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Abstract
We give a construction of a uniform covering of 2-paths with 5-paths in
Kn for all even n ≥ 6, i.e., we construct a set S of 5-paths in Kn having
the property that each 2-path in Kn lies in exactly one 5-path in S for
all even n ≥ 6.

1 Introduction

Let Kn be the complete graph on n vertices. A path of length l, or an l-path, is
the graph induced by the edges in {{vi, vi+1} | 0 ≤ i ≤ l − 1}; it is denoted by
[v0, v1, ..., vl].
A uniform covering of the 2-paths in Kn with k-paths (k-cycles) is a set S of k-paths
(k-cycles) having the property that each 2-path in Kn lies in exactly one k-path
(k-cycle) in S. Only the following cases of the problem of constructing a uniform
covering of the 2-paths in Kn with k-paths or k-cycles have been solved:

1. with 3-cycles,
2. with 3-paths [2],
3. with 4-cycles [3],
4. with 4-paths [5],
5. with n-cycles (Hamilton cycles) when n is even [4].

In this paper, we solve the problem in the case of 5-paths when n is even, that is, we
prove:
Theorem Let n be even and n ≥ 6. Then there exists a set S of 5-paths in Kn

having the property that each 2-path in Kn lies in exactly one path in S.
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2 Preliminaries

We prove the theorem by induction on even n ≥ 6.

Proposition 2.1 There exists a uniform covering of 2-paths with 5-paths in K6.

Proof. The round table problem has a solution in the case of 7 people [1], that is,
there exists a uniform covering S of 2-paths with Hamilton cycles in K7. Remove one
vertex and all edges incident to the vertex from the uniform covering S. Then we get
a uniform covering of 2-paths with 5-paths (Hamilton paths) in K6. More precisely,
for the vertex set V = {0, 1, 2, 3, 4, 5} of K6 and the permutation σ = (012345), the
set of 5-paths S = S1∪S2 is a uniform covering of 2-paths with 5-paths in K6, where

S1 = {σj(P ) | P = [0, 5, 4, 1, 3, 2] or [2, 0, 5, 3, 4, 1] ; j = 0, 1, 2, 3, 4, 5},
S2 = {σj(P ) | P = [1, 3, 5, 2, 0, 4] ; j = 0, 1, 2}.

�

Let n be even and n ≥ 6. Suppose that there exists a uniform covering S0 of
2-paths with 5-paths in Kn. Let V be the vertex set of Kn and let V ′ = {x, y}∪V be
the vertex set of Kn+2. Put V = {0, 1, 2, ..., n− 1}. We denote by σ the permutation
(x)(y)(012...n − 1). Put

Σ = {σj | j = 0, 1, 2, ..., n − 1} and Σ∗ = {σj | j = 0, 1, 2, ..., n−2
2
}.

We construct a set S of 5-paths in Kn+2 such that the union S ∪ S0 is a uniform
covering of 2-paths in Kn+2. Then each element of the set S is one of the following
types:

type 1: [a, b, x, y, c, d], type 2: [a, x, b, c, y, d],
type 3: [x, a, b, y, c, d], type 4: [y, a, b, x, c, d],
type 5: [a, x, b, y, c, d], type 6: [a, y, b, x, c, d],

where a, b, c, d are four different vertices in V .

Proposition 2.3 There exists a uniform covering of 2-paths with 5-paths in K8.

Proof. Let S0 be a uniform covering of 2-paths with 5-paths in K6 obtained in Propo-
sition 2.1. Define

S1 = {[1, 3, y, x, 0, 4], [x, 5, 0, y, 1, 3], [y, 5, 0, x, 1, 3]},
S2 = {[2, x, 0, 3, y, 5], [3, 0, y, 2, x, 5], [0, 3, x, 5, y, 2]}.

Put

S′
1 = ΣS1 = {σj(P ) | P ∈ S1; j = 0, 1, 2, 3, 4, 5},
S′

2 = Σ∗S2 = {σj(P ) | P ∈ S2; j = 0, 1, 2}.
Put S = S′

1 ∪ S′
2. Each 2-path including at least one of x, y lies in the set S exactly

once. Hence the set S0 ∪ S is a uniform covering of 2-paths with 5-paths in K8. �
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3 Proof of Theorem

Suppose there exists a uniform covering S0 of 2-paths with 5-paths in Kn for even
n ≥ 8. We will prove that there exists a uniform covering S of 2-paths with 5-paths
in Kn+2. Let V and V ′ be the vertex sets defined in Section 2.

Case 1 : n = 4k for k ≥ 2.

If k ≥ 3, then let

S1 ={[0, l, y, k, k+l, x], [k+l, x, 2k, 2k+l, y, 3k], [l, 0, x, 3k+l, 3k, y] | l = 2, 3, ..., k−1}.

Put

S′
1 = Σ∗S1 = {σj(P ) | P ∈ S1; j = 0, 1, 2, .., n−2

2
}.

Then the set S′
1 covers all 2-paths [x, a, b] and [y, a, b] with |a − b| ≡ l (modn) for

some l = 2, .., k − 1. Also the set S′
1 covers all 2-paths [a, x, b] and [a, y, b] with

|a − b| ≡ l (mod n) for some l = 1, 2, .., k − 2.
Let

S2 = {[x, k, 2k+l, y, 0, k+l], [k, x, 3k+l, 2k, y, l], [0, k+l, x, 3k, l, y] | l = 1, 2, .., k−1},
Put

S′
2 = Σ∗S2 = {σj(P ) | P ∈ S2; j = 0, 1, .., n−2

2
}.

Then the set S′
2 covers all 2-paths [x, a, b] and [y, a, b] with |a − b| ≡ l (modn) for

some l, k +1 ≤ l ≤ 2k−1 and all 2-paths [a, x, b] and [a, y, b] with |a− b| ≡ l (modn)
for some l, k + 1 ≤ l ≤ 2k − 1.

Let

S3 = {[1, 0, x, y, 2k, 2k + 1], [0, 1, y, k, 2k, x], [0, 1, x, k, 2k, y]},
S′

3 = ΣS3 = {σj(P ) | P ∈ S3; j = 0, 1, .., n − 1}.
Then S′

3 covers all 2-paths [x, a, b] and [y, a, b] with |a − b| ≡ 1 or k (mod n), and all
2-paths [a, x, b] and [a, y, b] with |a − b| ≡ k − 1 (modn). It also covers all 2-paths
[a, x, y] and [a, y, x] in Kn+2.

Let

S4 = {[2k, 0, y, k, x, 3k], [0, 2k, x, 3k, y, k], [k, x, 0, 2k, y, 3k]},
S′

4 = Σ∗S4 = {σj(P ) | P ∈ S4; j = 0, 1, .., n−2
2
}.

Then S′
4 covers all 2-paths [x, a, b], [y, a, b] and [x, a, y] with |a − b| ≡ 2k (modn). It

also covers all 2-paths [a, x, b] and [a, y, b] with |a − b| ≡ k or 2k (modn).
Put S = S′

1∪S′
2∪S′

3∪S′
4. Then the set S covers all 2-paths including at least one

of x, y and it covers them exactly once. Hence the set S0 ∪ S is a uniform covering
of 2-paths with 5-paths in Kn+2.

Case 2 : n = 4k + 2 for even k ≥ 2.
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Let

S11 = {[0, l + 1, y, k + 1, k + l + 1, x], [k + l + 1, x, 2k + 1, 2k + l + 2, y, 3k + 2],

[y, 3k + 2, 3k + l + 2, x, 0, l + 1] | l is odd, 1 ≤ l ≤ k − 1},
S12 = {[l + 1, 0, y, k + l + 1, k + 1, x], [k + 1, x, 2k + l + 2, 2k + 1, y, 3k + l + 2],

[0, l + 1, x, 3k + 2, 3k + l + 2, y] | l is odd, 1 ≤ l ≤ k − 1}.
Put S1 = S11 ∪ S12 and S′

1 = Σ∗S1. Then the set S′
1 covers all 2-paths [x, a, b] and

[y, a, b] with |a − b| ≡ l (mod n) for some l, 1 ≤ l ≤ k, and it also covers all 2-paths
[a, x, b] and [a, y, b] with |a− b| ≡ l (mod n) for some odd l, 1 ≤ l ≤ k− 1 or for some
even l, k + 2 ≤ l ≤ 2k. If k ≥ 4, then let

S21 = {[0, k + l, y, k, 2k + l + 1, x], [2k + l + 1, x, 2k + 1, 3k + l + 1, y, 3k + 1],

[k + l, 0, x, l, 3k + 1, y] | l is even, 2 ≤ l ≤ k − 2},
S22 = {[k + l, 0, y, 2k + l + 1, k, x], [k, x, 3k + l + 1, 2k + 1, y, l],

[0, k + l, x, 3k + 1, l, y] | l is even, 2 ≤ l ≤ k − 2}.
Put S2 = S21 ∪ S22 and S′

2 = Σ∗S2. Then the set S′
2 covers all 2-paths [x, a, b] and

[y, a, b] with |a − b| ≡ l (mod n) for some l, k + 2 ≤ l ≤ 2k − 1 and it also covers all
2-paths [a, x, b] and [a, y, b] with |a− b| ≡ l (mod n) for some even l, 2 ≤ l ≤ k− 2 or
for some odd l, k + 3 ≤ l ≤ 2k − 1.

Let

S3 = {[2k, 0, x, y, 2k + 1, 4k + 1], [0, 2k, y, 3k, 4k + 1, x], [0, 2k, x, 3k, 4k + 1, y]},
S4 = {[k, x, 3k + 1, y, 0, 2k + 1], [0, 2k + 1, x, k, y, 3k + 1], [k, y, 2k + 1, 0, x, 3k + 1]}.
Put S′

3 = ΣS3. Then the set S′
3 covers all 2-paths [x, a, b] and [y, a, b] with |a − b| ≡

k + 1 or 2k (mod n) and it also covers all 2-paths [a, x, b] and [a, y, b] with |a − b| ≡
k (mod n). It also covers all 2-paths [a, x, y] and [a, y, x] in Kn+2. Put S′

4 = Σ∗S4.
Then the set S′

4 covers all 2-paths [x, a, b], [y, a, b] with |a − b| ≡ 2k + 1 (modn), all
2-paths [a, x, b] and [a, y, b] with |a − b| ≡ k + 1 or 2k + 1 (mod n) and all 2-paths
[x, a, y].

Put S = S′
1∪S′

2∪S′
3∪S′

4. Then the union S∪S0 is a uniform covering of 2-paths
with 5-paths in Kn+2.

Case 3 : n = 4k + 2 for odd k ≥ 3.

Let

S11 = {[0, l + 1, y, k + 1, k + l + 1, x], [k + l + 1, x, 2k + 1, 2k + l + 2, y, 3k + 2],

[y, 3k + 2, 3k + l + 2, x, 0, l + 1] | l is odd, 1 ≤ l ≤ k − 2},
S12 = {[x, k + 1, k + l + 1, y, 0, l + 1], [k + 1, x, 2k + l + 2, 2k + 1, y, 3k + l + 2],

[0, l + 1, x, 3k + 2, 3k + l + 2, y] | l is odd, 1 ≤ l ≤ k − 2}.
Put S1 = S11 ∪ S12 and S′

1 = Σ∗S1. Then the set S′
1 covers all 2-paths [x, a, b] and

[y, a, b] with |a − b| ≡ l (modn) for l, 1 ≤ l ≤ k − 1, and it also covers all 2-paths
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[a, x, b] and [a, y, b] with |a − b| ≡ l (modn) for even l, 2 ≤ l ≤ k − 1 or for odd
l, k + 2 ≤ l ≤ 2k − 1 .

Let

S21 = {[0, k + l, y, k, 2k + l + 1, x], [2k + l + 1, x, 2k + 1, 3k + l + 1, y, 3k + 1],

[k + l, 0, x, l, 3k + 1, y] | l is odd, 1 ≤ l ≤ k − 2},
S22 = {[k + l, 0, y, 2k + l + 1, k, x], [l, y, 2k + 1, 3k + l + 1, x, k],

[0, k + l, x, 3k + 1, l, y] | l is odd, 1 ≤ l ≤ k − 2}.

Put S2 = S21 ∪ S22 and S′
2 = Σ∗S2. Then the set S′

2 covers all 2-paths [x, a, b] and
[y, a, b] with |a − b| ≡ l (mod n) for k + 1 ≤ l ≤ 2k − 1 and it also covers all 2-paths
[a, x, b] and [a, y, b] with |a − b| ≡ l (mod n) for odd l, 1 ≤ l ≤ k − 2 or for even
l, k + 3 ≤ l ≤ 2k .

Let

S3 = {[2k, 0, x, y, 2k + 1, 4k + 1], [0, 2k, y, 3k + 1, 4k + 1, x],

[0, 2k, x, 3k + 1, 4k + 1, y]},
S4 = {[2k + 1, 0, x, k, y, 3k + 1], [k, x, 3k + 1, y, 2k + 1, 0], [k, y, 0, 2k + 1, x, 3k + 1]}.

Put S′
3 = ΣS3 and S′

4 = Σ∗S4 . Then the set S′
3 covers all 2-paths [x, a, b], [y, a, b]

with |a − b| ≡ k or 2k (modn), and all 2-paths [a, x, b] and [a, y, b] with |a − b| ≡
k + 1 (modn). The set S′

3 also covers all 2-paths [a, x, y] and [a, y, x] in Kn+2. The
set S′

4 covers all 2-paths [x, a, b] and [y, a, b] with |a− b| ≡ 2k +1 (modn), all 2-paths
[a, x, b] and [a, y, b] with |a − b| ≡ k or 2k + 1 (modn) and all 2-paths [x, a, y].

Put S = S′
1∪S′

2∪S′
3∪S′

4. Then the union S∪S0 is a uniform covering of 2-paths
with 5-paths in Kn+2.

Completion of the proof of Theorem
In the case of n = 6 and 8, it was proved in Proposition 2.1 and Proposition 2.3.
So by Case 1, Case 2 and Case 3, we have completed the proof of the theorem by
induction on n ≥ 6. �

Remark
If there exists a uniform covering of 2-paths with 5-paths in Kn, then n should
be even or n = 8k + 1, because four 2-paths lie in each 5-path and hence nP3/2 =
n(n−1)(n−2)/2 should be divisible by four. In the case of n = 8k+1, the construction
of a uniform covering of 2-paths with 5-paths in Kn is a little complicated. The proof
of this will be shown in a separate paper.
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