Directed covering with block size 5 and v even

Ahmed M. Assaf
Department of Mathematics
Central Michigan University
Mt. Pleasant, MI 48859
U.S.A.
H. Alhalees
Department of Mathematics
Saginaw Valley State University
Saginaw, MI 48710
U.S.A.
L.P.S. SINGH
Department of Computer Science
Central Michigan University
Mt. Pleasant, MI 48859
U.S.A.

Abstract

A directed covering design, $\mathrm{DC}(v, k, \lambda)$, is a $(v, k, 2 \lambda)$ covering design in which the blocks are regarded as ordered k-tuples and in which each ordered pair of elements occurs in at least λ blocks. Let $\mathrm{DE}(v, k, \lambda)$ denote the minimum number of blocks in a $\mathrm{DC}(v, k, \lambda)$. In this paper the values of the function $\mathrm{DE}(v, 5, \lambda)$ are determined for all even integers $v \geq 5$ and λ odd.

1 Introduction

A transitively ordered k-tuple $\left(a_{1}, \ldots, a_{k}\right)$ is defined to be the set $\left\{\left(a_{i}, a_{j}\right) \mid 1 \leq i<\right.$ $j \leq k\}$. Let v, k and λ be positive integers. A directed covering (packing) design, denoted by $\mathrm{DC}(v, k, \lambda)(\mathrm{DP}(v, k, \lambda))$, is a pair (X, A) where X is a set of points and A is a collection of transitively ordered k-tuples of X, called blocks, such that every ordered pair of X appears in at least (at most) λ blocks. Let $\mathrm{DE}(v, k, \lambda)(\mathrm{DD}(v, k, \lambda))$ denote the minimum (maximum) number of blocks in a $\mathrm{DC}(v, k, \lambda)(\mathrm{DP}(v, k, \lambda))$.

A $\mathrm{DC}(v, k, \lambda)$ with $|A|=\mathrm{DE}(v, k, \lambda)$ is called a minimum directed covering design and a $\mathrm{DP}(v, k, \lambda)$ with $|A|=\mathrm{DD}(v, k, \lambda)$ is called a maximum directed packing design. If we ignore the order of the blocks, a $\mathrm{DC}(v, k, \lambda)(\mathrm{DP}(v, k, \lambda))$ is a standard ($v, k, 2 \lambda$) covering (packing) design. Therefore, the following bounds, known as the Schönheim bounds, hold [24].

$$
\begin{aligned}
& \mathrm{DE}(v, k, \lambda) \geq\left[\frac{v}{k}\left[\frac{v-1}{k-1} 2 \lambda\right]\right]=\mathrm{DL}(v, k, \lambda), \\
& \mathrm{DD}(v, k, \lambda) \leq\left[\frac{v}{k}\left[\frac{v-1}{k-1} 2 \lambda\right]\right]=\mathrm{DU}(v, k, \lambda) .
\end{aligned}
$$

Here $\lceil x\rceil$ is the smallest and $[x]$ is the largest integer satisfying $[x] \leq x \leq\lceil x\rceil$. The above bound has been sharpened by Hanani [20] in certain cases.
Theorem 1.1 (i) If $2 \lambda(v-1) \equiv 0(\bmod k-1)$ and $2 \lambda v(v-1) /(k-1) \equiv-1$ $(\bmod k)$ then $D E(v, k, \lambda) \geq D L(v, k, \lambda)+1$.
(ii) If $2 \lambda(v-1) \equiv 0(\bmod k-1)$ and $2 \lambda v(v-1) /(k-1) \equiv 1(\bmod k)$ then $D D(v, k, \lambda) \leq D U(v, k, \lambda)-1$.

When $\mathrm{DE}(v, k, \lambda)=\mathrm{DL}(v, k, \lambda)$, the directed covering design is called minimal. Similarly, when $\mathrm{DD}(v, k, \lambda)=\mathrm{DU}(v, k, \lambda)$, the directed packing design is called optimal.

A directed balanced incomplete block design, $\mathrm{DB}[v, k, \lambda]$, is a $\mathrm{DC}(v, k, \lambda)$ where every ordered pair of points appears in exactly λ blocks. If a $\mathrm{DB}[v, k, \lambda]$ exists then it is clear that $\mathrm{DE}(v, k, \lambda)=2 \lambda v(v-1) / k(k-1)=\mathrm{DL}(v, k, \lambda)=\mathrm{DD}(v, k, \lambda)$. In the case $k=5$, Street and Wilson [28] have shown the following:
Theorem 1.2 Let λ and $v \geq 5$ be positive integers. The necessary and sufficient conditions for the existence of a $D B[v, 5, \lambda]$ are that $(v, \lambda) \neq(15,1)$ and that $\lambda(v-$ $1) \equiv 0(\bmod 2)$ and $\lambda v(v-1) \equiv 0(\bmod 10)$.

In [25-27], Skillicorn discussed the function $\mathrm{DE}(v, 4,1)$ and $\mathrm{DD}(v, 4,1)$ and developed many other results including applications of directed designs to computer network and data flow machine architecture. The values of $\mathrm{DE}(v, 5, \lambda)$ for all $v \geq 5$ and even λ have been determined by Assaf [9], and more recently, Assaf et al. [14] have determined the values of $\mathrm{DE}(v, 4, \lambda)$ and $\mathrm{DD}(v, 4, \lambda)$ for all positive integers v and λ. The values of $\operatorname{DE}(v, 5, \lambda)$ for odd λ and v is considered by Alhalees [4]. It is our purpose here to discuss the function $\mathrm{DE}(v, 5, \lambda)$ for every λ and even $v \geq 5$. Since λ even has been done in [9] we only need to treat the case λ is odd. We show the following.
Theorem 1.3 Let $v \geq 5$ be an even integer and λ be an odd integer. Then $D E(v, 5, \lambda)=D L(v, 5, \lambda)+e$ where $e=1$ if $\lambda v(v-1) / 2 \equiv-1(\bmod 5)$; and $e=0$ otherwise.

2 Recursive Constructions

To describe our recursive constructions we need the notions of transversal designs, group divisible designs and covering (packing) designs with a hole of size h. For the
definition of these designs see [6]. A (v, k, λ) covering design with a hole size h is said to be minimal if the total number of blocks β satisfies $|\beta|=\phi(v, k, \lambda)-\phi(h, k, \lambda)$ where $\phi(n, k, \lambda)=\lceil(n / k)\lceil\lambda(n-1) /(k-1)\rceil\rceil$. We shall adopt the following notation: a $T[k, \lambda, m]$ stands for a transversal design with block size k, index λ and group size m. A (K, λ)-GDD stands for a group divisible design with block sizes from K and index λ. When $K=\{k\}$ we simply write k for K. The group type of a $(K, \lambda)-$ GDD is a listing of the group sizes using exponential notations, i.e. $1^{a} 2^{b} 3^{c} \ldots$ denotes a groups of size $1, b$ groups of size 2 , etc.

The excess (complement) graph of a (v, k, λ) covering (packing) design is the graph on v vertices such that $\{a, b\}$ is an edge with multiplicity μ if $\{a, b\}$ appears in $\lambda+\mu,[(\lambda-\mu)]$ blocks. In a similar way one can define the directed complement and excess graphs of a $\operatorname{DP}(v, k, \lambda)$ and $\mathrm{DC}(v, k, \lambda)$ [13]. The directed graph is called symmetric if the number of edges entering a vertex is equal to the number of edges exiting the vertex.

We like to remark that the notions of transversal designs, group divisible designs, covering (packing) designs with a hole of size h can be easily extended to the directed case. In the sequel we write DT, DGDD with the appropriate parameters.

The following theorem will be used extensively in this paper. The proof of this result may be found in $[1-3,16-18,20,23,29]$.

Theorem 2.1 There exists a $T[6,1, m]$ for all positive integers $m, m \notin\{2,3,4,6\}$ with the possible exception of $m \in\{10,14,18,22\}$.

Theorem 2.2 If there exists a $(6, \lambda)$ - GDD of type 5^{m} and a minimal $D C(20+h, 5, \lambda)$ with a hole of size h and a minimal $D C(4 u+h, 5, \lambda), 0 \leq u \leq 5$, then there exists a minimum $D C(20(m-1)+4 u+h, 5, \lambda)$.
Proof: Take a $(6, \lambda)$-GDD of type 5^{m} and delete all but u points from last group. Inflate the resultant design by a factor of 4, i.e. replace each block of size 5 and 6 by the blocks of a $(5,1)$-DGDD of type 4^{5} and 4^{6} respectively [20].

On the last group we construct a minimal $\mathrm{DC}(4 u+h, 5, \lambda)$ and on the remaining groups construct a minimal $\mathrm{DC}(20+h, 5, \lambda)$ with a hole of size h.

The application of the above theorem requires the existence of a $(6, \lambda)$-GDD of type 5^{m}. Our authority of the following Lemma is Hanani [20, p.286].

Lemma 2.1 (i) There exists a $(6, \lambda)$-GDD of type 5^{7} for $\lambda \geq 2$.
(ii) There exists a $(6, \lambda)-G D D$ of type 5^{9} for λ even.

Another notion that is used in this paper is the notion of modified group divisible designs. Let k, λ, v and m be positive integers. A modified group divisible design (k, λ)-MGDD of type m^{n} is a quadruple $(V, \beta, \gamma, \delta)$ where V is a set of points with $|V|=m n, \gamma=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is a partition of V into n sets, called groups, $\delta=\left\{R_{1}, R_{2}, \ldots, R_{m}\right\}$ is a partition of V into m sets, called rows, and β is a family of k-subsets of V, called blocks, with the following properties.

1) $\left|B \cap G_{i}\right| \leq 1$ for all $B \in \beta$ and $G_{i} \in \gamma$.
2) $\left|B \cap R_{i}\right| \leq 1$ for all $B \in \beta$ and $R_{i} \in \delta$.
3) $\left|G_{i}\right|=m$ for all $G_{i} \in \gamma$.
4) Every 2-subset $\{x, y\}$ of V such that x and y are neither in the same group nor same row is contained in exactly λ blocks.
5) $\left|G_{i} \cap R_{j}\right|=1$ for all $G_{i} \in \gamma$ and $R_{j} \in \delta$.

A resolvable MGDD (RMGDD) is one the blocks of which can be partitioned into parallel classes. It is clear that a $(5,1)$-RMGDD of type 5^{m} is the same as $\mathrm{RT}[5,1, m]$ with one parallel class of blocks singled out, and since $\mathrm{RT}[5,1, m]$ is equivalent to $T[6,1, m]$, we have the following existence theorem.

Theorem 2.3 There exists a $(5,1)-R M G D D$ of type 5^{m} for all positive integers m, $m \notin\{2,3,4,6\}$, with the possible exception of $m \in\{10,14,18,22\}$.

The proof of the next theorem is the same as the proof of Theorem 2.3 of [5].
Theorem 2.4 If there exists a $(5,1)-R M G D D$ of type 5^{m} and $a(5, \lambda)-D G D D$ of type $4^{m} s^{1}$ and $a(5, \lambda)-D G D D$ of type 4^{5} and 4^{6} and there exists a minimal $D C(20+h, 5, \lambda)$ with a hole of size h, then there exists a minimal $D C(20 m+4 u+h+s, 5, \lambda)$ with a hole of size $4 u+h+s$, where $0 \leq u \leq m-1$.

The application of the previous theorem requires the existence of a (5, 1)-DGDD of type $4^{m} s^{1}$. We shall use the following theorem.

Theorem 2.5 (i) There exists a (5,1)-DGDD of type $4^{m} s^{1}$ where $s=0$ if $m \equiv$ $1(\bmod 5), s=4$ if $m \equiv 0$ or $4(\bmod 5)$ and $s=4(m-1) / 3$ if $m \equiv 1(\bmod 3) \quad[5]$.
(ii) There exists a $(5,1)-D G D D$ of type $4^{m} 8^{1}$ where $m \equiv 0$ or $2(\bmod 5), m \geq 7$, with the possible exception of $m=10$ [19].

The following theorem is a generalization of Theorem 2.6 of [7].
Theorem 2.6 If there exists a $(5,1)-R M G D D$ of type 5^{m} and $a(5, \lambda)$ - $D G D D$ of type $2^{m} s^{1}$ and $a(5, \lambda)-D G D D$ of type 2^{5} and 2^{6} and there exists a minimal $D C(10+h, 5, \lambda)$ with a hole of size h, then there exists a minimal $D C(10 m+2 u+h+s, 5, \lambda)$ with a hole of size $2 u+h+s$, where $0 \leq u \leq m-1$.

We like to mention that for large v, instead of constructing a $\mathrm{DC}(v, 5, \lambda)$, we will construct a $\mathrm{DC}(v, 5, \lambda)$ with a hole of size $h, h>5$, and then on the hole we construct a $\mathrm{DC}(h, 5, \lambda)$.

Finally about the notation, a block of the form $\langle k k+m k+n k+j f(k)\rangle(\bmod v)$, where $f(k)=a$ if k is even and $f(k)=b$ if k is odd, is denoted by $\langle 0 m n j\rangle \cup\{a, b\}$. Further, if a and b are to be inserted in the middle, then we write $\langle 0 m-n j\rangle \cup\{a, b\}$.

3 Directed covering with index 1

Lemma 3.1 i) There exists a minimal $D C(22,5,1)$ with a hole of size 2.
ii) Let $v \equiv 2(\bmod 20)$ be a positive integer. Then $D E(v, 5,1)=D L(v, 5,1)$.

Proof i) The construction of a minimal $\mathrm{DC}(22,5,1)$ with a hole of size 2 is as follows:

1) Take a $B[21,5,1]$ in increasing order.
2) Take a $(23,5,1)$ minimal covering design, in decreasing order, with a hole of size three, say, $\{23,22,21\}$, [22]. Place the point 23 at the end of the blocks in which it is contained then replace it by 22 . Then it is easy to check this construction yields the blocks of a minimal $\mathrm{DC}(22,5,1)$ with a hole of size two.
ii) The construction of a minimal $\mathrm{DC}(v, 5,1)$ for all $v \equiv 2(\bmod 20)$ consists of the following two steps:
3) Take a $(v+1,5,1)$ minimal covering design in decreasing order. This design has a block of size three, say, $\langle 321\rangle$, [22]. Assume in this design we have the block $\langle v+1 v 1098\rangle$ where $\{8,9,10\}$ are arbitrary numbers. Replace this block by the block $\langle v 109811\rangle$. In all other blocks containing $v+1$, place $v+1$ at the end of the blocks and then replace it by v. Further, replace the block $\langle 321\rangle$ by the block $\langle 32111 a\rangle$.
4) Take a $B[v-1,5,1]$ in increasing order. Assume we have the block $\langle 891011 a\rangle$ where a is an arbitrary number. Replace this block by the block $\langle 8910 v a\rangle$.

Lemma 3.2 Let $v \equiv 4(\bmod 20)$ be a positive integer. Then $D E(v, 5,1)=D L(v, 5,1)$. Proof For all positive integers $v \equiv 4(\bmod 20)$, the construction consists of the following two steps:
(1) Take a $B[v+1,5,1]$ in increasing order. Assume we have the block $\langle v-3 v-$ $2 v-1 v v+1\rangle$ from which we delete the point $v+1$. Further, place the point $v+1$ at the beginning of the blocks in which it is contained and then replace it by v.
(2) Take a $(v-1,5,1)$ minimal covering design in decreasing order [22]. This design has a block of size three, say, $\langle v-1 v-2 v-3\rangle$. Replace this block by $\langle v v-3 v-2 v-1\rangle$.

Remark: By deleting the two blocks of size four in Lemma 3.2, we obtain a directed covering with a hole of size 4 for all $v \equiv 4(\bmod 20)$.

Lemma 3.3 Let $v \equiv 6(\bmod 20)$ be a positive integer. Then $D E(v, 5,1)=D L(v, 5,1)$. Proof. For all positive integers $v \equiv 6(\bmod 20)$ the construction is as follows:

1) Take a $(v+1,5,1)$ minimal covering design in increasing order, [21]. Assume we have the block $\langle v-3 v-2 v-1 v v+1\rangle$, which we replace by $\langle v-3 v-2 v-1 v v-5\rangle$. In all other blocks through $v+1$, we place $v+1$ at the beginning of each block and then replace it by v. Further, we may assume that the pair $(v-5, v-4)$ appears in at least two blocks. Take a block containing $(v-5, v-4)$ and place $v-4$ before $v-5$.
2) Take a $B[v-1,5,1]$ in decreasing order. Assume we have the block $\langle v-1 v-$ $2 v-3 v-4 v-5\rangle$ which we replace by $\langle v v-1 v-2 v-3 v-4\rangle$.

Lemma 3.4 Let $v \equiv 8(\bmod 20)$ be a positive integer. Then $D E(v, 5,1)=D L(v, 5,1)$.
Proof. For $v=8$ let $X=\{1,2, \ldots, 8\}$; then the blocks are:
$\langle 12543\rangle,\langle 43521\rangle,\langle 87621\rangle,\langle 36784\rangle$, $\langle 56783\rangle,\langle 12678\rangle,\langle 46785\rangle$.
For all other values the construction is as follows:

1) Take a $B[v-3,5,1]$ in increasing order.
2) Take a $(v+3,5,1)$ minimal covering design with a hole of size three, say, $\{v+1, v+2, v+3\}$ in decreasing order, [22], place the points of the hole at the end of each block containing them, then replace $v+3$ by $v, v+2$ by $v-1$ and $v+1$ by $v-2$.

Lemma 3.5 Let $v \equiv 0(\bmod 10)$ be a positive integer. Then $D E(v, 5,1)=D L(v, 5,1)$.
Proof For $v \equiv 0(\bmod 20)$ the construction is as follows:

1) Take a $(v-1,5,1)$ minimal covering design in decreasing order [21], and assume that the pair $(5,4)$ appears in at least two blocks.
2) Take a $B[v+1,5,1]$ in increasing order and assume we have the block $\langle 123 v v+1\rangle$ where $\{1,2,3\}$ are arbitrary numbers. Replace this block by the block $\langle 4123 v\rangle$. In all other blocks through $v+1$, place $v+1$ at the beginning of each block, then replace it by v. Further, assume in (1) we have the block $\langle 54321\rangle$ which we replace by $\langle 5321 v\rangle$.
For $v \equiv 10(\bmod 20)$, the values for $v=10,30,50$ are given in the next table. In general, the construction in this table and all other tables is as follows: Let $X=Z_{v-n} \cup H_{n}$ or $X=\left(Z_{2} \times Z_{(v-n) / 2}\right) \cup H_{n}$ where $H_{n}=\left\{h_{1}, \ldots, h_{n}\right\}$ is the hole. The blocks are constructed by taking the orbits of the tabulated base blocks.

V	Point Scale	Base Blocks
10	Z_{10}	$\langle 20571\rangle$
30	Z_{30}	$\langle 012421\rangle\langle 0731318\rangle\langle 0832417\rangle$
50	Z_{50}	$\langle 0127$ $120\rangle\langle 034393649\rangle\langle 046344$ $24\rangle$ $\langle 01223437\rangle\langle 01840635\rangle$

For all other values of v, take a $(5,1)$-DGDD of type $10^{m}, m$ is odd [15]; then on each group construct a minimal $\mathrm{DC}(10,5,1)$.

Lemma 3.6 Let $v \equiv 12(\bmod 20)$ be a positive integer. Then $D E(v, 5,1)=$ $D L(v, 5,1)$.
Proof For $v=12$ let $X=\{1,2, \ldots, 12\}$. Then the blocks are:

| $\langle 831212\rangle$ | $\langle 472111\rangle$ | $\langle 110634\rangle$ | $\langle 24953\rangle$ |
| :--- | :--- | :--- | :--- | :--- |
| $\langle 127546\rangle$ | $\langle 386115\rangle$ | $\langle 510278\rangle$ | $\langle 61987\rangle$ |
| $\langle 1149810\rangle$ | $\langle 7312109\rangle$ | $\langle 9116212\rangle$ | $\langle 10151211\rangle$ |
| $\langle 58941\rangle$ | $\langle 2641012\rangle$ | $\langle 1211378\rangle$. | |

For $v=32$, the construction is as follows:

1) Take a $(31,5,1)$ minimal covering design in increasing order [22]. This design has a block of size three, say $\langle 293031\rangle$, which we delete.
2) Take a $(33,5,1)$ covering design with $\phi(33,5,1)+1$ blocks in decreasing order, [11]. Close observation of this design shows there is at least one triple, say, $\{31,30,29\}$, the pairs of which appear in two blocks. Assume in this design we have the block $\langle 3332 c b a\rangle$ which we replace by $\langle 32 c b a e\rangle$. In all other blocks through 33 , place 33 at the end of these blocks then replace it by 32. Assume in (1) we have the block $\langle a b c c c l e l$ and that (d, e) appears in at least two blocks. Replace this block by the block $\langle a b c d 32\rangle$.

The above two steps give a design such that the pairs $(29,30),(29,31)$, and $(30,31)$ appear in zero blocks, $(30,29),(31,29),(31,30)$ appear twice while each other ordered pair appears in at least one block. To fix this problem take three blocks containing the pairs $(30,29),(31,29)$, and $(31,30)$ and we switch the order of these pairs so that $(29,30),(29,31),(30,31)$ each appears exactly once.

For $v=52$, let $X=Z_{44} \cup H_{8}$. Then the required blocks are the following $(\bmod 44)$

$$
\begin{gathered}
\langle 2228180\rangle,\langle 20419\rangle,\langle 2615-03\rangle \cup\left\{h_{1}, h_{2}\right\}, \\
\langle 530-017\rangle \cup\left\{h_{3}, h_{4}\right\},\langle 629-019\rangle \cup\left\{h_{5}, h_{6}\right\},\langle 167-027\rangle \cup\left\{h_{7}, h_{8}\right\} .
\end{gathered}
$$

For $v=92$ we first construct a $(93,5,1)$ covering design with $\phi(93,5,1)+1$ blocks such that there is a triple the pairs of which appear in at least two blocks. Such a design can be constructed by taking a $T[5,1,18]$, adjoin three new points to the groups and then on each group construct a $B[21,5,1]$. Now the construction of a minimal $\mathrm{DC}(92,5,1)$ is exactly the same as $\mathrm{DC}(32,5,1)$.

For $v=132$, by adjoining 33 new points to the 33 parallel classes of $\mathrm{RB}[100,4,1]$ we obtain a $(133,5,1)$ covering design with a hole of size 33 , on which we construct a $(33,5,1)$ covering design with $\phi(93,5,1)+1$ blocks. Now the construction of a minimal $\mathrm{DC}(132,5,1)$ is the same as the $\mathrm{DC}(32,5,1)$.

For a $\mathrm{DC}(72,5,1)$, take a $T[5,1,7]-T[5,1,1]$ and inflate this design by a factor of two; that is, we replace each block by the blocks of a (5,1)-DGDD of type 2^{5}, [15]. Adjoin two points $\{a, b\}$ to the groups of the resultant design and on each group we construct a minimal $\mathrm{DC}(16,5,1)$ with a hole of size four such that the hole is on $\{a, b\}$ together with the two points of the hole of the directed $T[5,1,14]-T[5,1,2]$. Finally, on the hole of the directed $T[5,1,14]-T[5,1,2]$ with the two points $\{a, b\}$ we construct a minimal $\mathrm{DC}(12,5,1)$.

For a minimal $\mathrm{DC}(16,5,1)$ with a hole of the size 4 , let $X=Z_{12} \cup\{a, b, c, d\}$. Then the blocks are:

$\langle 30 a 71\rangle$	$\langle 25 a 93\rangle$	$\langle 74 a 511\rangle$	$\langle 101 a 60\rangle$	$\langle 96 a 82\rangle$	$\langle 811$ a 104\rangle
$\langle 69 b 17\rangle$	$\langle 113 b 89\rangle$	$\langle 101 b 511\rangle$	$\langle 80 b 32\rangle$	$\langle 47660\rangle$	$\langle 52 b 410\rangle$
$\langle 41 c 82\rangle$	$\langle 610 c 34\rangle$	$\langle 08 c 56\rangle$	$\langle 95 c 011\rangle$	$\langle 112 c 71\rangle$	$\langle 73 c 910\rangle$
$\langle 107$ d 2 8〉	$\langle 04 d 109\rangle$	$\langle 211 d 06\rangle$	$\langle 19 d 43\rangle$	$\langle 58 d 71\rangle$	$\langle 36 d 115\rangle$

For all other values of v, simple calculations show that v can be written in the form $v=20 m+4 u+h+s$ where m, u, h and s are chosen so that:
(1) There exists a $(5,1)$-RMGDD of type 5^{m};
(2) There exists a $(5,1)$-DGDD of type $4^{m} s^{1}$;
(3) $4 u+h+s=12,32,52,72,92$;
(4) $0 \leq u \leq m-1, s \equiv 0(\bmod 4)$ and $h=0$.

Now apply Theorem 2.4 with $\lambda=1$ to get the result.
Lemma 3.7 Let $v \equiv 14(\bmod 20)$ be a positive integer. Then $D E(v, 5,1)=$ $D L(v, 5,1)$.
Proof For $v=14$, let $X=\{1, \ldots, 14\}$. Then the required blocks are:

$\langle 181223\rangle$	$\langle 117241\rangle$	$\langle 613104\rangle$	$\langle 95432\rangle$	$\langle 512467\rangle$
$\langle 113685\rangle$	$\langle 275108\rangle$	$\langle 98176\rangle$	$\langle 3121413\rangle$	$\langle 6141345\rangle$
$\langle 8411910\rangle$	$\langle 1073129\rangle$	$\langle 10121511\rangle$	$\langle 41413128\rangle$	$\langle 13143711\rangle$
$\langle 5131419\rangle$	$\langle 9871314\rangle$	$\langle 1112101314\rangle$	$\langle 6291211\rangle$	$\langle 14131026\rangle$.

For all other values of v, the construction is as follows:

1) Take a $(v-3,5,1)$ minimal covering design in increasing order [21]. Close observation of these designs show that they have a block of size three, say, $\langle v-5, v-$ $4, v-3\rangle$. Delete this block.
2) Take a $(v+3,5,1)$ minimal covering design with a hole size of 9 in increasing order, [19]. Place the points $v+1, v+2$ and $v+3$ at the end of each block containing them, then replace $v+3$ by $v, v+2$ by $v-1$ and $v+1$ by $v-2$.
3) On $\{v-5, v-4, v-3, v-2, v-1, v\}$, construct a minimal $\mathrm{DC}(6,5,1)$.

Lemma 3.8 Let $v \equiv 16(\bmod 20)$ be a positive integer. Then $D E(v, 5,1)=$ $D L(v, 5,1)$.
Proof For $v=16$, see Lemma 3.6.
For all other values of v, the construction is as follows:

1) Take a $(v-1,5,1)$ minimal covering design in decreasing order [21].
2) Take a $(v+1,5,1)$ minimal covering design in increasing order with a hole of size 9 on $\{v-7, \ldots, v+1\},[19]$. Place the point $v+1$ at the beginning of the blocks which contain it and then replace it by v.
3) On $\{v-7, v-6, \ldots, v\}$ take the following blocks:

$$
\begin{array}{ll}
\langle v-5 v-4 v-3 v-2 v\rangle & \langle v-6 v-3 v-2 v-1 v\rangle \\
\langle v-7 v v-5 v-4 v-1\rangle & \langle v v-7 v-6 v-3 v-2\rangle .
\end{array}
$$

The above three steps guarantee that each ordered pair appears at least once except $(v-6, v-5)$ and $(v-6, v-4)$. Now consider the blocks of the $(v-1,5,1)$ minimal covering design in decreasing order. This design has v repeated pairs. Further, close observation of these designs shows that we may assume that $(v-5, v-6)$ and $(v-4, v-6)$ each appears at least twice. If $\{v-6, v-5, v-4\}$ appear in one block, say, $\langle y v-4 v-5 v-6 x\rangle$, then replace this block by $\langle y v-6 v-4 v-5 x\rangle$. Otherwise, there are two blocks; one contains $(v-5, v-6)$ and the other contains $(v-4, v-6)$. Then in the first block write $v-6$ in front of $v-5$, and in the second write $v-6$ in front of $v-4$. Then it is clear that the above construction yields the
blocks of a minimal $\mathrm{DC}(v, 5,1)$ for $v \equiv 16(\bmod 20), v \geq 36$.
Lemma 3.9 Let $v \equiv 18(\bmod 20)$ be a positive integer. Then $D E(v, 5,1)=$ $D L(v, 5,1)$.
Proof For $v=18$ let $X=Z_{15} \cup\{a, b, c\}$. Then take the following blocks:

$\langle 036912\rangle+i, i \in Z_{3}$	$\langle 391471\rangle+i, i \in Z_{8}$	$\langle 118790\rangle+i, i \in Z_{4}$
$\langle 12011134\rangle+i, i \in Z_{3}$	$\langle 0510 a b\rangle+i, i \in Z_{4}$	$\langle a c 0510>\rangle+i, i \in Z_{4}$
$\langle b 1050 c\rangle+i, i \in Z_{4}$	$\langle b 4914 a\rangle\langle 4914 c a\rangle$	$\langle c 1494 b\rangle$.

For $v \geq 38$ the construction is as follows:

1) Take a $B[v+3,5,1]$ in increasing order. Assume that $\{v+1 v+2 v+3\}$ are not contained in one block. So assume we have the following three blocks:

$$
\langle a b c v v+3\rangle \quad\langle d e f v-1 v+2\rangle \quad\langle g h i v-2 v+1\rangle
$$

which we replace by

$$
\langle v-1 a b c v\rangle \quad\langle v-2 d e f v-1\rangle \quad\langle v g h i v-2\rangle
$$

respectively. Further, place $v+3, v+2, v+1$ at the beginning of the blocks in which they are contained, then replace $v+3$ by $v, v+2$ by $v-1$ and $v+1$ by $v-2$.
2) Take a $(v-3,5,1)$ covering design in decreasing order. Assume that the pairs $(v-2, y),(v-1, x),(v, 2)$ are repeated in this design. Further, assume we have the blocks:

$$
\langle v-1 x c b a\rangle \quad\langle v-2 y f e d\rangle \quad\langle v z i h g\rangle,
$$

which we replace by

$$
\langle v x c b a\rangle \quad\langle v-1 y f e d\rangle \quad\langle v-2 z i h g\rangle .
$$

Then it is readily checked that the above steps yield the blocks of a minimal $\mathrm{DC}(v, 5,1)$ for $v \equiv 18(\bmod 20), v \geq 38$.

4 Directed covering with index 3

We first observe that if $v \equiv 14(\bmod 20)$ then a minimal $\mathrm{DC}(v, 5,3)$ can be constructed by taking two copies of a minimal $(v, 5,3)$ covering design in opposite order. We now turn our attention to the remaining cases.

Lemma 4.1 Let $v \equiv 0$ or $6(\bmod 10)$ and $\lambda \geq 3$ be positive integers; then $D E(v, 5, \lambda)=D L(v, 5, \lambda)$.
Proof If λ is even then see [9]. If λ is odd, say, $2 m+1$, then the blocks of a minimal $\mathrm{DC}(v, 5, \lambda)$ are the blocks of a $\mathrm{DB}[v, 5,2 m]$ together with blocks of a minimal $\mathrm{DC}(v, 5,1)$.

Lemma 4.2 Let $v \equiv 2(\bmod 20)$ be a positive integer. Then $D E(v, 5,3)=D L(v, 5,3)$.

Proof For all $v \equiv 2(\bmod 20), v \geq 22$, the construction is as follows:

1) Take the minimal $\mathrm{DC}(v, 5,2)$ in $[9]$. This design has a triple, say, $\{v-2, v-1, v\}$ the ordered pairs of which appear in three blocks.
2) Take a $B[v-1,5,1]$ in increasing order.
3) Take a $(v+1,5,1)$ minimal covering design in decreasing order [22]. This design has a block of size three, say, $\langle v-1, v, v+1\rangle$ which we delete. Further, take the blocks through $v+1$, place $v+1$ at the end of each block then replace it by v.

Now it is easily checked that the above three steps yield the blocks of a minimal $\mathrm{DC}(v, 5,3)$ for $v \equiv 2(\bmod 20)$.
Lemma 4.3 Let $v \equiv 4(\bmod 20)$ be a positive integer. Then $D E(v, 5,3)=D L(v, 5,3)$.
Proof For all such v the construction is as follows:

1) Take the minimal $\mathrm{DC}(v, 5,2)$ in [9]. This design has a triple, say, $\{a, b, c\}$ the ordered pairs of which appear in three blocks.
2) Take a $(v-1,5,1)$ minimal covering design in increasing order [22]. This design has a block of size three, say, $\langle a b c\rangle$ which we delete. Further, assume we have the block $\left\langle\begin{array}{llll}1 & 2 & 7 & 10\rangle\end{array}\right.$ where $\{1,2,3,7,10\}$ are arbitrary numbers such that $(7,10)$ appears in two blocks. Replace this block by the block $\langle 1237 v\rangle$.
3) Take a $B[v+1,5,1]$ in decreasing order. Assume we have the block $\langle v+$ $1 v 321\rangle$ which we replace by $\langle v 32110\rangle$. Further, take the remaining blocks through $v+1$, place $v+1$ at the end of each block then replace it by v.

It is readily checked that the above three steps yield the blocks of a minimal $\mathrm{DC}(v, 5,3), v \equiv 4(\bmod 20)$.
Lemma 4.4 Let $v \equiv 8(\bmod 20)$ be a positive integer. Then $D E(v, 5,3)=D L(v, 5,3)$.
Proof For $v=8$, let $X=Z_{8}$. Then the required blocks are: $\langle 07354\rangle(\bmod 8)$, $\langle 47201\rangle+i, i \in Z_{6},\langle 25607\rangle+i, i \in Z_{2},\langle 0246\rangle+i, i \in Z_{2}$.

For $v=28$, let $X=Z_{22} \cup H_{6}$. Then the required blocks are the following (mod 22), together with the blocks of a $\mathrm{DC}(6,5,3)$ on $\left\{h_{1}, \ldots, h_{6}\right\}$.

$\langle 2021613\rangle$	$\left\langle 80 h_{1} 212\right\rangle$	$\left\langle 014 h_{2} 28\right\rangle$
$\left\langle 32 h_{3} 01\right\rangle$	$\left\langle 73 h_{4} 018\right\rangle$	$\left\langle 03 h_{5} 813\right\rangle$
$\left\langle 40 h_{6} 915\right\rangle$	$\langle 07-12\rangle \cup\left\{h_{1}, h_{2}\right\}$	$\langle 1013-03\rangle \cup\left\{h_{3}, h_{4}\right\}$
$\langle 90-174\rangle \cup\left\{h_{5}, h_{6}\right\}$.		

For $v=48$, let $X=Z_{40} \cup H_{8}$. On $Z_{40} \cup H_{7}$ construct an optimal $\operatorname{DP}(47,5,2)$ with a hole of size 7 on H_{7}. Further, take the following blocks $(\bmod 40)$:

$\langle 0262414\rangle$	$\left\langle 52 h_{8} 01\right\rangle$		
$\langle 05-1825\rangle \cup\left\{h_{3}, h_{4}\right\}$			$\langle 136-029\rangle \cup\left\{h_{5}, h_{6}\right\}$
:---		$\langle 011-263\rangle \cup\left\{h_{1}, h_{2}\right\}$	
:---			
$\langle 90-1928\rangle \cup\left\{h_{7}, h_{8}\right\}$.			

For $v=68,88$, take a (6,3)-GDD of type $5^{n}, n=7,9$ and delete one point from the last group. Inflate the resulting design by a factor of two. Replace all its blocks by the blocks of a $(5,1)$-DGDD of type 2^{5} and 2^{6}, [28]. Finally, on the first $(n-1)$
groups construct a minimal $\mathrm{DC}(10,5,3)$ and on the last group construct a minimal $\mathrm{DC}(8,5,3)$.

For $v=128$, apply Theorem 2.2 with $m=7, u=2, h=0$ and $\lambda=3$.
For all other values of v, simple calculations show that v can be written in the form $v=20 m+4 u+h+s$ where m, u, h and s are chosen as in Lemma 3.6 with the difference that $4 u+h+s=8,28,48,68,88$. Now apply Theorem 2.4 with $\lambda=3$ to get the result.

Lemma 4.5 Let $v \equiv 12(\bmod 20)$ be a positive integer. Then $D E(v, 5,3)=$ $D L(v, 5,3)$.
Proof For $v=12$ the construction is as follows:

1) Take the blocks of the minimal $\mathrm{DC}(12,5,1)$ (Lemma 3.6). The excess graph of this design contains the following digraph.

From this design, delete the block $\langle 2641012\rangle$. Further, replace the block $\langle 1211378\rangle$ by the block $\langle 412378\rangle$.
2) Take the minimal $\mathrm{DC}(12,5,2)$ in [9]. Apply the permutation $(2 a),(b 6)$ and replace c by 10 ; we obtain a minimal $\mathrm{DC}(12,5,2)$ such that the ordered pairs of $\{2,6,10\}$ appear in three blocks. Apply the permutation (3 b) to the blocks of this design; then replace 0 by $9, a$ by 11 , and b by 12 . We obtain a minimal $\mathrm{DC}(12,5,2)$ on $\{1, \ldots, 12\}$ such that we have the following blocks: $\left\langle\begin{array}{lllll}8 & 7 & 3 & 1\rangle\langle 147210\rangle\end{array}\right.$ $\langle 49826\rangle$, which we replace by $\langle 118731\rangle\langle 174210\rangle\langle 98426\rangle$.

Then it is easy to check that the above two steps yield the blocks of a minimal $\mathrm{DC}(12,5,3)$.

For $v=32,52,72,92$ the construction is as follows:

1) Take a minimal $\mathrm{DC}(v, 5,1)$ with a hole of size 8 such that $\{1,2,10,11,14, v\}$ are points of the hole.
2) Take a $B[v-1,5,2]$ in increasing order and assume we have the two blocks $\langle 3451014\rangle$ and $\langle 6781114\rangle$, which we replace by $\langle 345 v 14\rangle\langle 678 v 14\rangle$.
3) Take a $(v+1,5,2)$ optimal packing design in decreasing order, $[7]$. This design has a triple, say, $\{1,2, v+1\}$, the pairs of which appear in zero blocks. Further, assume we have the following blocks: $\langle v+1 v 543\rangle\langle v+1 v 876\rangle$, which we
replace by $\langle v 54310\rangle\langle v 87611\rangle$. Further, place the point $v+1$ at the end of the blocks in which it is contained, and then replace it by v.
4) On the hole of size eight, take the minimal $\mathrm{DC}(8,5,1)$ of Lemma 3.4 and notice that the excess graph contains the following digraph, say, on $\{1,2, \mathrm{v}\}$ and $\{10,11,14\}$.

It is easy to check that the above four steps yield the blocks of a minimal $\mathrm{DC}(v, 5,3)$ for $v=32,52,72,92$.

To complete the proof of our Lemma we need to construct a minimal $\mathrm{DC}(v, 5,1)$ with a hole of size 8 for $v=32,52,72,92$.

For $v=32$, let $X=Z_{2} \times Z_{12} \cup H_{8}$. Then the required blocks are the following $\bmod (-, 12)$:

$\langle(0,0)(0,3)-(0,1)(0,8)\rangle \cup\left\{h_{1}, h_{2}\right\}$	$\langle(1,3)(1,0)-(1,1)(1,8)\rangle \cup\left\{h_{1}, h_{2}\right\}$
$\left\langle(1,1)(0,1) h_{3}(0,0)(1,0)\right\rangle$	$\left\langle(0,0)(1,7) h_{4}(1,1)(0,2)\right\rangle$
$\left\langle(0,3)(1,6) h_{5}(0,0)(1,8)\right\rangle$	$\left\langle(1,7)(0,0) h_{6}(0,4)(1,10)\right\rangle$
$\left\langle(1,2)(0,0) h_{7}(0,5)(1,9)\right\rangle$	$\left\langle(1,10)(0,0) h_{8}(1,2)(0,6)\right\rangle$.

For $v=52$, let $X=Z_{44} \cup H_{8}$. Then take the following blocks $(\bmod 44)$:
$\langle 1280226\rangle$

$\langle 019-285\rangle \cup\left\{h_{3}, h_{4}\right\}$ | $\langle 125013\rangle$ |
| :--- |
| $\langle 017-276\rangle \cup\left\{h_{5}, h_{6}\right\}$ | | $\langle 30-2518\rangle \cup\left\{h_{1}, h_{2}\right\}$ |
| :--- |
| $\langle 031-167\rangle \cup\left\{h_{7}, h_{8}\right\}$. |

For $v=72$, let $X=Z_{64} \cup H_{8}$. Then take the following blocks $(\bmod 64)$:

$\langle 3014620\rangle$	$\langle 1016426\rangle$	$\langle 37463017\rangle$
$\langle 07312039\rangle$	$\langle 10-114\rangle \cup\left\{h_{1}, h_{2}\right\}$	$\langle 170-292\rangle \cup\left\{h_{3}, h_{4}\right\}$
$\langle 518-430\rangle \cup\left\{h_{5}, h_{6}\right\}$	$\langle 429-023\rangle \cup\left\{h_{7}, h_{8}\right\}$.	

For $v=92$, let $X=Z_{84} \cup H_{8}$. Then take the following blocks $(\bmod 84)$:

$\langle 41242026\rangle$	$\langle 221370\rangle$	$\langle 05631485\rangle$
$\langle 54920440\rangle$	$\langle 680274513\rangle$	$\langle 01315491\rangle$
$\langle 524-330\rangle \cup\left\{h_{1}, h_{2}\right\}$	$\langle 631-130\rangle \cup\left\{h_{3}, h_{4}\right\}$	$\langle 270-1047\rangle \cup\left\{h_{5}, h_{6}\right\}$
$\langle 110-3255\rangle \cup\left\{h_{7}, h_{8}\right\}$.		

For a minimal $\mathrm{DC}(132,5,3)$, apply Theorem 2.2 with $m=7, h=0, u=3$ and $\lambda=3$.

For all other values of v, write $v=20 m+4 u+h+s$ where m, u, h and s are chosen as in Lemma 3.6; then apply Theorem 2.4 with $\lambda=3$ to get the result.

Lemma 4.6 There exists a minimal $D C(v, 5,2)$ for all $v \equiv 18(\bmod 20), v \geq 38$, $v \neq 178$, such that the excess digraph is the following digraph:

Proof We first show that the excess digraph of a minimal $\mathrm{DC}(8,5,2)$ and $\mathrm{DC}(13,5,2)$ is the above digraph.

For $v=8$, take the blocks of the minimal $\mathrm{DC}(8,5,2)$ from [9], and replace the blocks $\langle 03256\rangle\langle 41630\rangle\langle 52314\rangle$ by $\langle 02356\rangle\langle 14630\rangle\langle 54231\rangle$.

For $v=13$ take the blocks of the minimal $\mathrm{DC}(13,5,2)$ from [9] and replace the blocks $\langle 237135\rangle\langle 127893\rangle\langle 1174128\rangle$ by the blocks $\langle 273135\rangle\langle 128793\rangle$〈7 11412 8〉.

Now to prove our lemma we show that for such v there exists a minimal $\mathrm{DC}(v, 5,2)$ with a hole of size 8 or 13. But this can be done exactly the same as Lemma 5.9 of [6].

Lemma 4.7 Let $v \equiv 18(\bmod 20)$ be a positive integer. Then $D E(v, 5,3)=$ D $L(v, 5,3)$.
Proof For $v=18$ the construction is as follows:

1) Take an optimal $\operatorname{DP}(18,5,2)[8]$. This design has every ordered pair appearing in two blocks except the pairs of a triple, say, $\{a, b, c\}$, which appear in zero blocks.
2) Take the following blocks of a minimal $\mathrm{DC}(18,5,1)$ on $X=Z_{15} \cup\{a, b, c\}$: $\langle 48021\rangle(\bmod 15)\langle 12+k 9+k 6+k 3+k k\rangle, k=0,1,2,\langle 0510 b a\rangle$, orbit length $3,\langle c b 1050\rangle$, orbit length $2,\langle b c 1272\rangle$, orbit length 1 , $\langle a 0510 c\rangle$, orbit length 3, $\left\langle\begin{array}{lllll}a & 3 & 8 & 13 & b\rangle\end{array}\right.$, orbit length 2, $\left\langle\begin{array}{lllll}b & 13 & 8 & 3 & c\end{array}\right\rangle$, orbit length 2, $\langle c 3813 a\rangle$, orbit length 2 .
3) Adjoin the block $\langle c a b\rangle$.

For $v=178$, apply Theorem 2.6 with $m=16, h=s=0, \lambda=3$ and $u=9$, and see $[15]$ for a $(5,3)$-DGDD of type 2^{16}.

For all other values of $v \equiv 18(\bmod 20)$, the construction is as follows:

1) Take a minimal $\mathrm{DC}(v, 5,2)$ such that the excess graph is the following digraph (overpage) on $\{v-3, v-2, v-1, v\}$.
2) Take a $(v-3,5,1)$ minimal covering design in decreasing order [21]. Assume that the ordered pair (d, x) appears in at least two blocks, and that we have the block $\langle d c b a x\rangle$ where x is to the right of d. Replace this block by $\langle c b a x v-2\rangle$.

3) Take a $B[v+3,5,1]$ in increasing order. Delete from this design the block $\langle v-1 v v+1 v+2 v+3\rangle$. Further, assume we have the block $\langle a b c v-2 v+1\rangle$, which we replace by $\langle d a b c v-2\rangle$. In all other blocks through $v+1, v+2, v+3$, we place these points at the beginning of these blocks and then replace $v+1$ by $v-2$, $v+2$ by $v-1$, and $v+3$ by v.

Then it is easy to check that the above steps yield the blocks of a minimal $\mathrm{DC}(v, 5,3), v \equiv 18(\bmod 20), v \neq 18,178$.

5 Directed covering with index 5

Notice that when $v \equiv 2$ or $4(\bmod 10)$ then a minimal $\operatorname{DC}(v, 5,5)$ can be constructed by taking a minimal $\mathrm{DC}(v, 5,2)$ and a minimal $\mathrm{DC}(v, 5,3)$. Furthermore, the case $v \equiv 0$ or $6(\bmod 10)$ follows from Lemma 4.1. The only case left is $v \equiv 8(\bmod 10)$. The following lemma is most useful for us.
Lemma 5.1 (i) There exists a minimal $D C(v, 5,1)$ with a hole of size 2 for $v=$ $8,18,28,38,48,58,68,78,88,98$.
(ii) There exists a minimal $D C(22,5,5)$ with a hole of size 2 .

Proof (i) For $v=88,98$, take a $(6,1)$-GDD of type 8^{6} and delete 5 and 0 points from the last group respectively and inflate the resulting design by a factor of two. Replace the blocks of the resulting design which are of size 5 and 6 by the blocks of a $(5,1)$-DGDD of type 2^{5} and 2^{6} respectively [28]. Adjoin two new points to the groups, and on the first five groups construct a minimal $\mathrm{DC}(18,5,1)$ with a hole of size 2 and on the last group construct a minimal $\mathrm{DC}(8,5,1)$ with a hole of size 2 in the case $v=88$, and a minimal $\mathrm{DC}(18,5,1)$ with a hole of size 2 when $v=98$.

For all other values see the next table (overpage).
For a minimal $\mathrm{DC}(22,5,5)$ with a hole of size 2 , take one copy of a minimal $\mathrm{DC}(22,5,4)$ with a hole of size $2[9]$, and one copy of a minimal $\mathrm{DC}(22,5,1)$ with a hole of size 2 (Lemma 3.1).
Lemma 5.2 Let $v \equiv 8(\bmod 10)$ be a positive integer. Then $D E(v, 5,5)=D L(v, 5,5)$.
Proof For $v=8,18,28, \ldots, 98$, the construction is as follows:

1) Take the minimal $\mathrm{DC}(v, 5,4)$ given in $[9, \mathrm{p} .39]$. This design has a triple, say, $\{a, b, c\}$, the ordered pairs of which appear in five blocks.
2) Take a minimal $\mathrm{DC}(v, 5,1)$ with a hole of size two, say, $\{b, c\}$.

Then it is clear that the above steps yield the blocks of a minimal $\mathrm{DC}(v, 5,5)$ for $v=8,18, \ldots, 98$.

v	Point Set	Base Blocks
8	$Z_{6} \cup H_{2}$	$\langle 01-43\rangle \cup\left\{h_{1}, h_{2}\right.$
18	$Z_{16} \cup H_{2}$	$\langle 03195\rangle\langle 013-87\rangle \cup\left\{h_{1}, h_{2}\right\}$
28	$Z_{26} \cup H_{2}$	$\langle 04210\rangle\langle 1573020\rangle\langle 03-1510\rangle \cup\left\{h_{1}, h_{2}\right\}$
38	$Z_{36} \cup H_{2}$	$\begin{aligned} & \langle 104119\rangle\langle 930211\rangle\langle 1306226\rangle \\ & \langle 190-514\rangle \cup\left\{h_{1}, h_{2}\right\} \end{aligned}$
48	$Z_{46} \cup H_{2}$	$\langle 013178\rangle\langle 823310\rangle\langle 40352210\rangle$ $\langle 02043213\rangle\langle 226-170\rangle \cup\left\{h_{1}, h_{2}\right\}$
58	$Z_{56} \cup H_{2}$	$\begin{aligned} & \langle 309131\rangle\langle 31415036\rangle\langle 30177440\rangle \\ & \langle 1017353\rangle\langle 11415490\rangle\langle 013-423\rangle \cup\left\{h_{1}, h_{2}\right\} \end{aligned}$
68	$Z_{66} \cup H_{2}$	$\langle 132107\rangle\langle 05404915\rangle\langle 03682447\rangle$ $\langle 703128\rangle\langle 23135350\rangle\langle 49203390\rangle$ $\langle 05-349\rangle \cup\left\{h_{1}, h_{2}\right\}$
78	$Z_{76} \cup H_{2}$	$\langle 3016139\rangle\langle 66012447\rangle\langle 02763452\rangle$ $\langle 09295340\rangle\langle 710493\rangle\langle 14064559\rangle$ $\langle 18440338\rangle\langle 5516-350\rangle \cup\left\{h_{1}, h_{2}\right\}$

For $v=128$, apply Theorem 2.2 with $m=7, h=0, u=2$ and $\lambda=5$.
For $v=138$, apply Theorem 2.2 with $m=7, h=2, u=4$ and $\lambda=5$.
For all other values of $v, v \neq 178$, write $v=20 m+4 u+h+s$, where m, u, h and s are chosen as in Lemma 3.6 with the difference that $h=0,2$ and $4 u+h+s=$ $8,18, \ldots, 88,98$.

Now apply Theorem 2.4 with $\lambda=5$ to get the result.
For $v=178$, apply Theorem 2.6 with $m=16, h=s=0, \lambda=5, u=9$, and see [15] for a $(5,5)$-DGDD of type 2^{16}

6 Directed covering with index 7

When $v \equiv 18(\bmod 20)$, then the blocks of a minimal $\mathrm{DC}(v, 5,7)$ can be constructed by taking two copies of a $(v, 5,7)$ minimal covering design [10], one in some order and the other in opposite order.
Lemma 6.1 Let $v \equiv 4(\bmod 20)$ be a positive integer. Then $D E(v, 5,7)=D L(v, 5,7)$.
Proof For all integers $v \equiv 4(\bmod 20), v \geq 24$, the construction is as follows:

1) Take an optimal $\operatorname{DP}(v, 5,2)$ [8]. In this design there is a 2 -subset, say, $\{v-$ $2, v-1\}$, the ordered pairs of which appear in zero blocks while each other ordered pair appears in two blocks.
2) Take two copies of a $(v, 5,4)$ minimal covering design one in increasing order, the other in decreasing order [12]. This design has a triple the pairs of which appear in six blocks. Assume in both copies the triple is $\{v-3, v-2, v-1\}$. Further, assume in this step we have the blocks $\langle 91011 v-3 v-1\rangle\langle 123 v-2 v-3\rangle$, which we replace by $\langle 91011 v-3 v\rangle\langle v-1123 v-2\rangle$.
3) Take a $(v-1,5,1)$ minimal covering design in increasing order [22]. This design has a block of size three, say, $\langle v-3 v-2 v-1\rangle$, which we delete.
4) Take a $B[v+1,5,1]$ in decreasing order. Assume in this design we have the two blocks $\langle v+1 v 11109\rangle\langle v v-1321\rangle$ which we replace by $\langle v 11910 v-1\rangle$ $\langle v 321 v-3\rangle$. In all other blocks through $v+1$, we place $v+1$ at the end of the blocks then replace it by v. Furthermore, take the block through $(v-1, v-2)$, say $\langle v-1 v-2 c b a\rangle$ and replace by $\langle v-2 v-1 c b a\rangle$.

Now it is easy to check that the above four steps yield the blocks of a minimal $\mathrm{DC}(v, 5,7)$ for all $v \equiv 4(\bmod 20)$.

Lemma 6.2 Let $v \equiv 8(\bmod 20)$ be a positive integer. Then $D E(v, 5,7)=D L(v, 5,7)$.
Proof For $v=8,28$, see the next table, and notice that " \bullet " following the block means take m copies of this block.

For $v=48,88$, take a $(5,7)$-GDD of type 4^{6} and 4^{11} respectively [20]. Inflate this design by a factor of two and replace each block of size 5 by the blocks of a $(5,1)$-DGDD of type 2^{5}. Finally, on the groups construct a minimal DC $(8,5,7)$.

For $v=128$, apply Theorem 2.2 with $m=7, h=0, u=2$ and $\lambda=7$.
For $v=68$ take a (6,7)-GDD of type 5^{7} and delete one point from last group [20]. Inflate this design by a factor of two, that is, replace each block by the blocks of a $(5,1)$-DGDD of types 2^{5} and 2^{6} respectively [28]. Finally on the first six groups construct a minimal $\mathrm{DC}(10,5,7)$ and on the last group construct a minimal $\mathrm{DC}(8,5,7)$.

For all other values of v, write $v=20 m+4 u+h+s$, where m, u, h and s are chosen as in Lemma 4.4, and then apply Theorem 2.4 with $\lambda=5$ to get the result.

v	Point Set	Base Blocks
8	Z_{8}	$\langle 01245\rangle \bullet 2 \quad\langle 43210\rangle \quad\langle 14206\rangle \quad\langle 14306\rangle$
28	Z_{28}	

Lemma 6.3 Let $v \equiv 12(\bmod 20)$ be a positive integer. Then $D E(v, 5,7)=$ $D L(v, 5,7)$.
Proof For $v=12$, let $X=Z_{10} \cup\{a, b\}$. Then the blocks are the following: take two copies of a minimal $\operatorname{DP}(12,5,2)$ with a hole of size two $\{a, b\}$. Further, take the
〈86420〉, orbit length two.

For $v=32,52,72,92$ the construction is as follows:

1) Take the minimal $\mathrm{DC}(v, 5,2)$ in [9]. This design has a triple, say, $\{1,2,3\}$, the ordered pairs of which appear in three blocks.
2) Take an optimal $\operatorname{DP}(v, 5,2)$ with a hole of size two, say, $\{1,2\}$, $[8]$.
3) Again take an optimal $\mathrm{DP}(v, 5,2)$ with a hole of size two, say, $\{1,3\}$.
4) Take a minimal $\operatorname{DC}(v, 5,1)$ with a hole of size 8 (Lemma 4.5); then on the hole take the following minimal $\mathrm{DC}(8,5,1)$ on $\{1, \ldots, 8\}:\left\langle\begin{array}{llll}6 & 8 & 4 & 5\rangle\langle 32176\rangle\end{array}\right.$ $\langle 48123\rangle\langle 13245\rangle\langle 51238\rangle\langle 54876\rangle\langle 67321\rangle$.

For $v=132$, apply Theorem 2.2 with $m=7, h=0, u=3$ and $\lambda=7$.
For all other values of v write $v=20 m+4 u+h+s$ where m, u, h and s are chosen as in the proof of Lemma 3.6. Now apply Theorem 2.4 with $\lambda=7$ to get the result.

Lemma 6.4 (i) There exists a minimal $D C(22,5,7)$ with a hole of size 2.
(ii) Let $v \equiv 2(\bmod 20)$ be a positive integer. Then $D E(v, 5,7)=D L(v, 5,7)$.

Proof We first construct a minimal $\mathrm{DC}(v, 5,1)$ with a hole of size two by taking a $B[v-1,5,1]$ in increasing order and a minimal $(v+1,5,1)$ covering design with a hole of size 3 in decreasing order, [22]. Assume the hole is $\{v-1, v, v+1\}$. Place the point $v+1$ at the end of the blocks in which it is contained and then replace it by v.
(i) To construct a minimal $\mathrm{DC}(22,5,7)$ with the hole of the size 2 , take three copies of minimal $\mathrm{DC}(22,5,2)$ with a hole the size 2 , which is equivalent to an optimal $\mathrm{DP}(22,5,2)$, [8]. Further, take a minimal $\mathrm{DC}(22,5,1)$ with a hole of size 2 .
(ii) We now construct a minimal $\mathrm{DC}(v, 5,7)$ as follows:

1) Take an optimal $\operatorname{DP}(v, 5,2)$ with a hole of size two, say, $\{v-1, v\}$, [8].
2) Take two copies of minimal $\mathrm{DC}(v, 5,2)$, [9]. This design has a triple the ordered pairs of which appear in three blocks. Assume in both copies the triple is $\{v-2, v-1, v\}$.
3) Take a minimal $\mathrm{DC}(v, 5,1)$ with a hole of size 2 , say, $\{v-2, v-1\}$.

Then it is readily checked that the above three steps yield the blocks of a minimal $\mathrm{DC}(v, 5,7)$.

Lemma 6.5 $D E(v, 5,7)=D L(v, 5,7)$ for $v=14,34,54,74,94$.
Proof For $v=14$ the construction is as follows:

1) Take the minimal $\mathrm{DC}(14,5,2)$ in $[9]$. This design has a triple, say, $\{12,13,14\}$, the ordered pairs of which appear in three blocks.
2) Take two copies of an optimal $\mathrm{DP}(14,5,2)$ with a hole of size 2 [8]. Assume in both copies that the hole is $\{13,14\}$.
3) Take the minimal $\mathrm{DC}(14,5,1)$ from Lemma 3.7. Close observation of this design shows that the ordered pairs $(13,14)$ and $(14,13)$ appear in four blocks. It is clear now that the above three steps yield the blocks of a minimal $\mathrm{DC}(14,5,7)$.

For $v=94$, the construction is the same as for $v=14$ with the difference that in third step we take a minimal $\mathrm{DC}(94,5,1)$ with a hole of size 14 , then on the hole we take a copy of a minimal $\mathrm{DC}(14,5,1)$ from Lemma 3.7. To complete this construction we need to construct a minimal $\mathrm{DC}(94,5,1)$ with a hole size 14 . Take a $T[6,1,8]$, delete two points from last group then inflate the resultant design by a factor of two and replace any blocks which are of size 5 and 6 , by the blocks of a (5,2)-DGDD
type 2^{5} and 2^{6} respectively [28]. Adjoin two points to the groups and on the first five groups construct a minimal $\mathrm{DC}(18,5,1)$ with a hole of size two (Lemma 5.1), and take these two points with last group as the hole of size 14 .

For $v=34,54,74$, the construction is as follows:

1) Take the minimal $\mathrm{DC}(v, 5,2)$ in $[9]$. This design has a triple, say, $\{1,2,3\}$, the ordered pairs of which appear in three blocks.
2) Take two copies of an optimal $\operatorname{DP}(v, 5,2)$ [8]. This design has a hole of size two, say, $\{1,2\}$, in the first copy and $\{1,3\}$ in the second copy. Further, assume we have $\langle 1689$ 10〉 $\langle 109832\rangle$, which we replace by $\langle 189103\rangle\langle 610982\rangle$.
3) Take a minimal $\mathrm{DC}(v, 5,1)$ with a hole of size six, say, $\{1,2, \ldots, 6\}$, and on the hole construct the following minimal $\mathrm{DC}(6,5,1)$:
$\langle 12435\rangle\langle 63412\rangle\langle 23165\rangle\langle 54216\rangle$.

Now it is readily checked that the above three steps yield the blocks of a minimal $\mathrm{DC}(v, 5,7)$ for $v=34,54,74$. To complete this construction we need to construct a minimal $\mathrm{DC}(v, 5,1)$ with a hole of size six. For this purpose see the next table.

v	Point Set	Base Blocks
34	$Z_{2} \times Z_{14} \cup H_{6}$	$\langle(1,3)(0,6)(0,0)(1,0)(1,1)\rangle\langle(1,8)(0,0)(1,2)(0,6)(0,2)\rangle$ $\left\langle(0,0)(1,13) h_{1}(1,6)(0,1)\right\rangle\left\langle(0,0)(1,12) h_{2}(0,3)(1,7)\right\rangle$ $\left\langle(1,4)(0,0) h_{3}(0,5)(1,10)\right\rangle$ $\langle(0,1)(0,10)-(0,3)(0,0)\rangle \cup\left\{h_{5}, h_{6}\right\}$ $\langle(1,10)(1,1)-(1,0)(1,3)\rangle \cup\left\{h_{5}, h_{6}\right\}$ $\left\langle(1,7)(0,0) h_{4}(0,6)(1,3)\right\rangle$.
54	$Z_{48} \cup H_{6}$	$\begin{aligned} & \langle 0715329\rangle\langle 01131117\rangle\langle 1313043\rangle \\ & \langle 221-025\rangle \cup\left\{h_{1}, h_{2}\right\} \quad\langle 021-514\rangle \cup\left\{h_{3}, h_{4}\right\} \\ & \langle 209-033\rangle \cup\left\{h_{5}, h_{6}\right\} \end{aligned}$
74	$Z_{68} \cup H_{6}$	

Lemma 6.6 Let $v \equiv 14(\bmod 20)$ be a positive integer. Then $D E(v, 5,7)=$ $D L(v, 5,7)$.
Proof. For $v=14,34,54,74,94$, see the previous lemma.
For $v=134$, apply Theorem 2.2 with $m=7, h=2, u=3$ and $\lambda=7$.
For all other values write $v=20 m+4 u+h+s$ where m, u, h and s are chosen as in the proof of Lemma 3.6 with the difference that $4 u+h+s=14,34,54,74,94$. Now apply 2.4 with $\lambda=7$ to get the result.

7 Directed covering with index 9

Again, in this section we notice that a minimal $\mathrm{DC}(v, 5,9)$ for all $v \equiv 12(\bmod 20)$ can be constructed by taking two copies of a minimal $(v, 5,9)$ covering design in opposite directions. Further, a minimal $\mathrm{DC}(v, 5,9)$ for all $v \equiv 8(\bmod 10)$ can be constructed by taking a minimal $\mathrm{DC}(v, 5,2)$ and minimal $\mathrm{DC}(v, 5,7)$.

Lemma 7.1 Let $v \equiv 4(\bmod 10)$ be a positive integer. Then $D E(v, 5,9)=D L(v, 5,9)$.
Proof For all such v the construction is as follows:

1) Take two copies of a minimal $\mathrm{DC}(v, 5,2)$. This design, as presented in [9], has a triple, say, $\{v-2, v-1, v\}$, the ordered pairs of which appear in three blocks.
2) Take two copies of an optimal $\operatorname{DP}(v, 5,2)$ with a hole of size two, [8]. Assume the hole is $\{v-1, v\}$ in the first copy and $\{v-2, v-1\}$ in the second copy.
3) Take a minimal $\mathrm{DC}(v, 5,1)$.

Then it is readily checked that the above construction yields a minimal $\mathrm{DC}(v, 5,9)$ for all $v \equiv 4(\bmod 20)$.

Lemma 7.2 Let $v \equiv 2(\bmod 20)$ be a positive integer. Then $D E(v, 5,9)=D L(v, 5,9)$.
Proof For $v=22,42,62,82$ the construction is given in the next table.

v	Point Set	Base Blocks
22	Z_{22}	
42	Z_{42}	Take 14 copies of a $(42,5,1)$ optimal packing design [30] such that 7 of them in some order and the other 7 are in opposite order. Further, take the following blocks: $\begin{aligned} & \langle 013215\rangle\langle 519210\rangle\langle 40112132\rangle\langle 03021136\rangle \\ & \langle 0322110\rangle\langle 01542721\rangle\langle 01321529\rangle\langle 10303132\rangle \\ & \langle 27501421\rangle \end{aligned}$
62	Z_{62}	Take 14 copies of a $(62,5,1)$ optimal packing design [30] such that 7 of them are in some order and the other 7 are in opposite order. Further, take the following blocks:
82	Z_{82}	Take 16 copies of a $(82,5,1)$ optimal packing design [30] such that 8 of them are in some order and the other 8 are in opposite order. Further, take the following blocks: $\begin{aligned} & \langle 130741\rangle\langle 46056314\rangle\langle 59450718\rangle \\ & \langle 010225167\rangle\langle 042831\rangle\langle 30541340\rangle\langle 61416025\rangle \\ & \langle 513322100\rangle \end{aligned}$

For $v=142$, apply Theorem 2.2 with $m=7, h=2, u=5$ and $\lambda=9$. The application of this theorem requires a minimal $\mathrm{DC}(22,5,9)$ with a hole of size 2 . Such design can be constructed by taking 4 copies of minimal $\mathrm{DC}(22,5,2)$ with a hole of size $2[9, \mathrm{p} .31]$ and one copy of a minimal $\mathrm{DC}(22,5,1)$ with a hole of size 2 , Lemma 3.1.

For all other values of v, simple calculations show that v can be written in the form $v=20 m+4 u+h+s$ where m, u, h and s are chosen as in the proof of Lemma 3.6 with the difference that $4 u+h+s=22,42,62,82$ and $h=2$. Now apply Theorem 2.4 with $\lambda=9$.

8 Conclusion.

We have shown that if v is an even integer, $v \geq 5$, and $1 \leq \lambda \leq 9$ is an odd integer then $\mathrm{DE}(v, 5, \lambda)=\mathrm{DL}(v, 5, \lambda)$. In [9] we also have shown that if λ is even and $v \geq 5$ is an odd integer then $\mathrm{DE}(v, 5, \lambda)=\mathrm{DL}(v, 5, \lambda)+e$ where $e=1$ if $\lambda v(v-1) / 2 \equiv-1$ $(\bmod 5) ;$ and $e=0$ otherwise. On the other hand, for $\lambda=10$ and $v \geq 5$, there exists a $\mathrm{DB}[v, 5,10]$, and since $\mathrm{DE}\left(v, 5, \lambda^{\prime}\right)=\mathrm{DE}(v, 5,10)+\mathrm{DE}(v, 5, \lambda)$ where $\lambda^{\prime}=\lambda+10$, it follows that $\mathrm{DE}(v, 5, \lambda)=\mathrm{DL}(v, 5, \lambda)+e$ for all even $v \geq 5$ and λ odd.

References

[1] R.J.R. Abel, Four mutually orthogonal Latin squares of orders 28 and 52, J. Combin. Theory Ser. A 58 (1991), 306-309.
[2] R.J.R. Abel and D.T. Todorov, Four MOLS of orders 20, 30, 38 and 44, J. Combin. Theory Ser. A 64 (1993), 144-148.
[3] R.J.R. Abel, A.E. Brouwer, C.J. Colbourn and J.H. Dinitz, Mutually Orthogonal Latin Squares, in: CRC Handbook of Combinatorial Designs, II,2, CRC Press (1996), 111-142.
[4] H. Alhalees, Directed covering deigns with block size 5 and odd index, in preparation.
[5] A.M. Assaf, An application of modified group divisible designs, J. Combin. Theory Ser. A 68 (1994), 152-168.
[6] A.M. Assaf, On packing designs with block size 5 and index $7 \leq \lambda \leq 21$, J. Combin. Math. Combin. Comput. 26 (1998), 3-71.
[7] A.M. Assaf, Bipacking pairs by quintuples: The case $v \equiv 13(\bmod 20)$, Discrete Math. 133 (1994), 47-54.
[8] A.M. Assaf, On directed packing designs with block size 5 and index 2, Utilitas Math. 50 (1996), 545-254.
[9] A.M. Assaf, Directed covering with block size 5 and index even, Discrete Math. 188 (1998), 27-40.
[10] A.M. Assaf, On covering designs with block size 5 and index 7, J. Combin. Math. Combin. Comput. 18 (1995), 193-213.
[11] A.M. Assaf, W.H. Mills and R. C. Mullin, On tricovers of pairs by quintuples: $v \equiv 1(\bmod 4)$, Ars Combinatoria 33 (1992), 179-191.
[12] A.M. Assaf and N. Shalaby, On covering designs with block size 5 and index 4, Ars Combinatoria 33 (1992), 227-237.
[13] A.M. Assaf, A. Mahmoodi, N. Shalaby and J. Yin, Directed packing with block size 5 and odd v, Australas. J. Combin. 13 (1996), 217-226.
[14] A.M. Assaf, N. Shalaby and J. Yin, Directed packing and covering designs with block size 4, Discrete Math. 238 (2001), 3-17.
[15] F. Bennett, N. Shalaby and J. Yin, Directed group divisible designs, J. Combin. Designs 6 (1998), 389-402.
[16] T. Beth, D. Jungickel and H. Lenz, Design Theory, Bibliographisches Institut, Mannheim, 1985.
[17] A.E. Brouwer, The number of mutually orthogonal Latin squares - a table up to order 10000, Math. Cent. Report ZW 123/79.
[18] C.J. Colbourn, Four MOLS of order 26, J. Combin. Math. Combin. Comput. 17 (1995), 147-148.
[19] A.M. Hamel, W.H. Mills, R.C. Mullins, R. Rees, D.R. Stinson and J. Yin, The spectrum of $\operatorname{PBD}\left(\left\{5, k^{*}\right\}, v\right)$ for $k=9,13$, Ars Combinatoria 36 (1993), 7-36.
[20] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 225-369.
[21] W.H. Mills and R.C.Mullin, Covering pairs by quintuples: the case $v \equiv 3(\bmod$ 4), J. Combin. Theory Ser. A 49 (1988), 308-322.
[22] R.C. Mullin, On covering pairs by quintuples: the case $v \equiv 3$ or $11(\bmod 20)$, J. Combin. Math. Combin. Comput. 2 (1987), 133-146.
[23] R. Roth and M. Peters, Four pairwise orthogonal Latin squares of order 24, J. Combin. Theory Ser. A 44 (1987), 152-155.
[24] J. Schönheim, On maximal systems of k-tuples, Studia Sci. Math. Hungar. 1 (1966), 363-368.
[25] D.B. Skillicorn, Directed packing and coverings with computer applications, Ph.D. Thesis, University of Manitoba, 1981.
[26] D.B. Skillicorn, Directed packings of pairs into quadruples, J. Austral. Math. Soc. Ser. A 33 (1982), 179-184.
[27] D.B. Skillicorn, Directed covering of pairs into quadruples, Utilitas Math. 26 (1984), 5-10.
[28] D.J. Street and W.H. Wilson, On directed balanced incompleted block designs with block size 5, Utilitas Math. 18 (1980), 161-174.
[29] D.T. Todorov, Four mutually orthogonal Latin squares of order 20, Ars Combinatoria 27 (1989), 63-65.
[30] J.Yin, A.C.H. Ling, C.J. Colbourn and R.J.R. Abel, The existence of uniform 5-GDDs, J. Combin. Designs 5 (1997), 275-299.
(Received 13 Nov 2000; revised 29 July 2002)

