# Uniform coverings of 2-paths with 5-paths in $K_{2 n}$ 

Midori Kobayashi*<br>School of Administration and Informatics<br>University of Shizuoka<br>Shizuoka 422-8526, Japan<br>Gisaku Nakamura Chie Nara<br>Research Institute of Educational Development<br>Tokai University<br>Shibuyaku Tokyo 151-0063, Japan


#### Abstract

We give a construction of a uniform covering of 2-paths with 5-paths in $K_{n}$ for all even $n \geq 6$, i.e., we construct a set $S$ of 5 -paths in $K_{n}$ having the property that each 2-path in $K_{n}$ lies in exactly one 5 -path in $S$ for all even $n \geq 6$.


## 1 Introduction

Let $K_{n}$ be the complete graph on $n$ vertices. A path of length $l$, or an $l$-path, is the graph induced by the edges in $\left\{\left\{v_{i}, v_{i+1}\right\} \mid 0 \leq i \leq l-1\right\}$; it is denoted by $\left[v_{0}, v_{1}, \ldots, v_{l}\right]$.
A uniform covering of the 2-paths in $K_{n}$ with $k$-paths ( $k$-cycles) is a set $S$ of $k$-paths ( $k$-cycles) having the property that each 2-path in $K_{n}$ lies in exactly one $k$-path ( $k$-cycle) in $S$. Only the following cases of the problem of constructing a uniform covering of the 2-paths in $K_{n}$ with $k$-paths or $k$-cycles have been solved:

1. with 3 -cycles,
2. with 3 -paths [2],
3. with 4 -cycles [3],
4. with 4-paths [5],

5 . with $n$-cycles (Hamilton cycles) when $n$ is even [4].
In this paper, we solve the problem in the case of 5 -paths when $n$ is even, that is, we prove:
Theorem Let $n$ be even and $n \geq 6$. Then there exists a set $S$ of 5 -paths in $K_{n}$ having the property that each 2-path in $K_{n}$ lies in exactly one path in $S$.

[^0]
## 2 Preliminaries

We prove the theorem by induction on even $n \geq 6$.
Proposition 2.1 There exists a uniform covering of 2-paths with 5-paths in $K_{6}$.
Proof. The round table problem has a solution in the case of 7 people [1], that is, there exists a uniform covering $S$ of 2-paths with Hamilton cycles in $K_{7}$. Remove one vertex and all edges incident to the vertex from the uniform covering $S$. Then we get a uniform covering of 2-paths with 5 -paths (Hamilton paths) in $K_{6}$. More precisely, for the vertex set $V=\{0,1,2,3,4,5\}$ of $K_{6}$ and the permutation $\sigma=(012345)$, the set of 5-paths $S=S_{1} \cup S_{2}$ is a uniform covering of 2-paths with 5-paths in $K_{6}$, where

$$
\begin{gathered}
S_{1}=\left\{\sigma^{j}(P) \mid P=[0,5,4,1,3,2] \text { or }[2,0,5,3,4,1] ; j=0,1,2,3,4,5\right\}, \\
S_{2}=\left\{\sigma^{j}(P) \mid P=[1,3,5,2,0,4] ; j=0,1,2\right\} .
\end{gathered}
$$

Let $n$ be even and $n \geq 6$. Suppose that there exists a uniform covering $S_{0}$ of 2-paths with 5-paths in $K_{n}$. Let $V$ be the vertex set of $K_{n}$ and let $V^{\prime}=\{x, y\} \cup V$ be the vertex set of $K_{n+2}$. Put $V=\{0,1,2, \ldots, n-1\}$. We denote by $\sigma$ the permutation $(x)(y)(012 \ldots n-1)$. Put

$$
\Sigma=\left\{\sigma^{j} \mid j=0,1,2, \ldots, n-1\right\} \text { and } \Sigma^{*}=\left\{\sigma^{j} \mid j=0,1,2, \ldots, \frac{n-2}{2}\right\}
$$

We construct a set $S$ of 5 -paths in $K_{n+2}$ such that the union $S \cup S_{0}$ is a uniform covering of 2-paths in $K_{n+2}$. Then each element of the set $S$ is one of the following types:

| type 1: | $[a, b, x, y, c, d]$, | type $2:$ | $[a, x, b, c, y, d]$, |
| ---: | :---: | :---: | :---: |
| type 3: | $[x, a, b, y, c, d]$, | type 4: | $[y, a, b, x, c, d]$, |
| type 5: | $[a, x, b, y, c, d]$, | type $6:$ | $[a, y, b, x, c, d]$, |

where $a, b, c, d$ are four different vertices in $V$.
Proposition 2.3 There exists a uniform covering of 2-paths with 5-paths in $K_{8}$.
Proof. Let $S_{0}$ be a uniform covering of 2-paths with 5-paths in $K_{6}$ obtained in Proposition 2.1. Define

$$
\begin{aligned}
& S_{1}=\{[1,3, y, x, 0,4], \quad[x, 5,0, y, 1,3],[y, 5,0, x, 1,3]\}, \\
& S_{2}=\{[2, x, 0,3, y, 5],[3,0, y, 2, x, 5],[0,3, x, 5, y, 2]\} .
\end{aligned}
$$

Put

$$
\begin{aligned}
& S_{1}^{\prime}=\Sigma S_{1}=\left\{\sigma^{j}(P) \mid P \in S_{1} ; j=0,1,2,3,4,5\right\} \\
& \quad S_{2}^{\prime}=\Sigma^{*} S_{2}=\left\{\sigma^{j}(P) \mid P \in S_{2} ; j=0,1,2\right\}
\end{aligned}
$$

Put $S=S_{1}^{\prime} \cup S_{2}^{\prime}$. Each 2-path including at least one of $x, y$ lies in the set $S$ exactly once. Hence the set $S_{0} \cup S$ is a uniform covering of 2-paths with 5-paths in $K_{8}$.

## 3 Proof of Theorem

Suppose there exists a uniform covering $S_{0}$ of 2-paths with 5-paths in $K_{n}$ for even $n \geq 8$. We will prove that there exists a uniform covering $S$ of 2-paths with 5-paths in $K_{n+2}$. Let $V$ and $V^{\prime}$ be the vertex sets defined in Section 2.

Case 1: $n=4 k$ for $k \geq 2$.
If $k \geq 3$, then let
$S_{1}=\{[0, l, y, k, k+l, x],[k+l, x, 2 k, 2 k+l, y, 3 k],[l, 0, x, 3 k+l, 3 k, y] \mid l=2,3, \ldots, k-1\}$.
Put

$$
S_{1}^{\prime}=\Sigma^{*} S_{1}=\left\{\sigma^{j}(P) \mid P \in S_{1} ; j=0,1,2, . ., \frac{n-2}{2}\right\} .
$$

Then the set $S_{1}^{\prime}$ covers all 2-paths $[x, a, b]$ and $[y, a, b]$ with $|a-b| \equiv l(\bmod n)$ for some $l=2, . ., k-1$. Also the set $S_{1}^{\prime}$ covers all 2-paths $[a, x, b]$ and $[a, y, b]$ with $|a-b| \equiv l(\bmod n)$ for some $l=1,2, . ., k-2$.

Let
$S_{2}=\{[x, k, 2 k+l, y, 0, k+l],[k, x, 3 k+l, 2 k, y, l],[0, k+l, x, 3 k, l, y] \mid l=1,2, . ., k-1\}$,
Put

$$
S_{2}^{\prime}=\Sigma^{*} S_{2}=\left\{\sigma^{j}(P) \mid P \in S_{2} ; j=0,1, . ., \frac{n-2}{2}\right\} .
$$

Then the set $S_{2}^{\prime}$ covers all 2-paths $[x, a, b]$ and $[y, a, b]$ with $|a-b| \equiv l(\bmod n)$ for some $l, k+1 \leq l \leq 2 k-1$ and all 2-paths $[a, x, b]$ and $[a, y, b]$ with $|a-b| \equiv l(\bmod n)$ for some $l, k+1 \leq l \leq 2 k-1$.

Let

$$
\begin{gathered}
S_{3}=\{[1,0, x, y, 2 k, 2 k+1], \quad[0,1, y, k, 2 k, x], \quad[0,1, x, k, 2 k, y]\}, \\
S_{3}^{\prime}=\Sigma S_{3}=\left\{\sigma^{j}(P) \mid P \in S_{3} ; j=0,1, . ., n-1\right\} .
\end{gathered}
$$

Then $S_{3}^{\prime \prime}$ covers all 2-paths $[x, a, b]$ and $[y, a, b]$ with $|a-b| \equiv 1$ or $k(\bmod n)$, and all 2-paths $[a, x, b]$ and $[a, y, b]$ with $|a-b| \equiv k-1(\bmod n)$. It also covers all 2-paths [ $a, x, y$ ] and $[a, y, x]$ in $K_{n+2}$.

Let

$$
\begin{gathered}
S_{4}=\{[2 k, 0, y, k, x, 3 k], \quad[0,2 k, x, 3 k, y, k], \quad[k, x, 0,2 k, y, 3 k]\}, \\
S_{4}^{\prime}=\Sigma^{*} S_{4}=\left\{\sigma^{j}(P) \mid P \in S_{4} ; j=0,1, . ., \frac{n-2}{2}\right\} .
\end{gathered}
$$

Then $S_{4}^{\prime}$ covers all 2-paths $[x, a, b],[y, a, b]$ and $[x, a, y]$ with $|a-b| \equiv 2 k(\bmod n)$. It also covers all 2-paths $[a, x, b]$ and $[a, y, b]$ with $|a-b| \equiv k$ or $2 k(\bmod n)$.

Put $S=S_{1}^{\prime} \cup S_{2}^{\prime} \cup S_{3}^{\prime} \cup S_{4}^{\prime}$. Then the set $S$ covers all 2-paths including at least one of $x, y$ and it covers them exactly once. Hence the set $S_{0} \cup S$ is a uniform covering of 2-paths with 5-paths in $K_{n+2}$.
Case 2: $n=4 k+2$ for even $k \geq 2$.

Let

$$
\begin{aligned}
S_{11}= & \{[0, l+1, y, k+1, k+l+1, x],[k+l+1, x, 2 k+1,2 k+l+2, y, 3 k+2], \\
& {[y, 3 k+2,3 k+l+2, x, 0, l+1] \mid l \text { is odd, } 1 \leq l \leq k-1\}, } \\
S_{12}= & \{[l+1,0, y, k+l+1, k+1, x],[k+1, x, 2 k+l+2,2 k+1, y, 3 k+l+2], \\
& {[0, l+1, x, 3 k+2,3 k+l+2, y] \mid l \text { is odd, } 1 \leq l \leq k-1\} . }
\end{aligned}
$$

Put $S_{1}=S_{11} \cup S_{12}$ and $S_{1}^{\prime}=\Sigma^{*} S_{1}$. Then the set $S_{1}^{\prime}$ covers all 2-paths $[x, a, b]$ and [ $y, a, b]$ with $|a-b| \equiv l(\bmod n)$ for some $l, 1 \leq l \leq k$, and it also covers all 2-paths $[a, x, b]$ and $[a, y, b]$ with $|a-b| \equiv l(\bmod n)$ for some odd $l, 1 \leq l \leq k-1$ or for some even $l, k+2 \leq l \leq 2 k$. If $k \geq 4$, then let

$$
\begin{aligned}
S_{21}= & \{[0, k+l, y, k, 2 k+l+1, x],[2 k+l+1, x, 2 k+1,3 k+l+1, y, 3 k+1], \\
& {[k+l, 0, x, l, 3 k+1, y] \mid l \text { is even, } 2 \leq l \leq k-2\}, } \\
S_{22}= & \{[k+l, 0, y, 2 k+l+1, k, x],[k, x, 3 k+l+1,2 k+1, y, l], \\
& {[0, k+l, x, 3 k+1, l, y] \mid l \text { is even, } 2 \leq l \leq k-2\} . }
\end{aligned}
$$

Put $S_{2}=S_{21} \cup S_{22}$ and $S_{2}^{\prime}=\Sigma^{*} S_{2}$. Then the set $S_{2}^{\prime}$ covers all 2-paths $[x, a, b]$ and $[y, a, b]$ with $|a-b| \equiv l(\bmod n)$ for some $l, k+2 \leq l \leq 2 k-1$ and it also covers all 2-paths $[a, x, b]$ and $[a, y, b]$ with $|a-b| \equiv l(\bmod n)$ for some even $l, 2 \leq l \leq k-2$ or for some odd $l, k+3 \leq l \leq 2 k-1$.

Let
$S_{3}=\{[2 k, 0, x, y, 2 k+1,4 k+1],[0,2 k, y, 3 k, 4 k+1, x],[0,2 k, x, 3 k, 4 k+1, y]\}$,
$S_{4}=\{[k, x, 3 k+1, y, 0,2 k+1],[0,2 k+1, x, k, y, 3 k+1],[k, y, 2 k+1,0, x, 3 k+1]\}$.
Put $S_{3}^{\prime}=\Sigma S_{3}$. Then the set $S_{3}^{\prime}$ covers all 2-paths $[x, a, b]$ and $[y, a, b]$ with $|a-b| \equiv$ $k+1$ or $2 k(\bmod n)$ and it also covers all 2-paths $[a, x, b]$ and $[a, y, b]$ with $|a-b| \equiv$ $k(\bmod n)$. It also covers all 2-paths $[a, x, y]$ and $[a, y, x]$ in $K_{n+2}$. Put $S_{4}^{\prime}=\Sigma^{*} S_{4}$. Then the set $S_{4}^{\prime}$ covers all 2-paths $[x, a, b],[y, a, b]$ with $|a-b| \equiv 2 k+1(\bmod n)$, all 2-paths $[a, x, b]$ and $[a, y, b]$ with $|a-b| \equiv k+1$ or $2 k+1(\bmod n)$ and all 2-paths $[x, a, y]$.

Put $S=S_{1}^{\prime} \cup S_{2}^{\prime} \cup S_{3}^{\prime} \cup S_{4}^{\prime}$. Then the union $S \cup S_{0}$ is a uniform covering of 2-paths with 5-paths in $K_{n+2}$.
Case 3 : $n=4 k+2$ for odd $k \geq 3$.
Let

$$
\begin{aligned}
S_{11}= & \{[0, l+1, y, k+1, k+l+1, x],[k+l+1, x, 2 k+1,2 k+l+2, y, 3 k+2], \\
& {[y, 3 k+2,3 k+l+2, x, 0, l+1] \mid l \text { is odd, } 1 \leq l \leq k-2\}, } \\
S_{12}= & \{[x, k+1, k+l+1, y, 0, l+1],[k+1, x, 2 k+l+2,2 k+1, y, 3 k+l+2], \\
& {[0, l+1, x, 3 k+2,3 k+l+2, y] \mid l \text { is odd, } 1 \leq l \leq k-2\} . }
\end{aligned}
$$

Put $S_{1}=S_{11} \cup S_{12}$ and $S_{1}^{\prime}=\Sigma^{*} S_{1}$. Then the set $S_{1}^{\prime}$ covers all 2-paths $[x, a, b]$ and [y,a,b] with $|a-b| \equiv l(\bmod n)$ for $l, 1 \leq l \leq k-1$, and it also covers all 2-paths
$[a, x, b]$ and $[a, y, b]$ with $|a-b| \equiv l(\bmod n)$ for even $l, 2 \leq l \leq k-1$ or for odd $l, k+2 \leq l \leq 2 k-1$.

Let

$$
\begin{aligned}
S_{21}= & \{[0, k+l, y, k, 2 k+l+1, x],[2 k+l+1, x, 2 k+1,3 k+l+1, y, 3 k+1], \\
& {[k+l, 0, x, l, 3 k+1, y] \mid l \text { is odd, } 1 \leq l \leq k-2\}, } \\
S_{22}= & \{[k+l, 0, y, 2 k+l+1, k, x],[l, y, 2 k+1,3 k+l+1, x, k], \\
& {[0, k+l, x, 3 k+1, l, y] \mid l \text { is odd, } 1 \leq l \leq k-2\} . }
\end{aligned}
$$

Put $S_{2}=S_{21} \cup S_{22}$ and $S_{2}^{\prime}=\Sigma^{*} S_{2}$. Then the set $S_{2}^{\prime}$ covers all 2-paths $[x, a, b]$ and [y,a,b] with $|a-b| \equiv l(\bmod n)$ for $k+1 \leq l \leq 2 k-1$ and it also covers all 2-paths $[a, x, b]$ and $[a, y, b]$ with $|a-b| \equiv l(\bmod n)$ for odd $l, 1 \leq l \leq k-2$ or for even $l, k+3 \leq l \leq 2 k$.

## Let

$$
\begin{aligned}
S_{3} & =\{[2 k, 0, x, y, 2 k+1,4 k+1],[0,2 k, y, 3 k+1,4 k+1, x] \\
& {[0,2 k, x, 3 k+1,4 k+1, y]\} } \\
S_{4} & =\{[2 k+1,0, x, k, y, 3 k+1],[k, x, 3 k+1, y, 2 k+1,0],[k, y, 0,2 k+1, x, 3 k+1]\} .
\end{aligned}
$$

Put $S_{3}^{\prime}=\Sigma S_{3}$ and $S_{4}^{\prime}=\Sigma^{*} S_{4}$. Then the set $S_{3}^{\prime}$ covers all 2-paths $[x, a, b],[y, a, b]$ with $|a-b| \equiv k$ or $2 k(\bmod n)$, and all 2-paths $[a, x, b]$ and $[a, y, b]$ with $|a-b| \equiv$ $k+1(\bmod n)$. The set $S_{3}^{\prime}$ also covers all 2-paths $[a, x, y]$ and $[a, y, x]$ in $K_{n+2}$. The set $S_{4}^{\prime}$ covers all 2-paths $[x, a, b]$ and $[y, a, b]$ with $|a-b| \equiv 2 k+1(\bmod n)$, all 2-paths $[a, x, b]$ and $[a, y, b]$ with $|a-b| \equiv k$ or $2 k+1(\bmod n)$ and all 2 -paths $[x, a, y]$.

Put $S=S_{1}^{\prime} \cup S_{2}^{\prime} \cup S_{3}^{\prime} \cup S_{4}^{\prime}$. Then the union $S \cup S_{0}$ is a uniform covering of 2-paths with 5-paths in $K_{n+2}$.

## Completion of the proof of Theorem

In the case of $n=6$ and 8 , it was proved in Proposition 2.1 and Proposition 2.3. So by Case 1, Case 2 and Case 3, we have completed the proof of the theorem by induction on $n \geq 6$.

## Remark

If there exists a uniform covering of 2-paths with 5 -paths in $K_{n}$, then $n$ should be even or $n=8 k+1$, because four 2-paths lie in each 5 -path and hence ${ }_{n} P_{3} / 2=$ $n(n-1)(n-2) / 2$ should be divisible by four. In the case of $n=8 k+1$, the construction of a uniform covering of 2-paths with 5-paths in $K_{n}$ is a little complicated. The proof of this will be shown in a separate paper.

## References

[1] H.E. Dudeney, The Canterbury Puzzles, Thomas Nelson \& Sons, London, Dover, New York (1958).
[2] K. Heinrich, D. Langdeau and H. Verrall, Covering 2-paths uniformly, J. Combin. Des. 8 (2000), 100-121.
[3] K. Heinrich and G. Nonay, Exact coverings of 2-paths by 4-cycles, J. Combin. Theory (A) 45 (1987), 50-61.
[4] M. Kobayashi, Kiyasu-Z. and G. Nakamura, A solution of Dudeney's round table problem for an even number of people, J. Combin. Theory (A) 62 (1993), 26-42.
[5] M. Kobayashi and G. Nakamura, Uniform coverings of 2-paths by 4-paths, Australas. J. Combin. 24 (2001), 301-304.
[6] J. McGee and C.A. Rodger, Path coverings with paths, J. Graph Theory $\mathbf{3 6}$ (2001), 156-167.


[^0]:    * This research was supported in part by Grant-in-Aid for Scientific Research (C) Japan.

