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Abstract

A family of cliques in a graph G is said to be p-regular if any two cliques
in the family intersect in exactly p vertices. A graph G is said to have a
p-regular k-clique cover if there is a p-regular family H of k-cliques of G
such that each edge of G belongs to a clique in H. Such a p-regular k-
clique cover is separable if the complete subgraphs of order p that arise as
intersections of pairs of distinct cliques of H are mutually vertex-disjoint.

For any given integers p, k, �; p < k, we present bounds on the smallest
order of a graph that has a p-regular k-clique cover with exactly � cliques,
and we describe all graphs that have p-regular separable k-clique covers
with � cliques.

1 Introduction

An orthogonal double cover of a complete graph Kn by a graph H is a collection H of
spanning subgraphs of Kn, all isomorphic to H, such that each edge of Kn is contained
in exactly two subgraphs in H and any two distinct subgraphs in H share exactly one
edge. This concept was first studied by Demetrovics, Füredi and Katona [5] and it
has since received considerable attention [10]. As for general graphs H the problem
of existence of an orthogonal double cover is considered to be decidedly hard; results
have mainly been obtained for special graphs such as trees [9, 11, 17, 19, 22, 24, 25],
triangle factors [1, 7], short cycles [9, 23], graphs of maximum degree two [3, 13], and
almost-hamiltonian cycles [19, 20, 21]. An important special case occurs when H is
a complete graph Kk, in which case the existence of an orthogonal double cover of
Kn by H is equivalent to the existence of a symmetric 2 − (n, k, 2) design. Only a
small number of such designs are known (c.f. [4] pp. 14–16 and 75–81).

More recent papers in the area have introduced several generalizations. Relaxing
the first condition by requiring that any two copies of H share at most one edge
gives a suborthogonal double cover of Kn by H; such covers (for H = P4) and their
asymptotic existence (for arbitrary H) were studied in [18]. A further variation is the
concept of a generalized graph design with parameters (n, H, λ; F ), which is a family
of isomorphic copies of H in Kn such that each edge of Kn is contained in exactly
λ copies of H and any two distinct copies of H intersect in a subgraph isomorphic
to F . The case when H is a friendship graph (a set of triangles joined at a single
vertex) was completely solved in [12] and [6]. Generalized graph designs with doubly
transitive automorphism groups were investigated in [2].

As one can see, there is a fair amount of research devoted to covers of complete
graphs by various types of more or less general graphs. Our point of departure
is to interchange the roles of the two classes of graphs and ask about covers of
general graphs by cliques, that is, complete subgraphs that are maximal with respect
to containment. Emphasis will be given on covers that have certain “design-like”
regularity features.

The following are the central concepts of our paper. A collection of cliques in a
graph G is p-regular if any two cliques in the family intersect in exactly p vertices.
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We will say that a graph G has a p-regular k-clique cover if there is a p-regular
family H of cliques of order k in G such that each edge of G belongs to a clique in
H. Furthermore, such a p-regular k-clique cover of G will be called separable if the
subgraphs isomorphic to Kp obtained as intersections of pairs of distinct cliques in
H are pairwise vertex-disjoint (and, consequently, each edge of G belongs to exactly
one or two cliques in H).

The separability condition is very strong. In Section 2 we will characterize all
triples p, k, � for which there exists a graph G that admits a separable p-regular
k-clique cover with exactly � cliques, and we will also show that such a graph is
uniquely determined by p, k and �. A graph that has a separable p-regular k-clique
cover with exactly � cliques may have several such covers for a given triple p, k, �,
and we will see for which triples such a cover is unique.

Without the separability assumption there is more flexibility, and examples of
graphs that have a p-regular k-clique covers are abundant. The problem we address
is to determine, for a given triple of integers p, k, �; p < k, the smallest order µ(p, k, �)
of a graph that admits a p-regular k-clique cover with exactly � cliques. Equivalently,
but on a less formal level, for a family of � distinct copies of the complete graph Kk

we ask about the smallest order of a graph that can be constructed by pairwise
“gluing” the copies “along” complete subgraphs of order p in such a way that the �
complete graphs will be k-cliques in the new graph. We present a variety of bounds
on µ(p, k, �) and show that in some cases the bounds are best possible. We show
that the problem of determining µ(p, k, �) is equivalent to an interesting problem in
design theory.

2 Separable clique covers

We begin with studying the triples p, k, � for which there are graphs that have a
separable p-regular k-clique cover with � cliques. We discuss small values of � first.
For � = 1, Kk is the unique graph with a p-regular k-clique cover consisting of a
single clique. If � = 2, then since p < k, the unique graph G that has a separable
p-regular k-clique cover with two k-cliques is formed by two copies of Kk intersecting
in exactly p vertices. Going one step further, if � = 3 then k ≥ 2p. In the case when
k > 2p, we again have a unique graph G with a separable p-regular k-clique cover
with three k-cliques. For k = 2p, the only way to “glue” three copies of K2p in such
a way that they pairwise intersect in disjoint complete subgraphs of order p results
in a K3p, but then the three subgraphs isomorphic to K2p are not cliques.

Generalizing these observations we now characterize all triples p, k, � with � ≥ 4
for which there exists a graph G that admits a separable p-regular k-clique cover
with exactly � cliques, and establish the uniqueness of such a graph.

Theorem 1. Let p, k, � be positive integers, � ≥ 4. Then there exists a graph G
that admits a separable p-regular k-clique cover with � cliques of order k if and only if
k ≥ (�− 1)p. Moreover, for such a triple p, k, � the corresponding graph G is unique,
and it has a unique separable p-regular k-clique cover consisting of � cliques if and
only if (k, �) �= (3p, 4).
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Proof. Let G be a graph and let H = {H1, H2, . . . , H�} be a family of k-cliques
of G. If H forms a separable p-regular cover of G, then for 2 ≤ i ≤ � the sets
V (H1) ∩ V (Hi) are pairwise disjoint and contain p vertices each. Therefore, k =
|V (H1)| ≥ (� − 1)p.

Conversely, let � ≥ 4 and k ≥ (�− 1)p. Let H = {H1, H2, . . . , H�} be a collection
of � disjoint copies of the graph Kk. For 1 ≤ i ≤ � let Vi1, Vi2, . . . , Vi� be a partition of
the vertex set V (Hi) such that |Vij | = p for every i �= j (or if k = �p); it follows that
|Vii| = k − (� − 1)p ≥ 0. We now identify, for each i and j such that 1 ≤ i < j ≤ �,
the two vertex sets Vij and Vji. In the graph G arising this way, the family H clearly
forms a separable p-regular k-clique cover with � cliques. On the other hand, let
G′ be any graph that admits, for the given parameters p, k, �, a separable p-regular
k-clique cover H′ = {H ′

1, H
′
2, . . . , H

′
�}. Then we may establish an isomorphism from

G′ onto G by mapping, for 1 ≤ i ≤ �, the vertex sets V (H ′
i) onto the sets V (Hi) in

such a way that the intersections V (H ′
i)∩ V (H ′

j) are mapped onto the sets obtained
by identifying Vij with Vji for all j such that 1 ≤ i �= j ≤ �.

Finally, it can be shown that the graph G = G(p, k, �) constructed above has a
unique separable p-regular k-clique cover unless � = 4 and k = 3p, when there are
exactly two such covers. This exceptional case is most easily illustrated when p = 1.
The underlying graph is K2,2,2, which is the 1-skeleton of the octahedron O3. One
3-clique cover is formed by four of the octahedron’s triangular faces, no two of which
share an edge; the other cover is formed by the remaining four faces. The case for
general p is just the composition O3[Kp], which is also described as K6p minus 3
vertex-disjoint copies of Kp,p. We leave the details to the reader.

Observe that for k = (� − 1)p, the graph G = G(p, k, �) in the above theorem is
isomorphic to the line graph of a complete multigraph of order � in which each pair
of vertices is joined by p parallel edges.

3 Regular clique covers

We continue with the more general problem of determining (or at least estimating)
the smallest order µ(p, k, �) of a graph that admits a p-regular k-clique cover with
exactly � cliques. Trivially, for � = 1, µ(p, k, 1) = k. It is also easy to see that if
� = 2, then µ(p, k, 2) = 2k − p. From now on we therefore assume that � ≥ 3.

We first examine the case when � is small in terms of k/p.

Proposition 2. Let p, k, � be positive integers with p < k and � ≥ 3. If k ≥ (�−1)p,

then µ(p, k, �) = k� − p
(

�
2

)
.

Proof. Let H = {H1, H2, . . . , H�} be a family of k-cliques in a graph G of order
n, which forms a p-regular k-clique cover of G. By the inclusion-exclusion principle
we have n ≥ ∑

1≤i≤� |V (Hi)| −∑
1≤i<j |V (Hi) ∩ V (Hj)| = k� − p

(
�
2

)
. On the other

hand, the graphs G(p, k, �) constructed in Theorem 1 have order equal to the lower
bound just obtained.
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For values of � that are larger in terms of k/p we focus on the case p = 1. This
is motivated in part by the following lemma.

Lemma 3. Let p, k, � be positive integers with p < k and � ≥ 3. Then

µ(p, k, �) ≤ µ(1, k − p + 1, �) + (p − 1).

Proof. Let G be a graph that achieves the bound for µ(1, k−p+1, �). We form G′

by adding p−1 new vertices ∞1, . . .∞p−1 that are adjacent to all vertices of G. Each
of the � distinguished cliques of G of size k − p + 1 corresponds to a distinguished
clique of G′ of size k. Any two such cliques of G intersect in a single vertex, hence
any two corresponding cliques of G′ intersect in p vertices, that vertex and the p− 1
∞i’s. It follows that µ(p, k, �) ≤ µ(1, k − p + 1, �) + (p − 1) as desired.

The next lemma shows that no vertex lies in too many cliques in a 1-regular
cover.

Lemma 4. Suppose that a vertex v lies in k different k-cliques in a 1-regular cover.
Then v lies in all k-cliques.

Proof. By way of contradiction, suppose that there is a k-clique C not containing
v. Then C must intersect each of the k cliques containing v. Since no two cliques
share more than one vertex, these k points of intersection contain every vertex of C.
It follows that v is adjacent to each vertex in C. Hence C is not a clique, which is
our desired contradiction.

Using Lemma 4 we can determine µ(1, k, �) exactly for fixed k and large values
of �.

Proposition 5. Suppose that k ≥ 2 and � ≥ (k − 1)2 + 1. Then µ(1, k, �) =
�(k − 1) + 1.

Proof. Fix a clique C. Then each of the (at least) (k − 1)2 = k(k − 2) + 1
of the remaining cliques intersect C in a vertex. It follows that one of the k points
in C, say v is in at least k − 1 remaining cliques. Including C, v lies in at least k
cliques. By Lemma 4, v is in all cliques. So for any two cliques all other vertices
are distinct, and the graph has at least �(k − 1) + 1 vertices as claimed. The graph
formed by gluing � cliques along a single vertex has the desired clique cover and the
correct order, so equality holds.
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By Propositions 2 and 5, respectively, we have the exact value for µ(1, k, �) for
� ≤ k+1 and � ≥ (k−1)2+1. To examine the remaining cases we show an interesting
relation with design theory. Note that this relation holds for general p.

A block design D is a set V of varieties together with a collection B of subsets of
V , called blocks, such that every pair of varieties occurs together in exactly λ blocks.
We will call D a (v, k, λ)-design if all of the blocks are of cardinality k and v = |V|.
For example, a projective plane is a (n2 + n + 1, n + 1, 1)-design, and an affine plane
is a (n2, n, 1)-design.

The replication number r(v) of a variety v is the number of blocks incident with
v. Say R is a replication bound if r(v) ≤ R for all varieties v. If all blocks are of
the same cardinality, then r(v) is constant over all v. A simple counting argument
shows that R = λ(v − 1)/(k − 1) is a replication bound.

A block design D (with possibly varying block sizes) is a *-design if no block that
does not contain a variety v intersects all blocks that do contain v.

The following theorem relates regular clique covers and *-designs. To avoid con-
fusion we add primes to all parameters associated with the *-design.

Theorem 6. There exists a graph G on n vertices with a p-regular k-clique cover
with � cliques if and only if there exists a *-design D′ with replication bound R′ = k
and v′ = �, λ′ = p, and n = |B| +∑

u′∈V ′(R′ − r(u′)).

Proof. The proof uses a type of duality. Suppose that we are given a graph G with
the desired clique covering. Then form the design D′ by setting the varieties equal to
the set of cliques in the clique-cover, and for each vertex u ∈ V (G) forming a block
B′ on the varieties corresponding to the cliques containing u. In G, the number of
cliques containing a given vertex can vary, so in D′ the cardinality of the blocks can
vary. However, in G all of the cliques are of the same size, hence in D′ the replication
number is a constant R′ = k. Given any two varieties, their corresponding cliques
intersect in exactly p vertices, hence these varieties lie together in exactly λ′ = p
blocks. Similarly, since there is no vertex u incident to all vertices in a clique of G,
there is no block that intersects all blocks on a given variety. More simply, the fact
that these complete subgraphs in G are cliques corresponds to the *-property on the
design.

Conversely, suppose that we are given a design D′ with replication bound R′.
We can add singleton blocks to D′ until each variety appears in exactly R′ blocks.
Note that this does not change the property that every pair of varieties appears
together in exactly λ′ blocks, nor does it change the value n = |B| +

∑
u′∈V ′(R′ −

r(u′)), or the property of being a *-design. We now reverse the above construction:
form G whose vertices are the blocks of the design D′ (after adding the singleton
blocks), and joining two vertices with an edge whenever the corresponding blocks
have non-empty intersection. The constant replication number R′ gives a collection
of complete subgraphs that together contain all edges. The *-condition implies that
these subgraphs are cliques. The number of vertices in common in two cliques is
the same as the number of blocks containing the corresponding pair of varieties, i.e.,
p = λ′ as claimed.
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The preceding theorem can be awkward to use in practice, so we offer the following
corollary.

Corollary 7. Suppose that there exists a (v′, k′, λ′) *-design D′. Then

µ(λ′, λ′(v′ − 1)/(k′ − 1), v′) ≤ λ′v′(v′ − 1)

k′(k′ − 1)
.

Proof. An easy counting argument shows that D′ has a replication bound R′ =
λ′(v′ − 1)/(k − 1). The result follows from Theorem 6.

A natural class of designs with this property are the affine planes: (n2, n, 1)-
designs. These are easily seen to be *-designs, since the set of blocks on a variety
includes one block from each parallel class, and any other block lies in some parallel
class and hence misses one block on that variety. Affine planes are known to exist
for n a prime power. These give the following.

Corollary 8. When q is a prime power

µ(1, q + 1, q2) = q(q + 1).

Proof. We use the affine plane with n = q and apply Corollary 7 to get the upper
bound on µ(1, q + 1, q2). For the lower bound there are two cases. Fix a clique C.
If one vertex of C is in at least q + 1 cliques, then by Lemma Proposition 5 it lies
in all cliques. A counting argument similar to that of Proposition 5 shows that the
number of vertices is at least q3 +1. If each vertex of C lies in at most q cliques, then
counting vertex-clique incidences in two ways shows that the number of vertices is
at least q(q + 1).

The preceding corollary shows that the bound on � in Proposition 5 is the best
possible.

4 Concluding remarks

In this paper we have laid the foundations for studying µ(p, k, �), but there are still
many interesting special cases. We examine some of these here.

For arbitrary p and � ≤ k/p + 1 we have the exact results as given in Lemma
2. For larger �, we have some special results in the case p = 1. It would be nice to
generalize Lemma 4 and Proposition 5 to values p > 1.

For p = 1 we have the exact values of µ for � outside the range k+2 ≤ � ≤ (k−1)2.
However, we do not have good estimates within this range. It is clear that for
� ≤ (k − 1)2 we have µ(1, k, �) ≤ 1 + �(k − 1) ≤ 1 + (k − 1)3 = Θ(k3). We conjecture
that these values are O(k2).
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Conjecture 9. There exists a constant c such that for any k and any � ≤ (k−1)2,
we have µ(1, k, �) ≤ ck2.

However, we have not been able to make much progress on this conjecture. Using
Theorem 6 we would need classes of designs with a bounded replication number on
the order of square root of the number of varieties. Most research in design theory
focus on constant block sizes. For these designs the replication number grows linearly
in the number of varieties. This leads to an improvement on the coefficient of the k3

term, but does not address Conjecture 9.
The examples based on affine planes suggest that for � close to (k − 1)2, we need

block designs that are in a sense close to affine planes. This is generally considered
a difficult problem.

The parameter µ(p, k, �) is trivially monotone in �. That is, if � ≤ �′, then
µ(p, k, �) ≤ µ(p, k, �′). We do not know if similar monotone properties hold for k and
for p. One would expect larger clique sizes k to correspond to a larger number of
vertices. This intuition is incorrect past a certain point: if k is too large compared
to �, then Proposition 5 applies. Avoiding this case, we conjecture the following.

Conjecture 10. If k ≤ k′ and � ≤ (k − 1)2, then µ(p, k, �) ≤ µ(p, k′, �).

Similarly, one would expect that if the clique intersection was larger, then we
would have fewer vertices. Hence we conjecture:

Conjecture 11. If p ≤ p′, then µ(p, k, �) ≥ µ(p′, k, �).

Finally, our results are related to a well-known result of Erdös, Ko and Rado (see,
e.g., [26]) : If n ≥ (p + 1)(k − p + 1) and F is a family of k-subsets of an n-set so

that any two members of F meet in at least p points, then |F| ≤
(

n−p
k−p

)
.

Based on this result, given the parameters � ≥ 3 and k > p, the size n of a
minimal graph G p-regularly covered by a family of � k-cliques must be at least as
big as to satisfy the inequality

� ≤
(

n − p

k − p

)
.
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