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Abstract

Let A = {a1, a2, . . . , ak} be a set of k relatively prime positive integers.
Let p

A
(n) denote the partition function of n with parts in A, that is, p

A

is the number of partitions of n with parts belonging to A.
We survey some known results on p

A
(n) for general k, and then con-

centrate on the cases k = 2 (where the exact value of p
A
(n) is known for

all n), and the more interesting case k = 3. We also describe an approach
using the cycle indicator formula.

Let A = {a, b, c}, where a, b, c are pairwise relatively prime. It has
long been known (Ehrhart, J. Reine Angew. Math. 226 (1967), 1–29)
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that the problem of finding the value of p
A
(n) reduces to the problem of

finding the value of p
A
(r), where 0 ≤ r < abc. Sertöz and Özlük (Istanbul

Tek. Üniv. Bül. 39 (1986), 41–51) have handled the case abc−a− b−c <
r < abc. Our main contribution is a recursive method for computing the
value of p

A
(r) in the case r ≤ abc − a − b − c.

1 Introduction

Let n be a positive integer. A partition of n is a representation of n as a sum of
positive integers. The order of the terms of this sum does not matter. The partition
function, denoted by p(n), counts the number of partitions of n. For example, p(4) =
5, since 4 has exactly 5 partitions: 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, and 4.

Now, let A = {a1, a2, . . . , ak} be a set of k relatively prime positive integers. A
partition of n with parts in A is a representation of n as a sum of not necessarily
distinct elements of A. Again, the order of the terms of this sum does not matter.
The partition function in this situation, denoted by p

A
(n), counts the number of

partitions of n with parts in A; see Stanley [38]. Obviously, p
A
(n) is the number of

non-negative integer solutions (x1, x2, . . . , xk) of the equation

a1x1 + a2x2 + · · · + akxk = n

as mentioned by Comtet [8]. It is well known that for sufficiently large n the equation
has a solution. Trivially, if A = {1, 2, . . . , n}, then p

A
(n) = p(n) (see [25]).

The famous problem of Frobenius is to find the largest natural number g such
that p

A
(g) = 0, that is, the largest natural number g which cannot be expressed in

the form a1x1 + a2x2 + · · · + akxk, where the xi are non-negative integers.
The Frobenius problem has a long history. See, for example, [16] and [31].

Sylvester [37] completely solved the problem for k = 2 in 1882, and Glaisher [15]
simplified the proof in 1909. When A = {a1, a2} and a1, a2 are relatively prime, then
every n ≥ (a1 − 1)(a2 − 1) can be expressed in the form n = a1x + a2y, where x and
y are non-negative integers, and a1a2 − a1 − a2 cannot be so expressed. Thus the
number g in this case is g = a1a2 − a1 − a2.

When k = 3, no closed-form expression for g is known, except in some special
cases, although there do exist explicit algorithms for calculating it. See for example
[7], [9], [14], [19], [20], [32], and [33].

It seems very difficult to calculate g when k ≥ 4 (however, see [35]). In the
general case, various upper bounds are known (for instance, see [6]), and closed-
form expressions are known in a few special cases, for example in the case that
a1, a2, · · · , ak is an arithmetic progression (See [31]). In fact, it was long conjectured
that the Frobenius problem is NP-hard, and was finally proved by Ramirez-Alfonsin
[29].

This paper is devoted to the study of p
A
(n) when k = 2 and 3. Our main

contribution is a recursive method for computing the value p
A
(n) when n ≤ a1a2a3−

a1 − a2 − a3 where a1, a2, a3 are pairwise relatively prime integers. We also provide
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a short proof of a known result when k = 2 (see Theorem 4.1). Our proof yields a
complete explicit formula for p

A
(n) in the case k = 2 (see Corollary 4.3).

In Sections 2 and 3, we survey some known results on p
A
(n) for general k. In

Section 4, we focus our attention on the cases k = 2 and k = 3 (see [10] and [11] for
some results concerning the case k = 4). Section 5 describes an approach using the
cycle indicator formula.

2 Asymptotic formulas for p
A
(n) and p(n)

If A = {a1, a2, . . . , ak} is a set of k relatively prime positive integers, it is known that

p
A
(n) ∼ nk−1

a1a2 · · · ak(k − 1)!

(see [40]). A proof of this result appears in [26], Problem 27. The proof there is
based on the generating function of p

A
(n). Elementary proofs are given in [24], [36],

and [41]. For the case A = {1, 2, · · · , k}, an elementary proof of this formula was
given by Erdös [12].

For the unrestricted partition function p(n), Rademacher [28] (see also [2]) gives
the asymptotic formula

p(n) ∼ exp(π(2/3)1/2n1/2)

4
√

3n
,

a result which was proved earlier by Hardy and Ramanujan [17]. Erdös [12] gave an
elementary proof of the relation

p(n) ∼ a · exp(π(2/3)1/2n1/2)

n
,

but was unable to show that a = 1
4
√

3
. Krätzel [21] proved the bound p(n) ≤ 5n/4,

with equality only when n = 4.

3 Recurrence relations for p
A
(n) and p(n)

Apostol [2] (see also [1]) shows by analytical methods that

np
A
(n) =

n∑
k=1

σ
A
(k)p

A
(n − k),

where σ
A
(n) denotes the sum of those divisors of n which belong to A.

This result generalizes a result of Euler, who proves this identity for the case
A = {1, 2, . . . , k}. This result holds for an arbitrary set A of positive integers, not
necessarily finite. Hence when A is the set of all positive integers, this becomes

np(n) =
n∑

k=1

p(n − k)σ(k).
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Bell [4] shows that if A = {a1, a2, . . . , ak} and a is the least common multiple of
{a1, a2, . . . , ak}, then

p
A
(an + b) = c0 + c1n + c2n

2 + · · · + ck−1n
k−1,

where c0, c1, c2, . . . , ck are constants dependent of a and b, 0 ≤ b < a. (See also [27]
and [41].)

The constants are fully determined if p
A
(an + b) is known for k different values

of n. This can be done using Lagrange’s interpolation formula. For example, if
A = {a1, a2, a3}, then

2p
A
(an + b) = (n − 2)(n − 3)p

A
(a + b) − 2(n − 1)(n − 3)p

A
(2a + b)

+ (n − 1)(n − 2)p
A
(3a + b).

This formula does not however provide an effective way to calculate p
A
(n). Later,

Kuriki [22] proves a somewhat different recursion formula for p
A
(n).

Although there are a number of algorithms for finding the largest number not
representable in the form a1x1 + a2x2 + · · · + akxk (see for example [13], [23], and
[35]), it would be of interest to find a fast algorithm for calculating p

A
(n).

4 The cases |A| = 2 and |A| = 3

In the first part of this section, we consider the case |A| = 2. It is quite well known
that p

A
(n) =

[
n
ab

]
or

[
n
ab

]
+ 1 (see [25]). However, one unified formula has been

obtained as stated in the following theorem. This theorem was proved independently
by Sertöz in 1998 [34], Tripathi in 2000 [39] and Beck and Robins [3]. Their proofs
involve generating functions. There is also a simple direct proof, which we give
below. We then give a simple algorithm for calculating p

A
(n) based on the proof of

this theorem.

Theorem 4.1 Let A = {a, b} with (a, b) = 1. Define a′(n) and b′(n) by a′(n)a ≡ −n
mod b with 1 ≤ a′(n) ≤ b and b′(n)b ≡ −n mod a with 1 ≤ b′(n) ≤ a, respectively.
Then for all n ≥ 1,

p
A
(n) =

n + aa′(n) + bb′(n)

ab
− 1.

Proof. It is well known (see for example Brown and Shiue [5]) that for all n ≥ 0, if
n = qab+r with 0 ≤ r < ab then p

A
(n) = q+p

A
(r), that for all 0 < n < ab, p

A
(n) = 0

or 1, that p
A
(n) = 1 for ab − a − b < n < ab, and that p

A
(n) = 0 if n = ab − a − b.

Therefore to prove the theorem we may assume that 0 < n < ab − a − b.
Note that ab divides aa′(n) + bb′(n) + n, since each of a and b divides aa′(n) +

bb′(n)+n. Also, 0 < aa′(n)+ bb′(n)+n < 3ab, so that either aa′(n)+ bb′(n)+n = ab
or aa′(n) + bb′(n) + n = 2ab. Now we only need to show that

(i) aa′(n) + bb′(n) + n = ab implies p
A
(n) = 0;

(ii) aa′(n) + bb′(n) + n = 2ab implies p
A
(n) = 1.
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If aa′(n)+bb′(n)+n = ab and as+bt = n for some s, t ≥ 0, then aa′(n)+bb′(n)+
as+bt = ab, or a(a′(n)+s)+b(b′(n)+t) = ab, so a|(b′(n)+t) and b|(a′(n)+s). Since
0 < b′(n) + t ≤ a and 0 < a′(n) + s ≤ b, this gives a = b′(n) + t and b = a′(n) + s,
hence 2ab = ab, a contradiction. This proves (i). To prove (ii), simply note that if
aa′(n) + bb′(n) + n = 2ab, then n = a(b − a′(n)) + b(a − b′(n)). �

This theorem is easy to generalize to the case (a, b) = d in the following corollary.
We omit its trivial proof.

Corollary 4.2 Let A = {a, b} with (a, b) = d. If d divides n, define a′(n) and b′(n)
by a′(n)a

d
≡ −n

d
mod b

d
and b′(n) b

d
≡ −n

d
mod a

d
, respectively, as in Theorem 4.1.

Then for all n ≥ 1,

p
A
(n) =

{
0 if d does not divide n
n+aa′(n)+bb′

lcm{a,b} − 1 if d divides n.

From the statement and the proof of Theorem 4.1, if (a, b) = 1, we can compute
p

A
(n) in the following

Corollary 4.3 Let A = {a, b} with (a, b) = 1 and let n = qab + r with 0 ≤ r < ab.
Then

p
A
(n) =




q + 1 if ab − a − b < r < ab,
q if r = ab − a − b,
q + 1 if r < ab − a − b and aa′(r) + bb′(r) + r = 2ab,
q if r < ab − a − b and aa′(r) + bb′(r) + r = ab,

where a′(r) and b′(r) are defined as in Theorem 4.1.

We now give an example using this corollary. We do not write down all partitions
and only compute the number p

A
(n) instead.

Example 4.4 [34] Let n = 123456789012345 and A = {a, b}, where a = 1234567,
b = 12345678. Write q = 8 and r = 1524255800937. Then we have n = q · ab +
r. Moreover, a′(r) = 462963 and b′(r) = 1064806. Hence, aa′(r) + bb′(r) + r =
15241566651426 = ab. By Corollary 4.3, we have p

A
(n) = 8.

We now consider the case |A| = 3 in the remaining part of this section. The
case is a little bit more complicated. First of all, we need the following lemma. In
this lemma and afterwards, u′

v(t) will denote the number 1 ≤ u′
v(t) ≤ v satisfying

uu′
v(t) ≡ −t mod v, whenever u, v ≥ 1 and t are integers satisfying (u, v) = 1.

Lemma 4.5 Let A = {a, b, c}, where a, b, and c are relatively prime positive integers.
Write d3 = (a, b), d1 = (b, c), and d2 = (c, a). Then for any integer n > 0, the
number n′ = n− (d1−a′

d1
(n))a− (d2− b′d2

(n))b− (d3− c′d3
(n))c is divisible by d1d2d3.

Moreover, p
A
(n) = p

A′ (
n′

d1d2d3
), where A′ = { a

d2d3
, b

d3d1
, c

d1d2
} and where we use the

convention that p
A′ (0) = 1 and p

A′ (
n′

d1d2d3
) = 0 if n′ < 0.
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Proof. If ax + by + cz = n with x, y, z ≥ 0, then d3 divides n− cz = ax + by. Since
d3 − c′d3

(n) is the smallest nonnegative integer u such that d3 divides n − uc, z =
d3z

′+(d3−c′d3
(n)) for some nonnegative integer z′. Similarly, x = d1x

′+(d1−a′
d1

(n))
and y = d2y

′ +(d2− b′d2
(n)) for some nonnegative integers x′ and y′, respectively. So,

ax+by+cz = n with x, y, z ≥ 0 if and only if a(x−(d1−a′
d1

(n)))+b(y−(d2−b′d2
(n)))+

c(z − (d3 − c′d3
(n))) = n′ with x− (d1 − a′

d1
(n)), y − (d2 − b′d2

(n)), z − (d3 − c′d3
) ≥ 0.

This implies that d1d2d3 divides n′. Morever,

a(x − (d1 − a′
d1

(n)))

d1d2d3

+
b(y − (d2 − b′d2

(n)))

d1d2d3

+
c(z − (d3 − c′d3

(n)))

d1d2d3

=
n′

d1d2d3

.

This implies p
A
(n) = p

A′ (
n′

d1d2d3
). �

From this lemma, it is enough to consider a set A = {a, b, c} such that the positive
integers a, b, and c are pairwise relatively prime, i.e., (a, b) = (b, c) = (c, a) = 1. The
following two theorems are quite well-known.

Theorem 4.6 (Ehrhart [10]) Let A = {a, b, c}, where positive integers a, b, and c
are pairwise relatively prime. Let n = q · abc + r with 0 ≤ r < abc. Then

p
A
(n) = p

A
(r) +

q(n + r + a + b + c)

2
.

In particular,

p
A
(abc) =

abc + a + b + c

2
+ 1.

Theorem 4.7 (Sertöz and Özlük [36]) Let A = {a, b, c} where positive integers a,
b, and c are pairwise relatively prime. Then, for 1 ≤ x ≤ a + b + c − 1,

p
A
(abc − x) =

abc + a + b + c

2
− x.

In particular,

p
A
(abc − a − b − c + 1) =

abc − a − b − c

2
+ 1.

It seems that it is not easy to find a “simple” closed form for computing p
A
(n)

when n ≤ abc − a − b − c. Here, we are going to give a method to compute such
p

A
(n). For this purpose, we need the following

Proposition 4.8 Let A = {a, b, c} where positive integers a, b, c are pairwise rela-
tively prime and let n be a non-negative integer. Then

p
A
(n) =

{
p

A
(n − a − b − c) + q

A
(n) if n ≥ a + b + c,

q
A
(n) if 1 ≤ n < a + b + c

where q
A
(n) = p

A\{a}(n) + p
A\{b}(n) + p

A\{c}(n) − εa(n) − εb(n) − εc(n) with

εd(m) =

{
1 if d|m,
0 otherwise.
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Proof. Write E{a,b,c}(n) = {(x, y, z)|x, y, z ≥ 0 are integers, and xa + yb + zc = n}.
Let (x1, y1, z1) ∈ E{a,b,c}(n). If 0 < n < a + b + c then x1y1z1 = 0. Thus,
p

A
(n− a− b− c) = |E{a,b,c}(n) \ {E{a,b,0}(n)∪E{a,0,c}(n)∪E{0,b,c}(n)}| and the results

follows by the inclusion-exclusion formula. �

In the following corollary the values p
A
(abc−a− b− c) and p

A
(abc−a− b− c−1)

are obtained as particular cases of Proposition 4.8.

Corollary 4.9 Let A = {a, b, c} where a, b, and c are positive pairwise relatively
prime integers. Then

p
A
(abc − a − b − c) =

abc − a − b − c

2
+ 1.

and

p
A
(abc − a − b − c − 1) =

abc − a − b − c

2
− 1.

Proof. From Proposition 4.8, we have p
A
(abc− a− b− c) = p

A
(abc)− p

A\{a}(abc)−
p

A\{b}(abc) − p
A\{c}(abc) + εa(abc) + εb(abc) + εc(abc). By Theorem 4.6, we have that

p
A
(abc) = (abc+a+b+c)

2
+ 1 and, by Corollary 4.3, we obtain that p

A\{a}(abc) = a + 1,
p

A\{b}(abc) = b + 1, and p
A\{c}(abc) = c + 1. Since εa(abc) = εb(abc) = εc(abc) = 1

then p
A
(abc − a − b − c) = (abc−a−b−c)

2
+ 1.

Now again, from Proposition 4.8, we have p
A
(abc− a− b− c− 1) = p

A
(abc− 1)−

p
A\{a}(abc−1)−p

A\{b}(abc−1)−p
A\{c}(abc−1)+εa(abc−1)+εb(abc−1)+εc(abc−1).

By Theorem 4.7, we have that p
A
(abc−1) = (abc+a+b+c)

2
−1 and, by Corollary 4.3, we

obtain that p
A\{a}(abc−1) = p

A\{a}((a−1)bc+(bc−1)) = a (similarly, p
A\{b}(abc−1) =

p
A\{b}((b− 1)ac+(ac− 1)) = b and p

A\{c}(abc− 1) = p
A\{c}((c− 1)ab+(ab− 1)) = c).

Since εa(abc − 1) = εb(abc − 1) = εc(abc − 1) = 0 then p
A
(abc − a − b − c − 1) =

(abc−a−b−c)
2

− 1. �

Using Proposition 4.8, we will give a method to compute p
A
(n) for n ≤ abc− a−

b−c in the following theorem. For this purpose, we need the notation that for positive
integers u and v with (u, v) = 1, write v′

u(n) instead of v′(n) as in Theorem 4.1.

Theorem 4.10 Let A = {a, b, c} where positive integers a, b, and c are pairwise
relatively prime. Let n be a positive integer and let t be the largest integer such that
n − t(a + b + c) ≥ 0. Then,

p
A
(n) =

2n(t + 1)s3 − t(t + 1)s2
3

2abc
+

1

a

t∑
i=0

(b′a(n − is3) + c′a(n − is3))

+
1

b

t∑
i=0

(c′b(n − is3) + a′
b(n − is3)) +

1

c

t∑
i=0

(a′
c(n − is3) + b′c(n − is3))

− 3(t + 1) −
t∑

i=0

(εa(n − is3) + εb(n − is3) + εc(n − is3))

where s3 = a + b + c with εd(m) defined as in Proposition 4.8.
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Proof. By applying recursively Proposition 4.8, we have that

p
A
(n) =

t−1∑
i=0

q
A
(n − is3) + p

A
(n − ts3) =

t∑
i=0

q
A
(n − is3)

where q
A
(m) is defined as in Proposition 4.8. Hence,

t∑
i=0

q
A
(n − is3) =

t∑
i=0

(p
A\{a}(n − is3) + p

A\{b}(n − is3) + p
A\{c}(n − is3))

−
t∑

i=0

(εa(n − is3) + εb(n − is3) + εc(n − is3)).

The result follows by using Theorem 4.1. �

We give the following example as an illustration of this theorem.

Example 4.11 Consider A = {5, 7, 11} and n = 41. Write a = 5, b = 7, and
c = 11 for convenience. Then, s3 = a + b + c = 23. Since 41 = 1 × 23 + 18, t = 1.
It is easy to see that the first term in the theorem equals

2n(t + 1)s3 − t(t + 1)s2
3

2abc
=

1357

385
.

For positive integers u and v with (u, v) = 1, let u−1
v be the multiplicative inverse

of u modulo v. It easy to see that a−1
b = 3, a−1

c = 9, b−1
a = 3, b−1

c = 8, c−1
a = 1, and

c−1
b = 2. Write k = 18. Then, a′

b(k + is3) ≡ −a−1
b k − i(1 + a−1

b c) ≡ 2 + i mod 7 for
i = 0, 1. Also, a′

c(k + is3) ≡ 3+2i mod 11, b′a(k + is3) ≡ 1+ i mod 5, b′c(k + is3) ≡
10 + 3i mod 11, c′a(k + is3) ≡ 2 + 2i mod 5, and c′b(k + is3) ≡ 6 + 3i mod 7 for
i = 0, 1. So, 1

a

∑1
i=0(b

′
a(k+is3)+c′a(k+is3) = 9

5
, 1

b

∑1
i=0(a

′
b(k+is3)+c′b(k+is3)) = 13

7
,

and 1
c

∑1
i=0(a

′
c(k + is3) + b′c(k + is3)) = 20

11
. Moreover, neither 18 nor 41 is divided

by any one of 5, 7 and 11. Hence, εa(k + is3) = εb(k + is3) = εc(k + is3) = 0 for
i = 0, 1. Combining all results above together, we have

p
A
(41) =

1357

385
+

9

5
+

13

7
+

20

9
− 3(1 + 1) − 0 = 3.

Indeed, there are exactly 3 partitions of 41 with parts in A, namely

41 = 5 + 5 + 5 + 5 + 7 + 7 + 7

= 5 + 5 + 5 + 5 + 5 + 5 + 11

= 5 + 7 + 7 + 11 + 11.
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5 The cycle indicator formula

The cycle indicator Cn of the symmetric permutation group of n letters is an effective
tool in enumerative combinatorics, which may be written in the form (cf. [30])

Cn(t1, t2, . . . , tn) =
∑ n!

k1!k2! · · · kn!

(
t1
1

)k1
(

t2
2

)k2

· · ·
(

tn
n

)kn

,

where t1, t2, . . . , tn are real numbers and the summation is over all non-negative
integer solutions k1, k2, . . . , kn of the equation k1 + 2k2 + · · · + nkn = n.

Let σ(n) =
∑

d|n d. Then Hsu and Shiue [18] obtain

p(n) =
1

n!
Cn(σ(1), σ(2), . . . , σ(n)),

where p(n) is the unrestricted partition function from Section 1 above. From this,
they obtain by purely combinatorial methods the previously mentioned recurrence
relation

np(n) =

n∑
k=1

σ(k)p(n − k).

The cycle indicator equality above can be generalized in the following way. Let A
be any given set of positive integers. (A can be finite or infinite.) Define p

A
(0) = 1

and σ
A
(n) =

∑
d|n,d∈A d. Then Hsu and Shiue [18] obtain

p
A
(n) =

1

n!
Cn(σ

A
(1), σ

A
(2), . . . , σ

A
(n)),

and consequently they deduce, again by purely combinatorial methods,

np
A
(n) =

n∑
k=1

σ
A
(k)p

A
(n − k).

As a particular instance, let us take H = {20, 21, 22, . . . }, so that b(n) = pH(n) is
the number of binary partitions of n. Let β(n) =

∑
2i|n 2i. Then the above equations

become b(n) = 1
n!

Cn(β(1), β(2), . . . , β(n)) and nb(n) =
∑n

k=1 β(k)b(n − k).
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[19] M. Hujter and B. Vizvári, The exact solutions to the Frobenius problem with
three variables, J. Ramanujan Math. Soc. 2 (1987), 117–143.

[20] I. D. Kan, B. S. Stechkin and I.V. Sharkov, On the Frobenius problem for three
arguments (Russian), Mat. Zametki 62 (1997), 626–629; translation in Math.
Notes 62 (1997), 521–523.

[21] E. Krätzel, Die maximale Ordnung der Anzahl der wesentlich verschiedenen
Abelschen Gruppen n-ter Ordnung (German), Quart. J. Math. Oxford Ser. (2)
21 (1970), 273–275.
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[26] G. Pólya and G. Szegö, Problems and Theorems in Analysis. I. Series, Inte-
gral Calculus, Theory of Functions. Translated from the German by D. Aep-
pli. Corrected printing of the revised translation of the fourth German edition.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], 193. Springer-Verlag, Berlin-New York, 1978.

[27] M. Raczunas and P. Chrzpolhkastowski-Wachtel, A Diophantine problem of
Frobenius in terms of the least common multiple, Selected papers in honor of
Paul Erdös on the occasion of his 80th birthday (Keszthely, 1993), Discrete
Math. 150 (1996), 347–357.

[28] H. Rademacher, On the partition function p(n), Proc. London Math. Soc. 43
(1937), 241–254.

[29] J. L. Ramirez-Alfonsin, Complexity of the Frobenius problem, Combinatorica 16
(1996), 143–147.

[30] J. Riordan, An Introduction to Combinatorial Analysis, reprint of the 1958
edition, Princeton University Press, Princeton, N.J., 1980.

[31] J. B. Roberts, Note on linear forms, Proc. Amer. Math. Soc. 7 (1956), 465–469.
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[34] S. Sertöz, On the number of solutions of a Diophantine equation of Frobenius,
Discrete Math. Appl. 8 (1998), 153–162.
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