On the Ramsey number of the quadrilateral versus the book and the wheel

Kung-Kuen Tse
Department of Mathematics and Computer Science
Kean University
Union, NJ 07083
U.S.A.
ktse@kean.edu

Abstract

Let G and H be graphs. The Ramsey number $R(G, H)$ is the least integer such that for every graph F of order $R(G, H)$, either F contains G or \bar{F} contains H. Let B_{n} and W_{n} denote the book graph $K_{2}+\overline{K_{n}}$ and the wheel graph $K_{1}+C_{n-1}$, respectively. In 1978, Faudree, Rousseau and Sheehan computed $R\left(C_{4}, B_{n}\right)$ for $n \leq 8$. In this paper, we compute $R\left(C_{4}, B_{n}\right)$ for $8 \leq n \leq 12$ and $R\left(C_{4}, W_{n}\right)$ for $4 \leq n \leq 13$. In particular, we find that $R\left(C_{4}, B_{8}\right)=17$, not 16 as claimed in 1978 by Faudree, Rousseau and Sheehan. Most of the results are based on computer algorithms.

1. Introduction

For graphs G and H, a (G, H)-graph is a graph F that does not contain G, and such that the complement \bar{F} does not contain H. A $(G, H ; n)$-graph is a (G, H) graph of order n. Let $\mathcal{R}(G, H)$ and $\mathcal{R}(G, H ; n)$ denote the set of all (G, H)-graphs and $(G, H ; n)$-graphs, respectively. The Ramsey number $R(G, H)$ is defined to be the least integer $n>0$ such that there is no $(G, H ; n)$-graph.

In this paper we consider the case where G is a quadrilateral C_{4} (cycle of order 4) and H is a book graph B_{n} or a wheel graph W_{n}.

In Section 2 we describe the algorithms and computations performed. Section 3 presents all (C_{4}, B_{n})-graphs for $n \leq 8$, and all ($C_{4}, B_{n} ; R\left(C_{4}, B_{n}\right)$-1)-graphs for $9 \leq n \leq 12$. Section 4 presents all $\left(C_{4}, W_{n}\right)$-graphs for $n \leq 10$, and of all $\left(C_{4}, W_{n} ; R\left(C_{4}, W_{n}\right)-1\right)$-graphs for $11 \leq n \leq 13$.

A general utility program for graph isomorph rejection, nauty [2], written by Brendan McKay, was used extensively. The graphs themselves are available from the author.

The author would like to thank Brendan McKay for verifying the results on $R\left(C_{4}, B_{n}\right)$.

2. Algorithms and Computations

The algorithm we use is based on an observation made by McKay and Radziszowski in [3] and [4]. A similar approach was used to compute $R\left(C_{4}, K_{7}\right)$ and $R\left(C_{4}, K_{8}\right)$ [5]. We first give some notations.

If G is a graph, then $V G$ and $E G$ are its vertex set and edge set, respectively. For $v \in V G$, let $N_{G}(v)=\{w \in V G \mid v w \in E G\}$, and let $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. The subgraph of G induced by W will be denoted by $G[W]$. Also, for $v \in V G$, define the induced subgraphs $G_{v}^{+}=G\left[N_{G}(v)\right]$ and $G_{v}^{-}=G\left[V G-N_{G}(v)-\{v\}\right]$.

We now describe how to compute $R\left(C_{4}, B_{m}\right)$ (A similar discussion holds for computing $R\left(C_{4}, W_{m}\right)$.)

If $G \in \mathcal{R}\left(C_{4}, B_{m} ; n\right)$ and $v \in V G$, then $G_{v}^{+} \in \mathcal{R}\left(P_{3}, B_{m} ; d\right)$, where $d=\operatorname{deg}_{G}(v)$, and $G_{v}^{-} \in \mathcal{R}\left(C_{4}, K_{1, m} ; n-d-1\right)$, where $K_{1, m}=K_{1}+\bar{K}_{m}$. Hence, G_{v}^{+}must be simply a disjoint union of isolated edges and vertices, and G_{v}^{-}is of the same type as G, but for $m-1$. These properties form the basis of one of our algorithms to enumerate graphs in $\mathcal{R}\left(C_{4}, B_{m} ; n\right)$.

Suppose we have a particular $X \in \mathcal{R}\left(P_{3}, B_{m} ; s\right)$ and $Y \in \mathcal{R}\left(C_{4}, K_{1, m} ; t\right)$, and we wish to use them to build a graph $G \in \mathcal{R}\left(C_{4}, B_{m} ; s+t+1\right)$, by adding a new vertex v of degree s, so that $X=G_{v}^{+}$and $Y=G_{v}^{-}$. We need to choose the edges between X and Y. A feasible cone is a nonempty subset of $V Y$ that does not cover both endpoints of any P_{3} in Y. To avoid C_{4}, the neighborhood in Y of each vertex in X must be a feasible cone.

The algorithm assigns in all possible ways feasible cones to vertices in G_{v}^{+}, so that C_{4} and \bar{B}_{m} are avoided in G. In particular, no two cones assigned to distinct vertices in G_{v}^{+}may have a nonempty intersection.

We next give two lemmas that speed up our computations.
Lemma 1. If G is a C_{4}-free graph with n vertices and has minimum degree d, then

$$
d^{2}-d+1 \leq n
$$

Proof. This lemma is well known (see [5]), and its proof is omitted.
Lemma 2. Let G be a C_{4}-free graph with minimum degree $d>2$, and let v be a vertex of degree d. Then each vertex of G_{v}^{+}can be assigned a feasible cone. Moreover, since G_{v}^{+}is P_{3}-free, G_{v}^{+}consists of copies of P_{2} and isolated points. The feasible cone assigned to the vertex of P_{2} has size at least $d-2$ and the feasible cone assigned to the isolated point has size at least $d-1$.

Proof. G_{v}^{+}consists of P_{2} and isolated points. Thus, if a vertex of G_{v}^{+}were not assigned a feasible cone, then that vertex would have degree (in G) 2 or 1 (depending on whether it is a vertex of P_{2} or an isolated point). This contradicts the fact that G has minimal degree $d>2$. If the feasible cone assigned to the vertex of P_{2} has size less than $d-2$, then that vertex would have degree in G less than d, again
a contradiction. Similary, the feasible cone assigned to the isolated point has size at least $d-1$.

3. Enumerations and Results of $R\left(C_{4}, B_{n}\right)$

We present here statistics from the enumeration of various families $\mathcal{R}\left(C_{4}, B_{n}\right)$ obtained by the algorithms and computations outlined in Section 2. Table I gives the number of nonisomorphic $\left(C_{4}, B_{n}\right)$-graphs, $2 \leq n \leq 8$. These detailed data may be useful in future work towards deriving bounds for general Ramsey numbers of the form $R\left(C_{4}, B_{n}\right)$.

It is computationally infeasible to generate all of $\mathcal{R}\left(C_{4}, B_{n}\right), 9 \leq n \leq 12$; we only enumerate (C_{4}, B_{n})-graphs on $R\left(C_{4}, B_{n}\right)$ - 1 vertices, and their statistics are presented in Table II.

Theorem 1.

(i) $R\left(C_{4}, B_{8}\right)=17$.
(ii) $R\left(C_{4}, B_{9}\right)=18$.
(iii) $R\left(C_{4}, B_{10}\right)=19$.
(iv) $R\left(C_{4}, B_{11}\right)=20$.
(v) $R\left(C_{4}, B_{12}\right)=21$.

Proof of (i). Figure 1 presents the adjacency matrix of the ($\left.C_{4}, B_{8} ; 16\right)$-graph establishing the lower bound. The nonexistence of ($C_{4}, B_{8} ; 17$)-graphs, implying the upper bound, follows from the computations described in Section 2.

The proofs of (ii)-(v) use a similar argument.

n	$\left\|\mathcal{R}\left(C_{4}, B_{n}\right)\right\|$
2	23
3	64
4	191
5	586
6	2402
7	13345
8	95614

Table I. Number of $\left(C_{4}, B_{n}\right)$-graphs, $2 \leq n \leq 8$.

n	m	$\left\|\mathcal{R}\left(C_{4}, B_{n} ; m\right)\right\|$
9	17	8
10	18	132
11	19	4185
12	20	195579

Table II. Number of $\left(C_{4}, B_{n} ; R\left(C_{4}, B_{n}\right)-1\right)$-graphs, $9 \leq n \leq 12$.

Figure 1. Adjacency matrix of the only $\left(C_{4}, B_{8} ; 16\right)$-graph.

4. Enumerations and Results of $R\left(C_{4}, W_{n}\right)$

Table III gives the number of nonisomorphic (C_{4}, W_{n})-graphs, $4 \leq n \leq 10$. Table IV presents the $\left(C_{4}, W_{n}\right)$-graphs on $R\left(C_{4}, W_{n}\right)-1$ vertices, $11 \leq n \leq 13$.

Theorem 2.

(i) $R\left(C_{4}, W_{4}\right)=10$.
(ii) $R\left(C_{4}, W_{5}\right)=9$.
(iii) $R\left(C_{4}, W_{6}\right)=10$.
(iv) $R\left(C_{4}, W_{7}\right)=9$.
(v) $R\left(C_{4}, W_{8}\right)=11$.
(vi) $R\left(C_{4}, W_{9}\right)=12$.
(vii) $R\left(C_{4}, W_{10}\right)=13$.
(viii) $R\left(C_{4}, W_{11}\right)=14$.
(ix) $R\left(C_{4}, W_{12}\right)=16$.
(x) $R\left(C_{4}, W_{13}\right)=17$.

Proof. The proofs use the same argument as in Theorem 1.

n	$\left\|\mathcal{R}\left(C_{4}, W_{n}\right)\right\|$
4	109
5	57
6	128
7	200
8	573
9	2003
10	8861

Table III. Number of (C_{4}, W_{n})-graphs, $4 \leq n \leq 10$.

n	m	$\left\|\mathcal{R}\left(C_{4}, W_{n} ; m\right)\right\|$
11	13	503
12	15	2
13	16	1

Table IV. Number of $\left(C_{4}, W_{n} ; R\left(C_{4}, W_{n}\right)-1\right)$-graphs, $11 \leq n \leq 13$.

References

[1] R.J. Faudree, C.C. Rousseau and J. Sheehan, More from the Good Book, Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Utilitas Mathematica Publ. (1978), 289-299.
[2] B.D. McKay, nauty users' guide (version 1.5), Technical Report TR-CS-90-02, Computer Science Department, Australian National University, 1990, source code at http://cs.anu.edu.au/people/bdm/nauty.
[3] B.D. McKay and S.P. Radziszowski, $R(4,5)=25$, Journal of Graph Theory 19 (1995), 309-322.
[4] B.D. McKay and S.P. Radziszowski, Subgraph counting identities and Ramsey numbers, Journal of Combinatorial Theory Ser. B 69 (1997), 193-209.
[5] S.P. Radziszowski and K.K. Tse, A computational approach for the Ramsey numbers $R\left(C_{4}, K_{n}\right)$, Journal of Combinatorial Mathematics and Combinatorial Computing 42 (2002), 195-207.

