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Abstract

A (p, q)-graph G = (V, E) is said to be magic if there exists a bijection
f : V ∪ E → {1, 2, 3, . . . , p + q} such that for all edges uv of G, f(u) +
f(v) + f(uv) is a constant. The minimum of all constants say, m(G),
where the minimum is taken over all such bijections of a magic graph G,
is called the magic strength of G. In this paper we define the maximum of
all constants say, M(G), analogous to m(G), and introduce strong magic,
ideal magic, weak magic labelings, and prove that some known classes of
graphs admit such labelings.

1 Introduction

For all standard notation and terminology in graph theory we follow [4]. Graph
labelings where the vertices are assigned real values subject to certain conditions, have
often been motivated by practical problems, but they are also of logico-mathematical
interest in their own right. An enormous body of literature has grown around the
subject, especially in the last thirty years or so, and is presented in a survey [3].

A (p, q)-graph G = (V, E) is said to be magic if there exists a bijection f :
V ∪ E → {1, 2, 3, . . . , p + q} such that for all edges uv of G, f(u) + f(v) + f(uv) is
a constant (see [6]). Such a bijection is called a magic labeling of G.
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For any magic labeling f of G, there is a constant c(f) such that for all edges
uv of G, f(u) + f(v) + f(uv) = c(f). The magic strength m(G), is defined as the
minimum of c(f) where the minimum is taken over all magic labelings of G.

The magic strength, m(G) of the following graphs has already been established.

1. m(P2n) = 5n + 1 and m(P2n+1) = 5n + 3 where P2n is a path with 2n vertices
(see [9, 10]).

2. m(Bn,n) = 5n + 6 where Bn,n is the graph obtained from two copies of K1,n

by joining the vertices of maximum degree by an edge which is called a bistar
(see [9]).

3. m(C2n) = 5n + 4 , m(C2n+1) = 5n + 2, where Cn is a cycle of length n (see [9,
10]).

4. m(K1,n) = 2n + 4 (see [2, 9, 10]).

5. m((2n+1)P2) = 9n+6, where (2n+1)P2 is the disjoint union of 2n+1 copies
of P2. (Note that 2nP2 is not magic) (see [6, 9]).

Also some new constructions of magic graphs have been established [1, 7, 8].
We call m(G) the minimum magic strength of a magic graph G, and analogously

we define the maximum magic strength, M(G), as the maximum of all c(f). That
is, M(G) = max{c(f) : f is a magic labeling of G}. Clearly for any magic labeling
f of a (p, q)-graph G, we get

p + q + 3 ≤ m(G) ≤ c(f) ≤ M(G) ≤ 2(p + q). (1)

In this paper we introduce strong magic, ideal magic, and weak magic labelings
of graphs and study these parameters for some well-known graphs.

The above three notions decompose the set M, of all magic graphs, into three
mutually disjoint subsets whose union is M.

A magic graph G is said to be

1. strong magic if m(G) = M(G),

2. ideal magic if 1 ≤ M(G) − m(G) ≤ p, and

3. weak magic if M(G) − m(G) > p.

2 Strong, Ideal and Weak magic graphs

In this section we study some trees, cycles, cycle related graphs W◦(t, 3), etc. for
their strong magic, ideal magic and weak magic nature. Also we construct some
weak magic graphs.

The crown Cn�K1, is the graph obtained from a cycle Cn by attaching a pendant
edge at each vertex of the cycle. The web graph without center W◦(2, n) is the graph

278



2 

7 

6 

4 

3 

9 8 

1 

5 

15 16 

12  11 

14 

13 

10 

15 

10 

11  13 

14 

8 

9 

16 
1  12 

2 

6 

3 4 

7 

5 

Figure 1: A primal magic labeling and dual magic labeling of C8

obtained from Cn � K1 by joining the pendant vertices to form the cycle and then
adding a single pendant edge at each vertex of the outer cycle. The generalized
web graph without center W◦(t, n) is the graph obtained by iterating the process of
constructing W◦(2, n) from Cn � K1 so that the web has exactly t cycles. We prove
that the graph W◦(t, 3), is weak magic for all t ≥ 1.

The following theorem gives a relation between the magic strengths m(G) and
M(G) of any magic graph G.

Theorem 2.1 ([10]): A (p, q)-graph G is magic with minimum magic strength m(G)
if and only if it is magic with maximum magic strength M(G) = 3(p+q+1)−m(G).

Remark 2.2: Let G be a magic graph. Then for every magic labeling f of G, we
obtain another magic labeling g of G. We call f , a primal magic labeling of G and g,
the dual magic labeling of G with respect to f . One can see that the dual of the dual
of any primal magic labeling of G is itself. For example, a primal magic labeling and
its dual magic labeling of C8 using Theorem 2.1, are illustrated in Figure 1. (Also
m(C8) = 22 and M(C8) = 29.)

Therefore for every magic labeling f of a magic graph G there exists a positive
integer k such that c(f) = p + q + 2 + k and c(dual of f) = 2p + 2q + 1 − k. From
Theorem 2.1 and (1) at least one k is such that k ≤ (p + q − 1)/2. Hence we have
the following corollary.

Corollary 2.3: If the (p, q)-graph G is magic then there exists at least one magic
labeling f of G such that c(f) ≤ (3p + 3q + 5)/2.

Theorem 2.4: A path Pn of n vertices (n > 1), is strong magic if and only if n = 2.
Further for all n �= 2, Pn is ideal magic.

Proof. Let Pn be a strong magic path of n vertices. When n is odd, we have from
[9] that m(Pn) = m(P2k+1) = 5k + 3. Then by Theorem 2.1, M(Pn) = M(P2k+1) =
7k + 3. For Pn to be strong magic, m(Pn) = M(Pn), that is 5k + 3 = 7k + 3 which
implies k = 0. Therefore for odd n, Pn is not strong magic.
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When n is even, m(Pn) = m(P2k) = 5k+1, and M(Pn) = M(P2k) = 7k−1. Now
5k + 1 = 7k − 1 holds only when k = 1. The converse is obvious as P2 is magic with
m(P2) = M(P2) = 6.

Further, for odd n, M(Pn) − m(Pn) = 2k < 2k + 1, and for even n, M(Pn) −
m(Pn) = 2k − 2 < 2k. Hence all Pn except P2 are ideal-magic. �

Theorem 2.5: The star K1,n is

1. strong magic for n = 1,

2. ideal magic for n = 2, 3, and

3. weak magic for n > 3.

Proof. Note that m(K1,n) = 2n + 4 and by Theorem 2.1, M(K1,n) = 4n + 2.
Hence the theorem follows because M(K1,n) − m(K1,n) = 2n − 2. �

Theorem 2.6: The graph n-bistar Bn,n is ideal-magic for all n ≥ 1.

Proof. Since m(Bn,n) = 5n + 6 and M(Bn,n) = 7n + 6, the proof is trivial. �

Analogously one can prove the following two theorems.

Theorem 2.7: The graph (2n+1)P2, is strong magic for all n ≥ 0.

(Note that m((2n+1)P2) = 9n + 6 = M((2n+1)P2)).

Theorem 2.8: All cycles are ideal-magic.

(Note that m(C2n) = 5n + 4, m(C2n+1) = 5n + 2, M(C2n) = 7n + 1, and
M(C2n+1) = 7n + 5.)

Theorem 2.9: Let (ui,wi,vi,1, vi,2, . . . , vi,n), 1 ≤ i ≤ t be a collection of t disjoint
graphs P2 + Kn such that deg(ui) = deg(wi) = n + 1 and deg(vi,j) = 2, 1 ≤ j ≤ n.
Then the graph G = (V, E) obtained by joining vi,n to ui+1, vi+1,1 and vi+1,2, for
1 ≤ i ≤ t − 1 is weak magic for all integers t > 1.

Proof. Define a labeling f : V ∪ E → {1, 2, 3, . . . , (3n + 6)t − 3} by




f(ui) = ni − n + 2i − 1, 1 ≤ i ≤ t
f(wi) = ni + 2i, 1 ≤ i ≤ t
f(vi,j) = f(ui) + j, 1 ≤ j ≤ n.
f(uv) = (3n + 6)t − (f(u) + f(v)), for all uv, where uv is an edge of G.

Then one easily checks that f so defined is a magic labeling of the graph G.
Now c(f) = (3n + 6)t and therefore m(G) ≤ c(f) = (3n + 6)t. But for any magic
(p, q)-graph G, p + q + 3 ≤ m(G) which implies (3n + 6)t ≤ m(G).
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Figure 2: A magic labeling of the graph G when t = 3 and n = 3, using Theorem 2.9.

Therefore we get, m(G) = (3n+6)t and hence by Theorem 2.1, we have M(G) =
(6n + 12)t− 6. Clearly M(G)−m(G) = (3n + 6)t− 6 > (n + 2)t for all t > 1. (Note
that (n + 2)t is the number of vertices of G.) Hence G is weak magic for all t > 1. �

For example, a magic labeling of G when t = 3 and n = 3, using Theorem 2.9, is
illustrated in Figure 2. (Minimum magic strength m(G) = 45.)

Theorem 2.10: The graph W◦(t, 3), is weak-magic for all t ≥ 1.

Proof. Name the vertices of the innermost cycle of W◦(t, 3) successively as
v1,1, v1,2, v1,3. Label the vertices adjacent to v1,1, v1,2, v1,3 on the second cycle as
v2,3, v2,1, v2,2 respectively and the vertices adjacent to v2,3, v2,1, v2,2 on the third cycle

as v3,2 , v3,3, v3,1 and so on, the vertices adjacent to vi,x, vi,y, vi,z on the (i+1)th cycle
as vi+1,z ,vi+1,x, vi+1,y.

Define a labeling f : V (W◦(t, 3)) ∪ E(W◦(t, 3)) → {1, 2, 3, . . . , 9t + 3} by

{
f(vi,j) = 3(i − 1) + j, 1 ≤ i ≤ t + 1, j = 1, 2, 3
f(vi,jvm,n) = 9t + 6 − (f(vi,j) + f(vm,n)), where vi,jvm,n is an edge.

That is, v1,1, v1,2, v1,3 ,v2,1, v2,2, v2,3 , . . . are labeled respectively 1, 2, 3, 4, 5, 6, . . . and
every edge is labeled by subtracting the sum of the labels of its end vertices from
9t + 6. Clearly one can verify that f defined above is a magic labeling of W◦(t, 3).

Since c(f) = 9t + 6, m(W◦(t, 3)) ≤ c(f) = 9t + 6. We have, for any magic
(p, q)-graph G, p + q + 3 ≤ m(G).

Therefore we get 9t + 6 ≤ m(W◦(t, 3)) and hence m(W◦(t, 3)) = 9t + 6. By
Theorem 2.1, we have M(W◦(t, 3)) = 18t + 6. Clearly M(W◦(t, 3)) − m(W◦(t, 3)) =
9t > 3t + 3 for all t ≥ 1. Hence W◦(t, 3) is weak magic for all t ≥ 1. �

For example, a magic labeling of W◦(4, 3), with minimum magic strength
m(W◦(4, 3)) = 42, using Theorem 2.10, is illustrated in Figure 3.

Theorem 2.11: Let (ui, vi, wi, xi, yi, zi), 1 ≤ i ≤ t be a collection of t disjoint
3-regular graphs with six vertices such that ui, vi, wi, are adjacent respectively to
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Figure 3: A magic labeling of W◦(4, 3) using Theorem 2.10.

xi, yi, zi, 1 ≤ i ≤ t − 1. Then the graph G = (V, E) obtained by joining zi to
ui+1, vi+1 and wi+1, 1 ≤ i ≤ t − 1 is weak magic for all integers t ≥ 1.

Proof. Define a labeling f : V ∪ E → {1, 2, 3, . . . , 18t − 3} by




f(ui) = 6i − 4,
f(vi) = 6i − 3,
f(wi) = 6i − 5,
f(xi) = 6i,
f(yi) = 6i − 2,
f(zi) = 6i − 1, 1 ≤ i ≤ t,
f(uv) = 18t − (f(u) + f(v)), where uv is an edge of the graph G.

Then one easily checks that f so defined is a magic labeling of the graph G and
c(f) = 18t. Therefore m(G) ≤ c(f) = 18t and then m(G) = 18t.

Now by Theorem 2.1, M(G) = 36t− 6. Clearly M(G)−m(G) = 18t− 6 > 6t for
all t ≥ 1.

Hence G is weak magic for all t ≥ 1. �

For example, a magic labeling of the graph G defined in Theorem 2.11 when
t = 3, is illustrated in Figure 4. (Minimum magic strength = m(G) = 54).

3 An observation

In this section we propose a conjecture, about caterpillars. A caterpillar is a tree,
the deletion of whose pendant vertices results in a path.
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Figure 4: A magic labeling of the graph G when t = 3, using Theorem 2.11.

Let C(a,b) be a caterpillar with bipartition {A, B} of its vertex set V (C(a,b)), where
A = {u1, u2, . . . , ua} and B = {v1, v2, . . . , vb}. It is well known that every caterpillar
C(a,b) has a plane representation, such as ones that are shown in Figure 5, with the
a-vertices ui appearing from the top to bottom on the left hand side column and the
b-vertices vi appearing from the top to bottom on the right hand side column. Note
that a, b > 1 and also without loss of generality one can assume a ≤ b.

We now define four different magic labelings of C(a,b) as follows.

1. f : V (C(a,b)) ∪ E(C(a,b)) → {1, 2, 3, . . . , 2(a + b) − 1} by


f(ui) = i, i ∈ {1, 2, . . . , a},
f(vi) = a + i, i ∈ {1, 2, . . . , b},
f(uivj) = 2(a + b) − (i + j − 1), for all i, j where uivj is an edge.

2. Dual of f .

3. g : V (C(a,b)) ∪ E(C(a,b)) → {1, 2, 3, . . . , 2(a + b) − 1} by


g(vi) = i, i ∈ {1, 2, . . . , b},
g(ui) = b + i, i ∈ {1, 2, . . . , a},
g(uivj) = 2(a + b) − (i + j − 1), for all i, j where uivj is an edge.

4. Dual of g.

Also, one can observe that c(f) = 3a + 2b + 1, c(dual of f) = 3a + 4b − 1, c(g) =
2a + 3b + 1, and c(dual of g) = 4a + 3b − 1.

On the basis of the above observation we propose the following conjecture.

Conjecture 3.1: The caterpillar C(a,b), a ≤ b is

1. ideal magic if b = a, a + 1, a + 2.

2. weak magic if b > a + 2.

Magic labelings f and g as defined above, for a caterpillar C(4,6), are illustrated
in Figure 5.
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Figure 5: Magic labelings of a caterpillar C(4,6)
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