On magic graphs

S. M. Hegde
Department of Mathematical And Computational Sciences
Karnataka Regional Engineering College
Surathkal, Srinivasanagar, 574157
Karnataka, India
smhegde@krec.ac.in
\section*{Sudhakar Shetty}
Department of Mathematics
N. M. A. M. Institute Of Technology
Nitte, 574110
Karnataka, India
sshetty@wowmail.com

Abstract

A (p, q)-graph $G=(V, E)$ is said to be magic if there exists a bijection $f: V \cup E \rightarrow\{1,2,3, \ldots, p+q\}$ such that for all edges $u v$ of $G, f(u)+$ $f(v)+f(u v)$ is a constant. The minimum of all constants say, $m(G)$, where the minimum is taken over all such bijections of a magic graph G, is called the magic strength of G. In this paper we define the maximum of all constants say, $M(G)$, analogous to $m(G)$, and introduce strong magic, ideal magic, weak magic labelings, and prove that some known classes of graphs admit such labelings.

1 Introduction

For all standard notation and terminology in graph theory we follow [4]. Graph labelings where the vertices are assigned real values subject to certain conditions, have often been motivated by practical problems, but they are also of logico-mathematical interest in their own right. An enormous body of literature has grown around the subject, especially in the last thirty years or so, and is presented in a survey [3].

A (p, q)-graph $G=(V, E)$ is said to be magic if there exists a bijection f : $V \cup E \rightarrow\{1,2,3, \ldots, p+q\}$ such that for all edges $u v$ of $G, f(u)+f(v)+f(u v)$ is a constant (see [6]). Such a bijection is called a magic labeling of G.

For any magic labeling f of G, there is a constant $c(f)$ such that for all edges $u v$ of $G, f(u)+f(v)+f(u v)=c(f)$. The magic strength $m(G)$, is defined as the minimum of $c(f)$ where the minimum is taken over all magic labelings of G.

The magic strength, $m(G)$ of the following graphs has already been established.

1. $m\left(P_{2 n}\right)=5 n+1$ and $m\left(P_{2 n+1}\right)=5 n+3$ where $P_{2 n}$ is a path with $2 n$ vertices (see $[9,10]$).
2. $m\left(B_{n, n}\right)=5 n+6$ where $B_{n, n}$ is the graph obtained from two copies of $K_{1, n}$ by joining the vertices of maximum degree by an edge which is called a bistar (see [9]).
3. $m\left(C_{2 n}\right)=5 n+4, m\left(C_{2 n+1}\right)=5 n+2$, where C_{n} is a cycle of length n (see [9, 10]).
4. $m\left(K_{1, n}\right)=2 n+4($ see $[2,9,10])$.
5. $m\left((2 n+1) P_{2}\right)=9 n+6$, where $(2 n+1) P_{2}$ is the disjoint union of $2 n+1$ copies of P_{2}. (Note that $2 n P_{2}$ is not magic) (see $[6,9]$).

Also some new constructions of magic graphs have been established $[1,7,8]$.
We call $m(G)$ the minimum magic strength of a magic graph G, and analogously we define the maximum magic strength, $M(G)$, as the maximum of all $c(f)$. That is, $M(G)=\max \{c(f): f$ is a magic labeling of $G\}$. Clearly for any magic labeling f of a (p, q)-graph G, we get

$$
\begin{equation*}
p+q+3 \leq m(G) \leq c(f) \leq M(G) \leq 2(p+q) \tag{1}
\end{equation*}
$$

In this paper we introduce strong magic, ideal magic, and weak magic labelings of graphs and study these parameters for some well-known graphs.

The above three notions decompose the set \mathbf{M}, of all magic graphs, into three mutually disjoint subsets whose union is \mathbf{M}.

A magic graph G is said to be

1. strong magic if $m(G)=M(G)$,
2. ideal magic if $1 \leq M(G)-m(G) \leq p$, and
3. weak magic if $M(G)-m(G)>p$.

2 Strong, Ideal and Weak magic graphs

In this section we study some trees, cycles, cycle related graphs $W_{\circ}(t, 3)$, etc. for their strong magic, ideal magic and weak magic nature. Also we construct some weak magic graphs.

The crown $C_{n} \odot K_{1}$, is the graph obtained from a cycle C_{n} by attaching a pendant edge at each vertex of the cycle. The web graph without center $W_{\circ}(2, n)$ is the graph

Figure 1: A primal magic labeling and dual magic labeling of C_{8}
obtained from $C_{n} \odot K_{1}$ by joining the pendant vertices to form the cycle and then adding a single pendant edge at each vertex of the outer cycle. The generalized web graph without center $W_{0}(t, n)$ is the graph obtained by iterating the process of constructing $W_{\circ}(2, n)$ from $C_{n} \odot K_{1}$ so that the web has exactly t cycles. We prove that the graph $W_{\circ}(t, 3)$, is weak magic for all $t \geq 1$.

The following theorem gives a relation between the magic strengths $m(G)$ and $M(G)$ of any magic graph G.

Theorem 2.1 ([10]): $A(p, q)$-graph G is magic with minimum magic strength $m(G)$ if and only if it is magic with maximum magic strength $M(G)=3(p+q+1)-m(G)$.

Remark 2.2: Let G be a magic graph. Then for every magic labeling f of G, we obtain another magic labeling g of G. We call f, a primal magic labeling of G and g, the dual magic labeling of G with respect to f. One can see that the dual of the dual of any primal magic labeling of G is itself. For example, a primal magic labeling and its dual magic labeling of C_{8} using Theorem 2.1, are illustrated in Figure 1. (Also $m\left(C_{8}\right)=22$ and $M\left(C_{8}\right)=29$.)

Therefore for every magic labeling f of a magic graph G there exists a positive integer k such that $c(f)=p+q+2+k$ and $c($ dual of $f)=2 p+2 q+1-k$. From Theorem 2.1 and (1) at least one k is such that $k \leq(p+q-1) / 2$. Hence we have the following corollary.

Corollary 2.3: If the (p, q)-graph G is magic then there exists at least one magic labeling f of G such that $c(f) \leq(3 p+3 q+5) / 2$.

Theorem 2.4: A path P_{n} of n vertices $(n>1)$, is strong magic if and only if $n=2$. Further for all $n \neq 2, P_{n}$ is ideal magic.

Proof. Let P_{n} be a strong magic path of n vertices. When n is odd, we have from [9] that $m\left(P_{n}\right)=m\left(P_{2 k+1}\right)=5 k+3$. Then by Theorem 2.1, $M\left(P_{n}\right)=M\left(P_{2 k+1}\right)=$ $7 k+3$. For P_{n} to be strong magic, $m\left(P_{n}\right)=M\left(P_{n}\right)$, that is $5 k+3=7 k+3$ which implies $k=0$. Therefore for odd n, P_{n} is not strong magic.

When n is even, $m\left(P_{n}\right)=m\left(P_{2 k}\right)=5 k+1$, and $M\left(P_{n}\right)=M\left(P_{2 k}\right)=7 k-1$. Now $5 k+1=7 k-1$ holds only when $k=1$. The converse is obvious as P_{2} is magic with $m\left(P_{2}\right)=M\left(P_{2}\right)=6$.

Further, for odd $n, M\left(P_{n}\right)-m\left(P_{n}\right)=2 k<2 k+1$, and for even $n, M\left(P_{n}\right)-$ $m\left(P_{n}\right)=2 k-2<2 k$. Hence all P_{n} except P_{2} are ideal-magic.

Theorem 2.5: The star $K_{1, n}$ is

1. strong magic for $n=1$,
2. ideal magic for $n=2,3$, and
3. weak magic for $n>3$.

Proof. Note that $m\left(K_{1, n}\right)=2 n+4$ and by Theorem 2.1, $M\left(K_{1, n}\right)=4 n+2$. Hence the theorem follows because $M\left(K_{1, n}\right)-m\left(K_{1, n}\right)=2 n-2$.

Theorem 2.6: The graph n-bistar $B_{n, n}$ is ideal-magic for all $n \geq 1$.
Proof. Since $m\left(B_{n, n}\right)=5 n+6$ and $M\left(B_{n, n}\right)=7 n+6$, the proof is trivial.
Analogously one can prove the following two theorems.
Theorem 2.7: The graph ${ }_{(2 n+1)} P_{2}$, is strong magic for all $n \geq 0$.
(Note that $\left.m\left({ }_{(2 n+1)} P_{2}\right)=9 n+6=M\left({ }_{(2 n+1)} P_{2}\right)\right)$.
Theorem 2.8: All cycles are ideal-magic.
(Note that $m\left(C_{2 n}\right)=5 n+4, m\left(C_{2 n+1}\right)=5 n+2, M\left(C_{2 n}\right)=7 n+1$, and $\left.M\left(C_{2 n+1}\right)=7 n+5.\right)$

Theorem 2.9: Let $\left(u_{i,}, w_{i}, v_{i, 1}, v_{i, 2}, \ldots, v_{i, n}\right), 1 \leq i \leq t$ be a collection of t disjoint graphs $P_{2}+\overline{K_{n}}$ such that $\operatorname{deg}\left(u_{i}\right)=\operatorname{deg}\left(w_{i}\right)=n+1$ and $\operatorname{deg}\left(v_{i, j}\right)=2,1 \leq j \leq n$. Then the graph $G=(V, E)$ obtained by joining $v_{i, n}$ to $u_{i+1}, v_{i+1,1}$ and $v_{i+1,2}$, for $1 \leq i \leq t-1$ is weak magic for all integers $t>1$.

Proof. Define a labeling $f: V \cup E \rightarrow\{1,2,3, \ldots,(3 n+6) t-3\}$ by

$$
\begin{cases}f\left(u_{i}\right)=n i-n+2 i-1, & 1 \leq i \leq t \\ f\left(w_{i}\right)=n i+2 i, & 1 \leq i \leq t \\ f\left(v_{i, j}\right)=f\left(u_{i}\right)+j, & 1 \leq j \leq n \\ f(u v)=(3 n+6) t-(f(u)+f(v)), & \text { for all } u v, \text { where } u v \text { is an edge of } G\end{cases}
$$

Then one easily checks that f so defined is a magic labeling of the graph G. Now $c(f)=(3 n+6) t$ and therefore $m(G) \leq c(f)=(3 n+6) t$. But for any magic (p, q)-graph $G, p+q+3 \leq m(G)$ which implies $(3 n+6) t \leq m(G)$.

Figure 2: A magic labeling of the graph G when $t=3$ and $n=3$, using Theorem 2.9.

Therefore we get, $m(G)=(3 n+6) t$ and hence by Theorem 2.1, we have $M(G)=$ $(6 n+12) t-6$. Clearly $M(G)-m(G)=(3 n+6) t-6>(n+2) t$ for all $t>1$. (Note that $(n+2) t$ is the number of vertices of G.) Hence G is weak magic for all $t>1$.

For example, a magic labeling of G when $t=3$ and $n=3$, using Theorem 2.9, is illustrated in Figure 2. (Minimum magic strength $m(G)=45$.)

Theorem 2.10: The graph $W_{\circ}(t, 3)$, is weak-magic for all $t \geq 1$.
Proof. Name the vertices of the innermost cycle of $W_{\circ}(t, 3)$ successively as $v_{1,1}, v_{1,2}, v_{1,3}$. Label the vertices adjacent to $v_{1,1}, v_{1,2}, v_{1,3}$ on the second cycle as $v_{2,3}, v_{2,1}, v_{2,2}$ respectively and the vertices adjacent to $v_{2,3}, v_{2,1}, v_{2,2}$ on the third cycle as $v_{3,2}, v_{3,3}, v_{3,1}$ and so on, the vertices adjacent to $v_{i, x}, v_{i, y}, v_{i, z}$ on the $(i+1)^{\text {th }}$ cycle as $v_{i+1, z}, v_{i+1, x}, v_{i+1, y}$.

Define a labeling $f: V\left(W_{\circ}(t, 3)\right) \cup E\left(W_{\circ}(t, 3)\right) \rightarrow\{1,2,3, \ldots, 9 t+3\}$ by

$$
\begin{cases}f\left(v_{i, j}\right)=3(i-1)+j, & 1 \leq i \leq t+1, j=1,2,3 \\ f\left(v_{i, j} v_{m, n}\right)=9 t+6-\left(f\left(v_{i, j}\right)+f\left(v_{m, n}\right)\right), & \text { where } v_{i, j} v_{m, n} \text { is an edge. }\end{cases}
$$

That is, $v_{1,1}, v_{1,2}, v_{1,3}, v_{2,1}, v_{2,2}, v_{2,3}, \ldots$ are labeled respectively $1,2,3,4,5,6, \ldots$ and every edge is labeled by subtracting the sum of the labels of its end vertices from $9 t+6$. Clearly one can verify that f defined above is a magic labeling of $W_{\circ}(t, 3)$.

Since $c(f)=9 t+6, m\left(W_{\circ}(t, 3)\right) \leq c(f)=9 t+6$. We have, for any magic (p, q)-graph $G, p+q+3 \leq m(G)$.

Therefore we get $9 t+6 \leq m\left(W_{\circ}(t, 3)\right)$ and hence $m\left(W_{\circ}(t, 3)\right)=9 t+6$. By Theorem 2.1, we have $M\left(W_{\circ}(t, 3)\right)=18 t+6$. Clearly $M\left(W_{\circ}(t, 3)\right)-m\left(W_{\circ}(t, 3)\right)=$ $9 t>3 t+3$ for all $t \geq 1$. Hence $W_{\circ}(t, 3)$ is weak magic for all $t \geq 1$.

For example, a magic labeling of $W_{\circ}(4,3)$, with minimum magic strength $m\left(W_{\circ}(4,3)\right)=42$, using Theorem 2.10, is illustrated in Figure 3.

Theorem 2.11: Let $\left(u_{i}, v_{i}, w_{i}, x_{i}, y_{i}, z_{i}\right), 1 \leq i \leq t$ be a collection of t disjoint 3 -regular graphs with six vertices such that u_{i}, v_{i}, w_{i}, are adjacent respectively to

Figure 3: A magic labeling of $W_{\circ}(4,3)$ using Theorem 2.10.
$x_{i}, y_{i}, z_{i}, 1 \leq i \leq t-1$. Then the graph $G=(V, E)$ obtained by joining z_{i} to u_{i+1}, v_{i+1} and $w_{i+1}, 1 \leq i \leq t-1$ is weak magic for all integers $t \geq 1$.

Proof. Define a labeling $f: V \cup E \rightarrow\{1,2,3, \ldots, 18 t-3\}$ by

$$
\begin{cases}f\left(u_{i}\right)=6 i-4, & \\ f\left(v_{i}\right)=6 i-3, & \\ f\left(w_{i}\right)=6 i-5, & \\ f\left(x_{i}\right)=6 i, \\ f\left(y_{i}\right)=6 i-2, & 1 \leq i \leq t, \\ f\left(z_{i}\right)=6 i-1, & \\ f(u v)=18 t-(f(u)+f(v)), & \text { where } u v \text { is an edge of the graph } G .\end{cases}
$$

Then one easily checks that f so defined is a magic labeling of the graph G and $c(f)=18 t$. Therefore $m(G) \leq c(f)=18 t$ and then $m(G)=18 t$.

Now by Theorem 2.1, $M(G)=36 t-6$. Clearly $M(G)-m(G)=18 t-6>6 t$ for all $t \geq 1$.

Hence G is weak magic for all $t \geq 1$.
For example, a magic labeling of the graph G defined in Theorem 2.11 when $t=3$, is illustrated in Figure 4. (Minimum magic strength $=m(G)=54$).

3 An observation

In this section we propose a conjecture, about caterpillars. A caterpillar is a tree, the deletion of whose pendant vertices results in a path.

Figure 4: A magic labeling of the graph G when $t=3$, using Theorem 2.11.
Let $C_{(a, b)}$ be a caterpillar with bipartition $\{A, B\}$ of its vertex set $V\left(C_{(a, b)}\right)$, where $A=\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$ and $B=\left\{v_{1}, v_{2}, \ldots, v_{b}\right\}$. It is well known that every caterpillar $C_{(a, b)}$ has a plane representation, such as ones that are shown in Figure 5, with the a-vertices u_{i} appearing from the top to bottom on the left hand side column and the b-vertices v_{i} appearing from the top to bottom on the right hand side column. Note that $a, b>1$ and also without loss of generality one can assume $a \leq b$.

We now define four different magic labelings of $C_{(a, b)}$ as follows.

1. $f: V\left(C_{(a, b)}\right) \cup E\left(C_{(a, b)}\right) \rightarrow\{1,2,3, \ldots, 2(a+b)-1\}$ by

$$
\begin{cases}f\left(u_{i}\right)=i, & i \in\{1,2, \ldots, a\}, \\ f\left(v_{i}\right)=a+i, & i \in\{1,2, \ldots, b\} \\ f\left(u_{i} v_{j}\right)=2(a+b)-(i+j-1), & \text { for all } i, j \text { where } u_{i} v_{j} \text { is an edge. }\end{cases}
$$

2. Dual of f.
3. $g: V\left(C_{(a, b)}\right) \cup E\left(C_{(a, b)}\right) \rightarrow\{1,2,3, \ldots, 2(a+b)-1\}$ by

$$
\begin{cases}g\left(v_{i}\right)=i, & i \in\{1,2, \ldots, b\} \\ g\left(u_{i}\right)=b+i, & i \in\{1,2, \ldots, a\} \\ g\left(u_{i} v_{j}\right)=2(a+b)-(i+j-1), & \text { for all } i, j \text { where } u_{i} v_{j} \text { is an edge. }\end{cases}
$$

4. Dual of g.

Also, one can observe that $c(f)=3 a+2 b+1, c($ dual of $f)=3 a+4 b-1, c(g)=$ $2 a+3 b+1$, and $c($ dual of $g)=4 a+3 b-1$.

On the basis of the above observation we propose the following conjecture.
Conjecture 3.1: The caterpillar $C_{(a, b)}, a \leq b$ is

1. ideal magic if $b=a, a+1, a+2$.
2. weak magic if $b>a+2$.

Magic labelings f and g as defined above, for a caterpillar $C_{(4,6)}$, are illustrated in Figure 5.

Figure 5: Magic labelings of a caterpillar $C_{(4,6)}$

References

[1] M. Baca, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings. Util. Math. 60 (2001), 229-239.
[2] R.D. Godbold and P.J. Slater, All cycles are edge-magic. Bull. Inst. Combin. Appl. 22 (1998), 93-97.
[3] J.A. Gallian, A dynamic survey of graph labeling. Electron. J. Combin. 5 (1998), no. 1, Dynamic Survey 6, 43pp.
[4] F. Harary, Graph theory. Addison-Wesley Publishing Co., Reading, Mass.Menlo Park, 1969.
[5] N. Hartsfield and G. Ringel, Pearls in graph theory. A comprehensive introduction. Academic Press, Inc., Boston, MA, 1990.
[6] A. Kotzig and A. Rosa, Magic valuations of finite graphs. Canad. Math. Bull. 13 (1970), 451-461.
[7] G. Ringel and A.S. Llado, Another tree conjecture. Bull. Inst. Combin. Appl. 18 (1996), 83-85.
[8] Slamin, M. Bača, Y. Lin, M. Miller and R. Simanjuntak, Edge-magic total labelings of wheels, fans and friendship graphs. Bull. Inst. Combin. Appl. 35 (2002), 89-98.
[9] S. Avadayappan and R. Vasuki, Magic strength of a graph. Indian J. Pure Appl. Math. 31 (2000), no. 7, 873-883.
[10] W.D. Wallis, E.T. Baskoro, M. Miller and Slamin, Edge-magic total labelings. Australas. J. Combin. 22 (2000), 177-190.

