Partition identities arising from involutions

Robin Chapman
School of Mathematical Sciences
University of Exeter
Exeter, EX4 4QE, U.K.
rjc@maths.ex.ac.uk

Abstract

We give a simple combinatorial proof of three identities of Warnaar. The proofs exploit involutions due to Franklin and Schur.

1 Introduction

One of the classical arguments in the combinatorial theory of partitions is Franklin's argument [1] establishing Euler's pentagonal number formula:

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-q^{n}\right)=\sum_{k=-\infty}^{\infty}(-1)^{k} q^{k(3 k+1) / 2} . \tag{1}
\end{equation*}
$$

This proceeds by interpreting the left side of (1) as a weighted generating function of partitions into distinct parts:

$$
\prod_{n=1}^{\infty}\left(1-q^{n}\right)=\sum_{\lambda \in \mathcal{D}}(-1)^{n(\lambda)} q^{|\lambda|} .
$$

Here \mathcal{D} denotes the set of partitions with distinct parts, $|\lambda|$ is the number partitioned by λ and $n(\lambda)$ is the number of parts in λ. Franklin defines an involution σ defined on a "large" subset $\mathcal{D}^{\prime} \subseteq \mathcal{D}$ with the property that $(-1)^{n(\sigma(\lambda))} q^{|\sigma(\lambda)|}=-(-1)^{n(\lambda)} q^{|\lambda|}$. Thus the sum of $(-1)^{n(\lambda)} q^{|\lambda|}$ over \mathcal{D}^{\prime} vanishes and Euler's formula (1) follows from noting that the sum of $(-1)^{n(\lambda)} q^{|\lambda|}$ over $\mathcal{D}-\mathcal{D}^{\prime}$ is the right side of (1).

Later Schur [3] produced a proof, relying on a more complicated involution, of the Rogers-Ramanujan identities. Schur's involution later formed the basis of an explicit bijective proof due to Garsia and Milne [2] of the Rogers-Ramanujan identities.

In this paper we use Franklin's and Schur's involutions to prove bounded (polynomial rather than power series) versions of Euler's formula and the Rogers-Ramanujan identities.

Theorems 2 and 3 appear as the main theorem (Theorem 1.1) in [4]. Warnaar's proof of these results relies on an elaborate formal argument involving Bailey chains. He leaves the formula of Theorem 1 as an exercise for the reader. He also remarks that it "seems an extremely challenging problem to find a combinatorial proof of Theorem 1.1". This paper meets that challenge.

2 Franklin's involution

We adopt the standard q-series notation: for each integer $n \geq 0$ define $(a)_{n}=$ $\prod_{j=0}^{n-1}\left(1-a q^{j}\right)$.

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ denote a partition, that is, a finite nonincreasing sequence of positive integers, $|\lambda|=\sum_{j=1}^{k} \lambda_{j}$, the number partitioned by λ, and $n(\lambda)=k$, the number of parts in λ. Let \mathcal{D} denote the set of partitions having distinct parts, that is the set of λ with $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{k}$. For nonempty $\lambda \in \mathcal{D}$ let $t(\lambda)$ denote the smallest part of λ and $s(\lambda)$ be the "slope" of λ, that is, the largest integer s such that $\lambda_{s}=\lambda_{1}-s+1>0$.

For $j \in \mathbf{Z}$ we define a partition $\pi_{(j)} \in \mathcal{D}$ as follows: $\pi_{(0)}$ is the empty partition, for $j>0, \pi_{(j)}=(2 j, 2 j-1, \ldots, j+1)$ and $\pi_{(-j)}=(2 j-1,2 j-2, \ldots, j)$. Then $\left|\pi_{(j)}\right|=j(3 j+1) / 2$ and $n\left(\pi_{(j)}\right)=|j|$.

Following Franklin [1] we define an involution σ on the set $\mathcal{D}^{\prime}=\mathcal{D}-\left\{\pi_{(j)}: j \in \mathbf{Z}\right\}$ as follows:

- if $t(\lambda) \leq s(\lambda)$ remove the smallest part of λ and add 1 to each of the $t(\lambda)$ largest parts to yield $\sigma(\lambda)$;
- if $t(\lambda)>s(\lambda)$ subtract 1 from each of the $s(\lambda)$ largest parts of λ and create a new smallest part equal to $s(\lambda)$ to yield $\sigma(\lambda)$.

Then σ is an involution on \mathcal{D}^{\prime} and $(-1)^{n(\sigma(\lambda))} q^{|\sigma(\lambda)|}=-(-1)^{n(\lambda)} q^{|\lambda|}$.
Theorem 1 The following identity holds for each integer $m \geq 0$:

$$
\sum_{t=0}^{\lfloor m / 2\rfloor}(-1)^{t} q^{t(2 m-t+3) / 2}\left(q^{t+1}\right)_{m-2 t}=\sum_{j=\lfloor-m / 2\rfloor}^{\lfloor m / 2\rfloor}(-1)^{j} q^{j(3 j+1) / 2} .
$$

Proof Let \mathcal{D}_{m} consist of the partitions in \mathcal{D} with parts of size at most m. Then $\mathcal{D}_{m} \cap \mathcal{D}^{\prime}$ is not invariant under σ. Suppose that $\lambda \in \mathcal{D}_{m} \cap \mathcal{D}^{\prime}$ but $\sigma(\lambda) \notin \mathcal{D}_{m} \cap \mathcal{D}^{\prime}$. In this case $\lambda_{1}=m$ and $t(\lambda) \leq s(\lambda)$. Let $s=s(\lambda)$ and $t=t(\lambda)=s(\sigma(\lambda))$. Then λ contains a part $m-s+1$ and so $m-t-1 \geq m-s+1 \geq t$. Were equality to hold throughout, then λ would equal $\pi_{(-t)} \notin \mathcal{D}^{\prime}$. Hence $t \leq m / 2$. Then $\sigma(\lambda) \in \mathcal{D}_{m, t}$, where $\mathcal{D}_{m, t}$ is the set of partitions $\lambda \in \mathcal{D}$ with largest part $m+1$, slope t and smallest part $>t$. Conversely if $\mu \in \mathcal{D}_{m, t} \cap \mathcal{D}^{\prime}$, for some t, then $\sigma(\mu) \in \mathcal{D}_{m}$. The set $\left(\mathcal{D}_{m} \cup \bigcup_{t=1}^{\lfloor m / 2\rfloor} \mathcal{D}_{m, t}\right) \cap \mathcal{D}^{\prime}$ is invariant under σ. It follows that

$$
\begin{equation*}
\sum_{\lambda \in \mathcal{D}_{m} \cup \bigcup_{t=1}^{\lfloor m / 2\rfloor} \mathcal{D}_{m, t}}(-1)^{n(\lambda)} q^{|\lambda|}=\sum_{j: \pi(j) \in \mathcal{D}_{m} \cup \bigcup_{t=1}^{\lfloor m / 2\rfloor} \mathcal{D}_{m, t}}(-1)^{j} q^{j(3 j+1) / 2} . \tag{2}
\end{equation*}
$$

We now examine both sides of (2). The set \mathcal{D}_{m} consists of all partitions in \mathcal{D} with parts from $\{1,2, \ldots, m\}$. Hence

$$
\sum_{\lambda \in \mathcal{D}_{m}}(-1)^{n(\lambda)} q^{|\lambda|}=\prod_{j=1}^{m}\left(1-q^{j}\right)=(q)_{m} .
$$

The partitions in $\mathcal{D}_{m, t}$ must contain parts $m+1, m, m-1, \ldots, m+2-t$ and also a subset of $\{t+1, \ldots, m-t\}$. We have

$$
\sum_{\lambda \in \mathcal{D}_{m, t}}(-1)^{n(\lambda)} q^{|\lambda|}=\prod_{j=m+2-t}^{m+1}\left(-q^{j}\right) \times \prod_{i=t+1}^{m-t}\left(1-q^{i}\right)=(-1)^{t} q^{t(2 m+3-t) / 2}\left(q^{t+1}\right)_{m-2 t} .
$$

Thus

$$
\begin{aligned}
\sum_{\lambda \in \mathcal{D}_{m} \cup \bigcup}^{\lfloor\lfloor m / 2\rfloor} \mathcal{D}_{m, t} & (-1)^{n(\lambda)} q^{|\lambda|}
\end{aligned}=(q)_{m}+\sum_{t=1}^{\lfloor m / 2\rfloor}(-1)^{t} q^{t(2 m+3-t) / 2}\left(q^{t+1}\right)_{m-2 t} .
$$

The partition $\pi_{(j)}$ lies in \mathcal{D}_{m} if and only if $0 \leq j \leq m / 2$ or $0 \geq j \geq(m-1) / 2$, that is if and only if $\lfloor-m / 2\rfloor \leq j \leq\lfloor m / 2\rfloor$. If $j>0$ and $\pi_{(j)} \in \mathcal{D}_{m, t}$, then $m+1=2 j$ and $t=j$ so that $2 t>m$. If $j>0$ and $\pi_{(-j)} \in \mathcal{D}_{m, t}$, then $m+1=2 j-1$ and $t=j$ so again $2 t>m$. Hence

$$
\sum_{j: \pi_{(j)} \in \mathcal{D}_{m} \cup \bigcup_{t=1}^{\lfloor m / 2\rfloor}}(-1)^{j} q^{j(3 j+1) / 2}=\sum_{j=\lfloor-m / 2\rfloor}^{\lfloor m / 2\rfloor}(-1)^{j} q^{j(3 j+1) / 2} .
$$

Equating both sides of (2) gives

$$
\sum_{t=0}^{\lfloor m / 2\rfloor}(-1)^{t} q^{t(2 m+3-t) / 2}\left(q^{t+1}\right)_{m-2 t}=\sum_{j=\lfloor-m / 2\rfloor}^{\lfloor m / 2\rfloor}(-1)^{j} q^{j(3 j+1) / 2}
$$

as required.

3 Schur's involution

Schur [3] produced a proof of the Rogers-Ramanujan identities using an involutive argument akin to Franklin's proof of Euler's formula. Let \mathcal{R} denote the set of partitions in \mathcal{D} having parts differing by at least 2 . The first Rogers-Ramanujan identity states that

$$
\sum_{\mu \in \mathcal{R}} q^{|\mu|}=\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{5 n-4}\right)\left(1-q^{5 n-1}\right)}
$$

Using Jacobi's triple product we see that this is equivalent to

$$
\sum_{\mu \in \mathcal{R}} q^{|\mu|}=\frac{1}{(q)_{\infty}} \prod_{n=1}^{\infty}\left(1-q^{5 n-3}\right)\left(1-q^{5 n-2}\right)\left(1-q^{5 n}\right)=\frac{1}{(q)_{\infty}} \sum_{k=-\infty}^{\infty}(-1)^{k} q^{k(5 k+1) / 2}
$$

and so to

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}(-1)^{k} q^{k(5 k+1) / 2}=(q)_{\infty} \sum_{\mu \in \mathcal{R}} q^{|\mu|}=\sum_{\lambda \in \mathcal{D}} \sum_{\mu \in \mathcal{R}}(-1)^{n(\lambda)} q^{|\lambda|+|\mu|} . \tag{3}
\end{equation*}
$$

Hence we define

$$
w((\lambda, \mu))=(-1)^{n(\lambda)} q^{|\lambda|+|\mu|}
$$

for $(\lambda, \mu) \in \mathcal{D} \times \mathcal{R}$. Let $\rho_{(j)}=(2 j-1,2 j-3, \ldots, 1) \in \mathcal{R}$, and let $\mathcal{E}=\left\{\left(\pi_{(j)}, \rho_{(|j|)}\right)\right.$: $j \in \mathbf{Z}\}$. Note that $w\left(\left(\pi_{(j)}, \rho_{(|j|)}\right)\right)=(-1)^{j} q^{j(5 j+1) / 2}$. Schur defined an involution τ on $(\mathcal{D} \times \mathcal{R})-\mathcal{E}$ with the property that $w(\tau(\lambda, \mu))=-w(\lambda, \mu)$. The formula (3) is an immediate consequence of the existence of such a τ.

We shall apply τ to the set of pairs $(\lambda, \mu) \in \mathcal{D} \times \mathcal{R}$ in which each part of λ and μ is at most m. Let $\mathcal{R}_{m}=\mathcal{D}_{m} \cap \mathcal{R}$: the set of partitions in \mathcal{R} having parts of size at most m. Define

$$
e_{m+2}(q)=\sum_{\mu \in \mathcal{R}_{m}} q^{|\mu|}
$$

The polynomials $e_{m+2}(q)$ were introduced by Schur and satisfy $e_{2}(q)=1, e_{3}(q)=1+q$ and $e_{m+2}(q)=e_{m+1}(q)+q^{m} e_{m}(q)$ for $m \geq 2$.

Theorem 2 The following identity holds for each integer $m \geq 0$:

$$
\sum_{s=0}^{\lfloor m / 2\rfloor}(-1)^{s} q^{s(4 m-3 s+5) / 2}\left(q^{s+1}\right)_{m-2 s} e_{m-2 s+2}(q)=\sum_{j=\lfloor-m / 2\rfloor}^{\lfloor m / 2\rfloor}(-1)^{j} q^{j(5 j+1) / 2} .
$$

Proof We apply Schur's involution τ to $\mathcal{D}_{m} \times \mathcal{R}_{m}$ as best we can. For the definition of τ we follow the description of Garsia and Milne [2] who used τ to construct a bijective proof of the Rogers-Ramanujan identities.

Divide the pairs in $(\mathcal{D} \times \mathcal{R})-\mathcal{E}$ into three disjoint classes:

- the class \mathcal{T} contains those (λ, μ) with either λ or μ empty, and those with $\lambda_{1}-\mu_{1} \notin\{0,1\}$,
- the class \mathcal{A} contains those (λ, μ) with $\lambda_{1}-\mu_{1}=1$,
- the class \mathcal{B} contains those (λ, μ) with $\lambda_{1}-\mu_{1}=0$.

The involution τ will preserve \mathcal{T} and interchange \mathcal{A} and \mathcal{B}. It will also negate weights: if $\tau((\lambda, \mu))=\left(\lambda^{\prime}, \mu^{\prime}\right)$ then $w\left(\left(\lambda^{\prime}, \mu^{\prime}\right)\right)=-w((\lambda, \mu))$. For $(\lambda, \mu) \in \mathcal{T}$, there is a unique largest part in λ and $\mu ; \tau$ simply transfers this part to the other partition. Clearly τ is a weight-negating involution on \mathcal{T}.

We divide each of the class \mathcal{A} and \mathcal{B} into three subclasses. For $(\lambda, \mu) \in \mathcal{A} \cup \mathcal{B}$ we let p be the smallest part of λ, q the slope of λ and r the 2-slope of μ, the largest integer r such that $\mu_{r}=\mu_{1}-2(r-1)>0$. Then

- the class \mathcal{A}_{1} contains those $(\lambda, \mu) \in \mathcal{A}$ with $\min (p, q, r)=p$,
- the class \mathcal{A}_{2} contains those $(\lambda, \mu) \in \mathcal{A}$ with $\min (p, q, r)=q<p$,
- the class \mathcal{A}_{3} contains those $(\lambda, \mu) \in \mathcal{A}$ with $\min (p, q, r)=r<\min (p, q)$,
- the class \mathcal{B}_{1} contains those $(\lambda, \mu) \in \mathcal{B}$ with $\min (p, q, r)=p$,
- the class \mathcal{B}_{2} contains those $(\lambda, \mu) \in \mathcal{B}$ with $\min (p, q, r)=r<p$,
- the class \mathcal{B}_{3} contains those $(\lambda, \mu) \in \mathcal{B}$ with $\min (p, q, r)=q<\min (p, r)$.

The involution τ will interchange \mathcal{A}_{1} with $\mathcal{B}_{2}, \mathcal{A}_{2}$ with \mathcal{B}_{1} and \mathcal{A}_{3} with \mathcal{B}_{3}.
We describe its action on each \mathcal{A}_{j}. It is then straightforward to check that $\tau: \mathcal{A}_{1} \rightarrow \mathcal{B}_{2}, \tau: \mathcal{A}_{2} \rightarrow \mathcal{B}_{1}$ and $\tau: \mathcal{A}_{3} \rightarrow \mathcal{B}_{3}$ are all weight-negating bijections.

Let $(\lambda, \mu) \in \mathcal{A}_{1}$. Then we obtain $\tau((\lambda, \mu))=\left(\lambda^{\prime}, \mu^{\prime}\right)$ by removing the smallest part p from λ and adding 1 to the p largest parts of μ.

Let $(\lambda, \mu) \in \mathcal{A}_{2}$. Then $\tau((\lambda, \mu))=\left(\lambda^{\prime}, \mu\right)$ where $\lambda^{\prime}=\sigma(\lambda)$ and σ is the Franklin involution.

Let $(\lambda, \mu) \in \mathcal{A}_{3}$. Then we obtain $\tau((\lambda, \mu))=\left(\lambda^{\prime}, \mu^{\prime}\right)$ by subtracting 1 from the r largest parts of μ, then moving the largest part of λ to μ and finally adding 1 to the r largest parts of λ. That is $\lambda^{\prime}=\left(\lambda_{2}+1, \lambda_{3}+1, \ldots, \lambda_{r+1}+1, \lambda_{r+2}, \ldots\right)$ and $\mu^{\prime}=\left(\lambda_{1}, \mu_{1}-1, \mu_{2}-1, \ldots, \mu_{r}-1, \mu_{r+1}, \ldots\right)$.

Let $\mathcal{P}_{m}=\mathcal{D}_{m} \times \mathcal{R}_{m}$. Then

$$
\sum_{(\lambda, \mu) \in \mathcal{P}_{m}} w((\lambda, \mu))=(q)_{m} e_{m+2}(q)
$$

For $1 \leq s \leq m / 2$ let $\mathcal{P}_{m, s}$ denote the set of pairs $(\lambda, \mu) \in \mathcal{D} \times \mathcal{R}$ where $\lambda_{1}=m+1$, $\mu_{1}=m, \lambda$ has slope s and smallest part $>s$ and μ has 2 -slope $\geq s$. The $\lambda \in \mathcal{D}$ with $\lambda_{1}=m+1$ having slope s and smallest part $>s$ must have the s parts $m+1, m, \ldots, m-s+2$, and a subset of $\{s+1, s+2, \ldots, m-s\}$. It follows that the sum of $(-1)^{n_{\lambda}} q^{|\lambda|}$ over these λ is

$$
\prod_{j=m-s+2}^{m+1}\left(-q^{j}\right) \times \prod_{i=s+1}^{m-s}\left(1-q^{i}\right)=(-1)^{s} q^{s(2 m-s+3) / 2}\left(q^{s+1}\right)_{m-2 s} .
$$

The μ in \mathcal{R} with $\mu_{1}=m$ and having slope at least s have parts $m, m-2, \ldots, m-s+2$, together with various distinct parts $\leq m-s$ differing by at least 2 . It follows that the sum of $q^{|\mu|}$ over these μ is

$$
q^{m} q^{m-2} \cdots q^{m-2 s+2} e_{m-2 s+2}(q)=q^{s(m-s+1)} e_{m-2 s+2}(q) .
$$

Hence

$$
\begin{aligned}
\sum_{(\lambda, \mu) \in \mathcal{P}_{m, s}} w((\lambda, \mu)) & =(-1)^{s} q^{s(2 m-s+3) / 2}\left(q^{s+1}\right)_{m-2 s} q^{s(m-s+1)} e_{m-2 s+2}(q) \\
& =(-1)^{s} q^{s(4 m-3 s+5) / 2}\left(q^{s+1}\right)_{m-2 s} e_{m-2 s+2}(q)
\end{aligned}
$$

Let $\mathcal{Q}_{m}=\mathcal{P}_{m} \cup \bigcup_{s=1}^{\lfloor m / 2\rfloor} \mathcal{P}_{m, s}$. Then

$$
\sum_{(\lambda, \mu) \in \mathcal{Q}_{m}} w((\lambda, \mu))=\sum_{s=0}^{\lfloor m / 2\rfloor}(-1)^{s} q^{s(4 m-3 s+5) / 2}\left(q^{s+1}\right)_{m-2 s} e_{m-2 s+2}(q) .
$$

We claim that $\mathcal{Q}_{m}-\mathcal{E}$ is closed under τ. If $(\lambda, \mu) \in \mathcal{P}_{m}$ but $\left(\lambda^{\prime}, \mu^{\prime}\right)=\tau((\lambda, \mu)) \notin$ \mathcal{P}_{m} then $(\lambda, \mu) \in \mathcal{B}_{1}$ and so $\left(\lambda^{\prime}, \mu^{\prime}\right) \in \mathcal{A}_{2}$. Then $\lambda_{1}^{\prime}=m+1, \mu_{1}^{\prime}=m$ and if s is the slope of λ^{\prime} then all parts of λ^{\prime} exceed s while the slope of μ^{\prime} is at least s. Hence
$\tau((\lambda, \mu)) \in \mathcal{P}_{m, s}$. On the other hand if $(\lambda, \mu) \in \mathcal{P}_{m, s}-\mathcal{E}$, then $(\lambda, \mu) \in \mathcal{A}_{2}$ and so $\tau((\lambda, \mu)) \in \mathcal{P}_{m}$. Hence

$$
\sum_{(\lambda, \mu) \in \mathcal{Q}_{m}-\mathcal{E}} w((\lambda, \mu))=0 .
$$

The elements of $\mathcal{Q}_{m} \cap \mathcal{E}$ are the $\left(\pi_{j}, \rho_{|j|}\right)$ with $\lfloor-m / 2\rfloor \leq j \leq\lfloor m / 2\rfloor$. Hence

$$
\begin{aligned}
\sum_{(\lambda, \mu) \in \mathcal{Q}_{m}} w((\lambda, \mu)) & =\sum_{(\lambda, \mu) \in \mathcal{Q}_{m} \cap \mathcal{E}} w((\lambda, \mu)) \\
& =\sum_{j=\lfloor-m / 2\rfloor}^{\lfloor m / 2\rfloor} w\left(\left(\pi_{j}, \rho_{|j|}\right)\right) \\
& =\sum_{j=\lfloor-m / 2\rfloor}^{\lfloor m / 2\rfloor}(-1)^{j} q^{j(5 j+1) / 2}
\end{aligned}
$$

and the theorem follows.
The second Rogers-Ramanujan identity states that

$$
\sum_{\mu \in \mathcal{R}} q^{|\mu|}=\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{5 n-3}\right)\left(1-q^{5 n-2}\right)}
$$

where \mathcal{R}^{\prime} denotes the set of $\mu \in \mathcal{R}$ with all parts at least 2 . Using the Jacobi triple product, this is equivalent to

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}(-1)^{k} q^{k(5 k+3) / 2}=(q)_{\infty} \sum_{\mu \in \mathcal{R}^{\prime}} q^{|\mu|}=\sum_{\lambda \in \mathcal{D}} \sum_{\mu \in \mathcal{R}^{\prime}}(-1)^{n(\lambda)} q^{|\lambda|+|\mu|} \tag{4}
\end{equation*}
$$

There is also a bounded version of (4). To state it we define

$$
d_{m+2}(q)=\sum_{\mu \in \mathcal{R}_{m}^{\prime}} q^{|\mu|}
$$

where $\mathcal{R}_{m}^{\prime}=\mathcal{D}_{m} \cap \mathcal{R}^{\prime}$ is the set of partitions in \mathcal{R}^{\prime} having parts of size at most m.
Theorem 3 The following identity holds for each integer $m \geq 0$:

$$
\sum_{s=0}^{\lfloor m / 2\rfloor}(-1)^{s} q^{s(4 m-3 s+5) / 2}\left(q^{s+1}\right)_{m-2 s} d_{m-2 s+2}(q)=\sum_{j=\lfloor-m / 2\rfloor}^{\lfloor m / 2\rfloor}(-1)^{j} q^{j(5 j+3) / 2}
$$

Proof This proof follows that of Theorem 2 mutatis mutandis so we do not give it in detail. We let $\rho_{(j)}^{\prime}=(2 j, 2 j-2, \ldots, 2)$ and let \mathcal{E}^{\prime} be the set of pairs $\left(\pi_{(j)}, \rho_{(j)}^{\prime}\right)$ with $j \geq 0$ and $\left(\pi_{(j)}, \rho_{(-1-j)}^{\prime}\right)$ with $j<0$. The map τ is an involution on $\left(\mathcal{D} \times \mathcal{R}^{\prime}\right)-\mathcal{E}^{\prime}$. The proof now follows that of Theorem 2 exactly.

4 Acknowledgments

I wish to thank David Bressoud and Frank Garvan for alerting me to the reference [2]. I also wish to thank the referee for useful comments and corrections.

References

[1] F. Franklin, 'Sur le développement du produit infini $(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right)(1-$ $\left.x^{4}\right) \ldots$. . C. R. Acad. Sci. Paris, 92 (1881), 448-450.
[2] A. M. Garsia and S. C. Milne, A Rogers-Ramanujan bijection, J. Combin. Theory Ser. A 31 (1981), 289-339.
[3] I. J. Schur, Ein Beitrag sur additiven Zahlentheorie und der Theorie der Kettenbrüche, S.-B. Preuss Akad. Wiss. Phys.-Math. Kl. (1917), 315-336.
[4] S. O. Warnaar, Partial-sum analogues of the Rogers-Ramanujan identities, J. Combin. Theory Ser. A 99 (2002), 143-161.
(Received 7/2/2002)

