],[4,11,1,10,12,3],[11,13,4$, $14,5,12]$.

Their leave edge is $a b$. It follows from Theorem 4.1 that there exist $\left(17, G_{i}, 1\right)$ OCD for $i=1,2$.
$\underline{v=18}$ On the set $X=Z_{15} \cup\{a, b, c\},\left(18, G_{1}, 1\right)-\mathrm{OPD}=(X, A), A:[a, 1,6,0,4,3]$ $(\bmod 15),[b, 1, c, 0,7,13](\bmod 15)$, leave edges: $a b, a c, b c$.
$\left(18, G_{1}, 1\right)-\mathrm{OCD}=(X, A \cup\{[0,1,2, a, b, c]\})$, repeat edges: $(0,1,2)$.
$\left(18, G_{2}, 1\right)-\mathrm{OPD}=(X, A), A:[a, 1,5,0,4,3](\bmod 15),[b, 1, c, 0,7,13](\bmod 15)$, leave edges: $a b, a c, b c$.
$\left(18, G_{2}, 1\right)-\mathrm{OCD}=(X, A \cup\{[1,2, c, 0,7,13],[2,3,1, b, a, c]\} \backslash\{[b, 1, c, 0,7,13]\})$, re-
peat edges: $(1,2,3)$.
$\underline{v=19}$ On the set $X=Z_{17} \cup\{a, b\},\left(19, G_{1}, 1\right)-\mathrm{OPD}=(X, A), A:[b, 1,7,0,4,3]$ $(\bmod 17),[a, 1,6,0,7,15](\bmod 17)$, leave edge: $a b$.
$\left(19, G_{2}, 1\right)-\mathrm{OPD}=(X, A), A:[b, 1,6,0,4,3](\bmod 17),[a, 1,5,0,7,15](\bmod 17)$, leave edge: $a b$.

It follows from Theorem 4.1 that there exist $\left(19, G_{i}, 1\right)$-OCD for $i=1,2$.
$v=22$ On the set $X=Z_{22},\left(22, G_{1}, 1\right)-\mathrm{OPD}=(X, A), A:[12,4,13,0,1,6](\bmod$ $22),[4,6,17,0,3,10]+i, i \in[0,10],[2,6,10,11,14,21]+i, i \in[0,3],[10,14,18,19,0,7]$ $+i, i \in[0,2],[21,19,1,15,18,3]+i, i \in[0,2],[15,17,21,0,2,4],[16,18,20,1,3,5]$, $[13,17,19,18,21,6]$, leave edge: $(18,0)$.
$\left(22, G_{2}, 1\right)-\mathrm{OPD}=(X, A), A:[12,4,9,0,1,6](\bmod 22),[4,6,11,0,3,10]+i, i \in$ $[0,10],[18,20,7,11,14,21]+i, i \in[0,3],[4,8,11,15,18,3]+i, i \in[0,2],[15,17,0,18$, $21,6]+i, i \in[0,2],[15,19,6,2,4,0]+i, i \in[0,1],[18,14,3,21,2,9]$, leave edge: $(17,21)$.

It follows from Theorem 4.1 that there exist $\left(22, G_{i}, 1\right)$-OCD for $i=1,2$.
$\underline{v=23}$ On the set $X=Z_{23},\left(23, G_{1}, 1\right)-\mathrm{OPD}=(X, A), A:[12,4,13,0,1,6](\bmod$ 23), $[19,8,10,1,4,11]+i, i \in[0,14],[2,6,10,16,19,3]+i, i \in[0,1],[1,12,8,18,21,5]+$ $i, i \in[0,5],[15,19,0,4,6,8]+i, i \in[0,1],[18,22,3,0,2,4],[17,21,2,1,3,5]$, leave edges: $(11,0),(7,18,14)$.
$\left(23, G_{1}, 1\right)-\mathrm{OCD}=(X, A \cup\{[11,0,1,7,18,14]\})$, repeat edges: $(0,1),(7,14)$.
$\left(23, G_{2}, 1\right)-\mathrm{OPD}=(X, A), A: \quad[12,4,9,0,1,6](\bmod 23),[8,12,11,0,3,10]+i$, $i \in[0,14],[8,10,3,15,18,2]+i, i \in[0,7],[16,18,6,2,4,0]+i, i \in[0,1],[18,20,10,6$, $8,4]+i, i \in[0,1]$, leave edges: $(21,0),(20,22,1)$.
$\left(23, G_{2}, 1\right)-\mathrm{OCD}=(X, A \cup\{[21,0,2,22,20,1]\})$, repeat edges: $(1,20),(2,22)$.
$v=24$ On the set $X=\left(Z_{11} \times Z_{2}\right) \cup\{a, b\},\left(24, G_{1}, 1\right)-\mathrm{OPD}=(X, A)$,
$A=\left\{\left[4_{0}, 0_{1}, 2_{1}, 0_{0}, 1_{1}, 2_{0}\right],\left[a, 0_{1}, 4_{1}, 0_{0}, 2_{1}, 3_{1}\right],\left[a, 2_{0}, 6_{0}, 0_{0}, 5_{1}, 1_{0}\right],\left[b, 1_{0}, 6_{0}, 0_{1}, 5_{0}, 2_{0}\right]\right.$, $\left.\left[b, 5_{1}, 0_{1}, 6_{0}, 3_{1}, 6_{1}\right](\bmod (11,-))\right\}$, leave edge: $a b$.
$\left(24, G_{2}, 1\right)-\mathrm{OPD}=(X, A), A=\left[4_{0}, 0_{1}, 3_{1}, 1_{1}, 2_{0}, 0_{0}\right],\left[a, 0_{1}, 7_{1}, 3_{1}, 0_{0}, 2_{1}\right],\left[a, 2_{0}, 4_{0}\right.$, $\left.\left.0_{0}, 5_{1}, 1_{0}\right],\left[b, 1_{0}, 0_{0}, 5_{0}, 2_{0}, 0_{1}\right],\left[b, 5_{1}, 1_{1}, 6_{1}, 6_{0}, 3_{1}\right],(\bmod (11,-))\right\}$, leave edge: $a b$. It follows from Theorem 4.1 that there exist $\left(24, G_{i}, 1\right)$-OCD for $i=1,2$.
$v=27$ On the set $X=Z_{27},\left(27, G_{1}, 1\right)-\mathrm{OPD}=(X, A), A:[1,12,24,0,6,13]$ and $[2,10,20,0,4,9](\bmod 27),[16,17,19,0,1,3]+i, i \in[0,10],[16,19,22,11,12,14]+i$, $i \in[0,2],[1,25,22,14,15,17]+i, i \in[0,1]$, leave edge: $(0,24)$.
$\left(27, G_{2}, 1\right)-\mathrm{OPD}=(X, A), A: \quad[1,7,10,0,4,9](\bmod 27),[25,26,2,0,7,19]+i$, $i \in[11,26],[15,1,2,0,7,19]+i, i \in[0,10] \backslash\{0,4\}, \quad[12,15,11,0,13,24]+i, i \in$ $[0,11],[11,14,23,12,25,9],[14,0,12,26,10,13],[15,1,26,0,7,19],[25,26,3,2,0,1]$, [19, 5, 3, 4, 11, 23], [8, 9, 7, 6, 4, 5], leave edge: $(7,8)$. It follows from Theorem 4.1 that there exist $\left(24, G_{i}, 1\right)-O C D$ for $i=1,2$.
$\underline{v=28}$ On the set $X=Z_{25} \cup\{a, b, c\},\left(28, G_{1}, 1\right)-\mathrm{OPD}=(X, A)$ and $\left(28, G_{2}, 1\right)$ $\mathrm{OPD}=\left(X, A^{\prime}\right), A=A^{\prime}:[6,12, a, 0,8,18],[2,13, b, 0,1,3]$ and $[1,13, c, 0,4,9](\bmod$ 25), leave edge: (a, b, c, a).
$\underline{v}=29$ On the set $X=Z_{27} \cup\{a, b\},\left(29, G_{1}, 1\right)-\mathrm{OPD}=(X, A), A:[1,9,19,0,6,13]$, [2, 13, 25, 0, 1, 3] and $[a, 2, b, 0,4,9](\bmod 27)$, leave edge: $a b$.
$\left(29, G_{2}, 1\right)-\mathrm{OPD}=(X, A), A:[1,9,10,0,6,13],[2,13,12,0,1,3]$ and $[a, 2, b, 0,4,9]$ $(\bmod 27)$, leave edge: $a b$. It follows from Theorem 4.1 that there exist $\left(29, G_{i}, 1\right)$ OCD for $i=1,2$.
By Theorem 2.3, Theorem 3.2 and Lemma 4.3, we find that the theorem is true.
Theorem 4.5 There exist $\left(v, G_{i}, \lambda\right)-O P D(O C D)$ for $i=1,2$, except for $(v, i)=$ $(7,1)$.
Proof Set $A=\{[5,3,6,0,1,4],[3,4,5,6,0,2],[0,5,4,1,2,3],[2,4,0,1,5,6],[2,6,5,0$, $1,3],[1,6,4,2,3,5]\}, B=\{[6,4,3,2,5,0],[0,6,3,1,2,4]\}, C=\{[3,6,4,2,5,0],[6,3,0$, $1,2,4],[2,5,3,0,1,4],[0,6,4,1,2,3],[4,5,1,6,0,2],[0,3,4,1,5,6]\}$. It is easy to verify that $\left(Z_{7}, A \cup B\right)$ is a $\left(7, G_{1}, 2\right)$-OPD (leave edges: $\left.(1,5),(0,3)\right)$, and $\left(Z_{7}, A \cup C\right)$ is a $\left(7, G_{1}, 3\right)$-OPD (leave edges: $(0,5),(3,4,2)$), and $\left(Z_{7}, A \cup C \cup\{[5,0,1,3,4,2]\}\right)$ is a ($7, G_{1}, 3$)-OCD (repeat edges: $\left.(0,1),(2,3)\right)$.

By Theorems 2.4-2.5 and following table, we find that ($\left.7, G_{1}, \lambda\right)-\mathrm{OPD}(\mathrm{OCD})$ exists for $\lambda>1$.

Table B

λ	1	2	3	4
L_{λ}	G_{7}	$P_{2} \cup P_{2}$	$P_{3} \cup P_{2}$	$P_{3} \cup P_{3}$
R_{λ}	$G_{7} \cup P_{2} \cup P_{3}$	$P_{2} \cup P_{3}$	$P_{2} \cup P_{2}$	P_{2}

When $v \equiv 2,4(\bmod 5)$, the leave edge number is 1 , and by Theorem 4.1 we know the theorem is true. When $v \equiv 3(\bmod 5)$, we have $l_{1}=1$, $\operatorname{bar} \lambda=5$. By Theorems $2.4-2.5$, we can list the following table to obtain $\left(v, G_{i}, \lambda\right)-\mathrm{OPD}(\mathrm{OCD})$ for $i=1,2$ and $\lambda>1$.
For G_{1} :
Table C

λ	1	2	3	4
L_{λ}	\ddots	\ddots	\ddots	\ddots
R_{λ}	ϖ	\ddots	\ddots	\ddots

λ	1	2	3	4
L_{λ}	ϱ	\ddots	$\ddots \varrho$	\ddots
R_{λ}	\ldots	\ddots	\ddots	\ddots

For G_{2} :
Table D

λ	1	2	3	4
L_{λ}	\ddots	\ddots	\ddots	\ddots
R_{λ}	\ddots	$\ddots!$	\ddots	\ddots

Theorem 4.6 Let $l_{1}=e(G) / 2$ be an integer.
(1) If there exist $(v, G, 1)-O P D=(X, \mathcal{A})$ and $(v, G, 1)-O C D=(X, \mathcal{B})$, and $L_{1}(\mathcal{A}) \cong$ $R_{1}(\mathcal{B})$, then there exist $(v, G, \lambda)-O P D(O C D)$ for any positive integer λ.
(2) If there exist two $(v, G, 1)-O P D$ and their leave edge graphs are L_{1} and L_{1}^{\prime}, then when $L_{1} \cup L_{1}^{\prime}=G$, there is a $(v, G, \lambda)-O P D(O C D)$ for any positive integer λ.
(3) If $(v, G, \lambda)-O P D$ exists for $\lambda=1,2$, and $L_{1} \subset G$, then $(v, G, \lambda)-O P D(O C D)$ exists for any positive integer λ.
Proof (1) When $\lambda=1$, this is well-known. When $\lambda=2$, we can construct an isomorphic mapping, which transforms \mathcal{B} to \mathcal{B}^{\prime}, and $R_{1}(\mathcal{B}) \cong R_{1}\left(\mathcal{B}^{\prime}\right)$ and $L_{1}(\mathcal{A})=$ $R_{1}\left(\mathcal{B}^{\prime}\right)$ are satisfied. We take (X, \mathcal{A}) and $\left(X, \mathcal{B}^{\prime}\right)$; then $\left(X, \mathcal{A} \cup \mathcal{B}^{\prime}\right)$ is a $(v, G, 2)$-GD. It follows from Theorem 2.4 that there exist $(v, G, \lambda)-\mathrm{OPD}(\mathrm{OCD})$ for any positive integer λ.
(2) Let a $(v, G, 1)$-OPD be (X, \mathcal{B}) and another be $\left(X, \mathcal{B}^{\prime}\right)$. We can construct an isomorphic mapping, which transforms \mathcal{B}^{\prime} to $\mathcal{B}^{\prime \prime}$, and $L_{1} \cup L_{1}^{\prime \prime}=G$ and $V\left(L_{1} \cup L_{1}^{\prime \prime}\right)=$ $V(G)$ are satisfied. If a block of the graph G is denoted by $[a, b, c, d, e, f]$, then $\left(X, \mathcal{B} \cup \mathcal{B}^{\prime \prime} \cup\{[a, b, c, d, e, f]\}\right)$ is a $(v, G, 2)$-GD. Since $L_{1} \cup L_{1}^{\prime}=G, L_{1} \subset G$. It follows from Theorem 4.2 that a $(v, G, 1)$-OCD exists. By Theorem 2.4 we find that there exists a (v, G, λ) - $\mathrm{OPD}(\mathrm{OCD})$ for any positive integer λ.
(3) This part of the theorem is also true.

Example On the set $X=\left(Z_{3} \times Z_{2}\right) \cup\{a\},\left(7, G_{4}, 1\right)-\mathrm{OPD}=(X, A)$, A : $\left[a, 0_{1}, 1_{1}, 0_{0}, 1_{0}, 2_{1}\right] \bmod (3,-)$. Leave edges: $a 0_{0}, a 1_{0}, a 2_{0}$.
$\left(X, A \cup\left\{\left[0_{0}, 1_{1}, 0_{0}, a, 1_{0}, 2_{0}\right]\right\}\right)$ is a $\left(7, G_{4}, 1\right)$-OCD. We construct an isomorphic mapping f satisfying $1_{0} \longmapsto 0_{0}, 2_{0} \longmapsto a, a \longmapsto 1_{1}, 0_{0} \longmapsto 0_{1}$. It is easy to see that $L_{1} \cong R_{1}$. By the above theorem we find that a $\left(7, G_{4}, \lambda\right)-\mathrm{OPD}(\mathrm{OCD})$ exists for any positive integer λ.

We construct a $\left(7, G_{8}, 1\right)$-OPD $=(X, B)$ as follows: $\left[0_{1}, 1_{1}, 0_{0}, 1_{0}, 2_{1}, a\right] \bmod$ $(3,-)$. Leave edges: $a 0_{1}, a 1_{1}, a 2_{1}$; and again construct $\left(7, G_{8}, 1\right)-\mathrm{OPD}=\left(X, B^{\prime}\right)$ as
follows: Replace the first block in B by $\left[a, 0_{1}, 0_{0}, 1_{0}, 1_{1}, 2_{1}\right]$; leave edges: $\left(2_{1}, a, 1_{1}, 0_{1}\right)$. We construct an isomorphic mapping f satisfying $2_{1} \longmapsto 2_{1}, a \longmapsto 0_{0}, 1_{1} \longmapsto a$, $0_{1} \longmapsto 1_{0}$. Thus $\left(X, B \cup f\left(B^{\prime}\right) \cup\left\{\left[0_{0}, 2_{1}, a, 0_{1}, 1_{1}, 1_{0}\right\}\right)\right.$ is a (7, $\left.G_{8}, 2\right)$-GD. By the above theorem we find that a $\left(7, G_{8}, \lambda\right)-\mathrm{OPD}(\mathrm{OCD})$ exists for any positive integer λ.

On the set Z_{7}, let $A=\{[6,3,0,1,4,2],[6,4,1,2,5,0],[6,5,2,0,3,1]\}$; then $\left(Z_{7}, A\right)$ is a $\left(7, G_{7}, 1\right)$-OPD, with leave edges: $(0,6,1),(6,2)$. $\left(Z_{7}, A \cup\{[5,0,6,2,1,4]\}\right)$ is a $\left(7, G_{7}, 1\right)$-OCD, with repeated edges: $(5,0,1,4) . B:[2,0,6,5,3,1](\bmod 7)$; then $\left(Z_{7}, B\right)$ is a $\left(7, G_{7}, 2\right)$-GD. Therefore a $\left(7, G_{7}, \lambda\right)$ - $\mathrm{OPD}(\mathrm{OCD})$ exists for any positive integer λ.

In the same way, we can obtain the following theorem:
Theorem 4.7 There exists a $\left(v, G_{i}, \lambda\right)-O P D(O C D)$ for $i \in[3,9]$.

5 Graph designs for $\lambda \geq 1$

Lemma 5.1 The necessary conditions for $a(v, G, \lambda)-G D$ to exist are
(1) $\lambda v(v-1) \equiv 0(\bmod 2 e(G))$;
(2) $\lambda(v-1) \equiv 0(\bmod n)$, where $n=\operatorname{gcd}(\{d(u) \mid u \in V(G)\})$.

By Corollary 2.6, Section 4 and Table A, we easily get following theorem:
Theorem 5.2 If v satisfies the conditions in Lemma 5.1 and $v>6$, then there exists a $\left(v, G_{i}, \lambda\right)-G D$ for $i \in[1,9]$ and $\lambda \geq 1$.

Acknowledgments The author is grateful to Professor Q. Kang for his support of this research.

References

[1] A.M. Assaf, On covering designs with block size 5 and index 5, Des. Codes Cryptogr. 5 (1995), 91-107.
[2] A.M. Assaf, On packing designs with block size 5 and index $7 \leq \lambda \leq 21$, J. Combin. Math. Combin. Computing 26 (1998), 3-71.
[3] A.M. Assaf, N. Shalaby and L.P.S. Singh, On packing designs with block size 5 and index 3 and 6, Ars Combinatoria 45 (1997), 143-156.
[4] A.M. Assaf, N. Shalaby and J. Yin, Directed packings with block size 5, Australas. J. Combin. 17 (1998), 235-256.
[5] F.E. Bennett, J. Yin, H. Zhang and R.J.R. Abel, Perfect Mendelsohn packing designs with block size 5, Des. Codes Cryptogr. 14 (1998), 5-22.
[6] J.C. Bermond, C. Huang, A. Rosa and D. Sotteau, Decomposition of complete graphs into isomorphic subgraphs with five vertices, Ars Combinatoria 10 (1980), 211-254.
[7] Y. Caro and R. Yuster, Covering graphs: the covering problem solved, J. Combin. Theory, Ser. A 83 (1988), 273-282.
[8] H.L. Fu and C.C. Lindner, The Doyen-Wilson theorem for maximum packing of K_{n} with 4-cycles, Discrete Math. 183 (1998), 103-117.
[9] D.G. Hoffman and K.S. Kirkpatrick, G-designs of order n and index λ where G has 5 vertices or less, Australas. J. Combin. 18 (1998), 13-37.
[10] N. Shalaby and J. Yin, Nested optimal λ-packings and λ-coverings of pairs with triples, Des. Codes Cryptogr. 15 (1998), 271-278.
[11] J.Yin and B.Gong, Existence of G-Designs with $|V(G)|=6$, Combinatorial designs and applications (Huangshan, 1988), 201-218, Lecture Notes in Pure and Appl. Math. 126, Dekker, New York, 1990.
[12] G.N. Ge, Existence of holey LSSOM of type 2^{n} with application to G_{7}-packing of K_{n}, J. Statist. Planning Inference (to appear).
[13] Z. Liang, On G-Designs, G-packing and G-covering of λK_{v} with a bipartite graph G of six vertices, Australas. J. Combin. 25 (2002), 221-240.
[14] Q. Kang and Z. Liang, Optimal packings and coverings of $\lambda D K_{v}$ with k-circuits, J. Combin. Math. Combin. Computing 39 (2001), 203-253.
[15] J.A. Kennedy, Minimum coverings of K_{n} with hexagons, Australas. J. Combin. 16 (1997), 295-303.
[16] C.J.Colbourn and J.H.Dinitz, The CRC handbook of Combinatorial Designs, CRC Press, 1996.

Appendix

Construction of $(10+w, w, G)$-IGD for $w \in\{4,7,8,9\}$:
Let $X=Z_{10} \cup\left\{a_{1}, a_{2}, \cdots, a_{w}\right\}$ and $(10+w, w, G)$-IGD $=(X, \mathcal{A})$. We construct \mathcal{A} as follows:
$w=4$ For $G_{1}:[a, 2, b, 0,1,4]+i, i \in Z_{10},[4, d, 7,0,5, c]+i, i \in[0,2],[7,9,1,3,8, c]$, $[6,8,0,4,9, c],[3,5,7,0,2, d],[2,4,6,1,3, d]$.

For $G_{2}:\left[2, a_{1}, 3,0,1, y\right]+i, i \in Z_{10}$, when i is even $y=a_{2}$; when i is odd $y=a_{3}$; $\left[6,8,3,7, a_{4}, 2\right]+i, i \in[0,4],[0,4,9,3,5,1],[5,7,8,2,4,6]$.
$w=7$ For $G_{1}: \quad\left[a_{1}, 3, a_{2}, 0,4, a_{5}\right]+i, i \in[0,3],\left[a_{1}, 7, a_{2}, 4,8, a_{6}\right]+i, i \in[0,3]$, $\left[a_{3}, 2, a_{4}, 0\right.$,
$\left.5, a_{7}\right]+i, i \in[0,4],\left[a_{3}, 7, a_{4}, 3,4,6\right]+i, i \in[0,4],\left[9,1,8,2,3, a_{6}\right],\left[a_{1}, 2, a_{2}, 8,9, a_{5}\right],\left[a_{1}, 1, a_{2}\right.$, $9,0,2],[9,3,5,1,2,4],[8,2,5,0,1,3]$.

For $G_{2}:\left[2, a_{1}, a_{2}, 0,1, a_{3}\right]+2 i, i \in[0,4],\left[3, a_{1}, a_{2}, 1,2, a_{4}\right]+2 i, i \in[0,4],\left[1,6, a_{5}, 0,3, a_{6}\right]$ $+2 i, i \in[0,4],\left[6,8, a_{5}, 1,4, a_{7}\right]+2 i, i \in[0,2],\left[9,3, a_{5}, 7,0, a_{7}\right],\left[4,8, a_{5}, 9,2, a_{7}\right],[0,4,9,1,3$, $5],[3,7,8,2,4,6],[6,0,1,7,9,5]$.
$w=8$ For $G_{1}:[2, x, 7,0,1, y]+i, i \in Z_{10},[1,5,7,0,3, z]+i, i \in Z_{10}$, when i is even $x=a_{1}, y=a_{2}, z=a_{3}$; when i is odd $x=a_{4}, y=a_{5}, z=a_{6} ;\left[1, a_{7}, 6,0,5, a_{8}\right]+i, i \in[0,4]$.

For $G_{2}:\left[2, a_{1}, a_{2}, 0,1, y\right]+i, i \in Z_{10},\left[1,5, a_{5}, 0,3, z\right]+i, i \in Z_{10}$, when i is even $y=a_{3}, z=a_{6}$; when i is odd $y=a_{4}, z=a_{7} ;\left[0,2,8,6, a_{8}, 1\right]+i, i \in[0,3],\left[4,6,7,5, a_{8}, 0\right]$.
$w=9$ For $G_{1}:[2, x, 7,0,1, y]+i, i \in Z_{10},[1, t, 6,0,3, z]+i, i \in Z_{10}$, when i is even $x=a_{1}, y=a_{2}, z=a_{3}, t=a_{4}$; when i is odd $x=a_{5}, y=a_{6}, z=a_{7}, t=a_{8}$; $\left[6,4,8,0,5, a_{9}\right]+i, i \in[0,2],\left[7,1,9,3,8, a_{9}\right],\left[0,8,2,4,9, a_{9}\right],[4,2,6,1,3,5],[2,0,4,3,7,9]$.

For $G_{2}:\left[2, a_{1}, a_{2}, 0,1, y\right]+i, i \in Z_{10},\left[1, a_{5}, a_{6}, 0,3, z\right]+i, i \in Z_{10}$, when i is even $y=a_{3}, z=a_{7}$; when i is odd $y=a_{4}, z=a_{8} ;\left[4,8,7,5, a_{9}, 0\right]+i, i \in[0,4],[0,4,7,3,5,1]$, [$9,3,0,2,4,6]$.

Construction of $(12+w, w, G)$-IGD for $w \in\{3,5,6,7,8,10,11\}$:
Let $X=Z_{12} \cup\left\{a_{1}, a_{2}, \cdots, a_{w}\right\}$ and $(12+w, w, G)$-IGD $=(X, \mathcal{A})$. We construct \mathcal{A} as follows:
$w=3$ For $G_{3}:\left[5, x, 2,6, a_{3}, 7\right]+i, i \in Z_{12} \backslash[0,1]$, when i is even $x=a_{1}$; when i is odd $x=a_{2} ;\left[5, a_{1}, 2,7,9,6\right],\left[6, a_{2}, 3,8,2,7\right],\left[5,4,6,0,10, a_{3}\right],\left[8,6,7,5,3, a_{3}\right],[2,0,1,11,5,7]$, $[4,2,3,9,11,1],[9,8,10,11,0,4]$.

For $G_{4}:\left[a_{3}, 11, x, 2,7,10\right]+i, i \in Z_{12} \backslash[0,1]$, when i is even $x=a_{1}$; when i is odd $x=$ $a_{2} ;\left[7,2, a_{1}, 11,10, a_{3}\right],\left[8,3, a_{2}, 0,11, a_{3}\right],[8,2,4,3,9,11],[2,10,8,9,7,11],[0,6,8,7,1,5]$, [10, 0, 2, 1, 3, 11], [10, 4, 6, 5, 3, 11].

For $G_{5}:[6, x, 3,11,4,2]+i, i \in Z_{12}^{*}$, when i is even $x=a_{1}$; when i is odd $x=a_{2}$; $\left[6, a_{1}, 3,2,1,0\right], \quad\left[0, a_{3}, 6,7,8,9\right], \quad\left[1,7, a_{3}, 11,10,9\right], \quad\left[9, a_{3}, 3,4,5,6\right], \quad\left[4,10, a_{3}, 5,11,0\right]$, [8, $\left.a_{3}, 2,4,11,3\right]$.

For $G_{6}: \quad[1,5,10, x, 7,9]+i, i \in Z_{12}^{*}$, when i is even $x=a_{1}$; when i is odd $x=$ $a_{2} ;\left[0,11,10, a_{1}, 7,9\right],\left[2,1,0, a_{3}, 6,7\right],\left[10,5,1, a_{3}, 7,8\right],\left[4,3,2, a_{3}, 8,9\right],\left[6,5,4,10, a_{3}, 11\right]$, [11, $\left.5, a_{3}, 3,9,10\right]$.

For $G_{7}:\left[a_{1}, 1,6, a_{2}, 3, a_{3}\right]+i, i \in Z_{12} \backslash[0,2],\left[3, a_{1}, 1,0,2,4\right],\left[8, a_{2}, 6,3,7,2\right],\left[5, a_{3}, 3,1,4\right.$, 10], $[2,3,8,7,5,11],[6,0,8,9,4,5]+i, i=0,1,[8,2,10,11,6,1],[9,3,11,0,7,4]$.

For $G_{8}:\left[3, x, 6,4,11, a_{3}\right]+i, i \in Z_{12}^{*}$, when i is even $x=a_{1}$; when i is odd $x=a_{2}$; $\left[6, a_{1}, 3,2,4,9\right],[0,4,8,2,7,9],[3,7,11,0,5,6],[2,6,10,4,9,11],\left[4,5,6,0,7, a_{3}\right],[9,5,1,0$, $2,7]$.

For $G_{9}:\left[1, x, 4,6,11, a_{3}\right]+i, i \in Z_{12}^{*}$, when i is even $x=a_{1}$; when i is odd $x=a_{2}$; $\left[1, a_{1}, 4,6,7, a_{3}\right],[0,6,11,10,4,9],[8,4,0,1,2,7],[1,5,9,3,2,4],[2,10,6,5,4,11],[3,11,7,8$, $9,2]$.
$w=5$ For $G_{3}:\left[x, 0,1, y, 2, a_{1}\right]+i, i \in Z_{12}$, when i is even $x=a_{2}, y=a_{3}$; when i is odd $x=a_{4}, \quad y=a_{5} ;[4,6,0,5,10,3]+i, i \in[0,4],[3,11,5,9,6,8],[1,3,10,0,9,7]$, [11, 4, 2, 10, 6, 0], [1, 9, 11, 8, 0, 7].

For $G_{4}:\left[a_{1}, 0, x, 1, a_{2}, a_{3}\right]+i, i \in Z_{12}$, when i is even $x=a_{4}$; when i is odd $x=a_{5}$; $[11,6,4,0,3,5]+i, i \in[0,3],[7,4,8,10,3,6],[7,10,2,0,8,9],[5,3,11,1,9,10],[6,9,11,5,8$, 10], $[9,4,2,11,7,8]$.

For $G_{5}:\left[x, 0,1, y, 2, a_{1}\right]+i, i \in Z_{12}$, when i is even $x=a_{2}, y=a_{3}$; when i is odd $x=$ $a_{4}, y=a_{5} ;[0,2,5,1,7,11]+i, i \in[0,4],[5,7,10,6,8,11],[2,9,11,6,0,4],[9,7,0,3,10,1]$, [11, 4, 1, 8, 10, 0].

For $G_{6}:\left[2, x, 1, y, 0, a_{1}\right]+i, i \in Z_{12}$, when i is even $x=a_{2}, y=a_{3}$; when i is odd $x=$ $a_{4}, y=a_{5} ;[8,5,0,4,6,10]+i, i \in[0,4],[1,10,5,11,9,2],[4,7,0,10,3,1],[5,2,4,11,1,8]$, [$0,2,11,6,3,5]$.

For $G_{7}:\left[a_{1}, 0,4, a_{2}, x, 8\right]+i, i \in Z_{12}$, when $i \in[0,3], x=a_{3}$, when $i \in[4,7], x=a_{4}$, when $i \in[8,11], x=a_{5} ;[11,6,5,7,0,9]+i, i=0,1,3,[11,8,7,9,2,4],[0,10,9,6,4,7]$, $[4,1,0,2,11,9],[8,1,3,6,2,11],[10,3,5,8,4,6],[4,11,10,7,5,2]$.

For $G_{8}:\left[x, 0,1, a_{1}, a_{2}, a_{3}\right]+i, i \in Z_{12}$, when i is even $x=a_{4} ;$ when i is odd $x=a_{5}$; $[1,5,7,10,11,0]+i, i \in[0,3],[6,4,0,2,3,10],[5,9,11,1,2,3],[3,8,5,0,2,10],[2,7,4,1,9$, 11], $[1,3,6,9,10,11]$.

For $G_{9}:\left[1, x, 0,4, a_{1}, a_{2}\right]+i, i \in Z_{12}$, when i is even $x=a_{3} ;$ when i is odd $x=$ $a_{4} ; \quad\left[a_{5}, 6,0,5,2,3\right]+i, i \in[0,5] \backslash[3,4], \quad\left[3, a_{5}, 9,0,2,7\right]+i, i \in[0,1], \quad[1,4,11,9,6,7]$, [10, 0, 3, 8, 5, 6], $[9,4,2,11,6,8]$.
$w=6$ For $G_{3}:[x, 0,1, y, 2,5]+i, i \in Z_{12}$, when i is even $x=a_{1}, y=a_{3}$; when i is odd $x=a_{2}, y=a_{4} ;\left[a_{5}, 6,0,3,8,2\right]+i, i \in[0,5],\left[8,6, a_{6}, 7,10,1\right],\left[a_{6}, 5,0,9,6,10\right]$, $\left[a_{6}, 2,9,11,8,7\right],\left[a_{6}, 3,10,1,6,8\right],\left[a_{6}, 4,11,2,7,1\right]$.

For $G_{4}: \quad\left[a_{1}, 0, x, 1,5, a_{2}\right]+i, i \in Z_{12}$, when i is even $x=a_{3}$; when i is odd $x=a_{4}$; $\left[11,6, a_{5}, 0,2,5\right]+i, i \in[0,5],\left[1,4, a_{6}, 7,9,10\right],\left[2,5, a_{6}, 8,6,11\right],\left[0,9, a_{6}, 11,1,2\right],\left[3,0, a_{6}\right.$, $10,1,8],\left[9,6,3, a_{6}, 1,2\right]$.

For $G_{5}:[1, x, 0,4, y, 5]+i, i \in Z_{12}$, when i is even $x=a_{1}, y=a_{3}$; when i is odd $x=$ $a_{2}, y=a_{4} ;\left[6, a_{5}, 0,2,7,4\right]+i, i \in[0,5],\left[2, a_{6}, 5,0,3,10\right],\left[3, a_{6}, 6,8,1,4\right],\left[10,0, a_{6}, 11,1,6\right]$, $\left[7,9, a_{6}, 8,10,1\right],\left[2,9,11,4, a_{6}, 1\right]$.

For $G_{6}:[2, x, 1, y, 0,4]+i, i \in Z_{12}$, when i is even $x=a_{1}, y=a_{3}$; when i is odd $x=$ $a_{2}, y=a_{4} ;\left[5,3,0, a_{5}, 6,1\right]+i, i \in[0,5],\left[1,11,9,0,2, a_{6}\right],\left[1,10,7,0, a_{6}, 9\right],\left[2,11,8, a_{6}, 1,3\right]$, $\left[0,5, a_{6}, 11,4,2\right],\left[9,6, a_{6}, 3,10,0\right]$.

For $G_{7}:\left[a_{1}, 1,0, a_{2}, 3, a_{3}\right]+i, i \in Z_{12},\left[a_{6}, 4, a_{5}, 0,8,2\right]+i, i \in[0,1],\left[7,0, a_{4}, 8,4,11\right]+$ $i, i \in[0,2],\left[a_{6}, 6, a_{5}, 3,10,4\right],\left[3,7, a_{5}, 2,11,5\right],\left[7, a_{4}, 3,10,11,6\right],\left[6,0, a_{6}, 7,8,3\right],\left[4,9, a_{6}, 3\right.$, $1,7],\left[5,10, a_{6}, 11,2,7\right]$.

For $G_{8}:\left[x, 0,1, a_{1}, a_{2}, a_{3}\right]+i, i \in Z_{12}$, when i is even $x=a_{4} ;$ when i is odd $x=a_{5} ;$ $\left[6, a_{6}, 0,3,4,5\right]+i, i=2,4,5,\left[9, a_{6}, 3,5,7,8\right],\left[7, a_{6}, 1,3,4,5\right],[11,6,9,0,1,2]+i, i=0,2$, $[10,0,7,5,9,11],[6,8,10,1,2,3],[4,2,0,3,5,8],\left[0, a_{6}, 6,1,3,4\right]$.

For $G_{9}:\left[1, x, 0,4, a_{1}, a_{2}\right]+i, i \in Z_{12}$, when i is even $x=a_{3}$; when i is odd $x=a_{4}$; $\left[a_{5}, 7,1,6,3,4\right]+i, i \in[0,4],\left[a_{5}, 0,6, a_{6}, 5,7\right],\left[2, a_{6}, 9,11,1,6\right],\left[3, a_{6}, 10,0,7,9\right],\left[11, a_{6}, 8,1\right.$, $3,10],\left[1,4, a_{6}, 0,2,3\right],[4,11,2,5,0,3]$.
$w=7$ For $G_{3}:[x, 0,1, y, 2,5]+i, i \in Z_{12},\left[z, 5,0,2, a_{7}, t\right]+i,(i, t) \in\{(1,7),(3,9)$, $(4,10),(5,11)\} \cup\{(6,9)+j \mid j \in[0,5]\}$, when i is even $x=a_{1}, y=a_{3}, z=a_{5}$; when i is odd $x=a_{2}, y=a_{4}, z=a_{6} ;\left[2, a_{7}, 4,7, a_{5}, 1\right],\left[3,6,0,5, a_{5}, 2\right],\left[5,8,2, a_{5}, 0,7\right]$.

For $G_{4}:\left[a_{1}, 0, x, 5, a_{2}, a_{3}\right]+i, i \in Z_{12}$, when i is even $x=a_{4}$; when i is odd $x=a_{5}$; $\left[a_{7}, 3,6,2,8, a_{6}\right]+i, i \in[0,3],\left[a_{7}, 7,10,6,8, a_{6}\right]+i, i \in[0,5],\left[6,4,0,2,5, a_{7}\right],[7,5,3,1,2,4]$, $\left[6,0, a_{6}, 1,7, a_{7}\right]$.

For $G_{5}:\left[0, x, 1, y, 2, a_{5}\right]+i, i \in Z_{12}$, when i is even $x=a_{1}, y=a_{3}$; when i is odd $x=a_{2}, y=a_{4} ;\left[8, a_{6}, 2,7,5,9\right]+i, i \in[0,2],\left[6,11,9,1, a_{7}, 7\right]+i, i \in[0,4],\left[0,6, a_{6}, 1,7,4\right]$, $\left[1,4,6,3,7, a_{6}\right],\left[3,5,0, a_{7}, 6,2\right],\left[11, a_{6}, 5,10,8,4\right],[11,4,2,5,8,0]$.

For $G_{6}:[1, x, 2, y, 9,5]+i, i \in Z_{12}^{*},\left[7,1,3, z, 0, a_{7}\right]+i, i \in[0,5] \backslash\{2\},\left[8,7,9, z, 6, a_{7}\right]+$ $i, i \in[0,5]$, when i is even $x=a_{1}, y=a_{2}, z=a_{5}$; when i is odd $x=a_{3}, y=a_{4}, z=a_{6}$; $\left[1, a_{1}, 2, a_{2}, 9,3\right],\left[7,6,5, a_{5}, 2, a_{7}\right],[1,2,3,4,5,9]$.

For $G_{7}:\left[a_{1}, 0, x, 8,4, a_{2}\right]+i$, when $i \in[0,3], x=a_{3}$; when $i \in[4,7], x=a_{4}$; when $i \in[8,11], x=a_{5} ;\left[a_{7}, 0,2, a_{6}, 5,11\right]+i, i \in[0,5],\left[11,0,9,8, a_{6}, 1\right],\left[7,8, a_{6}, 10,11,6\right]$, $\left[5,6, a_{7}, 8,7,9\right] ;[6,8,10,9,1,2] ;\left[a_{7}, 9,11,10,2,3\right],\left[a_{7}, 10,0,7,3,4\right],\left[a_{7}, 11,1,0,4,5\right]$.

For $G_{8}:\left[0, x, 5, a_{1}, a_{2}, a_{3}\right]+i, i \in Z_{12}$, when i is even $x=a_{4}$; when i is odd $x=a_{5}$; $\left[5, a_{7}, 6,8,9,10\right]+i, i \in[0,5],\left[9, a_{6}, 3,5,6,7\right]+i, i \in[0,2],[2,3,0,1,4,11],[4,5,2,1,8,6]$, $\left[3,4,1, a_{6}, 7,5\right],\left[0,6, a_{6}, 2,7,8\right]$.

For $G_{9}:\left[x, 7,2,6, a_{1}, a_{2}\right]+i, i \in Z_{12}^{*},\left[3, y, 0,2, a_{7}, 8\right]+i, i \in[0,5] \backslash\{3\},\left[9, y, 6,8, a_{7}, 7\right]+$ $i, i \in[0,5]$, when i is even $x=a_{3}, y=a_{5}$; when i is odd $x=a_{4}, y=a_{6} ;\left[a_{3}, 2,7,6, a_{2}, a_{1}\right]$, $\left[3, a_{6}, 6,5,11, a_{7}\right],[5,4,3,2,1,6]$.
$w=8$ For $G_{3}:[x, 1,0, y, 11,2]+i, i \in Z_{12},[z, 8,3, t, 0,7]+i, i \in Z_{12} \backslash\{0,1,2,4,5,6\}$, $[z, 8,3,9,6,7]+i, i \in[0,2],[z, 0,7, t, 3,11]+i, i \in[0,2],[6,3,0, t, 4,9]+i, i \in[0,2]$, when i is even $x=a_{1}, y=a_{2}, z=a_{5}, t=a_{6}$; when i is odd $x=a_{3}, y=a_{4}, z=a_{7}, t=a_{8}$.

For $G_{4}:\left[a_{1}, 3, x, 4,6, a_{2}\right]+i, i \in Z_{12} \backslash[0,2],\left[8,0, y, 5, a_{5}, a_{6}\right]+i, i \in Z_{12} \backslash[0,2],[8,0,3,6$, $4,9]+i, i \in[0,2],\left[a_{2}, 4, x, 3, a_{1}, 9\right]+i, i \in[0,2],\left[9,0, y, 5, a_{5}, a_{6}\right]+i, i \in[0,2]$, when i is even $x=a_{3}, y=a_{7}$; when i is odd $x=a_{4}, y=a_{8}$.

For $G_{5}:[x, 1,0,2, y, 3]+i, i \in Z_{12},[z, 11,4,0, t, 9]+i, i \in Z_{12} \backslash\{0,1,2,4,5,6\},[0,6,3,9$, $t, 1]+i, i \in[0,2],[11, z, 4,0,9,6]+i, i \in[0,2],[11, z, 4,0, t, 8]+i, i \in[4,6]$, when i is even $x=a_{1}, y=a_{2}, z=a_{5}, t=a_{6}$; when i is odd $x=a_{3}, y=a_{4}, z=a_{7}, t=a_{8}$.

For $G_{6}:[1, x, 0, y, 5,9]+i, i \in Z_{12},[11, z, 0, t, 1,3]+i, i \in Z_{12} \backslash\{0,1,2\},[11, z, 0,6,3,9]+$ $i, i \in[0,2],[6,9,0, t, 1,3]+i, i \in[0,2]$, when i is even $x=a_{1}, y=a_{2}, z=a_{5}, t=a_{6}$; when i is odd $x=a_{3}, y=a_{4}, z=a_{7}, t=a_{8}$.

For $G_{7}:\left[a_{1}, 0,4, a_{2}, x, 8\right]+i$, when $i \in[0,3], x=a_{3}$; when $i \in[4,7], x=a_{4}$; when $i \in[8,11], x=a_{5} ;\left[a_{7}, 6,11, a_{6}, 8, a_{8}\right]+i, i \in[0,5] \backslash\{1\},\left[0,1, a_{7}, 4,2,3\right],\left[4,5, a_{6}, 8,6,7\right]$, $\left[3,9, a_{6}, 0,10,11\right] ;\left[a_{7}, 0,5,11,2, a_{8}\right],\left[7,1,6,0,3, a_{8}\right],\left[8,2,7, a_{6}, 4, a_{8}\right],\left[a_{7}, 3,8,7,5, a_{8}\right],[3,4$, $\left.9,8,6, a_{8}\right],\left[a_{7}, 5,10,4,7, a_{8}\right],\left[a_{7}, 7,0,11,9, a_{8}\right]$.

For $G_{8}:\left[2, x, 0, a_{1}, a_{2}, a_{3}\right]+i$, when $i=4 j, 4 j+1, x=a_{4}$, when $i=4 j+2,4 j+$ $3, x=a_{5}, j \in[0,2],\left[1,9,2, a_{6}, a_{7}, a_{8}\right]+i, i \in Z_{12} \backslash\{0,1,2\},[1,2,9,0,3,6]+i, i \in[0,2]$, $\left[6,0,3, a_{6}, a_{7}, a_{8}\right]+i, i \in[0,1],\left[5,8,2, a_{6}, a_{7}, a_{8}\right]$.

For $G_{9}:\left[1, x, 0,2, a_{1}, a_{2}\right]+i, i \in Z_{12},\left[5, y, 0,4, a_{5}, a_{6}\right]+i, i \in Z_{12} \backslash\{0,1,2\},[5, y, 0,9,3,6]$ $+i, i \in[0,2],\left[6,3,0,4, a_{5}, a_{6}\right]+i, i \in[0,2]$, when i is even $x=a_{3}, y=a_{7}$, when i is odd $x=a_{4}, y=a_{8}$.
$w=10$ For $G_{3}:\left[0,3, x, 9, a_{1}, 6\right]+i$, when $i \in[0,2], x=a_{2}$, when $i \in[3,5], x=a_{3}$, when $i \in[6,8], x=a_{4}$, when $i \in[9,11], x=a_{5} ;[5, y, 0, z, 1,2]+i, i \in Z_{12}$, when i is even $y=a_{6}, z=a_{7}$, when i is odd $y=a_{8}, z=a_{9} ;[3,7,11,10,6,0]$, $\left[11, a_{10}, 5,9,10,1\right]$, $\left[6, a_{10}, 0,8,7,4\right],\left[7, a_{10}, 1,9,8,0\right],\left[8, a_{10}, 2,6,7,1\right],\left[9, a_{10}, 3,2,10,4\right],\left[10, a_{10}, 4,5,6,8\right]$.

For $G_{4}:\left[a_{1}, 0,3, x, 9,6\right]+i$, when $i \in[0,2], x=a_{2}$, when $i \in[3,5], x=a_{3}$, when $i \in[6,8], x=a_{4}$, when $i \in[9,11], x=a_{5} ;\left[10,6, y, 1, a_{6}, a_{7}\right]+i, i \in Z_{12}^{*}$, when i is even $y=a_{8}$, when i is odd $y=a_{9} ;\left[8,6, a_{10}, 0,1,2\right]+i, i=1,3,4,[7,8,9,10,11,6]$, $\left[5,6, a_{8}, 1, a_{6}, a_{7}\right],\left[7,6, a_{10}, 0,1,2\right],\left[6,8, a_{10}, 2,3,4\right],\left[7,5, a_{10}, 11,0,1\right]$.

For $G_{5}:[0,4, x, 8, y, 9]+i$, when $i \in[0,3], x=a_{1}$, when $i \in[4,7], x=a_{2}$, when $i \in[8,11], x=a_{3} ;[9, z, 6, t, 5,7]+i, i \in Z_{12}^{*}$, when i is even $y=a_{4}, z=a_{6}, t=a_{7}$, when i is odd $y=a_{5}, z=a_{8}, t=a_{9} ;\left[6, a_{10}, 0,11,4,9\right]+i, i=0,1,2,4,\left[9, a_{6}, 6, a_{7}, 5,4\right]$, [$\left.5, a_{10}, 11,10,3,2\right],[5,6,7,8,9,10],\left[3, a_{10}, 9,2,7,0\right]$.

For $G_{6}:[1, x, 0,4, y, 8]+i$, when $i \in[0,3], y=a_{3}$, when $i \in[4,7], y=a_{4}$, when $i \in[8,11], y=a_{5} ;[10, z, 11, t, 2,9]+i, i \in Z_{12}^{*}$, when i is even $x=a_{1}, z=a_{6}, t=a_{7}$, when i is odd $x=a_{2}, z=a_{8}, t=a_{9} ;\left[3,2,0, a_{10}, 6,8\right]+i, i=0,1,2,4,5,\left[6,5,3, a_{10}, 9,8\right]$, $\left[10, a_{6}, 11, a_{7}, 2,1\right],[1,0,11,10,9,2]$.

For $G_{7}:\left[a_{1}, 0, y, 8,4, a_{2}\right]+i$, when $i \in[0,3], y=a_{3}$, when $i \in[4,7], y=a_{4}$, when $i \in[8,11], y=a_{5} ;\left[a_{6}, 0,2, a_{7}, 11, a_{8}\right]+i, i \in Z_{12} \backslash[0,4],\left[1,4,6, a_{7}, 3, a_{8}\right],\left[a_{8}, 1, a_{6}, 4,2,0\right]$,
$\left[a_{8}, 2, a_{7}, 4,3,5\right],\left[a_{8}, 0,3, a_{6}, 1,7\right],\left[a_{6}, 0,5, a_{7}, 11, a_{8}\right],\left[2,5, a_{9}, 3,10, a_{10}\right],\left[9,4, a_{9}, 6,11, a_{10}\right]$, $\left[11,2, a_{9}, 0,7, a_{10}\right],\left[7,0, a_{10}, 1,6,11\right],\left[10,3, a_{10}, 8,9,2\right],\left[8,2, a_{10}, 5,4,10\right],\left[3,8, a_{9}, 9,1,6\right]$.

For $G_{8}:\left[0, x, 5, a_{1}, a_{2}, a_{3}\right]+i, i \in Z_{12},\left[0, y, 3, a_{8}, a_{9}, a_{10}\right]+i, i \in Z_{12}$, when i is even, $x=a_{4}, y=a_{6}$, when i is odd, $x=a_{5}, y=a_{7},[6,4,0,8,10,11]+i, i=0,1,[8,9,10,11,4,6]$, [11, 9, 5, 3, 4, 6], [$1,2,3,4,9,11],[4,8,2,0,6,10],[6,8,7,3,9,11]$.

For $G_{9}:\left[0,4, x, 8, a_{1}, a_{2}\right]+i$, when $i \in[0,3], x=a_{3}$, when $i \in[4,7], x=a_{4}$, when $i \in[8,11], x=a_{5} ;\left[3, y, 0,5, a_{7}, a_{6}\right]+i, i \in Z_{12}$, when i is even, $y=a_{8}$, when i is odd, $y=a_{9},\left[6, a_{10}, 0,1,2,3\right]+2 i, i \in[1,2],\left[3, a_{10}, 9,8,7,10\right],\left[5, a_{10}, 11,9,7,10\right],\left[1, a_{10}, 7,6,4,8\right]$, [$\left.6, a_{10}, 0,1,11,3\right],[10,11,0,2,1,4]$.
$w=11$ For $G_{3}:\left[5, x, 0, y, 1, a_{1}\right]+i, i \in Z_{12},\left[3, z, 0, t, 1, a_{2}\right]+i, i \in Z_{12}^{*}$, when i is even $x=a_{3}, y=a_{4}, z=a_{5}, t=a_{6}$, when i is odd $x=a_{7}, y=a_{8}, z=$ $a_{9}, t=a_{10} ;\left[6, a_{11}, 0,4,5,2\right]+i, i \in[0,5],\left[3, a_{5}, 0, a_{6}, 1,8\right],\left[6,8,10,0, a_{2}, 2\right],[11,0,1,2,3,9]$, [7, 9, 11, 3, 4, 10].

For $G_{4}:\left[a_{1}, 0, x, 3, a_{2}, a_{3}\right]+i, i \in Z_{12},\left[a_{4}, 0, y, 5, a_{6}, a_{5}\right]+i, i \in Z_{12}$, when i is even $x=a_{7}, y=a_{8}$, when i is odd $x=a_{9}, y=a_{10} ;\left[5,6, a_{11}, 0,2,4\right]+i, i=0,1,2,[3,11,0,1,2,9]$, $[0,8,6,10,9,2],[8,9,11,7,3,5],\left[5,9, a_{11}, 3,2,4\right],\left[10,11, a_{11}, 5,3,4\right],\left[0,10, a_{11}, 4,6,8\right]$.

For $G_{5}:\left[5, x, 0, y, 1, a_{1}\right]+i, i \in Z_{12},\left[3, z, 0, t, 1, a_{2}\right]+i, i \in Z_{12}$, when i is even $x=$ $a_{3}, y=a_{4}, z=a_{5}, t=a_{6}$, when i is odd $x=a_{7}, y=a_{8}, z=a_{9}, t=a_{10} ;\left[0,4,6,5, a_{11}, 11\right]+$ $i, i=0,2,5,[7,5,1,9,8,0],[2,10,0,11,1,3],[3,11,7,9,10,6],\left[10,4,8, a_{11}, 6,7\right],[5,3,4,2$, $\left.a_{11}, 0\right],\left[9, a_{11}, 3,2,1,0\right]$.

For $G_{6}:\left[1, x, 0, y, 3, a_{1}\right]+i, i \in Z_{12},\left[1, z, 0, t, 5, a_{2}\right]+i, i \in Z_{12}$, when i is even $x=$ $a_{3}, y=a_{4}, z=a_{5}, t=a_{6}$, when i is odd $x=a_{7}, y=a_{8}, z=a_{9}, t=a_{10} ;\left[2,4,0, a_{11}, 6,10\right]+$ $i, i=1,2,3,4,[6,10,0,1,2,3],[5,4,3,1,11,0],[6,7,8,10,9,11],\left[2,4,0, a_{11}, 6,5\right],[7,9,5$, $\left.a_{11}, 11,10\right]$.

For $G_{7}:\left[a_{1}, 0, x, 8,4, a_{2}\right]+i$, when $i \in[0,3], x=a_{3}$, when $i \in[4,7], x=a_{4}$, when $i \in[8,11], x=a_{5} ;\left[a_{6}, 0,5, a_{7}, 2, a_{8}\right]+i, i \in Z_{12},\left[a_{10}, 0, a_{9}, 5,6,7\right],\left[a_{10}, 7, a_{9}, 9,1, a_{11}\right]$, $\left[1,2, a_{9}, 11,8,7\right], \quad\left[a_{11}, 2, a_{10}, 1,3, a_{9}\right], \quad\left[a_{9}, 4, a_{10}, 8,10,11\right], \quad\left[a_{11}, 6, a_{10}, 9,5,11\right], \quad\left[9,3, a_{11}, 8\right.$, $4,5],\left[a_{9}, 10, a_{11}, 7,9,8\right],\left[a_{10}, 11, a_{11}, 5,0,1\right]$.

For $G_{8}:\left[0, x, 5, a_{1}, a_{2}, a_{3}\right]+i, i \in Z_{12},\left[0, y, 3, a_{8}, a_{9}, a_{10}\right]+i, i \in Z_{12}$, when i is even, $x=a_{4}, y=a_{6}$, when i is odd, $x=a_{5}, y=a_{7},\left[6, a_{11}, 0,1,2,4\right]+i, i=0,3,4,5$, $\left[7, a_{11}, 1,9,3,5\right],\left[8, a_{11}, 2,3,4,1\right],[6,7,8,9,10,0],[7,9,11,0,1,3],[2,6,10,0,9,11]$.

For $G_{9}:[8, x, 5, y, 1,9]+i, i \in Z_{12}^{*},[5, z, 0, t, 4,8]+i, i \in Z_{12}$, when i is even, $x=$ $a_{1}, z=a_{2}$, when i is odd, $x=a_{3}, z=a_{4}$, when $i \in[0,3], y=a_{5}, t=a_{6}$, when $i \in[4,7], y=$ $a_{7}, t=a_{8}$, when $i \in[8,11], y=a_{9}, t=a_{10} ;\left[6, a_{11}, 0,4,2,3\right]+i, i \in[1,3],\left[10, a_{11}, 4,8, a_{1}, 6\right]$, $\left[7,8,9,5, a_{11}, 11\right], \quad\left[1,9, a_{5}, 5, a_{1}, 8\right], \quad\left[0,6, a_{11}, 11,3,7\right], \quad[1,11,0,4,2,3], \quad[11,9,10,0,2,8]$, $[1,3,2,10,8,6]$.
(Received 19 Dec 2001; revised 6 Dec 2002)

[^0]: * Research supported by NSFHB and Hebei Normal University Foundation

