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Abstract

Some generalizations of arithmetic progressions are: quasi-progressions,
combinatorial progressions, semi-progressions, and descending waves.
(The definitions are given below.) We study the occurrence of these
progressions in the set of squares of integers.

1 Introduction

It is well known that there is no four-term arithmetic progression (AP) consisting of
squares. We have not found a really lucid demonstration of this fact (first proved
by Fermat), but one can work through the proof in Chapter 4 of [3]. However,
three-term arithmetic progressions occur in abundance among the squares: take any
Pythagorean triple, a2 + b2 = c2; then (b − a)2, c2, (b + a)2 is clearly a 3-term AP
with common difference 2ab. It is also easy to show that every 3-term AP of squares
has this form.

In [1] and [2] several generalizations of arithmetic progressions have been introduced

and their properties investigated. For instance, since (n+1)2

n2 → 1, Corollary 4, page
94 of [1] shows that the set of squares contains arbitrarily long descending waves. A
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descending wave is a set {a1 < a2 < · · · < an} such that aj+1 − aj ≥ aj+2 − aj+1,
1 ≤ j ≤ n − 2.

Thus the problems concerning the existence of long progressions in the set of squares
is completely solved for APs and descending waves.

For other types of progressions studied in the above mentioned papers (quasi-pro-
gressions (QP), combinatorial progressions (CP) and semi-progressions (SP)) very
little is known about the existence or non-existence of long progressions of these
types among the squares.

In this note we relate what we have found regarding APs, QPs, CPs and SPs occur-
ring in the set of squares. We give the definitions as we go along, and we use some
notation consistent with [1] and [2].

2 Arithmetic Progressions and Combinatorial

Progressions

In Theorem 1 below, an n-CP
(

n−1
2

)
is a set {b1, b2, · · · , bn} such that |{b2 − b1, b3 −

b2, · · · , bn − bn−1}| ≤ n−1
2

. Consider the sequence {an} = {1, 5, 7, 13, 17, 25, · · · }
where an is defined by

an =

{
(n+1)2−2

2
, if n is odd

(n+1)2+1
2

, if n is even

}
.

A simple calculation shows that, if n is odd, then a2
n, a2

n+1, a2
n+2 is a 3-term AP of

squares with common difference (n+1)(n+2)(n+3). Using this we get the following
result concerning “combinatorial progressions.”

Theorem 1. For each odd n ≥ 1 there exists an n-CP
(

n−1
2

)
among the squares.

Proof. Using the first n terms of the sequence {an} = {1, 5, 7, 13, 17, 25, · · · } defined
above, the sequence of the n−1 differences of a2

1, a
2
2, a

2
3, · · · , a2

n is 24, 24, 120, 120, 336,
336, ..., N, N, where N = (n− 1)n(n + 1). Here, the number of distinct differences is
clearly n−1

2
.

Hence, the set of squares contains arbitrarily long progressions, P , with the property

cardinality of the difference set of P

cardinality of P
<

1

2
.

We do not know whether or not the value 1
2

in this statement can be improved. Also,
this result can be compared with that of Theorem 3 below.

Another proof of Theorem 1 can be obtained from the sequence {gn} formed as
follows: We start with g1 = 1, g2 = a2, g3 = b2, where 1, a2, b2 is a 3-term AP. (The
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smallest such 3-term AP is 1, 25, 49. The most general 3-term AP of this form is
1, a2, b2, where b

a
is any even convergent of the simple continued fraction of

√
2; see

below.) Then we define gi = bi−1 if i is odd and gi = a2bi−2 if i is even. The sequence
{gn} has properties similar to those of the sequence {an}.
In passing we note two interesting facts regarding APs in the squares.

The first is that the even terms of the sequence {an} above are exactly the hy-
potenuses of all the Pythagorean triples of the form A2 + B2 = (B + 1)2.

Proof. This equation holds if and only if B + 1 = (A2 + 1)/2. Thus A must be odd,
say A = 2k + 1, and so B + 1 = a2k.

The second fact is this: 1, a2, b2 (where a > 0, b > 0) is a 3-term AP if and only if
b
a

is an even convergent of the simple continued fraction of
√

2.

Proof. If 1, a2, b2 is a 3-term AP, then 1 + b2 = 2a2, which gives 2 − b2

a2 = 1
a2 , or

(
√

2 − b

a
)(
√

2 +
b

a
) =

1

a2
,

0 <
√

2 − b

a
=

1

(
√

2 + b
a
)a2

<
1

2a2

which yields the result. (See [4].) One can also prove this starting with the equation
b2 − 2a2 = −1. For the converse, one easily shows by induction on n that if p2n

q2n
is

the (2n)th convergent of the simple continued fraction of
√

2, then 1, q2
2n, p2

2n is a
3-term AP.

3 Quasi-progressions

We now turn our attention to quasi-progressions of squares. While no 4-AP of squares
exists, we can nevertheless construct infinitely many 4-term quasi-progressions of
squares, where the sets of consecutive differences each have diameter 1. That is, we
can construct sequences a2 < b2 < c2 < d2 where {b2−a2, c2−b2, d2−c2} = {T, T +1}
for some T . Such a sequence is called a 4-QP(1).

Theorem 2. There are infinitely many 4-QP(1)s among the squares.

Proof. Let (a, b, c) be any Pythagorean triple. Recall that (b − a)2, c2, (b + a)2 is
a 3-term AP. We note that (b + a)2 + 2ab is not a square lest we get the 4-AP of
squares (b − a)2, c2, (b + a)2, (b + a)2 + 2ab. Let (x, y) be any one of the infinitely
many solutions to the Pellian equation x2 − [(b + a)2 + 2ab]y2 = 1.

Then (b−a)2y2, c2y2, (b+a)2y2, x2 is a 4-QP(1) since the first two differences are 2aby2

and the last difference is x2−(b+a)2y2 = [(b+a)2+2ab]y2+1−(b+a)2y2 = 2aby2+1.

Similar 4-QP(1)’s, where the third difference is one less than the first two differences,
may be found in the same way from solutions to the equation x2 − [(b + a)2 +
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2ab]y2 = −1 when they exist. Furthermore, the x2 may be made the first term
of the 4-progression when (x, y) is a solution to x2 − [(b − a)2 − 2ab]y2 = 1 or
x2 − [(b − a)2 − 2ab]y2 = −1 (provided (b − a)2 > 2ab).

The simplest example is (a, b, c) = (3, 4, 5). Then (b + a)2 + 2ab = 73 and a solution
to x2 − 73y2 = −1 is x = 1068, y = 125. The 4-QP(1) produced is 1252, (5 · 125)2, (7 ·
125)2, 10682 with difference sequence 24 · 1252, 24 · 1252, 24 · 1252 − 1. Examples with
very large numbers are also easy to produce provided the Pellian equation can be
solved. In fact, most 4-QP(1)’s in the squares consist of very large numbers.

A 5-QP(1) is a sequence {x1 < x2 < · · · < x5} such that {x2 − x1, x3 − x2, x4 −
x3, x5 − x4} ⊆ {T, T + 1} for some T. More generally, an n-QP(K) is a sequence
{x1 < x2 < · · ·xn} such that {xi+1 − xi : 1 ≤ i ≤ n − 1} ⊆ {T, T + 1, · · · , T + K}
for some T.

We do not know whether or not there exists any 5-QP(1) among the squares. In
fact, we have not found a 5-QP(5) among the squares. Here is a 5-term progression
of squares with small difference set diameter: 12, 412, 582, 712, 822. The differences
are 1680, 1683, 1677, 1683 so the progression is a 5-QP(6). Another 5-QP(6) is:
102, 252, 342, 412, 472. Although these examples are curious, they are not very signif-
icant in the present context since it happens that any progression of five consecutive
squares is a 5-QP(6).

We offer the following conjecture: for each K ≥ 0, there is an N such that any
n-progression of squares, with n ≥ N , is not an n-QP(K). (For K = 0, we have
N = 4, but this is all we know.)

4 Semi-progressions

For a given function g, an n-SP(g) is a set {b1,b2, · · · , bn} such that the diameter
of the set {b2 − b1, b3 − b2, · · · , bn − bn−1} is less than or equal to g(n). If a set X
contains n-SP(g)s for arbitrarily large n, we say that X has property SP(g)

We remark that, if g(k) is bounded above by a polynomial, property SP(g) is stronger
than the property of containing arbitrarily long descending waves. (See [2]).

As was remarked in [2], the set of squares has property SP(2n). (Just consider the
progression consisting of the first n squares. The diameter of the difference sequence
is (n2 − (n − 1)2) − (22 − 12) < 2n.)

Our purpose here is to improve this result by replacing 2n with (3/2)n.

Theorem 3. The set of squares has property SP(3
2
n).

Proof. We wish to prove that there are arbitrarily long progressions of squares
a2

1 < a2
2 < · · · < a2

n such that the diameter D of the difference set, D = max{a2
i+1 −

a2
i } − min{a2

i+1 − a2
i }, does not exceed 3

2
n, that is, D

n
≤ 3

2
.

We will refer to a positive integer a as the base of the square a2. Let K be a positive

190



integer and let A = 2K . We construct the following progression, B, of squares: The
progression B will be the union of K + 1 blocks of squares B0, B1, · · · , BK where

B0 = {(2A)2},
B1 = {(2A + A

2
)2, (2A + 2A

2
)2, (2A + 3A

2
)2, (2A + 4A

2
)2},

...

Bi = {(2iA + A
2i )

2, (2iA + 2 A
2i )

2, (2iA + 3 A
2i )

2, · · · , (2iA + 4i A
2i )

2},
...

BK = {(2KA + 1)2, (2KA + 2)2, (2KA + 3)2, · · · , (2KA + 4K)2}.
We observe that |Bi| = 4i for 0 ≤ i ≤ K. Hence the number of terms in B is

n = 1 + 4 + 42 + · · · + 4K =
1

3
(4K+1 − 1).

Also note that the base of the last term of Bi is 2i+1A. Since the bases of the
squares, starting from the last term of a given block and continuing through all
the terms of the next block, increase by a constant amount (= A

2i in block Bi), the
difference sequence of the squares is increasing for these terms. In order to calculate
the diameter of the difference set, we need only check the K largest differences (which
occur between the last two terms of the blocks) and the K smallest differences (which
occur between the last term of a block and the first term of the succeeding block).
Finding the difference between the largest and smallest among these differences will
produce our D. The largest difference in block Bi is

(2i+1A)2 − (2i+1A − A

2i
)2 =

A

2i
(2i+2A − A

2i
) = 4A2 − A2

4i
,

and the maximum of these occurs when i = K and is equal to 4A2 − 1 = H. The
difference from the last term of Bi to the first term of Bi+1 is

(2i+1A +
A

2i+1
)2 − (2i+1A)2 =

A

2i+1
(2i+2A +

A

2i+1
) = 2A2 +

A2

4i+1
,

and the minimum of these occurs at i + 1 = K with value 2A2 + 1 = L. Hence

D = H − L = 2A2 − 2 = 22K+1 − 2.

Finally we have
D

n
=

22K+1 − 2
1
3
(4K+1 − 1)

=
3(1 − 1

22K )

2(1 − 1
22K+2 )

<
3

2
.

We do not know whether or not this theorem is best possible. Perhaps the set of
squares possesses property SP((1 + ε)n) for every ε > 0, or even property SP(n).
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