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Abstract

A directed covering design, DC(v, k, λ), is a (v, k, 2λ) covering design
in which the blocks are regarded as ordered k-tuples and in which each
ordered pair of elements occurs in at least λ blocks. Let DE(v, k, λ)
denote the minimum number of blocks in a DC(v, k, λ). In this paper
the values of the function DE(v, 5, λ) are determined for all even integers
v ≥ 5 and λ odd.

1 Introduction

A transitively ordered k-tuple (a1, . . . , ak) is defined to be the set {(ai, aj) | 1 ≤ i <
j ≤ k}. Let v, k and λ be positive integers. A directed covering (packing) design,
denoted by DC(v, k, λ) (DP(v, k, λ)), is a pair (X, A) where X is a set of points and
A is a collection of transitively ordered k-tuples of X , called blocks, such that every
ordered pair of X appears in at least (at most) λ blocks. Let DE(v, k, λ) (DD(v, k, λ))
denote the minimum (maximum) number of blocks in a DC(v, k, λ) (DP(v, k, λ)).
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A DC(v, k, λ) with |A| = DE(v, k, λ) is called a minimum directed covering design
and a DP(v, k, λ) with |A| = DD(v, k, λ) is called a maximum directed packing
design. If we ignore the order of the blocks, a DC(v, k, λ) (DP(v, k, λ)) is a standard
(v, k, 2λ) covering (packing) design. Therefore, the following bounds, known as the
Schönheim bounds, hold [24].

DE(v, k, λ) ≥
⌈
v

k

⌈
v − 1

k − 1
2λ

⌉⌉
= DL(v, k, λ),

DD(v, k, λ) ≤
[
v

k

[
v − 1

k − 1
2λ

]]
= DU(v, k, λ).

Here �x� is the smallest and [x] is the largest integer satisfying [x] ≤ x ≤ �x�. The
above bound has been sharpened by Hanani [20] in certain cases.

Theorem 1.1 (i) If 2λ(v − 1) ≡ 0 (mod k − 1) and 2λv(v − 1)/(k − 1) ≡ −1
(mod k) then DE(v, k, λ) ≥ DL(v, k, λ) + 1.
(ii) If 2λ(v − 1) ≡ 0 (mod k − 1) and 2λv(v − 1)/(k − 1) ≡ 1 (mod k) then
DD(v, k, λ) ≤ DU(v, k, λ) − 1.

When DE(v, k, λ) = DL(v, k, λ), the directed covering design is called minimal.
Similarly, when DD(v, k, λ) = DU(v, k, λ), the directed packing design is called op-
timal.

A directed balanced incomplete block design, DB[v, k, λ], is a DC(v, k, λ) where
every ordered pair of points appears in exactly λ blocks. If a DB[v, k, λ] exists then
it is clear that DE(v, k, λ) = 2λv(v− 1)/k(k− 1) = DL(v, k, λ) = DD(v, k, λ). In the
case k = 5, Street and Wilson [28] have shown the following:

Theorem 1.2 Let λ and v ≥ 5 be positive integers. The necessary and sufficient
conditions for the existence of a DB[v, 5, λ] are that (v, λ) �= (15, 1) and that λ(v −
1) ≡ 0 (mod 2) and λv(v − 1) ≡ 0 (mod 10).

In [25–27], Skillicorn discussed the function DE(v, 4, 1) and DD(v, 4, 1) and de-
veloped many other results including applications of directed designs to computer
network and data flow machine architecture. The values of DE(v, 5, λ) for all v ≥ 5
and even λ have been determined by Assaf [9], and more recently, Assaf et al. [14]
have determined the values of DE(v, 4, λ) and DD(v, 4, λ) for all positive integers v
and λ. The values of DE(v, 5, λ) for odd λ and v is considered by Alhalees [4]. It
is our purpose here to discuss the function DE(v, 5, λ) for every λ and even v ≥ 5.
Since λ even has been done in [9] we only need to treat the case λ is odd. We show
the following.

Theorem 1.3 Let v ≥ 5 be an even integer and λ be an odd integer. Then
DE(v, 5, λ) = DL(v, 5, λ) + e where e = 1 if λv(v − 1)/2 ≡ −1 (mod5); and e = 0
otherwise.

2 Recursive Constructions

To describe our recursive constructions we need the notions of transversal designs,
group divisible designs and covering (packing) designs with a hole of size h. For the
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definition of these designs see [6]. A (v, k, λ) covering design with a hole size h is said
to be minimal if the total number of blocks β satisfies |β| = φ(v, k, λ) − φ(h, k, λ)
where φ(n, k, λ) = �(n/k) �λ(n − 1)/(k − 1)��. We shall adopt the following nota-
tion: a T [k, λ, m] stands for a transversal design with block size k, index λ and group
size m. A (K, λ)-GDD stands for a group divisible design with block sizes from K
and index λ. When K = {k} we simply write k for K. The group type of a (K, λ)-
GDD is a listing of the group sizes using exponential notations, i.e. 1a2b3c . . . denotes
a groups of size 1, b groups of size 2, etc.

The excess (complement) graph of a (v, k, λ) covering (packing) design is the
graph on v vertices such that {a, b} is an edge with multiplicity µ if {a, b} appears
in λ + µ, [(λ − µ)] blocks. In a similar way one can define the directed complement
and excess graphs of a DP(v, k, λ) and DC(v, k, λ) [13]. The directed graph is called
symmetric if the number of edges entering a vertex is equal to the number of edges
exiting the vertex.

We like to remark that the notions of transversal designs, group divisible designs,
covering (packing) designs with a hole of size h can be easily extended to the directed
case. In the sequel we write DT, DGDD with the appropriate parameters.

The following theorem will be used extensively in this paper. The proof of this
result may be found in [1–3, 16–18, 20, 23, 29].

Theorem 2.1 There exists a T [6, 1, m] for all positive integers m, m /∈ {2, 3, 4, 6}
with the possible exception of m ∈ {10, 14, 18, 22}.
Theorem 2.2 If there exists a (6, λ)- GDD of type 5m and a minimal DC(20+h, 5, λ)
with a hole of size h and a minimal DC(4u + h, 5, λ), 0 ≤ u ≤ 5, then there exists a
minimum DC(20(m − 1) + 4u + h, 5, λ).

Proof: Take a (6, λ)-GDD of type 5m and delete all but u points from last group.
Inflate the resultant design by a factor of 4, i.e. replace each block of size 5 and 6 by
the blocks of a (5, 1)-DGDD of type 45 and 46 respectively [20].

On the last group we construct a minimal DC(4u+h, 5, λ) and on the remaining
groups construct a minimal DC(20 + h, 5, λ) with a hole of size h.

The application of the above theorem requires the existence of a (6, λ)-GDD of
type 5m . Our authority of the following Lemma is Hanani [20, p.286].

Lemma 2.1 (i) There exists a (6, λ)-GDD of type 57 for λ ≥ 2.
(ii) There exists a (6, λ)-GDD of type 59 for λ even.

Another notion that is used in this paper is the notion of modified group divisible
designs. Let k, λ, v and m be positive integers. A modified group divisible design
(k, λ)-MGDD of type mn is a quadruple (V, β, γ, δ) where V is a set of points with
|V | = mn, γ = {G1, G2, . . . , Gn} is a partition of V into n sets, called groups,
δ = {R1, R2, . . . , Rm} is a partition of V into m sets, called rows, and β is a family
of k-subsets of V , called blocks, with the following properties.

1) |B ∩ Gi| ≤ 1 for all B ∈ β and Gi ∈ γ.
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2) |B ∩ Ri| ≤ 1 for all B ∈ β and Ri ∈ δ.

3) |Gi| = m for all Gi ∈ γ.

4) Every 2-subset {x, y} of V such that x and y are neither in the same group nor
same row is contained in exactly λ blocks.

5) |Gi ∩ Rj| = 1 for all Gi ∈ γ and Rj ∈ δ.

A resolvable MGDD (RMGDD) is one the blocks of which can be partitioned into
parallel classes. It is clear that a (5, 1)-RMGDD of type 5m is the same as RT[5, 1, m]
with one parallel class of blocks singled out, and since RT[5, 1, m] is equivalent to
T [6, 1, m], we have the following existence theorem.

Theorem 2.3 There exists a (5, 1)-RMGDD of type 5m for all positive integers m,
m /∈ {2, 3, 4, 6}, with the possible exception of m ∈ {10, 14, 18, 22}.

The proof of the next theorem is the same as the proof of Theorem 2.3 of [5].

Theorem 2.4 If there exists a (5, 1)-RMGDD of type 5m and a (5, λ)-DGDD of type
4ms1 and a (5, λ)-DGDD of type 45 and 46 and there exists a minimal DC(20+h, 5, λ)
with a hole of size h, then there exists a minimal DC(20m + 4u + h + s, 5, λ) with a
hole of size 4u + h + s, where 0 ≤ u ≤ m − 1.

The application of the previous theorem requires the existence of a (5, 1)-DGDD
of type 4ms1. We shall use the following theorem.

Theorem 2.5 (i) There exists a (5, 1)-DGDD of type 4ms1 where s = 0 if m ≡
1 (mod 5), s = 4 if m ≡ 0 or 4 (mod 5) and s = 4(m − 1)/3 if m ≡ 1 (mod 3) [5].
(ii) There exists a (5, 1)-DGDD of type 4m81 where m ≡ 0 or 2 (mod 5), m ≥ 7,
with the possible exception of m = 10 [19].

The following theorem is a generalization of Theorem 2.6 of [7].

Theorem 2.6 If there exists a (5, 1)-RMGDD of type 5m and a (5, λ)-DGDD of type
2ms1 and a (5, λ)-DGDD of type 25 and 26 and there exists a minimal DC(10+h, 5, λ)
with a hole of size h, then there exists a minimal DC(10m + 2u + h + s, 5, λ) with a
hole of size 2u + h + s, where 0 ≤ u ≤ m − 1.

We like to mention that for large v, instead of constructing a DC(v, 5, λ), we will
construct a DC(v, 5, λ) with a hole of size h, h > 5, and then on the hole we construct
a DC(h, 5, λ).

Finally about the notation, a block of the form 〈k k+m k+n k+j f(k)〉 (mod v),
where f(k) = a if k is even and f(k) = b if k is odd, is denoted by 〈0 m n j〉∪{a, b}.
Further, if a and b are to be inserted in the middle, then we write 〈0 m−n j〉∪{a, b}.

3 Directed covering with index 1

Lemma 3.1 i) There exists a minimal DC(22, 5, 1) with a hole of size 2.
ii) Let v ≡ 2 (mod 20) be a positive integer. Then DE(v, 5, 1) = DL(v, 5, 1).
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Proof i) The construction of a minimal DC(22, 5, 1) with a hole of size 2 is as
follows:
1) Take a B[21, 5, 1] in increasing order.
2) Take a (23, 5, 1) minimal covering design, in decreasing order, with a hole of size
three, say, {23, 22, 21}, [22]. Place the point 23 at the end of the blocks in which it
is contained then replace it by 22. Then it is easy to check this construction yields
the blocks of a minimal DC(22, 5, 1) with a hole of size two.

ii) The construction of a minimal DC(v, 5, 1) for all v ≡ 2 (mod 20) consists of the
following two steps:

1) Take a (v + 1, 5, 1) minimal covering design in decreasing order. This design
has a block of size three, say, 〈3 2 1〉, [22]. Assume in this design we have the block
〈v + 1 v 10 9 8〉 where {8, 9, 10} are arbitrary numbers. Replace this block by the
block 〈v 10 9 8 11〉. In all other blocks containing v + 1, place v + 1 at the end of
the blocks and then replace it by v. Further, replace the block 〈3 2 1〉 by the block
〈3 2 1 11 a〉.

2) Take a B[v−1, 5, 1] in increasing order. Assume we have the block 〈8 9 10 11 a〉
where a is an arbitrary number. Replace this block by the block 〈8 9 10 v a〉.
Lemma 3.2 Let v ≡ 4 (mod 20) be a positive integer.Then DE(v, 5, 1) = DL(v, 5, 1).

Proof For all positive integers v ≡ 4 (mod 20), the construction consists of the
following two steps:

(1) Take a B[v + 1, 5, 1] in increasing order. Assume we have the block 〈v − 3 v −
2 v − 1 v v + 1〉 from which we delete the point v + 1. Further, place the point
v + 1 at the beginning of the blocks in which it is contained and then replace
it by v.

(2) Take a (v − 1, 5, 1) minimal covering design in decreasing order [22]. This
design has a block of size three, say, 〈v − 1 v − 2 v − 3〉. Replace this block by
〈v v − 3 v − 2 v − 1〉.

Remark: By deleting the two blocks of size four in Lemma 3.2, we obtain a directed
covering with a hole of size 4 for all v ≡ 4 (mod 20).

Lemma 3.3 Let v ≡ 6 (mod 20) be a positive integer.Then DE(v, 5, 1) = DL(v, 5, 1).

Proof. For all positive integers v ≡ 6 (mod 20) the construction is as follows:

1) Take a (v+1, 5, 1) minimal covering design in increasing order, [21]. Assume we
have the block 〈v−3 v−2 v−1 v v+1〉, which we replace by 〈v−3 v−2 v−1 v v−5〉.
In all other blocks through v + 1, we place v + 1 at the beginning of each block and
then replace it by v. Further, we may assume that the pair (v − 5, v − 4) appears
in at least two blocks. Take a block containing (v − 5, v − 4) and place v − 4 before
v − 5.

2) Take a B[v− 1, 5, 1] in decreasing order. Assume we have the block 〈v− 1 v−
2 v − 3 v − 4 v − 5〉 which we replace by 〈v v − 1 v − 2 v − 3 v − 4〉.
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Lemma 3.4 Let v ≡ 8 (mod 20) be a positive integer.Then DE(v, 5, 1) = DL(v, 5, 1).

Proof. For v = 8 let X = {1, 2, . . . , 8}; then the blocks are:

〈1 2 5 4 3〉, 〈4 3 5 2 1〉, 〈8 7 6 2 1〉, 〈3 6 7 8 4〉, 〈5 6 7 8 3〉, 〈1 2 6 7 8〉, 〈4 6 7 8 5〉.
For all other values the construction is as follows:

1) Take a B[v − 3, 5, 1] in increasing order.

2) Take a (v + 3, 5, 1) minimal covering design with a hole of size three, say,
{v + 1, v + 2, v + 3} in decreasing order,[22], place the points of the hole at the end
of each block containing them, then replace v + 3 by v, v + 2 by v − 1 and v + 1 by
v − 2.

Lemma 3.5 Let v ≡ 0 (mod 10) be a positive integer.Then DE(v, 5, 1) = DL(v, 5, 1).

Proof For v ≡ 0 (mod 20) the construction is as follows:

1) Take a (v−1, 5, 1) minimal covering design in decreasing order [21], and assume
that the pair (5, 4) appears in at least two blocks.

2) Take a B[v + 1, 5, 1] in increasing order and assume we have the block
〈1 2 3 v v + 1〉 where {1, 2, 3} are arbitrary numbers. Replace this block by the
block 〈4 1 2 3 v〉. In all other blocks through v + 1, place v + 1 at the beginning of
each block, then replace it by v. Further, assume in (1) we have the block 〈5 4 3 2 1〉
which we replace by 〈5 3 2 1 v〉.
For v ≡ 10 (mod 20), the values for v = 10, 30, 50 are given in the next table.
In general, the construction in this table and all other tables is as follows: Let
X = Zv−n ∪ Hn or X = (Z2 × Z(v−n)/2) ∪ Hn where Hn = {h1, . . . , hn} is the hole.
The blocks are constructed by taking the orbits of the tabulated base blocks.

V Point Scale Base Blocks
10 Z10 〈2 0 5 7 1〉
30 Z30 〈0 12 4 2 1〉 〈0 7 3 13 18〉 〈0 8 3 24 17〉
50 Z50 〈0 1 27 9 20〉 〈0 34 39 36 49〉 〈0 46 3 44 24〉

〈0 12 23 4 37〉 〈0 18 40 6 35〉

For all other values of v, take a (5, 1)-DGDD of type 10m, m is odd [15]; then on
each group construct a minimal DC(10, 5, 1).

Lemma 3.6 Let v ≡ 12 (mod 20) be a positive integer. Then DE(v, 5, 1) =
DL(v, 5, 1).

Proof For v = 12 let X = {1, 2, . . . , 12}. Then the blocks are:

〈8 3 12 1 2〉 〈4 7 2 11 1〉 〈1 10 6 3 4〉 〈2 4 9 5 3〉
〈12 7 5 4 6〉 〈3 8 6 11 5〉 〈5 10 2 7 8〉 〈6 1 9 8 7〉
〈11 4 9 8 10〉 〈7 3 12 10 9〉 〈9 11 6 2 12〉 〈10 1 5 12 11〉
〈5 8 9 4 1〉 〈2 6 4 10 12〉 〈12 11 3 7 8〉.

For v = 32, the construction is as follows:
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1) Take a (31, 5, 1) minimal covering design in increasing order [22]. This design
has a block of size three, say 〈29 30 31〉, which we delete.

2) Take a (33, 5, 1) covering design with φ(33, 5, 1) + 1 blocks in decreasing or-
der, [11]. Close observation of this design shows there is at least one triple, say,
{31, 30, 29}, the pairs of which appear in two blocks. Assume in this design we have
the block 〈33 32 c b a〉 which we replace by 〈32 c b a e〉. In all other blocks through
33, place 33 at the end of these blocks then replace it by 32. Assume in (1) we have
the block 〈a b c d e〉 and that (d, e) appears in at least two blocks. Replace this
block by the block 〈a b c d 32〉.

The above two steps give a design such that the pairs (29, 30), (29, 31), and
(30, 31) appear in zero blocks, (30, 29), (31, 29), (31, 30) appear twice while each
other ordered pair appears in at least one block. To fix this problem take three
blocks containing the pairs (30, 29), (31, 29), and (31, 30) and we switch the order of
these pairs so that (29, 30), (29, 31), (30, 31) each appears exactly once.

For v = 52, let X = Z44∪H8. Then the required blocks are the following (mod 44)

〈22 2 8 18 0〉, 〈2 0 4 1 9〉, 〈26 15 − 0 3〉 ∪ {h1, h2},
〈5 30 − 0 17〉 ∪ {h3, h4}, 〈6 29 − 0 19〉 ∪ {h5, h6}, 〈16 7 − 0 27〉 ∪ {h7, h8}.
For v = 92 we first construct a (93, 5, 1) covering design with φ(93, 5, 1)+1 blocks

such that there is a triple the pairs of which appear in at least two blocks. Such a
design can be constructed by taking a T [5, 1, 18], adjoin three new points to the
groups and then on each group construct a B[21, 5, 1]. Now the construction of a
minimal DC(92, 5, 1) is exactly the same as DC(32, 5, 1).

For v = 132, by adjoining 33 new points to the 33 parallel classes of RB[100, 4, 1]
we obtain a (133, 5, 1) covering design with a hole of size 33, on which we construct
a (33, 5, 1) covering design with φ(93, 5, 1) + 1 blocks. Now the construction of a
minimal DC(132, 5, 1) is the same as the DC(32, 5, 1).

For a DC(72, 5, 1), take a T [5, 1, 7] − T [5, 1, 1] and inflate this design by a factor
of two; that is, we replace each block by the blocks of a (5, 1)-DGDD of type 25, [15].
Adjoin two points {a, b} to the groups of the resultant design and on each group we
construct a minimal DC(16, 5, 1) with a hole of size four such that the hole is on
{a, b} together with the two points of the hole of the directed T [5, 1, 14] − T [5, 1, 2].
Finally, on the hole of the directed T [5, 1, 14] − T [5, 1, 2] with the two points {a, b}
we construct a minimal DC(12, 5, 1).

For a minimal DC(16, 5, 1) with a hole of the size 4, let X = Z12 ∪ {a, b, c, d}.
Then the blocks are:

〈3 0 a 7 1〉 〈2 5 a 9 3〉 〈7 4 a 5 11〉 〈10 1 a 6 0〉 〈9 6 a 8 2〉 〈8 11 a 10 4〉
〈6 9 b 1 7〉 〈11 3 b 8 9〉 〈10 1 b 5 11〉 〈8 0 b 3 2〉 〈4 7 b 6 0〉 〈5 2 b 4 10〉
〈4 1 c 8 2〉 〈6 10 c 3 4〉 〈0 8 c 5 6〉 〈9 5 c 0 11〉 〈11 2 c 7 1〉 〈7 3 c 9 10〉
〈10 7 d 2 8〉 〈0 4 d 10 9〉 〈2 11 d 0 6〉 〈1 9 d 4 3〉 〈5 8 d 7 1〉 〈3 6 d 11 5〉
For all other values of v, simple calculations show that v can be written in the

form v = 20m + 4u + h + s where m, u, h and s are chosen so that:
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(1) There exists a (5, 1)-RMGDD of type 5m;
(2) There exists a (5, 1)-DGDD of type 4ms1;
(3) 4u + h + s = 12, 32, 52, 72, 92;
(4) 0 ≤ u ≤ m − 1, s ≡ 0 (mod 4) and h = 0.

Now apply Theorem 2.4 with λ = 1 to get the result.

Lemma 3.7 Let v ≡ 14 (mod 20) be a positive integer. Then DE(v, 5, 1) =
DL(v, 5, 1).

Proof For v = 14, let X = {1, . . . , 14}. Then the required blocks are:

〈1 8 12 2 3〉 〈11 7 2 4 1〉 〈6 1 3 10 4〉 〈9 5 4 3 2〉 〈5 12 4 6 7〉
〈11 3 6 8 5〉 〈2 7 5 10 8〉 〈9 8 1 7 6〉 〈3 1 2 14 13〉 〈6 14 13 4 5〉
〈8 4 11 9 10〉 〈10 7 3 12 9〉 〈10 12 1 5 11〉 〈4 14 13 12 8〉 〈13 14 3 7 11〉
〈5 13 14 1 9〉 〈9 8 7 13 14〉 〈11 12 10 13 14〉 〈6 2 9 12 11〉 〈14 13 10 2 6〉.

For all other values of v, the construction is as follows:

1) Take a (v − 3, 5, 1) minimal covering design in increasing order [21]. Close
observation of these designs show that they have a block of size three, say, 〈v−5, v−
4, v − 3〉. Delete this block.

2) Take a (v + 3, 5, 1) minimal covering design with a hole size of 9 in increasing
order, [19]. Place the points v+1, v+2 and v+3 at the end of each block containing
them, then replace v + 3 by v, v + 2 by v − 1 and v + 1 by v − 2.

3) On {v − 5, v − 4, v − 3, v − 2, v − 1, v}, construct a minimal DC(6, 5, 1).

Lemma 3.8 Let v ≡ 16 (mod 20) be a positive integer. Then DE(v, 5, 1) =
DL(v, 5, 1).

Proof For v = 16, see Lemma 3.6.

For all other values of v, the construction is as follows:

1) Take a (v − 1, 5, 1) minimal covering design in decreasing order [21].

2) Take a (v + 1, 5, 1) minimal covering design in increasing order with a hole of
size 9 on {v− 7, . . . , v +1}, [19]. Place the point v +1 at the beginning of the blocks
which contain it and then replace it by v.

3) On {v − 7, v − 6, . . . , v} take the following blocks:
〈v − 5 v − 4 v − 3 v − 2 v〉 〈v − 6 v − 3 v − 2 v − 1 v〉
〈v − 7 v v − 5 v − 4 v − 1〉 〈v v − 7 v − 6 v − 3 v − 2〉.

The above three steps guarantee that each ordered pair appears at least once
except (v − 6, v − 5) and (v − 6, v − 4). Now consider the blocks of the (v − 1, 5, 1)
minimal covering design in decreasing order. This design has v repeated pairs. Fur-
ther, close observation of these designs shows that we may assume that (v− 5, v− 6)
and (v − 4, v − 6) each appears at least twice. If {v − 6, v − 5, v − 4} appear in one
block, say, 〈y v − 4 v − 5 v − 6 x〉, then replace this block by 〈y v − 6 v − 4 v − 5 x〉.
Otherwise, there are two blocks; one contains (v − 5, v − 6) and the other contains
(v − 4, v − 6). Then in the first block write v − 6 in front of v − 5, and in the second
write v − 6 in front of v − 4. Then it is clear that the above construction yields the



DIRECTED COVERING WITH BLOCK SIZE 5 AND v EVEN 11

blocks of a minimal DC(v, 5, 1) for v ≡ 16 (mod 20), v ≥ 36.

Lemma 3.9 Let v ≡ 18 (mod 20) be a positive integer. Then DE(v, 5, 1) =
DL(v, 5, 1).

Proof For v = 18 let X = Z15 ∪ {a, b, c}. Then take the following blocks:

〈0 3 6 9 12〉 + i, i ∈ Z3 〈3 9 14 7 1〉 + i, i ∈ Z8 〈11 8 7 9 0〉 + i, i ∈ Z4

〈12 0 11 13 4〉 + i, i ∈ Z3 〈0 5 10 a b〉 + i, i ∈ Z4 〈a c 0 5 10 >〉 + i, i ∈ Z4

〈b 10 5 0 c〉 + i, i ∈ Z4 〈b 4 9 14 a〉 〈4 9 14 c a〉 〈c 14 9 4 b〉.

For v ≥ 38 the construction is as follows:

1) Take a B[v + 3, 5, 1] in increasing order. Assume that {v + 1 v + 2 v + 3} are
not contained in one block. So assume we have the following three blocks:

〈a b c v v + 3〉 〈d e f v − 1 v + 2〉 〈g h i v − 2 v + 1〉
which we replace by

〈v − 1 a b c v〉 〈v − 2 d e f v − 1〉 〈v g h i v − 2〉
respectively. Further, place v +3, v +2, v +1 at the beginning of the blocks in which
they are contained, then replace v + 3 by v, v + 2 by v − 1 and v + 1 by v − 2.

2) Take a (v − 3, 5, 1) covering design in decreasing order. Assume that the pairs
(v − 2, y), (v − 1, x), (v, 2) are repeated in this design. Further, assume we have the
blocks:

〈v − 1 x c b a〉 〈v − 2 y f e d〉 〈v z i h g〉,
which we replace by

〈v x c b a〉 〈v − 1 y f e d〉 〈v − 2 z i h g〉.
Then it is readily checked that the above steps yield the blocks of a minimal
DC(v, 5, 1) for v ≡ 18 (mod 20), v ≥ 38.

4 Directed covering with index 3

We first observe that if v ≡ 14 (mod 20) then a minimal DC(v, 5, 3) can be con-
structed by taking two copies of a minimal (v, 5, 3) covering design in opposite order.
We now turn our attention to the remaining cases.

Lemma 4.1 Let v ≡ 0 or 6 (mod 10) and λ ≥ 3 be positive integers; then
DE(v, 5, λ) = DL(v, 5, λ).

Proof If λ is even then see [9]. If λ is odd, say, 2m + 1, then the blocks of
a minimal DC(v, 5, λ) are the blocks of a DB[v, 5, 2m] together with blocks of a
minimal DC(v, 5, 1).

Lemma 4.2 Let v ≡ 2 (mod 20) be a positive integer.Then DE(v, 5, 3) = DL(v, 5, 3).
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Proof For all v ≡ 2 (mod 20), v ≥ 22, the construction is as follows:

1) Take the minimal DC(v, 5, 2) in [9]. This design has a triple, say, {v−2, v−1, v}
the ordered pairs of which appear in three blocks.

2) Take a B[v − 1, 5, 1] in increasing order.

3) Take a (v + 1, 5, 1) minimal covering design in decreasing order [22]. This
design has a block of size three, say, 〈v − 1, v, v + 1〉 which we delete. Further, take
the blocks through v + 1, place v + 1 at the end of each block then replace it by v.

Now it is easily checked that the above three steps yield the blocks of a minimal
DC(v, 5, 3) for v ≡ 2 (mod 20).

Lemma 4.3 Let v ≡ 4 (mod 20) be a positive integer.Then DE(v, 5, 3) = DL(v, 5, 3).

Proof For all such v the construction is as follows:

1) Take the minimal DC(v, 5, 2) in [9]. This design has a triple, say, {a, b, c} the
ordered pairs of which appear in three blocks.

2) Take a (v − 1, 5, 1) minimal covering design in increasing order [22]. This
design has a block of size three, say, 〈a b c〉 which we delete. Further, assume we
have the block 〈1 2 3 7 10〉 where {1, 2, 3, 7, 10} are arbitrary numbers such that
(7, 10) appears in two blocks. Replace this block by the block 〈1 2 3 7 v〉.

3) Take a B[v + 1, 5, 1] in decreasing order. Assume we have the block 〈v +
1 v 3 2 1〉 which we replace by 〈v 3 2 1 10〉. Further, take the remaining blocks
through v + 1, place v + 1 at the end of each block then replace it by v.

It is readily checked that the above three steps yield the blocks of a minimal
DC(v, 5, 3), v ≡ 4 (mod 20).

Lemma 4.4 Let v ≡ 8 (mod 20) be a positive integer.Then DE(v, 5, 3) = DL(v, 5, 3).

Proof For v = 8, let X = Z8. Then the required blocks are: 〈0 7 3 5 4〉 (mod 8),
〈4 7 2 0 1〉 + i, i ∈ Z6, 〈2 5 6 0 7〉 + i, i ∈ Z2, 〈0 2 4 6〉 + i, i ∈ Z2.

For v = 28, let X = Z22 ∪ H6. Then the required blocks are the following (mod
22), together with the blocks of a DC(6, 5, 3) on {h1, . . . , h6}.

〈2 0 21 6 13〉 〈8 0 h1 2 12〉 〈0 14 h2 2 8〉
〈3 2 h3 0 1〉 〈7 3 h4 0 18〉 〈0 3 h5 8 13〉
〈4 0 h6 9 15〉 〈0 7 − 1 2 〉 ∪ {h1, h2} 〈10 13 − 0 3〉 ∪ {h3, h4}
〈9 0 − 17 4〉 ∪ {h5, h6}.

For v = 48, let X = Z40 ∪ H8. On Z40 ∪ H7 construct an optimal DP(47, 5, 2)
with a hole of size 7 on H7. Further, take the following blocks (mod 40):

〈0 2 6 24 14〉 〈5 2 h8 0 1〉 〈0 11 − 26 3〉 ∪ {h1, h2}
〈0 5 − 18 25〉 ∪ {h3, h4} 〈13 6 − 0 29〉 ∪ {h5, h6} 〈9 0 − 19 28〉 ∪ {h7, h8}.

For v = 68, 88, take a (6, 3)-GDD of type 5n, n = 7, 9 and delete one point from
the last group. Inflate the resulting design by a factor of two. Replace all its blocks
by the blocks of a (5, 1)-DGDD of type 25 and 26, [28]. Finally, on the first (n − 1)
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groups construct a minimal DC(10, 5, 3) and on the last group construct a minimal
DC(8, 5, 3).

For v = 128, apply Theorem 2.2 with m = 7, u = 2, h = 0 and λ = 3.

For all other values of v, simple calculations show that v can be written in the
form v = 20m + 4u + h + s where m, u, h and s are chosen as in Lemma 3.6 with
the difference that 4u + h + s = 8, 28, 48, 68, 88. Now apply Theorem 2.4 with λ = 3
to get the result.

Lemma 4.5 Let v ≡ 12 (mod 20) be a positive integer. Then DE(v, 5, 3) =
DL(v, 5, 3).

Proof For v = 12 the construction is as follows:

1) Take the blocks of the minimal DC(12, 5, 1) (Lemma 3.6). The excess graph
of this design contains the following digraph.
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From this design, delete the block 〈2 6 4 10 12〉. Further, replace the block
〈12 11 3 7 8〉 by the block 〈4 12 3 7 8〉.

2) Take the minimal DC(12, 5, 2) in [9]. Apply the permutation (2 a), (b 6) and
replace c by 10; we obtain a minimal DC(12, 5, 2) such that the ordered pairs of
{2, 6, 10} appear in three blocks. Apply the permutation (3 b) to the blocks of this
design; then replace 0 by 9, a by 11, and b by 12. We obtain a minimal DC(12, 5, 2)
on {1, . . . , 12} such that we have the following blocks: 〈8 7 4 3 1〉 〈1 4 7 2 10〉
〈4 9 8 2 6〉, which we replace by 〈11 8 7 3 1〉 〈1 7 4 2 10〉 〈9 8 4 2 6〉.

Then it is easy to check that the above two steps yield the blocks of a minimal
DC(12, 5, 3).

For v = 32, 52, 72, 92 the construction is as follows:

1) Take a minimal DC(v, 5, 1) with a hole of size 8 such that {1, 2, 10, 11, 14, v}
are points of the hole.

2) Take a B[v − 1, 5, 2] in increasing order and assume we have the two blocks
〈3 4 5 10 14〉 and 〈6 7 8 11 14〉, which we replace by 〈3 4 5 v 14〉 〈6 7 8 v 14〉.

3) Take a (v +1, 5, 2) optimal packing design in decreasing order, [7]. This design
has a triple, say, {1, 2, v+1}, the pairs of which appear in zero blocks. Further,
assume we have the following blocks: 〈v + 1 v 5 4 3〉 〈v + 1 v 8 7 6〉, which we
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replace by 〈v 5 4 3 10〉 〈v 8 7 6 11〉. Further, place the point v + 1 at the end
of the blocks in which it is contained, and then replace it by v.

4) On the hole of size eight, take the minimal DC(8, 5, 1) of Lemma 3.4 and
notice that the excess graph contains the following digraph, say, on {1, 2, v}
and {10, 11, 14}.

11  

10  
14

 
1 2

 

v 

It is easy to check that the above four steps yield the blocks of a minimal
DC(v, 5, 3) for v = 32, 52, 72, 92.

To complete the proof of our Lemma we need to construct a minimal DC(v, 5, 1)
with a hole of size 8 for v = 32, 52, 72, 92.

For v = 32, let X = Z2 × Z12 ∪ H8. Then the required blocks are the following
mod (−, 12):

〈(0, 0) (0, 3) − (0, 1) (0, 8)〉 ∪ {h1, h2} 〈(1, 3) (1, 0) − (1, 1) (1, 8)〉 ∪ {h1, h2}
〈(1, 1) (0, 1) h3 (0, 0) (1, 0)〉 〈(0, 0) (1, 7) h4 (1, 1) (0, 2)〉
〈(0, 3) (1, 6) h5 (0, 0) (1, 8)〉 〈(1, 7) (0, 0) h6 (0, 4) (1, 10)〉
〈(1, 2) (0, 0) h7 (0, 5) (1, 9)〉 〈(1, 10) (0, 0) h8 (1, 2) (0, 6)〉.
For v = 52, let X = Z44 ∪ H8. Then take the following blocks (mod 44):

〈12 8 0 2 26〉 〈1 2 5 0 13〉 〈3 0 − 25 18〉 ∪ {h1, h2}
〈0 19 − 28 5〉 ∪ {h3, h4} 〈0 17 − 27 6〉 ∪ {h5, h6} 〈0 31 − 16 7〉 ∪ {h7, h8}.
For v = 72, let X = Z64 ∪ H8. Then take the following blocks (mod 64):

〈30 14 6 2 0〉 〈1 0 16 42 6〉 〈37 46 3 0 17〉
〈0 7 31 20 39〉 〈1 0 − 11 4〉 ∪ {h1, h2} 〈17 0 − 29 2〉 ∪ {h3, h4}
〈5 18 − 43 0〉 ∪ {h5, h6} 〈42 9 − 0 23〉 ∪ {h7, h8}.
For v = 92, let X = Z84 ∪ H8. Then take the following blocks (mod 84):

〈4 12 42 0 26〉 〈22 1 3 7 0〉 〈0 56 31 48 5〉
〈54 9 20 44 0〉 〈68 0 27 45 13〉 〈0 13 15 49 1〉
〈5 24 − 33 0〉 ∪ {h1, h2} 〈6 31 − 13 0〉 ∪ {h3, h4} 〈27 0 − 10 47〉 ∪ {h5, h6}
〈11 0 − 32 55〉 ∪ {h7, h8}.

For a minimal DC(132, 5, 3), apply Theorem 2.2 with m = 7, h = 0, u = 3 and
λ = 3.

For all other values of v, write v = 20m + 4u + h + s where m, u, h and s are
chosen as in Lemma 3.6; then apply Theorem 2.4 with λ = 3 to get the result.
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Lemma 4.6 There exists a minimal DC(v, 5, 2) for all v ≡ 18 (mod 20), v ≥ 38,
v �= 178, such that the excess digraph is the following digraph:

Proof We first show that the excess digraph of a minimal DC(8, 5, 2) and
DC(13, 5, 2) is the above digraph.

For v = 8, take the blocks of the minimal DC(8, 5, 2) from [9], and replace the
blocks 〈0 3 2 5 6〉 〈4 1 6 3 0〉 〈5 2 3 1 4〉 by 〈0 2 3 5 6〉 〈1 4 6 3 0〉 〈5 4 2 3 1〉.

For v = 13 take the blocks of the minimal DC(13, 5, 2) from [9] and replace the
blocks 〈2 3 7 13 5〉 〈12 7 8 9 3〉 〈11 7 4 12 8〉 by the blocks 〈2 7 3 13 5〉 〈12 8 7 9 3〉
〈7 11 4 12 8〉.

Now to prove our lemma we show that for such v there exists a minimal DC(v, 5, 2)
with a hole of size 8 or 13. But this can be done exactly the same as Lemma 5.9 of
[6].

Lemma 4.7 Let v ≡ 18 (mod 20) be a positive integer. Then DE(v, 5, 3) =
DL(v, 5, 3).

Proof For v = 18 the construction is as follows:

1) Take an optimal DP(18, 5, 2) [8]. This design has every ordered pair appearing
in two blocks except the pairs of a triple, say, {a, b, c}, which appear in zero
blocks.

2) Take the following blocks of a minimal DC(18, 5, 1) on X = Z15 ∪ {a, b, c}:
〈4 8 0 2 1〉 (mod 15) 〈12 + k 9 + k 6 + k 3 + k k〉, k = 0, 1, 2, 〈0 5 10 b a〉, orbit
length 3, 〈c b 10 5 0〉, orbit length 2, 〈b c 12 7 2〉, orbit length 1, 〈a 0 5 10 c〉,
orbit length 3, 〈a 3 8 13 b〉, orbit length 2, 〈b 13 8 3 c〉, orbit length 2,
〈c 3 8 13 a〉, orbit length 2.

3) Adjoin the block 〈c a b〉.

For v = 178, apply Theorem 2.6 with m = 16, h = s = 0, λ = 3 and u = 9, and
see [15] for a (5, 3)-DGDD of type 216.

For all other values of v ≡ 18 (mod 20), the construction is as follows:

1) Take a minimal DC(v, 5, 2) such that the excess graph is the following digraph
(overpage) on {v − 3, v − 2, v − 1, v}.

2) Take a (v − 3, 5, 1) minimal covering design in decreasing order [21]. Assume
that the ordered pair (d, x) appears in at least two blocks, and that we have the
block 〈d c b a x〉 where x is to the right of d. Replace this block by 〈c b a x v − 2〉.
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v − 1v − 3

v v − 2

3) Take a B[v + 3, 5, 1] in increasing order. Delete from this design the block
〈v − 1 v v + 1 v + 2 v + 3〉. Further, assume we have the block 〈a b c v − 2 v + 1〉,
which we replace by 〈d a b c v−2〉. In all other blocks through v +1, v +2, v +3, we
place these points at the beginning of these blocks and then replace v + 1 by v − 2,
v + 2 by v − 1, and v + 3 by v.

Then it is easy to check that the above steps yield the blocks of a minimal
DC(v, 5, 3), v ≡ 18 (mod 20), v �= 18, 178.

5 Directed covering with index 5

Notice that when v ≡ 2 or 4 (mod 10) then a minimal DC(v, 5, 5) can be constructed
by taking a minimal DC(v, 5, 2) and a minimal DC(v, 5, 3). Furthermore, the case
v ≡ 0 or 6 (mod 10) follows from Lemma 4.1. The only case left is v ≡ 8 (mod 10).
The following lemma is most useful for us.

Lemma 5.1 (i) There exists a minimal DC(v, 5, 1) with a hole of size 2 for v =
8, 18, 28, 38, 48, 58, 68, 78, 88, 98.
(ii) There exists a minimal DC(22, 5, 5) with a hole of size 2.

Proof (i) For v = 88, 98, take a (6, 1)-GDD of type 86 and delete 5 and 0 points
from the last group respectively and inflate the resulting design by a factor of two.
Replace the blocks of the resulting design which are of size 5 and 6 by the blocks
of a (5, 1)-DGDD of type 25 and 26 respectively [28]. Adjoin two new points to the
groups, and on the first five groups construct a minimal DC(18, 5, 1) with a hole of
size 2 and on the last group construct a minimal DC(8, 5, 1) with a hole of size 2 in
the case v = 88, and a minimal DC(18, 5, 1) with a hole of size 2 when v = 98.

For all other values see the next table (overpage).

For a minimal DC(22, 5, 5) with a hole of size 2, take one copy of a minimal
DC(22, 5, 4) with a hole of size 2 [9], and one copy of a minimal DC(22, 5, 1) with a
hole of size 2 (Lemma 3.1).

Lemma 5.2 Let v ≡ 8 (mod 10) be a positive integer.Then DE(v, 5, 5) = DL(v, 5, 5).

Proof For v = 8, 18, 28, . . . , 98, the construction is as follows:

1) Take the minimal DC(v, 5, 4) given in [9, p. 39]. This design has a triple, say,
{a, b, c}, the ordered pairs of which appear in five blocks.

2) Take a minimal DC(v, 5, 1) with a hole of size two, say, {b, c}.
Then it is clear that the above steps yield the blocks of a minimal DC(v, 5, 5) for

v = 8, 18, . . . , 98.
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v Point Set Base Blocks
8 Z6 ∪ H2 〈0 1 − 4 3〉 ∪ {h1, h2

18 Z16 ∪ H2 〈0 3 1 9 5〉 〈0 13 − 8 7〉 ∪ {h1, h2}
28 Z26 ∪ H2 〈0 4 2 1 0〉 〈15 7 3 0 20〉 〈0 3 − 15 10〉 ∪ {h1, h2}
38 Z36 ∪ H2 〈1 0 4 11 9〉 〈9 3 0 21 1〉 〈13 0 6 2 26〉

〈19 0 − 5 14〉 ∪ {h1, h2}
48 Z46 ∪ H2 〈0 1 3 17 8〉 〈8 23 3 1 0〉 〈4 0 35 22 10〉

〈0 20 4 32 13〉 〈22 6 − 17 0〉 ∪ {h1, h2}
58 Z56 ∪ H2 〈3 0 9 1 31〉 〈31 4 15 0 36〉 〈30 17 7 44 0〉

〈1 0 17 35 3〉 〈11 41 5 49 0〉 〈0 13 − 4 23〉 ∪ {h1, h2}
68 Z66 ∪ H2 〈1 3 21 0 7〉 〈0 5 40 49 15〉 〈0 36 8 24 47〉

〈7 0 3 1 28〉 〈23 13 5 35 0〉 〈49 20 33 9 0〉
〈0 5 − 34 9〉 ∪ {h1, h2}

78 Z76 ∪ H2 〈3 0 16 1 39〉 〈66 0 12 4 47〉 〈0 27 6 34 52〉
〈0 9 29 53 40〉 〈7 1 0 49 3〉 〈14 0 64 5 59〉
〈18 44 0 33 8〉 〈55 16 − 35 0〉 ∪ {h1, h2}

For v = 128, apply Theorem 2.2 with m = 7, h = 0, u = 2 and λ = 5.

For v = 138, apply Theorem 2.2 with m = 7, h = 2, u = 4 and λ = 5.

For all other values of v, v �= 178, write v = 20m + 4u + h + s, where m, u, h
and s are chosen as in Lemma 3.6 with the difference that h = 0, 2 and 4u + h + s =
8, 18, . . . , 88, 98.

Now apply Theorem 2.4 with λ = 5 to get the result.

For v = 178, apply Theorem 2.6 with m = 16, h = s = 0, λ = 5, u = 9, and see
[15] for a (5, 5)-DGDD of type 216

6 Directed covering with index 7

When v ≡ 18 (mod 20), then the blocks of a minimal DC(v, 5, 7) can be constructed
by taking two copies of a (v, 5, 7) minimal covering design [10], one in some order
and the other in opposite order.

Lemma 6.1 Let v ≡ 4 (mod 20) be a positive integer.Then DE(v, 5, 7) = DL(v, 5, 7).

Proof For all integers v ≡ 4 (mod 20), v ≥ 24, the construction is as follows:

1) Take an optimal DP(v, 5, 2) [8]. In this design there is a 2-subset, say, {v −
2, v − 1}, the ordered pairs of which appear in zero blocks while each other ordered
pair appears in two blocks.

2) Take two copies of a (v, 5, 4) minimal covering design one in increasing order,
the other in decreasing order [12]. This design has a triple the pairs of which appear
in six blocks. Assume in both copies the triple is {v − 3, v − 2, v − 1}. Further,
assume in this step we have the blocks 〈9 10 11 v−3 v−1〉 〈1 2 3 v−2 v−3〉, which
we replace by 〈9 10 11 v − 3 v〉 〈v − 1 1 2 3 v − 2〉.



18 AHMED M. ASSAF, H. ALHALEES AND L.P.S. SINGH

3) Take a (v−1, 5, 1) minimal covering design in increasing order [22]. This design
has a block of size three, say, 〈v − 3 v − 2 v − 1〉, which we delete.

4) Take a B[v + 1, 5, 1] in decreasing order. Assume in this design we have the
two blocks 〈v + 1 v 11 10 9〉 〈v v − 1 3 2 1〉 which we replace by 〈v 11 9 10 v − 1〉
〈v 3 2 1 v − 3〉. In all other blocks through v + 1, we place v + 1 at the end of the
blocks then replace it by v. Furthermore, take the block through (v − 1, v − 2), say
〈v − 1 v − 2 c b a〉 and replace by 〈v − 2 v − 1 c b a〉.

Now it is easy to check that the above four steps yield the blocks of a minimal
DC(v, 5, 7) for all v ≡ 4 (mod 20).

Lemma 6.2 Let v ≡ 8 (mod 20) be a positive integer.Then DE(v, 5, 7) = DL(v, 5, 7).

Proof For v = 8, 28, see the next table, and notice that “•m” following the block
means take m copies of this block.

For v = 48, 88, take a (5, 7)-GDD of type 46 and 411 respectively [20]. Inflate
this design by a factor of two and replace each block of size 5 by the blocks of a
(5, 1)-DGDD of type 25. Finally, on the groups construct a minimal DC(8, 5, 7).

For v = 128, apply Theorem 2.2 with m = 7, h = 0, u = 2 and λ = 7.

For v = 68 take a (6, 7)-GDD of type 57 and delete one point from last group [20].
Inflate this design by a factor of two, that is, replace each block by the blocks of a
(5, 1)-DGDD of types 25 and 26 respectively [28]. Finally on the first six groups con-
struct a minimal DC(10, 5, 7) and on the last group construct a minimal DC(8, 5, 7).

For all other values of v, write v = 20m + 4u + h + s, where m, u, h and s are
chosen as in Lemma 4.4, and then apply Theorem 2.4 with λ = 5 to get the result.

v Point Set Base Blocks

8 Z8 〈0 1 2 4 5〉 • 2 〈4 3 2 1 0〉 〈1 4 2 0 6〉 〈1 4 3 0 6〉
28 Z28 〈0 1 2 3 8〉 • 2 〈8 3 2 1 0〉 • 2 〈0 6 14 19 2〉 • 3

〈19 14 10 3 0〉 • 3 〈0 16 3 10 20〉 • 2 〈0 3 10 16 20〉
〈2 0 1 4 12〉 〈5 2 0 18 14〉 〈21 2 0 15 8〉
〈16 0 9 20 3〉 〈20 3 10 15 0〉 〈0 15 4 19 9〉

Lemma 6.3 Let v ≡ 12 (mod 20) be a positive integer. Then DE(v, 5, 7) =
DL(v, 5, 7).

Proof For v = 12, let X = Z10 ∪ {a, b}. Then the blocks are the following: take
two copies of a minimal DP(12, 5, 2) with a hole of size two {a, b}. Further, take the
following blocks (mod 10) 〈a b 4 3 0〉 〈0 4 5 b a〉 〈8 4 3 1 0〉 〈0 1 5 3 2〉 and
〈8 6 4 2 0〉, orbit length two.

For v = 32, 52, 72, 92 the construction is as follows:

1) Take the minimal DC(v, 5, 2) in [9]. This design has a triple, say, {1, 2, 3}, the
ordered pairs of which appear in three blocks.

2) Take an optimal DP(v, 5, 2) with a hole of size two, say, {1, 2}, [8].

3) Again take an optimal DP(v, 5, 2) with a hole of size two, say, {1, 3}.
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4) Take a minimal DC(v, 5, 1) with a hole of size 8 (Lemma 4.5); then on the
hole take the following minimal DC(8, 5, 1) on {1, . . . , 8}: 〈6 7 8 4 5〉 〈3 2 1 7 6〉
〈4 8 1 2 3〉 〈1 3 2 4 5〉 〈5 1 2 3 8〉 〈5 4 8 7 6〉 〈6 7 3 2 1〉.

For v = 132, apply Theorem 2.2 with m = 7, h = 0, u = 3 and λ = 7.

For all other values of v write v = 20m + 4u + h + s where m, u, h and s are
chosen as in the proof of Lemma 3.6. Now apply Theorem 2.4 with λ = 7 to get the
result.

Lemma 6.4 (i) There exists a minimal DC(22, 5, 7) with a hole of size 2.
(ii) Let v ≡ 2 (mod 20) be a positive integer. Then DE(v, 5, 7) = DL(v, 5, 7).

Proof We first construct a minimal DC(v, 5, 1) with a hole of size two by taking a
B[v − 1, 5, 1] in increasing order and a minimal (v + 1, 5, 1) covering design with a
hole of size 3 in decreasing order, [22]. Assume the hole is {v − 1, v, v + 1}. Place
the point v + 1 at the end of the blocks in which it is contained and then replace it
by v.

(i) To construct a minimal DC(22, 5, 7) with the hole of the size 2, take three
copies of minimal DC(22, 5, 2) with a hole the size 2, which is equivalent to an
optimal DP(22, 5, 2), [8]. Further, take a minimal DC(22, 5, 1) with a hole of size 2.

(ii) We now construct a minimal DC(v, 5, 7) as follows:

1) Take an optimal DP(v, 5, 2) with a hole of size two, say, {v − 1, v}, [8].

2) Take two copies of minimal DC(v, 5, 2), [9]. This design has a triple the
ordered pairs of which appear in three blocks. Assume in both copies the triple is
{v − 2, v − 1, v}.

3) Take a minimal DC(v, 5, 1) with a hole of size 2, say, {v − 2, v − 1}.
Then it is readily checked that the above three steps yield the blocks of a minimal

DC(v, 5, 7).

Lemma 6.5 DE(v, 5, 7) = DL(v, 5, 7) for v = 14, 34, 54, 74, 94.

Proof For v = 14 the construction is as follows:

1) Take the minimal DC(14, 5, 2) in [9]. This design has a triple, say, {12, 13, 14},
the ordered pairs of which appear in three blocks.

2) Take two copies of an optimal DP(14, 5, 2) with a hole of size 2 [8]. Assume in
both copies that the hole is {13, 14}.

3) Take the minimal DC(14, 5, 1) from Lemma 3.7. Close observation of this
design shows that the ordered pairs (13, 14) and (14, 13) appear in four blocks.

It is clear now that the above three steps yield the blocks of a minimal DC(14, 5, 7).

For v = 94, the construction is the same as for v = 14 with the difference that in
third step we take a minimal DC(94, 5, 1) with a hole of size 14, then on the hole we
take a copy of a minimal DC(14, 5, 1) from Lemma 3.7. To complete this construction
we need to construct a minimal DC(94, 5, 1) with a hole size 14. Take a T [6, 1, 8],
delete two points from last group then inflate the resultant design by a factor of two
and replace any blocks which are of size 5 and 6, by the blocks of a (5, 2)-DGDD
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type 25 and 26 respectively [28]. Adjoin two points to the groups and on the first
five groups construct a minimal DC(18, 5, 1) with a hole of size two (Lemma 5.1),
and take these two points with last group as the hole of size 14.

For v = 34, 54, 74, the construction is as follows:

1) Take the minimal DC(v, 5, 2) in [9]. This design has a triple, say, {1, 2, 3}, the
ordered pairs of which appear in three blocks.

2) Take two copies of an optimal DP(v, 5, 2) [8]. This design has a hole of size
two, say, {1, 2}, in the first copy and {1, 3} in the second copy. Further, assume we
have 〈1 6 8 9 10〉 〈10 9 8 3 2〉, which we replace by 〈1 8 9 10 3〉 〈6 10 9 8 2〉.

3) Take a minimal DC(v, 5, 1) with a hole of size six, say, {1, 2, . . . , 6}, and on
the hole construct the following minimal DC(6, 5, 1):

〈1 2 4 3 5〉 〈6 3 4 1 2〉 〈2 3 1 6 5〉 〈5 4 2 1 6〉.

Now it is readily checked that the above three steps yield the blocks of a minimal
DC(v, 5, 7) for v = 34, 54, 74. To complete this construction we need to construct a
minimal DC(v, 5, 1) with a hole of size six. For this purpose see the next table.

v Point Set Base Blocks
34 Z2 × Z14 ∪ H6 〈(1, 3) (0, 6) (0, 0) (1, 0) (1, 1)〉 〈(1, 8) (0, 0) (1, 2) (0, 6) (0, 2)〉

〈(0, 0) (1, 13) h1 (1, 6) (0, 1)〉 〈(0, 0) (1, 12) h2 (0, 3) (1, 7)〉
〈(1, 4) (0, 0) h3 (0, 5) (1, 10)〉
〈(0, 1) (0, 10) − (0, 3) (0, 0)〉 ∪ {h5, h6}
〈(1, 10) (1, 1) − (1, 0) (1, 3)〉 ∪ {h5, h6}
〈(1, 7) (0, 0) h4 (0, 6) (1, 3)〉.

54 Z48 ∪ H6 〈0 7 15 3 29〉 〈0 11 31 1 17〉 〈1 3 13 0 43〉
〈2 21 − 0 25〉 ∪ {h1, h2} 〈0 21 − 5 14〉 ∪ {h3, h4}
〈20 9 − 0 33〉 ∪ {h5, h6}

74 Z68 ∪ H6 〈3 21 15 0 35〉 〈1 0 7 5 29〉 〈35 0 21 8 51〉
〈19 0 9 57 45〉 〈8 0 42 52 1〉 〈0 31 − 2 3〉 ∪ {h1, h2}
〈0 25 − 3 40〉 ∪ {h3, h4} 〈9 4 − 0 23〉 ∪ {h5, h6}

Lemma 6.6 Let v ≡ 14 (mod 20) be a positive integer. Then DE(v, 5, 7) =
DL(v, 5, 7).

Proof. For v = 14, 34, 54, 74, 94, see the previous lemma.

For v = 134, apply Theorem 2.2 with m = 7, h = 2, u = 3 and λ = 7.

For all other values write v = 20m + 4u + h + s where m, u, h and s are chosen
as in the proof of Lemma 3.6 with the difference that 4u + h + s = 14, 34, 54, 74, 94.
Now apply 2.4 with λ = 7 to get the result.
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7 Directed covering with index 9

Again, in this section we notice that a minimal DC(v, 5, 9) for all v ≡ 12 (mod 20)
can be constructed by taking two copies of a minimal (v, 5, 9) covering design in
opposite directions. Further, a minimal DC(v, 5, 9) for all v ≡ 8 (mod 10) can be
constructed by taking a minimal DC(v, 5, 2) and minimal DC(v, 5, 7).

Lemma 7.1 Let v ≡ 4 (mod 10) be a positive integer.Then DE(v, 5, 9) = DL(v, 5, 9).

Proof For all such v the construction is as follows:

1) Take two copies of a minimal DC(v, 5, 2). This design, as presented in [9], has
a triple, say, {v − 2, v − 1, v}, the ordered pairs of which appear in three blocks.

2) Take two copies of an optimal DP(v, 5, 2) with a hole of size two, [8]. Assume
the hole is {v − 1, v} in the first copy and {v − 2, v − 1} in the second copy.

3) Take a minimal DC(v, 5, 1).

Then it is readily checked that the above construction yields a minimal DC(v, 5, 9)
for all v ≡ 4 (mod 20).

Lemma 7.2 Let v ≡ 2 (mod 20) be a positive integer.Then DE(v, 5, 9) = DL(v, 5, 9).

Proof For v = 22, 42, 62, 82 the construction is given in the next table.

v Point Set Base Blocks
22 Z22 〈1 2 0 3 8〉 • 3 〈5 2 0 15 11〉 • 3 〈0 3 17 7 11〉 • 3

〈2 4 0 1 13〉 • 2 〈1 0 13 6 16〉 • 2 〈0 5 2 18 10〉 • 2
〈1 0 2 10 4〉 〈1 0 15 11 7〉 〈7 2 0 16 11〉 〈3 15 0 12 7〉

42 Z42 Take 14 copies of a (42, 5, 1) optimal packing design [30]
such that 7 of them in some order and the other 7 are in
opposite order. Further, take the following blocks:
〈0 1 3 21 5〉 〈5 19 2 1 0〉 〈4 0 11 21 32〉 〈0 30 21 13 6〉
〈0 3 22 1 10〉 〈0 15 4 27 21〉 〈0 13 21 5 29〉 〈10 3 0 31 32〉
〈27 5 0 14 21〉

62 Z62 Take 14 copies of a (62, 5, 1) optimal packing design [30]
such that 7 of them are in some order and the other 7 are in
opposite order. Further, take the following blocks:
〈0 1 8 3 31〉 〈0 13 4 50 35〉 〈0 16 5 26 45〉 〈0 6 17 30 48〉
〈0 1 8 3 34〉 〈35 16 44 0 4〉 〈47 30 6 0 20〉 〈19 8 0 44 31〉
〈7 4 2 1 0〉 〈30 4 10 0 41〉 〈33 18 42 0 5〉 〈31 7 46 0 17〉
〈31 43 8 22 0〉

82 Z82 Take 16 copies of a (82, 5, 1) optimal packing design [30]
such that 8 of them are in some order and the other 8 are in
opposite order. Further, take the following blocks:
〈1 3 0 7 41〉 〈46 0 5 63 14〉 〈59 45 0 7 18〉 〈8 21 47 62 0〉
〈0 10 22 51 67〉 〈0 42 8 3 1〉 〈30 54 13 4 0〉 〈61 41 6 0 25〉
〈51 33 22 10 0〉
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For v = 142, apply Theorem 2.2 with m = 7, h = 2, u = 5 and λ = 9. The
application of this theorem requires a minimal DC(22, 5, 9) with a hole of size 2.
Such design can be constructed by taking 4 copies of minimal DC(22, 5, 2) with a
hole of size 2 [9, p. 31] and one copy of a minimal DC(22, 5, 1) with a hole of size 2,
Lemma 3.1.

For all other values of v, simple calculations show that v can be written in the
form v = 20m +4u+h+ s where m, u, h and s are chosen as in the proof of Lemma
3.6 with the difference that 4u+h+s = 22, 42, 62, 82 and h = 2. Now apply Theorem
2.4 with λ = 9.

8 Conclusion.

We have shown that if v is an even integer, v ≥ 5, and 1 ≤ λ ≤ 9 is an odd integer
then DE(v, 5, λ) = DL(v, 5, λ). In [9] we also have shown that if λ is even and v ≥ 5
is an odd integer then DE(v, 5, λ) = DL(v, 5, λ) + e where e = 1 if λv(v − 1)/2 ≡ −1
(mod 5); and e = 0 otherwise. On the other hand, for λ = 10 and v ≥ 5, there exists
a DB[v, 5, 10], and since DE(v, 5, λ′) = DE(v, 5, 10) + DE(v, 5, λ) where λ′ = λ + 10,
it follows that DE(v, 5, λ) = DL(v, 5, λ) + e for all even v ≥ 5 and λ odd.
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