Some results on 2-homogeneous graphs^{*}

Zhang Gengsheng

College of Mathematics and Information Science Hebei Normal University Shijiazhuang, 050016, China gshzhang@hebtu.edu.cn

Wang Kaishun

Department of Mathematics Beijing Normal University Beijing 100875, China

Abstract

We consider 2-homogeneous graphs, introduced by Nomura [J. Combin. Theory ser. B 60 (1994)], and discuss the elementary properties. Moreover, the diameter of 2-homogeneous graphs with even girth is bounded, and some restrictions of 2-homogeneous graphs with odd girth are obtained.

1 Introduction

Let Γ be a finite connected graph of diameter d with the usual metric ∂ on the vertex set $V\Gamma$ of Γ . The *girth* of a graph Γ is the minimal length of all the circuits in Γ , denoted by g. For vertices $u, v \in V\Gamma$, let

$$\Gamma_i(u) = \{ x \in V\Gamma \mid \partial(u, x) = i \}, \ D^i_i(u, v) = \Gamma_i(u) \cap \Gamma_j(v).$$

The family $\{D_j^i(u, v)\}_{0 \le i,j \le d}$ is called the *intersection diagram* of Γ with respect to u and v.

For any vertex x and a subset Y of $V\Gamma$, let e(x, Y) denote the number of edges connecting x and Y.

A connected graph Γ is said to be 2-homogeneous if $x \in D_s^r(u, v)$ and $x' \in D_s^r(u', v')$ imply $e(x, D_j^i(u, v)) = e(x', D_j^i(u', v'))$ for all integers r, s, i, j whenever $\partial(u, v) = \partial(u', v') = 2$.

Australasian Journal of Combinatorics 27(2003), pp.169-173

^{*} Supported by NSF of National and Hebei province.

A connected graph Γ is said to be *distance-regular* if, for all vertices u and v with distance i, the parameters

$$c_i = e(v, \Gamma_{i-1}(u)), a_i = e(v, \Gamma_i(u)), b_i = e(v, \Gamma_{i+1}(u))$$

depend only on *i* rather than the individual choice of *u* and *v* with $\partial(u, v) = i$. The parameters c_i, a_i, b_i are called the *intersection numbers*, and $\{b_0, b_1, \dots, b_{d-1}; c_1, c_2, \dots, c_d\}$ is called the *intersection array* of Γ , denoted by $i(\Gamma)$. For more information about distance-regular graphs, we refer readers to [1], [2], [3].

Nomura [5] determined all 2-homogeneous bipartite graphs. In this paper, we discuss the elementary properties of 2-homogeneous graphs, and bound the diameter of 2-homogeneous graphs of even girth. For odd girth case, some restrictions on intersection numbers are obtained.

2 Main results

Proposition 2.1 A 2-homogeneous graph Γ is distance-regular.

Proof. If Γ is a complete graph, our result follows. Now assume that $d \geq 2$. Let u, x be two vertices at distance *i*. First we consider case $i \geq 2$. Take a shortest path (u, w, v, \dots, x) connecting u and x. Then we have $x \in D_{i-2}^{i}(u, v)$ and

$$\begin{aligned} e(x,\Gamma_{i+1}(u)) &= e(x,D_{i-1}^{i+1}(u,v)),\\ e(x,\Gamma_{i}(u)) &= e(x,D_{i-2}^{i}(u,v)) + e(x,D_{i-1}^{i}(u,v)),\\ e(x,\Gamma_{i-1}(u)) &= e(x,D_{i-3}^{i-1}(u,v)) + e(x,D_{i-2}^{i-1}(u,v)) + e(x,D_{i-1}^{i-1}(u,v)). \end{aligned}$$

Now we consider case i = 1. Take $v \in \Gamma_1(x) \cap \Gamma_2(u)$. Then

$$e(x, \Gamma_2(u)) = 1 + e(x, D_1^2(u, v)) + e(x, D_2^2(u, v)),$$

$$e(x, \Gamma_1(u)) = e(x, D_1^1(u, v)) + e(x, D_2^1(u, v)).$$

Assume i = 0. Take $v \in \Gamma_2(u)$. Then

$$e(u, \Gamma_1(u)) = e(u, D_1^1(u, v)) + e(u, D_2^1(u, v)) + e(u, D_3^1(u, v)).$$

Since Γ is 2-homogeneous, the right sides do not depend on the choice of u and x with distance i. Hence Γ is distance-regular.

Lemma 2.2 Let Γ be a 2-homogeneous graph of diameter $d \ge 2$. Then there exist constants $\gamma_1, \gamma_2, \dots, \gamma_d$ such that $|\Gamma_{r-1}(u) \cap D_1^1(x, y)| = \gamma_r$ for all $u \in V\Gamma$ and $x, y \in \Gamma_r(u)$ with $\partial(x, y) = 2$ $(r = 1, 2, \dots, d)$.

Proof. It is clear that $\gamma_1 = 1$. Suppose r > 1. Since Γ is 2-homogeneous, for any $r \ge 2$, there exist constants $\delta_2, \delta_3, \dots, \delta_d$ such that

$$|\Gamma_1(u) \cap \Gamma_{r-1}(x) \cap \Gamma_{r-1}(y)| = \delta_r.$$

We conclude that $\gamma_r = \frac{\delta_r \delta_{r-1} \cdots \delta_2}{c_{r-1}c_{r-2} \cdots c_2}$. Let N be the number of paths of length r-1 from u to $D_1^1(x, y)$. Let $(u = u_r, u_{r-1}, \cdots, u_1)$ be a path of length r-1 connecting u and some $u_1 \in D_1^1(x, y)$. Thus we have $u_i \in D_i^i(x, y)$ for all i. It is clear that $e(u_i, D_{i-1}^{i-1}(x, y)) = \delta_i$. So $N = \delta_r \delta_{r-1} \cdots \delta_2$. On the other hand, for a fixed vertex $z \in \Gamma_{r-1}(u) \cap \Gamma_1(x) \cap \Gamma_1(y)$, there are $c_{r-1}c_{r-2} \cdots c_2$ paths of length r-1 connecting z and u. Thus $N = |\Gamma_{r-1}(u) \cap \Gamma_1(x) \cap \Gamma_1(y)| c_{r-1}c_{r-2} \cdots c_2$, and so our conclusion holds. Hence γ_r is a constant for all $r = 1, 2, \cdots, d$.

The following results generalize Nomura's results in [4].

Lemma 2.3 Let Γ be a 2-homogeneous graph of even girth and valency $k \geq 3$, and let

 $\gamma_i = |\Gamma_{i-1}(u) \cap \Gamma_1(x) \cap \Gamma_1(y)|,$

where $x, y \in \Gamma_i(u)$ at distance 2. Then the following hold.

(*i*) $c_2 \ge 2;$

(*ii*) $(k-2)(\gamma_2-1) = (c_2-1)(c_2-2);$

(*iii*) $\gamma_i(c_{i+1} - 1) = c_i(c_2 - 1), \ 0 < i < d;$

$$(iv) (c_2 - 1)(\gamma_i - 1) = (c_i - 1)(\gamma_2 - 1), \ 0 < i < d.$$

Proof. (i) Since the girth of Γ is even, there exists a positive integer r such that

$$1 = c_1 = c_2 = \dots = c_r < c_{r+1}$$
 and $a_1 = a_2 = \dots = a_r = 0$

We conclude that $\gamma_r > 0$. Pick $w \in \Gamma_{r-1}(u)$, then we can choose two distinct vertices $x, y \in \Gamma_r(u) \cap \Gamma_1(w)$ by $b_{r-1} = k - 1 \ge 2$. Note that $\partial(x, y) = 2$ by $a_1 = 0$. It is clear that $w \in \Gamma_{r-1}(u) \cap \Gamma_1(x) \cap \Gamma_1(y)$, and so $\gamma_r > 0$. Thus our conclusion is valid. Take $z \in \Gamma_{r+1}(u)$. We can choose two distinct vertices $x', y' \in \Gamma_r(u) \cap \Gamma_1(z)$ by $c_{r+1} > 1$. By $\gamma_r > 0$, there exists $v \in \Gamma_{r-1}(u) \cap \Gamma_1(x') \cap \Gamma_1(y')$. Thus $x', y' \in \Gamma_1(v) \cap \Gamma_1(z)$, and so $c_2 \ge 2$.

The proof of (ii), (iii), (iv) is similar to that of the case when Γ is bipartite, and will be omitted.

Theorem 2.4 Let Γ be a 2-homogeneous graph of valency $k \geq 3$ and even girth. If $\gamma_2 > 1$, then $d \leq 5$. If $\gamma_2 = 1$, then $c_i = i$ and so $d \leq k$.

Proof. First we consider the case $\gamma_2 > 1$. By (*ii*) of Lemma 2.3,

$$k = \frac{(c_2 - 1)(c_2 - 2)}{\gamma_2 - 1} + 2.$$

If $d \ge 3$, we have $c_3 = (c_2(c_2 - 1)/\gamma_2) + 1$ by (*iii*) of Lemma 2.3. If $d \ge 4$, we get $c_4 = \frac{c_2(c_2^2 - 2c_2 + 2\gamma_2)}{\gamma_2 + c_2\gamma_2 - c_2}$. If $d \ge 5$, then $c_5 = \frac{c_2^4 - 3c_2^3 + c_2^2 + 3\gamma_2c_2^2 - 2\gamma_2c_2 + \gamma_2^2}{\gamma_2c_2^2 + \gamma_2^2 - c_2^2}$. If $d \ge 6$, then

$$b_5 = k - c_5 - a_5 = \frac{(c_2 - \gamma_2)(c_2 - \gamma_2 - \gamma_2^2)}{(\gamma_2 - 1)(c_2^2\gamma_2 + \gamma_2^2 - c_2^2)} - a_5 \ge 1$$

So $\gamma_2(c_2-1)(2c_2-2\gamma_2-c_2\gamma_2) \ge a_5 \ge 0$, which is impossible. Hence $d \le 5$. If $\gamma_2 = 1$, then $\gamma_i = 1$ and $c_i = i$ for all $1 \le i \le d$ by Lemma 2.3.

Corollary 2.5 Let Γ be a 2-homogeneous graph of valency $k \geq 3$ and diameter d. Suppose all the odd circuits are of length 2d + 1. Then one of the following holds.

(i) $d \le 5$. (ii) $i(\Gamma) = \{k, k-1, k-2, \dots, k-d+1; 1, 2, \dots, d-1, d\}.$

 $P_{\text{read}} = \Lambda_{\text{crume}} d > 6$ We conclude that a > 2 Suppose not. Then

Proof. Assume $d \ge 6$. We conclude that $c_d \ge 2$. Suppose not. Then Γ is a Moore graph, and so d = 2. This is impossible. So Γ is of even girth. By Theorem 2.4, the desired result follows.

Proposition 2.6 Let Γ be a 2-homogeneous graph of odd girth $g \ge 5$ and valency $k \ge 3$. Then $c_i = 1$ or $b_{i-2} = 1$ for each $i = 2, 3, \dots, d$.

Proof. If there exists some *i* such that $c_i > 1$, then we claim that $b_{i-2} = 1$. Suppose not. Assume $b_{i-2} \ge 2$. Take vertices *x* and *y* at distance i-2. Since $b_{i-2} \ge 2$, we can choose two distinct vertices $x', y' \in \Gamma_{i-1}(x) \cap \Gamma_1(y)$. We have $\partial(x', y') = 2$ by $g \ge 5$, and so $\gamma_{i-1} \ge 1$. Let u, w be two vertices at distance *i*. By $c_i > 1$, we can take two distinct vertices $x, y \in \Gamma_1(w) \cap \Gamma_{i-1}(u)$. We get $\partial(x, y) = 2$ by $g \ge 5$. Since $\gamma_{i-1} \ge 1$, there exists $v \in \Gamma_1(x) \cap \Gamma_1(y) \cap \Gamma_{r-2}(u)$. Thus $v, w \in \Gamma_1(x) \cap \Gamma_1(y)$, so $c_2 \ge 2$, which contradicts to $g \ge 5$. Hence $b_{i-2} = 1$.

Definition 2.1 Let Γ be a distance-regular graph. For any two vertices x, y at distance i, the induced subgraph on $\Gamma_{i-1}(x) \cap \Gamma_1(y)$ is called the c_i -graph of Γ , and the induced subgraph on $\Gamma_{i+1}(x) \cap \Gamma_1(y)$ is called the b_i -graph of Γ .

Proposition 2.7 Let Γ be a 2-homogeneous graph of girth 3. If $c_2 = 1$, then c_i -graph of Γ is a clique or b_{i-2} -graph is a clique, for all $i = 1, 2, \dots, d$.

Proof. If there exists some *i* such that both of c_i -graph and b_{i-2} -graph of Γ are not cliques. Let $\partial(u, v) = i - 2$. Then there exist two vertices $x, y \in \Gamma_{i-1}(u) \cap \Gamma_1(v)$ at distance 2, and so $\gamma_{r-1} \geq 1$. Take two vertices u_1, v_1 at distance *i*, then there exist $x', y' \in \Gamma_{i-1}(u_1) \cap \Gamma_1(v_1)$ at distance 2. By $\gamma_{r-1} \geq 1$, there exist $v' \in \Gamma_1(x') \cap \Gamma_1(y') \cap \Gamma_{r-2}(u_1)$. Thus $c_2 \geq 2$, a contradiction. Hence the desired result follows.

Corollary 2.8 Let Γ be a 2-homogeneous graph of girth 3. If $c_2 = 1$, then $c_i \leq a_1+1$ or $b_{i-2} \leq a_1+1$.

References

- E. Bannai and T. Ito, Algebraic Combinatorics I, Association schemes, Benjamin/Cummings, CA, 1984.
- [2] N.L. Biggs, Algebraic Graph Theory, Second Edition, Cambridge University Press, 1993.
- [3] A. E. Brouwer, A. M. Cohen, and A. Neumaier, *Distance-Regular Graphs*, Springer-Verlag, New York, 1989.
- [4] K. Nomura, Homogeneous graphs and regular near polygons, J. Combin. Theory Ser. B 60 (1994), 63–71.
- [5] K. Nomura, Spin models on bipartite distance-regular graphs, J. Combin. Theory Ser. B 64 (1995), 300–313.

(Received 28/11/2001)