On the Ramsey number of the quadrilateral versus the book and the wheel

Kung-Kuen Tse

Department of Mathematics and Computer Science Kean University Union, NJ 07083 U.S.A. ktse@kean.edu

Abstract

Let G and H be graphs. The Ramsey number R(G, H) is the least integer such that for every graph F of order R(G, H), either F contains G or \overline{F} contains H. Let B_n and W_n denote the book graph $K_2 + \overline{K_n}$ and the wheel graph $K_1 + C_{n-1}$, respectively. In 1978, Faudree, Rousseau and Sheehan computed $R(C_4, B_n)$ for $n \leq 8$. In this paper, we compute $R(C_4, B_n)$ for $8 \leq n \leq 12$ and $R(C_4, W_n)$ for $4 \leq n \leq 13$. In particular, we find that $R(C_4, B_8) = 17$, not 16 as claimed in 1978 by Faudree, Rousseau and Sheehan. Most of the results are based on computer algorithms.

1. Introduction

For graphs G and H, a (G, H)-graph is a graph F that does not contain G, and such that the complement \overline{F} does not contain H. A (G, H; n)-graph is a (G, H)graph of order n. Let $\mathcal{R}(G, H)$ and $\mathcal{R}(G, H; n)$ denote the set of all (G, H)-graphs and (G, H; n)-graphs, respectively. The Ramsey number $\mathcal{R}(G, H)$ is defined to be the least integer n > 0 such that there is no (G, H; n)-graph.

In this paper we consider the case where G is a quadrilateral C_4 (cycle of order 4) and H is a book graph B_n or a wheel graph W_n .

In Section 2 we describe the algorithms and computations performed. Section 3 presents all (C_4, B_n) -graphs for $n \leq 8$, and all $(C_4, B_n; R(C_4, B_n)$ -1)-graphs for $9 \leq n \leq 12$. Section 4 presents all (C_4, W_n) -graphs for $n \leq 10$, and of all $(C_4, W_n; R(C_4, W_n) - 1)$ -graphs for $11 \leq n \leq 13$.

A general utility program for graph isomorph rejection, *nauty* [2], written by Brendan McKay, was used extensively. The graphs themselves are available from the author.

Australasian Journal of Combinatorics 27(2003), pp.163-167

The author would like to thank Brendan McKay for verifying the results on $R(C_4, B_n)$.

2. Algorithms and Computations

The algorithm we use is based on an observation made by McKay and Radziszowski in [3] and [4]. A similar approach was used to compute $R(C_4, K_7)$ and $R(C_4, K_8)$ [5]. We first give some notations.

If G is a graph, then VG and EG are its vertex set and edge set, respectively. For $v \in VG$, let $N_G(v) = \{w \in VG \mid vw \in EG\}$, and let $deg_G(v) = |N_G(v)|$. The subgraph of G induced by W will be denoted by G[W]. Also, for $v \in VG$, define the induced subgraphs $G_v^+ = G[N_G(v)]$ and $G_v^- = G[VG - N_G(v) - \{v\}]$.

We now describe how to compute $R(C_4, B_m)$ (A similar discussion holds for computing $R(C_4, W_m)$.)

If $G \in \mathcal{R}(C_4, B_m; n)$ and $v \in VG$, then $G_v^+ \in \mathcal{R}(P_3, B_m; d)$, where $d = deg_G(v)$, and $G_v^- \in \mathcal{R}(C_4, K_{1,m}; n - d - 1)$, where $K_{1,m} = K_1 + \overline{K}_m$. Hence, G_v^+ must be simply a disjoint union of isolated edges and vertices, and G_v^- is of the same type as G, but for m - 1. These properties form the basis of one of our algorithms to enumerate graphs in $\mathcal{R}(C_4, B_m; n)$.

Suppose we have a particular $X \in \mathcal{R}(P_3, B_m; s)$ and $Y \in \mathcal{R}(C_4, K_{1,m}; t)$, and we wish to use them to build a graph $G \in \mathcal{R}(C_4, B_m; s + t + 1)$, by adding a new vertex v of degree s, so that $X = G_v^+$ and $Y = G_v^-$. We need to choose the edges between X and Y. A *feasible cone* is a nonempty subset of VY that does not cover both endpoints of any P_3 in Y. To avoid C_4 , the neighborhood in Y of each vertex in X must be a feasible cone.

The algorithm assigns in all possible ways feasible cones to vertices in G_v^+ , so that C_4 and \overline{B}_m are avoided in G. In particular, no two cones assigned to distinct vertices in G_v^+ may have a nonempty intersection.

We next give two lemmas that speed up our computations.

Lemma 1. If G is a C_4 -free graph with n vertices and has minimum degree d, then

$$d^2 - d + 1 \le n.$$

Proof. This lemma is well known (see [5]), and its proof is omitted.

Lemma 2. Let G be a C_4 -free graph with minimum degree d > 2, and let v be a vertex of degree d. Then each vertex of G_v^+ can be assigned a feasible cone. Moreover, since G_v^+ is P_3 -free, G_v^+ consists of copies of P_2 and isolated points. The feasible cone assigned to the vertex of P_2 has size at least d-2 and the feasible cone assigned to the isolated point has size at least d-1.

Proof. G_v^+ consists of P_2 and isolated points. Thus, if a vertex of G_v^+ were not assigned a feasible cone, then that vertex would have degree (in G) 2 or 1 (depending on whether it is a vertex of P_2 or an isolated point). This contradicts the fact that G has minimal degree d > 2. If the feasible cone assigned to the vertex of P_2 has size less than d-2, then that vertex would have degree in G less than d, again

a contradiction. Similarly, the feasible cone assigned to the isolated point has size at least d-1.

3. Enumerations and Results of $R(C_4, B_n)$

We present here statistics from the enumeration of various families $\mathcal{R}(C_4, B_n)$ obtained by the algorithms and computations outlined in Section 2. Table I gives the number of nonisomorphic (C_4, B_n) -graphs, $2 \le n \le 8$. These detailed data may be useful in future work towards deriving bounds for general Ramsey numbers of the form $R(C_4, B_n)$.

It is computationally infeasible to generate all of $\mathcal{R}(C_4, B_n)$, $9 \le n \le 12$; we only enumerate (C_4, B_n) -graphs on $\mathcal{R}(C_4, B_n) - 1$ vertices, and their statistics are presented in Table II.

Theorem 1.

 $\begin{array}{l} (i) \ R(C_4,B_8) = 17. \\ (ii) \ R(C_4,B_9) = 18. \\ (iii) \ R(C_4,B_{10}) = 19. \\ (iv) \ R(C_4,B_{11}) = 20. \\ (v) \ R(C_4,B_{12}) = 21. \end{array}$

Proof of (i). Figure 1 presents the adjacency matrix of the $(C_4, B_8; 16)$ -graph establishing the lower bound. The nonexistence of $(C_4, B_8; 17)$ -graphs, implying the upper bound, follows from the computations described in Section 2.

The proofs of (ii)–(v) use a similar argument.

n	$ \mathcal{R}(C_4, B_n) $
2	23
3	64
4	191
5	586
6	2402
7	13345
8	95614

Table I. Number of (C_4, B_n) -graphs, $2 \le n \le 8$.

n	m	$\left \mathcal{R}(C_4, B_n; m)\right $
9	17	8
10	18	132
11	19	4185
12	20	195579

Table II. Number of $(C_4, B_n; R(C_4, B_n) - 1)$ -graphs, $9 \le n \le 12$.

 $\frac{12345678901123456}{1123456}$

Figure 1. Adjacency matrix of the only $(C_4, B_8; 16)$ -graph.

4. Enumerations and Results of $R(C_4, W_n)$

Table III gives the number of nonisomorphic (C_4, W_n) -graphs, $4 \le n \le 10$. Table IV presents the (C_4, W_n) -graphs on $R(C_4, W_n) - 1$ vertices, $11 \le n \le 13$.

Theorem 2.

$$\begin{array}{l} (i) \ R(C_4,W_4) = 10. \\ (ii) \ R(C_4,W_5) = 9. \\ (iii) \ R(C_4,W_6) = 10. \\ (iv) \ R(C_4,W_6) = 10. \\ (iv) \ R(C_4,W_7) = 9. \\ (v) \ R(C_4,W_8) = 11. \\ (vi) \ R(C_4,W_9) = 12. \\ (vii) \ R(C_4,W_{10}) = 13. \\ (viii) \ R(C_4,W_{10}) = 13. \\ (viii) \ R(C_4,W_{11}) = 14. \\ (ix) \ R(C_4,W_{12}) = 16. \\ (x) \ R(C_4,W_{13}) = 17. \end{array}$$

Proof. The proofs use the same argument as in Theorem 1.

n	$ \mathcal{R}(C_4, W_n) $
4	109
5	57
6	128
7	200
8	573
9	2003
10	8861

Table III. Number of (C_4, W_n) -graphs, $4 \le n \le 10$.

n	m	$\left \mathcal{R}(C_4, W_n; m)\right $
11	13	503
12	15	2
13	16	1

Table IV. Number of $(C_4, W_n; R(C_4, W_n) - 1)$ -graphs, $11 \le n \le 13$.

References

- R.J. Faudree, C.C. Rousseau and J. Sheehan, More from the Good Book, Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Utilitas Mathematica Publ. (1978), 289–299.
- [2] B.D. McKay, nauty users' guide (version 1.5), Technical Report TR-CS-90-02, Computer Science Department, Australian National University, 1990, source code at http://cs.anu.edu.au/people/bdm/nauty.
- [3] B.D. McKay and S.P. Radziszowski, R(4,5) = 25, Journal of Graph Theory **19** (1995), 309–322.
- [4] B.D. McKay and S.P. Radziszowski, Subgraph counting identities and Ramsey numbers, Journal of Combinatorial Theory Ser. B 69 (1997), 193–209.
- [5] S.P. Radziszowski and K.K. Tse, A computational approach for the Ramsey numbers R(C₄, K_n), Journal of Combinatorial Mathematics and Combinatorial Computing 42 (2002), 195–207.

(Received 19/11/2001)