Some results on 2-homogeneous graphs*

Zhang Gengsheng
College of Mathematics and Information Science
Hebei Normal University
Shijiazhuang, 050016, China
gshzhang@hebtu.edu.cn
Wang Kaishun
Department of Mathematics
Beijing Normal University
Beijing 100875, China

Abstract

We consider 2-homogeneous graphs, introduced by Nomura [J. Combin. Theory ser. B 60 (1994)], and discuss the elementary properties. Moreover, the diameter of 2-homogeneous graphs with even girth is bounded, and some restrictions of 2-homogeneous graphs with odd girth are obtained.

1 Introduction

Let Γ be a finite connected graph of diameter d with the usual metric ∂ on the vertex set $V \Gamma$ of Γ. The girth of a graph Γ is the minimal length of all the circuits in Γ, denoted by g. For vertices $u, v \in V \Gamma$, let

$$
\Gamma_{i}(u)=\{x \in V \Gamma \mid \partial(u, x)=i\}, \quad D_{j}^{i}(u, v)=\Gamma_{i}(u) \cap \Gamma_{j}(v) .
$$

The family $\left\{D_{j}^{i}(u, v)\right\}_{0 \leq i, j \leq d}$ is called the intersection diagram of Γ with respect to u and v.

For any vertex x and a subset Y of $V \Gamma$, let $e(x, Y)$ denote the number of edges connecting x and Y.

A connected graph Γ is said to be 2-homogeneous if $x \in D_{s}^{r}(u, v)$ and $x^{\prime} \in$ $D_{s}^{r}\left(u^{\prime}, v^{\prime}\right)$ imply $e\left(x, D_{j}^{i}(u, v)\right)=e\left(x^{\prime}, D_{j}^{i}\left(u^{\prime}, v^{\prime}\right)\right)$ for all integers r, s, i, j whenever $\partial(u, v)=\partial\left(u^{\prime}, v^{\prime}\right)=2$.

[^0]A connected graph Γ is said to be distance-regular if, for all vertices u and v with distance i, the parameters

$$
c_{i}=e\left(v, \Gamma_{i-1}(u)\right), a_{i}=e\left(v, \Gamma_{i}(u)\right), b_{i}=e\left(v, \Gamma_{i+1}(u)\right)
$$

depend only on i rather than the individual choice of u and v with $\partial(u, v)=i$. The parameters c_{i}, a_{i}, b_{i} are called the intersection numbers, and $\left\{b_{0}, b_{1}, \cdots, b_{d-1} ; c_{1}, c_{2}\right.$, $\left.\cdots, c_{d}\right\}$ is called the intersection array of Γ, denoted by $i(\Gamma)$. For more information about distance-regular graphs, we refer readers to [1], [2], [3].

Nomura [5] determined all 2-homogeneous bipartite graphs. In this paper, we discuss the elementary properties of 2-homogeneous graphs, and bound the diameter of 2-homogeneous graphs of even girth. For odd girth case, some restrictions on intersection numbers are obtained.

2 Main results

Proposition 2.1 A 2-homogeneous graph Γ is distance-regular.
Proof. If Γ is a complete graph, our result follows. Now assume that $d \geq 2$. Let u, x be two vertices at distance i. First we consider case $i \geq 2$. Take a shortest path (u, w, v, \cdots, x) connecting u and x. Then we have $x \in D_{i-2}^{i}(u, v)$ and

$$
\begin{aligned}
e\left(x, \Gamma_{i+1}(u)\right) & =e\left(x, D_{i-1}^{i+1}(u, v)\right) \\
e\left(x, \Gamma_{i}(u)\right) & =e\left(x, D_{i-2}^{i}(u, v)\right)+e\left(x, D_{i-1}^{i}(u, v)\right), \\
e\left(x, \Gamma_{i-1}(u)\right) & =e\left(x, D_{i-3}^{i-1}(u, v)\right)+e\left(x, D_{i-2}^{i-1}(u, v)\right)+e\left(x, D_{i-1}^{i-1}(u, v)\right) .
\end{aligned}
$$

Now we consider case $i=1$. Take $v \in \Gamma_{1}(x) \cap \Gamma_{2}(u)$. Then

$$
\begin{aligned}
& e\left(x, \Gamma_{2}(u)\right)=1+e\left(x, D_{1}^{2}(u, v)\right)+e\left(x, D_{2}^{2}(u, v)\right), \\
& e\left(x, \Gamma_{1}(u)\right)=e\left(x, D_{1}^{1}(u, v)\right)+e\left(x, D_{2}^{1}(u, v)\right) .
\end{aligned}
$$

Assume $i=0$. Take $v \in \Gamma_{2}(u)$. Then

$$
e\left(u, \Gamma_{1}(u)\right)=e\left(u, D_{1}^{1}(u, v)\right)+e\left(u, D_{2}^{1}(u, v)\right)+e\left(u, D_{3}^{1}(u, v)\right) .
$$

Since Γ is 2 -homogeneous, the right sides do not depend on the choice of u and x with distance i. Hence Γ is distance-regular.

Lemma 2.2 Let Γ be a 2-homogeneous graph of diameter $d \geq 2$. Then there exist constants $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{d}$ such that $\left|\Gamma_{r-1}(u) \cap D_{1}^{1}(x, y)\right|=\gamma_{r}$ for all $u \in V \Gamma$ and $x, y \in$ $\Gamma_{r}(u)$ with $\partial(x, y)=2(r=1,2, \cdots, d)$.

Proof. It is clear that $\gamma_{1}=1$. Suppose $r>1$. Since Γ is 2 -homogeneous, for any $r \geq 2$, there exist constants $\delta_{2}, \delta_{3}, \cdots, \delta_{d}$ such that

$$
\left|\Gamma_{1}(u) \cap \Gamma_{r-1}(x) \cap \Gamma_{r-1}(y)\right|=\delta_{r} .
$$

We conclude that $\gamma_{r}=\frac{\delta_{r} \delta_{r-1} \cdots \delta_{2}}{c_{r-1} c_{r-2} \cdots c_{2}}$. Let N be the number of paths of length $r-1$ from u to $D_{1}^{1}(x, y)$. Let $\left(u=u_{r}, u_{r-1}, \cdots, u_{1}\right)$ be a path of length $r-1$ connecting u and some $u_{1} \in D_{1}^{1}(x, y)$. Thus we have $u_{i} \in D_{i}^{i}(x, y)$ for all i. It is clear that $e\left(u_{i}, D_{i-1}^{i-1}(x, y)\right)=\delta_{i}$. So $N=\delta_{r} \delta_{r-1} \cdots \delta_{2}$. On the other hand, for a fixed vertex $z \in \Gamma_{r-1}(u) \cap \Gamma_{1}(x) \cap \Gamma_{1}(y)$, there are $c_{r-1} c_{r-2} \cdots c_{2}$ paths of length $r-1$ connecting z and u. Thus $N=\left|\Gamma_{r-1}(u) \cap \Gamma_{1}(x) \cap \Gamma_{1}(y)\right| c_{r-1} c_{r-2} \cdots c_{2}$, and so our conclusion holds. Hence γ_{r} is a constant for all $r=1,2, \cdots, d$.

The following results generalize Nomura's results in [4].
Lemma 2.3 Let Γ be a 2-homogeneous graph of even girth and valency $k \geq 3$, and let

$$
\gamma_{i}=\left|\Gamma_{i-1}(u) \cap \Gamma_{1}(x) \cap \Gamma_{1}(y)\right|,
$$

where $x, y \in \Gamma_{i}(u)$ at distance 2. Then the following hold.
(i) $c_{2} \geq 2$;
(ii) $(k-2)\left(\gamma_{2}-1\right)=\left(c_{2}-1\right)\left(c_{2}-2\right)$;
(iii) $\gamma_{i}\left(c_{i+1}-1\right)=c_{i}\left(c_{2}-1\right), 0<i<d$;
(iv) $\left(c_{2}-1\right)\left(\gamma_{i}-1\right)=\left(c_{i}-1\right)\left(\gamma_{2}-1\right), 0<i<d$.

Proof. (i) Since the girth of Γ is even, there exists a positive integer r such that

$$
1=c_{1}=c_{2}=\cdots=c_{r}<c_{r+1} \text { and } a_{1}=a_{2}=\cdots=a_{r}=0 .
$$

We conclude that $\gamma_{r}>0$. Pick $w \in \Gamma_{r-1}(u)$, then we can choose two distinct vertices $x, y \in \Gamma_{r}(u) \cap \Gamma_{1}(w)$ by $b_{r-1}=k-1 \geq 2$. Note that $\partial(x, y)=2$ by $a_{1}=0$. It is clear that $w \in \Gamma_{r-1}(u) \cap \Gamma_{1}(x) \cap \Gamma_{1}(y)$, and so $\gamma_{r}>0$. Thus our conclusion is valid. Take $z \in \Gamma_{r+1}(u)$. We can choose two distinct vertices $x^{\prime}, y^{\prime} \in \Gamma_{r}(u) \cap \Gamma_{1}(z)$ by $c_{r+1}>1$. By $\gamma_{r}>0$, there exists $v \in \Gamma_{r-1}(u) \cap \Gamma_{1}\left(x^{\prime}\right) \cap \Gamma_{1}\left(y^{\prime}\right)$. Thus $x^{\prime}, y^{\prime} \in \Gamma_{1}(v) \cap \Gamma_{1}(z)$, and so $c_{2} \geq 2$.

The proof of $(i i),(i i i),(i v)$ is similar to that of the case when Γ is bipartite, and will be omitted.

Theorem 2.4 Let Γ be a 2-homogeneous graph of valency $k \geq 3$ and even girth. If $\gamma_{2}>1$, then $d \leq 5$. If $\gamma_{2}=1$, then $c_{i}=i$ and so $d \leq k$.

Proof. First we consider the case $\gamma_{2}>1$. By (ii) of Lemma 2.3,

$$
k=\frac{\left(c_{2}-1\right)\left(c_{2}-2\right)}{\gamma_{2}-1}+2
$$

If $d \geq 3$, we have $c_{3}=\left(c_{2}\left(c_{2}-1\right) / \gamma_{2}\right)+1$ by (iii) of Lemma 2.3. If $d \geq 4$, we get $c_{4}=\frac{c_{2}\left(c_{2}^{2}-2 c_{2}+2 \gamma_{2}\right)}{\gamma_{2}+c_{2} \gamma_{2}-c_{2}}$. If $d \geq 5$, then $c_{5}=\frac{c_{2}^{4}-3 c_{2}^{3}+c_{2}^{2}+3 \gamma_{2} c_{2}^{2}-2 \gamma_{2} c_{2}+\gamma_{2}^{2}}{\gamma_{2} c_{2}^{2}+\gamma_{2}^{2}-c_{2}^{2}}$. If $d \geq 6$, then

$$
b_{5}=k-c_{5}-a_{5}=\frac{\left(c_{2}-\gamma_{2}\right)\left(c_{2}-\gamma_{2}-\gamma_{2}^{2}\right)}{\left(\gamma_{2}-1\right)\left(c_{2}^{2} \gamma_{2}+\gamma_{2}^{2}-c_{2}^{2}\right)}-a_{5} \geq 1
$$

So $\gamma_{2}\left(c_{2}-1\right)\left(2 c_{2}-2 \gamma_{2}-c_{2} \gamma_{2}\right) \geq a_{5} \geq 0$, which is impossible. Hence $d \leq 5$. If $\gamma_{2}=1$, then $\gamma_{i}=1$ and $c_{i}=i$ for all $1 \leq i \leq d$ by Lemma 2.3.

Corollary 2.5 Let Γ be a 2-homogeneous graph of valency $k \geq 3$ and diameter d. Suppose all the odd circuits are of length $2 d+1$. Then one of the following holds.
(i) $d \leq 5$.
(ii) $i(\Gamma)=\{k, k-1, k-2, \cdots, k-d+1 ; 1,2, \cdots, d-1, d\}$.

Proof. Assume $d \geq 6$. We conclude that $c_{d} \geq 2$. Suppose not. Then Γ is a Moore graph, and so $d=2$. This is impossible. So Γ is of even girth. By Theorem 2.4, the desired result follows.

Proposition 2.6 Let Γ be a 2-homogeneous graph of odd girth $g \geq 5$ and valency $k \geq 3$. Then $c_{i}=1$ or $b_{i-2}=1$ for each $i=2,3, \cdots, d$.

Proof. If there exists some i such that $c_{i}>1$, then we claim that $b_{i-2}=1$. Suppose not. Assume $b_{i-2} \geq 2$. Take vertices x and y at distance $i-2$. Since $b_{i-2} \geq 2$, we can choose two distinct vertices $x^{\prime}, y^{\prime} \in \Gamma_{i-1}(x) \cap \Gamma_{1}(y)$. We have $\partial\left(x^{\prime}, y^{\prime}\right)=2$ by $g \geq 5$, and so $\gamma_{i-1} \geq 1$. Let u, w be two vertices at distance i. By $c_{i}>1$, we can take two distinct vertices $x, y \in \Gamma_{1}(w) \cap \Gamma_{i-1}(u)$. We get $\partial(x, y)=2$ by $g \geq 5$. Since $\gamma_{i-1} \geq 1$, there exists $v \in \Gamma_{1}(x) \cap \Gamma_{1}(y) \cap \Gamma_{r-2}(u)$. Thus $v, w \in \Gamma_{1}(x) \cap \Gamma_{1}(y)$, so $c_{2} \geq 2$, which contradicts to $g \geq 5$. Hence $b_{i-2}=1$.

Definition 2.1 Let Γ be a distance-regular graph. For any two vertices x, y at distance i, the induced subgraph on $\Gamma_{i-1}(x) \cap \Gamma_{1}(y)$ is called the c_{i}-graph of Γ, and the induced subgraph on $\Gamma_{i+1}(x) \cap \Gamma_{1}(y)$ is called the b_{i}-graph of Γ.

Proposition 2.7 Let Γ be a 2 -homogeneous graph of girth 3 . If $c_{2}=1$, then c_{i}-graph of Γ is a clique or b_{i-2}-graph is a clique, for all $i=1,2, \cdots, d$.

Proof. If there exists some i such that both of c_{i}-graph and b_{i-2}-graph of Γ are not cliques. Let $\partial(u, v)=i-2$. Then there exist two vertices $x, y \in \Gamma_{i-1}(u) \cap \Gamma_{1}(v)$ at distance 2 , and so $\gamma_{r-1} \geq 1$. Take two vertices u_{1}, v_{1} at distance i, then there exist $x^{\prime}, y^{\prime} \in \Gamma_{i-1}\left(u_{1}\right) \cap \Gamma_{1}\left(v_{1}\right)$ at distance 2. By $\gamma_{r-1} \geq 1$, there exits $v^{\prime} \in \Gamma_{1}\left(x^{\prime}\right) \cap \Gamma_{1}\left(y^{\prime}\right) \cap$ $\Gamma_{r-2}\left(u_{1}\right)$. Thus $c_{2} \geq 2$, a contradiction. Hence the desired result follows.

Corollary 2.8 Let Γ be a 2-homogeneous graph of girth 3. If $c_{2}=1$, then $c_{i} \leq a_{1}+1$ or $b_{i-2} \leq a_{1}+1$.

References

[1] E. Bannai and T. Ito, Algebraic Combinatorics I, Association schemes, Benjamin/Cummings, CA, 1984.
[2] N.L. Biggs, Algebraic Graph Theory, Second Edition, Cambridge University Press, 1993.
[3] A.E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, New York, 1989.
[4] K. Nomura, Homogeneous graphs and regular near polygons, J. Combin. Theory Ser. B 60 (1994), 63-71.
[5] K. Nomura, Spin models on bipartite distance-regular graphs, J. Combin. Theory Ser. B 64 (1995), 300-313.

[^0]: * Supported by NSF of National and Hebei province.

