Partition identities arising from involutions

Robin Chapman

School of Mathematical Sciences University of Exeter Exeter, EX4 4QE, U.K. rjc@maths.ex.ac.uk

Abstract

We give a simple combinatorial proof of three identities of Warnaar. The proofs exploit involutions due to Franklin and Schur.

1 Introduction

One of the classical arguments in the combinatorial theory of partitions is Franklin's argument [1] establishing Euler's pentagonal number formula:

$$\prod_{n=1}^{\infty} (1-q^n) = \sum_{k=-\infty}^{\infty} (-1)^k q^{k(3k+1)/2}.$$
(1)

This proceeds by interpreting the left side of (1) as a weighted generating function of partitions into distinct parts:

$$\prod_{n=1}^{\infty} (1-q^n) = \sum_{\lambda \in \mathcal{D}} (-1)^{n(\lambda)} q^{|\lambda|}.$$

Here \mathcal{D} denotes the set of partitions with distinct parts, $|\lambda|$ is the number partitioned by λ and $n(\lambda)$ is the number of parts in λ . Franklin defines an involution σ defined on a "large" subset $\mathcal{D}' \subseteq \mathcal{D}$ with the property that $(-1)^{n(\sigma(\lambda))}q^{|\sigma(\lambda)|} = -(-1)^{n(\lambda)}q^{|\lambda|}$. Thus the sum of $(-1)^{n(\lambda)}q^{|\lambda|}$ over \mathcal{D}' vanishes and Euler's formula (1) follows from noting that the sum of $(-1)^{n(\lambda)}q^{|\lambda|}$ over $\mathcal{D} - \mathcal{D}'$ is the right side of (1).

Later Schur [3] produced a proof, relying on a more complicated involution, of the Rogers-Ramanujan identities. Schur's involution later formed the basis of an explicit bijective proof due to Garsia and Milne [2] of the Rogers-Ramanujan identities.

In this paper we use Franklin's and Schur's involutions to prove bounded (polynomial rather than power series) versions of Euler's formula and the Rogers-Ramanujan identities.

Theorems 2 and 3 appear as the main theorem (Theorem 1.1) in [4]. Warnaar's proof of these results relies on an elaborate formal argument involving Bailey chains. He leaves the formula of Theorem 1 as an exercise for the reader. He also remarks that it "seems an extremely challenging problem to find a combinatorial proof of Theorem 1.1". This paper meets that challenge.

Australasian Journal of Combinatorics 27(2003), pp.285-291

2 Franklin's involution

We adopt the standard q-series notation: for each integer $n \ge 0$ define $(a)_n = \prod_{i=0}^{n-1} (1 - aq^i)$.

Let $\lambda = (\lambda_1, \ldots, \lambda_k)$ denote a partition, that is, a finite nonincreasing sequence of positive integers, $|\lambda| = \sum_{j=1}^k \lambda_j$, the number partitioned by λ , and $n(\lambda) = k$, the number of parts in λ . Let \mathcal{D} denote the set of partitions having distinct parts, that is the set of λ with $\lambda_1 > \lambda_2 > \cdots > \lambda_k$. For nonempty $\lambda \in \mathcal{D}$ let $t(\lambda)$ denote the smallest part of λ and $s(\lambda)$ be the "slope" of λ , that is, the largest integer s such that $\lambda_s = \lambda_1 - s + 1 > 0$.

For $j \in \mathbf{Z}$ we define a partition $\pi_{(j)} \in \mathcal{D}$ as follows: $\pi_{(0)}$ is the empty partition, for j > 0, $\pi_{(j)} = (2j, 2j - 1, \dots, j + 1)$ and $\pi_{(-j)} = (2j - 1, 2j - 2, \dots, j)$. Then $|\pi_{(j)}| = j(3j + 1)/2$ and $n(\pi_{(j)}) = |j|$.

Following Franklin [1] we define an involution σ on the set $\mathcal{D}' = \mathcal{D} - \{\pi_{(j)} : j \in \mathbf{Z}\}$ as follows:

- if $t(\lambda) \leq s(\lambda)$ remove the smallest part of λ and add 1 to each of the $t(\lambda)$ largest parts to yield $\sigma(\lambda)$;
- if $t(\lambda) > s(\lambda)$ subtract 1 from each of the $s(\lambda)$ largest parts of λ and create a new smallest part equal to $s(\lambda)$ to yield $\sigma(\lambda)$.

Then σ is an involution on \mathcal{D}' and $(-1)^{n(\sigma(\lambda))}q^{|\sigma(\lambda)|} = -(-1)^{n(\lambda)}q^{|\lambda|}$.

Theorem 1 The following identity holds for each integer $m \ge 0$:

$$\sum_{t=0}^{\lfloor m/2 \rfloor} (-1)^t q^{t(2m-t+3)/2} (q^{t+1})_{m-2t} = \sum_{j=\lfloor -m/2 \rfloor}^{\lfloor m/2 \rfloor} (-1)^j q^{j(3j+1)/2}.$$

Proof Let \mathcal{D}_m consist of the partitions in \mathcal{D} with parts of size at most m. Then $\mathcal{D}_m \cap \mathcal{D}'$ is not invariant under σ . Suppose that $\lambda \in \mathcal{D}_m \cap \mathcal{D}'$ but $\sigma(\lambda) \notin \mathcal{D}_m \cap \mathcal{D}'$. In this case $\lambda_1 = m$ and $t(\lambda) \leq s(\lambda)$. Let $s = s(\lambda)$ and $t = t(\lambda) = s(\sigma(\lambda))$. Then λ contains a part m - s + 1 and so $m - t - 1 \geq m - s + 1 \geq t$. Were equality to hold throughout, then λ would equal $\pi_{(-t)} \notin \mathcal{D}'$. Hence $t \leq m/2$. Then $\sigma(\lambda) \in \mathcal{D}_{m,t}$, where $\mathcal{D}_{m,t}$ is the set of partitions $\lambda \in \mathcal{D}$ with largest part m + 1, slope t and smallest part > t. Conversely if $\mu \in \mathcal{D}_{m,t} \cap \mathcal{D}'$, for some t, then $\sigma(\mu) \in \mathcal{D}_m$. The set $(\mathcal{D}_m \cup \bigcup_{t=1}^{\lfloor m/2 \rfloor} \mathcal{D}_{m,t}) \cap \mathcal{D}'$ is invariant under σ . It follows that

$$\sum_{\lambda \in \mathcal{D}_m \cup \bigcup_{t=1}^{\lfloor m/2 \rfloor} \mathcal{D}_{m,t}} (-1)^{n(\lambda)} q^{|\lambda|} = \sum_{j:\pi_{(j)} \in \mathcal{D}_m \cup \bigcup_{t=1}^{\lfloor m/2 \rfloor} \mathcal{D}_{m,t}} (-1)^j q^{j(3j+1)/2}.$$
 (2)

We now examine both sides of (2). The set \mathcal{D}_m consists of all partitions in \mathcal{D} with parts from $\{1, 2, \ldots, m\}$. Hence

$$\sum_{\lambda \in \mathcal{D}_m} (-1)^{n(\lambda)} q^{|\lambda|} = \prod_{j=1}^m (1-q^j) = (q)_m.$$

The partitions in $\mathcal{D}_{m,t}$ must contain parts $m+1, m, m-1, \ldots, m+2-t$ and also a subset of $\{t+1, \ldots, m-t\}$. We have

$$\sum_{\lambda \in \mathcal{D}_{m,t}} (-1)^{n(\lambda)} q^{|\lambda|} = \prod_{j=m+2-t}^{m+1} (-q^j) \times \prod_{i=t+1}^{m-t} (1-q^i) = (-1)^t q^{t(2m+3-t)/2} (q^{t+1})_{m-2t}.$$

Thus

$$\sum_{\lambda \in \mathcal{D}_m \cup \bigcup_{t=1}^{\lfloor m/2 \rfloor} \mathcal{D}_{m,t}} (-1)^{n(\lambda)} q^{|\lambda|} = (q)_m + \sum_{t=1}^{\lfloor m/2 \rfloor} (-1)^t q^{t(2m+3-t)/2} (q^{t+1})_{m-2t}$$
$$= \sum_{t=0}^{\lfloor m/2 \rfloor} (-1)^t q^{t(2m+3-t)/2} (q^{t+1})_{m-2t}.$$

The partition $\pi_{(j)}$ lies in \mathcal{D}_m if and only if $0 \leq j \leq m/2$ or $0 \geq j \geq (m-1)/2$, that is if and only if $\lfloor -m/2 \rfloor \leq j \leq \lfloor m/2 \rfloor$. If j > 0 and $\pi_{(j)} \in \mathcal{D}_{m,t}$, then m+1=2jand t = j so that 2t > m. If j > 0 and $\pi_{(-j)} \in \mathcal{D}_{m,t}$, then m+1=2j-1 and t = jso again 2t > m. Hence

$$\sum_{j:\pi_{(j)}\in\mathcal{D}_m\cup\bigcup_{t=1}^{\lfloor m/2\rfloor}\mathcal{D}_{m,t}} (-1)^j q^{j(3j+1)/2} = \sum_{j=\lfloor -m/2\rfloor}^{\lfloor m/2\rfloor} (-1)^j q^{j(3j+1)/2}.$$

Equating both sides of (2) gives

$$\sum_{t=0}^{\lfloor m/2 \rfloor} (-1)^t q^{t(2m+3-t)/2} (q^{t+1})_{m-2t} = \sum_{j=\lfloor -m/2 \rfloor}^{\lfloor m/2 \rfloor} (-1)^j q^{j(3j+1)/2}$$

as required.

3 Schur's involution

Schur [3] produced a proof of the Rogers-Ramanujan identities using an involutive argument akin to Franklin's proof of Euler's formula. Let \mathcal{R} denote the set of partitions in \mathcal{D} having parts differing by at least 2. The first Rogers-Ramanujan identity states that

$$\sum_{\mu \in \mathcal{R}} q^{|\mu|} = \prod_{n=1}^{\infty} \frac{1}{(1 - q^{5n-4})(1 - q^{5n-1})}$$

Using Jacobi's triple product we see that this is equivalent to

$$\sum_{\mu \in \mathcal{R}} q^{|\mu|} = \frac{1}{(q)_{\infty}} \prod_{n=1}^{\infty} (1 - q^{5n-3})(1 - q^{5n-2})(1 - q^{5n}) = \frac{1}{(q)_{\infty}} \sum_{k=-\infty}^{\infty} (-1)^k q^{k(5k+1)/2}$$

and so to

$$\sum_{k=-\infty}^{\infty} (-1)^k q^{k(5k+1)/2} = (q)_{\infty} \sum_{\mu \in \mathcal{R}} q^{|\mu|} = \sum_{\lambda \in \mathcal{D}} \sum_{\mu \in \mathcal{R}} (-1)^{n(\lambda)} q^{|\lambda| + |\mu|}.$$
 (3)

Hence we define

$$w((\lambda,\mu)) = (-1)^{n(\lambda)} q^{|\lambda| + |\mu|}$$

for $(\lambda, \mu) \in \mathcal{D} \times \mathcal{R}$. Let $\rho_{(j)} = (2j - 1, 2j - 3, ..., 1) \in \mathcal{R}$, and let $\mathcal{E} = \{(\pi_{(j)}, \rho_{(|j|)}) : j \in \mathbb{Z}\}$. Note that $w((\pi_{(j)}, \rho_{(|j|)})) = (-1)^j q^{j(5j+1)/2}$. Schur defined an involution τ on $(\mathcal{D} \times \mathcal{R}) - \mathcal{E}$ with the property that $w(\tau(\lambda, \mu)) = -w(\lambda, \mu)$. The formula (3) is an immediate consequence of the existence of such a τ .

We shall apply τ to the set of pairs $(\lambda, \mu) \in \mathcal{D} \times \mathcal{R}$ in which each part of λ and μ is at most m. Let $\mathcal{R}_m = \mathcal{D}_m \cap \mathcal{R}$: the set of partitions in \mathcal{R} having parts of size at most m. Define

$$e_{m+2}(q) = \sum_{\mu \in \mathcal{R}_m} q^{|\mu|}.$$

The polynomials $e_{m+2}(q)$ were introduced by Schur and satisfy $e_2(q) = 1$, $e_3(q) = 1+q$ and $e_{m+2}(q) = e_{m+1}(q) + q^m e_m(q)$ for $m \ge 2$.

Theorem 2 The following identity holds for each integer $m \ge 0$:

$$\sum_{s=0}^{\lfloor m/2 \rfloor} (-1)^s q^{s(4m-3s+5)/2} (q^{s+1})_{m-2s} e_{m-2s+2}(q) = \sum_{j=\lfloor -m/2 \rfloor}^{\lfloor m/2 \rfloor} (-1)^j q^{j(5j+1)/2}.$$

Proof We apply Schur's involution τ to $\mathcal{D}_m \times \mathcal{R}_m$ as best we can. For the definition of τ we follow the description of Garsia and Milne [2] who used τ to construct a bijective proof of the Rogers-Ramanujan identities.

Divide the pairs in $(\mathcal{D} \times \mathcal{R}) - \mathcal{E}$ into three disjoint classes:

- the class \mathcal{T} contains those (λ, μ) with either λ or μ empty, and those with $\lambda_1 \mu_1 \notin \{0, 1\},$
- the class \mathcal{A} contains those (λ, μ) with $\lambda_1 \mu_1 = 1$,
- the class \mathcal{B} contains those (λ, μ) with $\lambda_1 \mu_1 = 0$.

The involution τ will preserve \mathcal{T} and interchange \mathcal{A} and \mathcal{B} . It will also negate weights: if $\tau((\lambda, \mu)) = (\lambda', \mu')$ then $w((\lambda', \mu')) = -w((\lambda, \mu))$. For $(\lambda, \mu) \in \mathcal{T}$, there is a unique largest part in λ and μ ; τ simply transfers this part to the other partition. Clearly τ is a weight-negating involution on \mathcal{T} .

We divide each of the class \mathcal{A} and \mathcal{B} into three subclasses. For $(\lambda, \mu) \in \mathcal{A} \cup \mathcal{B}$ we let p be the smallest part of λ , q the slope of λ and r the 2-slope of μ , the largest integer r such that $\mu_r = \mu_1 - 2(r-1) > 0$. Then

- the class \mathcal{A}_1 contains those $(\lambda, \mu) \in \mathcal{A}$ with $\min(p, q, r) = p$,
- the class \mathcal{A}_2 contains those $(\lambda, \mu) \in \mathcal{A}$ with $\min(p, q, r) = q < p$,
- the class \mathcal{A}_3 contains those $(\lambda, \mu) \in \mathcal{A}$ with $\min(p, q, r) = r < \min(p, q)$,
- the class \mathcal{B}_1 contains those $(\lambda, \mu) \in \mathcal{B}$ with $\min(p, q, r) = p$,
- the class \mathcal{B}_2 contains those $(\lambda, \mu) \in \mathcal{B}$ with $\min(p, q, r) = r < p$,

• the class \mathcal{B}_3 contains those $(\lambda, \mu) \in \mathcal{B}$ with $\min(p, q, r) = q < \min(p, r)$.

The involution τ will interchange \mathcal{A}_1 with \mathcal{B}_2 , \mathcal{A}_2 with \mathcal{B}_1 and \mathcal{A}_3 with \mathcal{B}_3 .

We describe its action on each \mathcal{A}_j . It is then straightforward to check that $\tau : \mathcal{A}_1 \to \mathcal{B}_2, \tau : \mathcal{A}_2 \to \mathcal{B}_1$ and $\tau : \mathcal{A}_3 \to \mathcal{B}_3$ are all weight-negating bijections.

Let $(\lambda, \mu) \in \mathcal{A}_1$. Then we obtain $\tau((\lambda, \mu)) = (\lambda', \mu')$ by removing the smallest part p from λ and adding 1 to the p largest parts of μ .

Let $(\lambda, \mu) \in \mathcal{A}_2$. Then $\tau((\lambda, \mu)) = (\lambda', \mu)$ where $\lambda' = \sigma(\lambda)$ and σ is the Franklin involution.

Let $(\lambda, \mu) \in \mathcal{A}_3$. Then we obtain $\tau((\lambda, \mu)) = (\lambda', \mu')$ by subtracting 1 from the r largest parts of μ , then moving the largest part of λ to μ and finally adding 1 to the r largest parts of λ . That is $\lambda' = (\lambda_2 + 1, \lambda_3 + 1, \dots, \lambda_{r+1} + 1, \lambda_{r+2}, \dots)$ and $\mu' = (\lambda_1, \mu_1 - 1, \mu_2 - 1, \dots, \mu_r - 1, \mu_{r+1}, \dots)$.

Let $\mathcal{P}_m = \mathcal{D}_m \times \mathcal{R}_m$. Then

$$\sum_{(\lambda,\mu)\in\mathcal{P}_m} w((\lambda,\mu)) = (q)_m e_{m+2}(q).$$

For $1 \leq s \leq m/2$ let $\mathcal{P}_{m,s}$ denote the set of pairs $(\lambda, \mu) \in \mathcal{D} \times \mathcal{R}$ where $\lambda_1 = m + 1$, $\mu_1 = m, \lambda$ has slope s and smallest part > s and μ has 2-slope $\geq s$. The $\lambda \in \mathcal{D}$ with $\lambda_1 = m + 1$ having slope s and smallest part > s must have the s parts $m+1, m, \ldots, m-s+2$, and a subset of $\{s+1, s+2, \ldots, m-s\}$. It follows that the sum of $(-1)^{n_\lambda}q^{|\lambda|}$ over these λ is

$$\prod_{j=m-s+2}^{m+1} (-q^j) \times \prod_{i=s+1}^{m-s} (1-q^i) = (-1)^s q^{s(2m-s+3)/2} (q^{s+1})_{m-2s}$$

The μ in \mathcal{R} with $\mu_1 = m$ and having slope at least s have parts $m, m-2, \ldots, m-s+2$, together with various distinct parts $\leq m-s$ differing by at least 2. It follows that the sum of $q^{|\mu|}$ over these μ is

$$q^{m}q^{m-2}\cdots q^{m-2s+2}e_{m-2s+2}(q) = q^{s(m-s+1)}e_{m-2s+2}(q).$$

Hence

$$\sum_{(\lambda,\mu)\in\mathcal{P}_{m,s}} w((\lambda,\mu)) = (-1)^s q^{s(2m-s+3)/2} (q^{s+1})_{m-2s} q^{s(m-s+1)} e_{m-2s+2}(q)$$
$$= (-1)^s q^{s(4m-3s+5)/2} (q^{s+1})_{m-2s} e_{m-2s+2}(q).$$

Let $\mathcal{Q}_m = \mathcal{P}_m \cup \bigcup_{s=1}^{\lfloor m/2 \rfloor} \mathcal{P}_{m,s}$. Then

$$\sum_{(\lambda,\mu)\in\mathcal{Q}_m} w((\lambda,\mu)) = \sum_{s=0}^{\lfloor m/2 \rfloor} (-1)^s q^{s(4m-3s+5)/2} (q^{s+1})_{m-2s} e_{m-2s+2}(q).$$

We claim that $\mathcal{Q}_m - \mathcal{E}$ is closed under τ . If $(\lambda, \mu) \in \mathcal{P}_m$ but $(\lambda', \mu') = \tau((\lambda, \mu)) \notin \mathcal{P}_m$ then $(\lambda, \mu) \in \mathcal{B}_1$ and so $(\lambda', \mu') \in \mathcal{A}_2$. Then $\lambda'_1 = m + 1$, $\mu'_1 = m$ and if s is the slope of λ' then all parts of λ' exceed s while the slope of μ' is at least s. Hence

 $\tau((\lambda,\mu)) \in \mathcal{P}_{m,s}$. On the other hand if $(\lambda,\mu) \in \mathcal{P}_{m,s} - \mathcal{E}$, then $(\lambda,\mu) \in \mathcal{A}_2$ and so $\tau((\lambda,\mu)) \in \mathcal{P}_m$. Hence

$$\sum_{(\lambda,\mu)\in\mathcal{Q}_m-\mathcal{E}} w((\lambda,\mu))=0.$$

The elements of $\mathcal{Q}_m \cap \mathcal{E}$ are the $(\pi_j, \rho_{|j|})$ with $\lfloor -m/2 \rfloor \leq j \leq \lfloor m/2 \rfloor$. Hence

$$\begin{split} \sum_{(\lambda,\mu)\in\mathcal{Q}_m} w((\lambda,\mu)) &= \sum_{(\lambda,\mu)\in\mathcal{Q}_m\cap\mathcal{E}} w((\lambda,\mu)) \\ &= \sum_{j=\lfloor -m/2 \rfloor}^{\lfloor m/2 \rfloor} w((\pi_j,\rho_{|j|})) \\ &= \sum_{j=\lfloor -m/2 \rfloor}^{\lfloor m/2 \rfloor} (-1)^j q^{j(5j+1)/2} \end{split}$$

and the theorem follows.

The second Rogers-Ramanujan identity states that

$$\sum_{\mu \in \mathcal{R}} q^{|\mu|} = \prod_{n=1}^{\infty} \frac{1}{(1 - q^{5n-3})(1 - q^{5n-2})}$$

where \mathcal{R}' denotes the set of $\mu \in \mathcal{R}$ with all parts at least 2. Using the Jacobi triple product, this is equivalent to

$$\sum_{k=-\infty}^{\infty} (-1)^k q^{k(5k+3)/2} = (q)_{\infty} \sum_{\mu \in \mathcal{R}'} q^{|\mu|} = \sum_{\lambda \in \mathcal{D}} \sum_{\mu \in \mathcal{R}'} (-1)^{n(\lambda)} q^{|\lambda| + |\mu|}.$$
 (4)

There is also a bounded version of (4). To state it we define

$$d_{m+2}(q) = \sum_{\mu \in \mathcal{R}'_m} q^{|\mu|}$$

where $\mathcal{R}'_m = \mathcal{D}_m \cap \mathcal{R}'$ is the set of partitions in \mathcal{R}' having parts of size at most m.

Theorem 3 The following identity holds for each integer $m \ge 0$:

$$\sum_{s=0}^{\lfloor m/2 \rfloor} (-1)^s q^{s(4m-3s+5)/2} (q^{s+1})_{m-2s} d_{m-2s+2}(q) = \sum_{j=\lfloor -m/2 \rfloor}^{\lfloor m/2 \rfloor} (-1)^j q^{j(5j+3)/2}.$$

Proof This proof follows that of Theorem 2 *mutatis mutandis* so we do not give it in detail. We let $\rho'_{(j)} = (2j, 2j - 2, ..., 2)$ and let \mathcal{E}' be the set of pairs $(\pi_{(j)}, \rho'_{(j)})$ with $j \ge 0$ and $(\pi_{(j)}, \rho'_{(-1-j)})$ with j < 0. The map τ is an involution on $(\mathcal{D} \times \mathcal{R}') - \mathcal{E}'$. The proof now follows that of Theorem 2 exactly.

4 Acknowledgments

I wish to thank David Bressoud and Frank Garvan for alerting me to the reference [2]. I also wish to thank the referee for useful comments and corrections.

References

- [1] F. Franklin, 'Sur le développement du produit infini $(1-x)(1-x^2)(1-x^3)(1-x^4)...$ ', C. R. Acad. Sci. Paris, **92** (1881), 448–450.
- [2] A. M. Garsia and S. C. Milne, A Rogers-Ramanujan bijection, J. Combin. Theory Ser. A 31 (1981), 289–339.
- [3] I. J. Schur, Ein Beitrag sur additiven Zahlentheorie und der Theorie der Kettenbrüche, S.-B. Preuss Akad. Wiss. Phys.-Math. Kl. (1917), 315–336.
- [4] S. O. Warnaar, Partial-sum analogues of the Rogers-Ramanujan identities, J. Combin. Theory Ser. A 99 (2002), 143–161.

(Received 7/2/2002)