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Abstract

Let G and H be graphs. The Ramsey number R(G, H) is the least integer
such that for every graph F of order R(G, H), either F contains G or F
contains H . Let Bn and Wn denote the book graph K2 +Kn and the wheel
graph K1 + Cn−1, respectively. In 1978, Faudree, Rousseau and Sheehan
computed R(C4, Bn) for n ≤ 8. In this paper, we compute R(C4, Bn)
for 8 ≤ n ≤ 12 and R(C4, Wn) for 4 ≤ n ≤ 13. In particular, we find
that R(C4, B8) = 17, not 16 as claimed in 1978 by Faudree, Rousseau and
Sheehan. Most of the results are based on computer algorithms.

1. Introduction
For graphs G and H , a (G, H)-graph is a graph F that does not contain G, and

such that the complement F does not contain H . A (G, H ; n)-graph is a (G, H)-
graph of order n. Let R(G, H) and R(G, H ; n) denote the set of all (G, H)-graphs
and (G, H ; n)-graphs, respectively. The Ramsey number R(G, H) is defined to be
the least integer n > 0 such that there is no (G, H ; n)-graph.

In this paper we consider the case where G is a quadrilateral C4 (cycle of order
4) and H is a book graph Bn or a wheel graph Wn.

In Section 2 we describe the algorithms and computations performed. Sec-
tion 3 presents all (C4, Bn)-graphs for n ≤ 8, and all (C4,Bn;R(C4, Bn)-1)-graphs
for 9 ≤ n ≤ 12. Section 4 presents all (C4, Wn)-graphs for n ≤ 10, and of all
(C4, Wn; R(C4, Wn) − 1)-graphs for 11 ≤ n ≤ 13.

A general utility program for graph isomorph rejection, nauty [2], written by
Brendan McKay, was used extensively. The graphs themselves are available from
the author.
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The author would like to thank Brendan McKay for verifying the results on
R(C4, Bn).

2. Algorithms and Computations
The algorithm we use is based on an observation made by McKay and Radzis-

zowski in [3] and [4]. A similar approach was used to compute R(C4, K7) and
R(C4, K8) [5]. We first give some notations.

If G is a graph, then VG and EG are its vertex set and edge set, respectively.
For v ∈ VG , let NG(v) = {w ∈ VG | vw ∈ EG}, and let degG(v) = |NG(v)|. The
subgraph of G induced by W will be denoted by G[W ]. Also, for v ∈ VG , define
the induced subgraphs G+

v = G[NG(v)] and G−
v = G[VG − NG(v) − {v}].

We now describe how to compute R(C4, Bm) (A similar discussion holds for
computing R(C4, Wm).)

If G ∈ R(C4, Bm; n) and v ∈ VG , then G+
v ∈ R(P3, Bm; d), where d = degG(v),

and G−
v ∈ R(C4, K1,m; n − d − 1), where K1,m = K1 + Km. Hence, G+

v must be
simply a disjoint union of isolated edges and vertices, and G−

v is of the same type
as G, but for m − 1. These properties form the basis of one of our algorithms to
enumerate graphs in R(C4, Bm; n).

Suppose we have a particular X ∈ R(P3, Bm; s) and Y ∈ R(C4, K1,m; t), and
we wish to use them to build a graph G ∈ R(C4, Bm; s + t + 1), by adding a new
vertex v of degree s, so that X = G+

v and Y = G−
v . We need to choose the edges

between X and Y . A feasible cone is a nonempty subset of VY that does not cover
both endpoints of any P3 in Y . To avoid C4, the neighborhood in Y of each vertex
in X must be a feasible cone.

The algorithm assigns in all possible ways feasible cones to vertices in G+
v , so

that C4 and Bm are avoided in G. In particular, no two cones assigned to distinct
vertices in G+

v may have a nonempty intersection.
We next give two lemmas that speed up our computations.

Lemma 1. If G is a C4-free graph with n vertices and has minimum degree d,
then

d2 − d + 1 ≤ n.

Proof. This lemma is well known (see [5]), and its proof is omitted.

Lemma 2. Let G be a C4-free graph with minimum degree d > 2, and let v be
a vertex of degree d. Then each vertex of G+

v can be assigned a feasible cone.
Moreover, since G+

v is P3-free, G+
v consists of copies of P2 and isolated points.

The feasible cone assigned to the vertex of P2 has size at least d−2 and the feasible
cone assigned to the isolated point has size at least d − 1.

Proof. G+
v consists of P2 and isolated points. Thus, if a vertex of G+

v were not
assigned a feasible cone, then that vertex would have degree (in G) 2 or 1 (depend-
ing on whether it is a vertex of P2 or an isolated point). This contradicts the fact
that G has minimal degree d > 2. If the feasible cone assigned to the vertex of P2

has size less than d-2, then that vertex would have degree in G less than d, again
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a contradiction. Similary, the feasible cone assigned to the isolated point has size
at least d-1.

3. Enumerations and Results of R(C4, Bn)
We present here statistics from the enumeration of various families R(C4, Bn)

obtained by the algorithms and computations outlined in Section 2. Table I gives
the number of nonisomorphic (C4, Bn)-graphs, 2 ≤ n ≤ 8. These detailed data may
be useful in future work towards deriving bounds for general Ramsey numbers of
the form R(C4, Bn).

It is computationally infeasible to generate all of R(C4, Bn), 9 ≤ n ≤ 12; we
only enumerate (C4, Bn)-graphs on R(C4, Bn)− 1 vertices, and their statistics are
presented in Table II.

Theorem 1.

(i) R(C4, B8) = 17.

(ii) R(C4, B9) = 18.

(iii) R(C4, B10) = 19.

(iv) R(C4, B11) = 20.

(v) R(C4, B12) = 21.

Proof of (i). Figure 1 presents the adjacency matrix of the (C4, B8; 16)-graph
establishing the lower bound. The nonexistence of (C4, B8; 17)-graphs, implying
the upper bound, follows from the computations described in Section 2.

The proofs of (ii)–(v) use a similar argument.

n |R(C4, Bn)|
2 23
3 64
4 191
5 586
6 2402
7 13345
8 95614

Table I. Number of (C4, Bn)-graphs, 2 ≤ n ≤ 8.
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n m |R(C4, Bn; m)|
9 17 8

10 18 132
11 19 4185
12 20 195579

Table II. Number of (C4, Bn; R(C4, Bn) − 1)-graphs, 9 ≤ n ≤ 12.

1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
2 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0
3 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0
4 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0
5 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0
6 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1
7 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1
8 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1
9 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1
10 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0
11 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0
12 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0
13 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0
14 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0
15 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0
16 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0

Figure 1. Adjacency matrix of the only (C4, B8; 16)-graph.

4. Enumerations and Results of R(C4, Wn)
Table III gives the number of nonisomorphic (C4, Wn)-graphs, 4 ≤ n ≤ 10.

Table IV presents the (C4, Wn)-graphs on R(C4, Wn) − 1 vertices, 11 ≤ n ≤ 13.

Theorem 2.

(i) R(C4, W4) = 10.

(ii) R(C4, W5) = 9.

(iii) R(C4, W6) = 10.

(iv) R(C4, W7) = 9.

(v) R(C4, W8) = 11.

(vi) R(C4, W9) = 12.

(vii) R(C4, W10) = 13.

(viii) R(C4, W11) = 14.

(ix) R(C4, W12) = 16.

(x) R(C4, W13) = 17.

Proof. The proofs use the same argument as in Theorem 1.
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n |R(C4, Wn)|
4 109
5 57
6 128
7 200
8 573
9 2003

10 8861

Table III. Number of (C4, Wn)-graphs, 4 ≤ n ≤ 10.

n m |R(C4, Wn; m)|
11 13 503
12 15 2
13 16 1

Table IV. Number of (C4, Wn; R(C4, Wn) − 1)-graphs, 11 ≤ n ≤ 13.
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