Optimal holey packing $\mathrm{OHP}_{4}(2,4, v, 2)$ for $v \equiv 2(\bmod 3)$

D. Wu^{*}

Department of Mathematics
Guangxi Normal University
Guilin 541004, CHINA

Abstract

Maximum distance holey packing $\operatorname{MDHP}(2, k, v, g)$ was first introduced by Yin and used to construct an optimal $(g+1)$-ary constant weight code $(v, k, 2 k-3)$ CWC. In this paper, an optimal holey packing $\mathrm{OHP}_{d}(2, k, v, g)$ is introduced to construct an optimal $(g+1)$-ary constant weight code (v, k, d) CWC. For $k=4, d=4$ and $g=2$, it is proved that there exists an $\mathrm{OHP}_{d}(2, k, v, g)$ for any integer $v \equiv 2(\bmod 3)$ and $v \geq 5$.

1 Introduction

The concept of an H-design $H(v, g, k, t)$ was first introduced by Hanani [3] as a generalization of Steiner systems (the notion of H-design is due to Mills [4]). As stated in Etzion [2] and Yin et al. [10], an optimal $(g+1)$-ary (v, k, d) constant weight code (CWC) over Z_{g+1} can be constructed from a given $H(v, g, k, t)$. For convenience, when two codewords obtained from blocks B_{1} and B_{2} have distance d, we simply say that B_{1} and B_{2} have distance d. In the code which is related to an $H(v, g, k, t)$, it is not difficult to see that $k-t+1 \leq d \leq 2(k-t)+1$. An $H(v, g, k, t)$ which forms a code with minimum Hamming distance d is denoted by $\mathrm{GS}_{d}(t, k, v, g)$ and called a generalized Steiner system. If $d=2(k-t)+1$, it is simply denoted by $\mathrm{GS}(t, k, v, g)$.

Much work has been done for the existence of $\mathrm{GS}(t, k, v, g)$ when $t=2$ and $k=3$. However, not much is known for other cases. Especially, for the case of $t=2$ and $k=4$, there are only partial results on $\operatorname{GS}(2,4, v, 2)$. In order to save space, we omit these references; the interested reader may see [7] and the references therein.

* The project supported by Guangxi Science Foundation

The concept of maximum distance holey packing $\operatorname{MDHP}(2, k, v, g)$ was first introduced by Yin (see [8]), and was used to construct $(g+1)$-ary $(v, k, 2(k-2)+1)$ CWC. The definition of holey packing was also first introduced by Yin (see [9]). Let k, g and $v \geq k$ be integers. A holey packing k-HP of type g^{v} is an ordered triple $(\mathcal{X}, \mathcal{G}, \mathcal{B})$, where \mathcal{X} is a $g v$-set (of points), \mathcal{G} is a partition of \mathcal{X} into v holes (or groups) of g points, and \mathcal{B} is a collection of k-subsets (called blocks) of \mathcal{X} such that any pair of points from distinct groups occurs in at most one of the blocks and no block contains two distinct points from the same group. A maximum distance holey packing $\operatorname{MDHP}(2, k, v, g)$, is defined as a k-HP of type g^{v} with $g>1$ and $\mathrm{BN}(2, k, v, g)$ blocks whose derived code has minimum Hamming distance $d=2(k-2)+1$, where

$$
\operatorname{BN}(2, k, v, g)=\left\{\begin{array}{lc}
\left\lfloor\frac{v g}{k}\left\lfloor\frac{(v-1) g}{k-1}\right\rfloor\right\rfloor-1, & \text { if }(v-1) g \equiv 0(\bmod k-1) \text { and } \\
\left\lfloor\frac{v g}{k}\left\lfloor\frac{(v-1) g}{k-1}\right\rfloor\right\rfloor, & v(v-1) g^{2} \not \equiv 0(\bmod k(k-1))
\end{array}\right.
$$

Let $\operatorname{PN}(2, k, v, g)$ denote the packing number, that is, the maximum number of blocks in a k-HP of type g^{v}. The value of $\mathrm{PN}(2, k, v, g)$ is bounded above by $\mathrm{BN}(2, k, v, g)$ (see [8]), that is,

$$
\begin{equation*}
\mathrm{PN}(2, k, v, g) \leq \mathrm{BN}(2, k, v, g) \tag{1}
\end{equation*}
$$

Similar to the way that a $(g+1)$-ary (v, k, d) CWC can be constructed from a $\mathrm{GS}_{d}(2, k, v, g)$, we can also construct a $(g+1)$-ary CWC from a k-HP of type g^{v} with some extra properties. An optimal holey packing $\mathrm{OHP}_{d}(2, k, v, g)$ is defined as a k HP of type g^{v} with $g>1$ and $\mathrm{BN}(2, k, v, g)$ blocks whose derived code has minimum Hamming distance d. In what follows, a $(g+1)$-ary (v, k, d) CWC with $g>1$ is said to be optimal if it has $\operatorname{BN}(2, k, v, g)$ codewords. Note that if $d=2 k-3$, then an $\operatorname{OHP}_{d}(2, k, v, g)$ is just the same as an $\operatorname{MDHP}(2, k, v, g)$. It is easy to see that a $\operatorname{GS}(2, k, v, g)$ is a special $\operatorname{MDHP}(2, k, v, g)$. Similarly, a $\mathrm{GS}_{d}(2, k, v, g)$ is a special $\mathrm{OHP}_{d}(2, k, v, g)$. The existence of $\operatorname{MDHP}(2,3, v, g)$ for $g=2,3$ has been completely solved (see [10], [5]). The existence of $\mathrm{GS}_{4}(2,4, v, g)$ for $g=2,3,6$ was also completely solved in [7]. So, it is natural to determine the existence of $\mathrm{OHP}_{4}(2,4, v, g)$ for $g=2,3,6$. In this paper, it is proved that there exists an $\operatorname{OHP}_{d}(2, k, v, g)$ for any integer $v \equiv 2(\bmod 3)$ and $v \geq 5$. We state the main result as follows.

Theorem 1.1 There exists an $\operatorname{OHP}_{4}(2, k, v, 2)$ for any integer $v \equiv 2(\bmod 3)$ and $v \geq 5$.

For general background on design theory, see [1].

2 Product Constructions

In this section, we will give some recursive constructions, which will be used to prove Theorem 1.1 in the next section.

In order to establish recursive constructions for $\operatorname{MDHP}(2, k, v, g)$, Wang et al. [5] defined the notion of incomplete MDHP. Similarly, we define an incomplete OHP as follows. An incomplete optimal holey packing, denoted by $\operatorname{IOHP}_{4}(2,4,(n+u, u), g)$, is a quadruple $\left(\mathcal{X}, \mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{B}\right)$, where \mathcal{X} is a $g(n+u)$-set (of points), $\mathcal{G}_{1}=\left\{G_{1}, G_{2}, \cdots\right.$, $\left.G_{n+u}\right\}$ is a partition of \mathcal{X} into $n+u$ point classes (called groups) of size $g, \mathcal{G}_{2}=$ $\left\{H_{1}, H_{2}, \cdots, H_{u}\right\} \subseteq \mathcal{G}_{1}$ and \mathcal{B} is a collection of 4 -subsets (called blocks) of \mathcal{X} which satisfies the following properties :
(1) each block of \mathcal{B} intersects each group of \mathcal{G}_{1} in at most one point;
(2) no block contains two distinct points of $Y=\bigcup_{i=1}^{u} H_{i}$;
(3) every pair of points $\{x, y\}$ from distinct groups, such that at least one of x, y is in $\mathcal{X} \backslash Y$, occurs in at most one block;
(4) $u \geq 0$ and $g(n+u-1) \equiv g(u-1) \equiv c(\bmod (k-1))$, where c is a certain integer satisfying $0 \leq c \leq k-1$;
(5) the number of pairs of points (not both in Y) from distinct groups which do not occur in any block of \mathcal{B} is $\frac{\mathrm{cng}}{2}$; and
(6) the derived code has minimum Hamming distance 4.

It is clear that if $u=0$ or 1 , then an $\operatorname{IOHP}_{4}(2,4,(n+u, u), g)$ is just an $\mathrm{OHP}_{4}(2,4, n+u, g)$. The following result is similar to Theorem 4.1 in [8].

Lemma 2.1 An $\operatorname{IOHP}_{4}(2,4,(n+u, u), g)$ contains $B N(2,4, n+u, g)-B N(2,4, u, g)$ blocks.

Similar to Lemma 6.9 and Lemma 6.7 in [7], we have the following.

Lemma 2.2 Let m, n, u be integers such that $u=0$ or $1, n \notin\{2,6\}$. Suppose there exist both a $G S_{4}(2,4, m, g)$ and an OHP $_{4}(2,4, n+u, g)$. Then there exist both an $\mathrm{IOHP}_{4}(2,4,(m n+u, n+u), g)$ and an $\mathrm{OHP}_{4}(2,4, m n+u, g)$.

Lemma 2.3 Let m, t, u, h, s, w and a be integers such that $h=s g, n=s w, w \geq 2 a$, $0 \leq s a \leq u, 1 \leq t \leq w$ and $(w, a) \neq(5,1)$. Suppose the following designs exist: (1) A 4-GDD(h^{m}) with the property that its blocks can be partitioned into t sets $S_{0}, S_{1}, \cdots, S_{t-1}$ and each group can be partitioned into s subgroup of size g such that the minimum distance in $S_{r}, 0 \leq r \leq t-1$, is 4 with respect to the subgroups.
(2) $\mathrm{An} \mathrm{IOHP}_{4}(2,4,(n+u, u), g)$.

Then there exists an $\operatorname{IOHP}_{4}(2,4,(e, f), g)$, where $e=m n+(m-1) s a+u, f=$ $(m-1) s a+u$ or $(m-1) s a+n+u$. Further, if there exists an $O H P_{4}(2,4, f, g)$, then there exists an $\mathrm{OHP}_{4}(2,4, e, g)$.

3 Proof of Theorem 1.1

In order to prove Theorem 1.1, some direct constructions are needed.

For $v \equiv 2(\bmod 6)$, to construct an $\operatorname{OHP}_{4}(2,4, v, 2)$ in $Z_{2 v}$, it suffices to find a set of base blocks, $\mathcal{A}=\left\{B_{1}, \cdots, B_{s}\right\}, s=\frac{v-2}{6}$, such that $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ forms an $\mathrm{OHP}_{4}(2,4, v, 2)$, where $\mathcal{V}=Z_{2 v}, G=\left\{G_{0}, G_{1}, \cdots, G_{v-1}\right\}, G_{i}=\{i+v j: 0 \leq j \leq$ $1\}, 0 \leq i \leq v-1$, and $\mathcal{B}=\{B+j: B \in \mathcal{A}, 0 \leq j \leq v-1\}$. For convenience, we write $\mathcal{A}=\{\{0, x, y, z\}:\{x, y, z\} \in S\}$. So, for each \mathcal{A} we need only display the corresponding S.

Lemma 3.1 There exists an $\mathrm{OHP}_{4}(2,4, v, 2)$ for each $v \in\{8,14,20,38,68,74\}$.

Proof For each v, with the aid of a computer, we have found a set of base blocks. We list the corresponding S below.

```
    \(v=8\)
\(S:\{1,3,7\}\).
    \(v=14\)
\(S:\{\{1,3,10\},\{4,12,17\}\).
    \(v=20\)
\(S:\{1,3,9\},\{4,11,15\},\{5,17,27\}\).
    \(v=38\)
\(S:\{28,40,43\},\{8,45,67\},\{16,30,66\},\{13,14,19\},\{2,27,34\},\{11,29,52\}\).
    \(v=68\)
\(S:\{24,34,135\},\{5,8,99\},\{50,119,123\},\{19,49,77\},\{18,92,103\},\{20,56,113\}\),
    \(\{15,27,98\},\{2,41,72\},\{16,22,104\},\{9,41,90\},\{7,21,47\}\).
    \(v=74\)
\(S:\{1,27,100\},\{8,87,93\},\{77,102,107\},\{43,50,83\},\{2,20,96\},\{14,58,95\}\),
    \(\{64,86,124\},\{12,47,51\},\{10,92,137\},\{78,106,135\},\{9,32,68\},\{3,117,132\}\).
```

For $v \equiv 5(\bmod 6)$, to construct an $\mathrm{OHP}_{4}(2,4, v, 2)$ in $Z_{2 v}$, it suffices to find a set of base blocks, $\mathcal{A}=\left\{B_{1}, \cdots, B_{s}\right\}, s=\frac{v-2}{3}$, such that $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ forms an $\mathrm{OHP}_{4}(2,4, v, 2)$, where $\mathcal{V}=Z_{2 v}, G=\left\{G_{0}, G_{1}, \cdots, G_{v-1}\right\}, G_{i}=\{i+v j: 0 \leq j \leq$ $1\}, 0 \leq i \leq v-1$, and $\mathcal{B}=\{B+2 j: B \in \mathcal{A}, 0 \leq j \leq v-1\}$. For convenience, we write $\mathcal{A}=\bigcup_{i=0}^{1}\left\{\{i, x, y, z\}:\{x, y, z\} \in S_{i}\right\}$. So, for each \mathcal{A} we need only display the corresponding $S_{i}, 0 \leq i \leq 1$.

Lemma 3.2 There exists an OHP $_{4}(2,4, v, 2)$ for each $v \in\{5,11,17,23,47,59,83\}$.

Proof For each v, with the aid of a computer, we have found a set of base blocks. We list the corresponding $S_{i}, 0 \leq i \leq 1$, below.

$$
\begin{gathered}
v=5 \\
S_{0}:\{1,3,4\} ; \quad S_{1}: \emptyset .
\end{gathered}
$$

```
    \(v=11\)
\(S_{0}:\{1,2,5\},\{4,13,16\} ; \quad S_{1}:\{3,8,15\}\).
    \(v=17\)
\(S_{0}:\{1,2,5\},\{4,10,18\},\{7,12,21\} ; \quad S_{1}:\{3,12,27\},\{4,17,23\}\).
    \(v=23\)
\(S_{0}:\{13,34,39\},\{6,8,24\},\{29,31,32\},\{9,27,36\}\);
\(S_{1}:\{12,32,33\},\{5,39,44\},\{7,23,36\}\).
    \(v=47\)
\(S_{0}:\{51,58,72\},\{6,23,38\},\{39,43,52\},\{3,26,70\},\{10,75,92\},\{5,25,93\}\),
    \(\{1,33,64\},\{7,67,91\} ;\)
\(S_{1}:\{23,60,76\},\{6,46,66\},\{15,45,53\},\{37,49,77\},\{17,42,50\},\{80,84,93\}\),
    \(\{12,40,58\}\).
    \(v=59\)
\(S_{0}:\{48,73,106\},\{8,52,61\},\{1,63,117\},\{89,93,103\},\{4,15,54\},\{34,47,55\}\),
    \(\{7,31,82\},\{83,88,104\},\{3,6,98\},\{22,87,94\} ;\)
\(S_{1}:\{12,51,68\},\{19,41,102\},\{61,81,93\},\{48,67,86\},\{45,82,114\},\{14,24,42\}\),
    \(\{17,44,89\},\{7,43,91\},\{50,90,92\}\).
    \(v=83\)
\(S_{0}:\{71,86,134\},\{8,9,54\},\{51,84,98\},\{73,107,108\},\{3,49,56\},\{20,137,147\}\),
    \(\{26,132,154\},\{27,35,47\},\{18,28,70\},\{16,66,91\},\{24,105,126\},\{65,67,122\}\),
    \(\{43,68,74\},\{7,55,162\}\);
\(S_{1}:\{14,104,137\},\{15,18,115\},\{72,87,109\},\{66,138,143\},\{74,127,136\}\),
    \(\{5,148,150\},\{37,55,78\},\{12,73,111\},\{83,110,151\},\{7,103,128\},\{52,82,88\}\),
    \(\{45,107,135\},\{38,51,125\}\).
```

Lemma 3.3 There exists an $\operatorname{IOHP}_{4}(2,4,(8,2), 2)$.

Proof Let $\mathcal{X}=Z_{12}, \mathcal{G}_{1}=\{\{i, i+6\}: 0 \leq i \leq 5\}$. Let

$$
\mathcal{B}=\{\{0,9,10\},\{1,2,6\},\{3,5,7\},\{4,8,11\}\} .
$$

Developing $\mathcal{B}+3 \bmod 12$, we obtain a $3-\operatorname{RGDD}\left(2^{6}\right)$.
Let \mathcal{A}_{i} be the blocks obtained by adjoining ∞_{i} to B_{i}, where $B_{i}=\{B+3 i$: $B \in \mathcal{B}\}, 0 \leq i \leq 3$. Let $\mathcal{V}=\mathcal{X} \cup\left\{\infty_{0}, \cdots, \infty_{3}\right\}, \mathcal{G}=\mathcal{G}_{1} \cup\left\{\left\{\infty_{0}, \infty_{1}\right\},\left\{\infty_{2}, \infty_{3}\right\}\right\}$, $\mathcal{H}=\left\{\left\{\infty_{0}, \infty_{1}\right\},\left\{\infty_{2}, \infty_{3}\right\}\right\}, \mathcal{A}=\bigcup_{i=0}^{3} \mathcal{A}_{i}$. Then $(\mathcal{V}, \mathcal{G}, \mathcal{H}, \mathcal{A})$ is the desired packing. This completes the proof.

Lemma 3.4 If $v \equiv 5(\bmod 12)$ and $v \geq 29$, then there exists an $\operatorname{OHP}_{4}(2,4, v, 2)$.

Proof Write $v=12 s+5$; then $s \geq 2$. Take $m=3 s+1, n=4, u=1$ in Lemma 2.2; there exists an $\mathrm{OHP}_{4}(2,4, v, 2)$. The existence of $\mathrm{GS}_{4}(2,4, m, 2)$ comes from Theorem 1.6 in in [7], and the $\mathrm{OHP}_{4}(2,4,5,2)$ from Lemma 3.2. This completes the proof.
\square
The following result was stated in [6] (note that there exists a $\mathrm{GS}_{4}(2,4,7,4)$ from [6]).

Lemma 3.5 For $m=4,7$, there exists a $4-G D D\left(4^{m}\right)$ whose groups can be partitioned into two subgroups of size 2 each and whose blocks can be partitioned into two sets S_{0} and S_{1} such that the minimum distance of $S_{i}, 0 \leq i \leq 1$, is 4 with respect to the subgroups.

Lemma 3.6 There exist both an $\operatorname{IOHP}_{4}(2,4,(26,8), 2)$ and an $\operatorname{OHP}_{4}(2,4,26,2)$.
Proof With the $4-\operatorname{GDD}\left(4^{4}\right)$ from Lemma 3.5 and the $\operatorname{IOHP}_{4}(2,4,(8,2), 2)$ from Lemma 3.3, take $m=4, h=4, g=2, s=2, w=3, u=2, t=2$ and $a=0$ in Lemma 2.3 to obtain an $\mathrm{IOHP}_{4}(2,4,(26,8), 2)$. Since there exists an $\mathrm{OHP}_{4}(2,4,8,2)$ from Lemma 3.1, then an $\mathrm{OHP}_{4}(2,4,26,2)$ exists from Lemma 2.3. This completes the proof.

Lemma 3.7 Suppose $N(n)=p \geq 5,0 \leq a \leq n-1,0 \leq b \leq p-5$. If there exists an $\mathrm{OHP}_{4}(2,4,3(a+b)+8,2)$, then there exists an $\mathrm{OHP}_{4}(2,4,18 n+3(a+b)+8,2)$.

Proof Since $N(n)=p \geq 5$, there exists a $\operatorname{TD}(p+2, n)$. From $b \leq p-5$, we have $b+7 \leq p+2$, and hence there exists a $\operatorname{TD}(b+7, n)$. Delete point x and another $n-a-1$ points from the first group of the $\operatorname{TD}(b+7, n)$, and delete $n-1$ points from each of the next b groups. Use x to redefine groups. We obtain a $\{6,7, n\}$ $\operatorname{GDD}\left(6^{n}(a+b)^{1}\right)$. Since $N(n) \geq 5$, we have $n>6$. So, from Theorem 1.8 in [7], there exists a $\mathrm{GS}_{4}(2,4, q, 6)$ for $q=6,7$ and n. Give weight 6 to each point of the GDD, partition each group of size 36 into 18 subgroup of size 2. From Lemma 3.6, there exists an $\operatorname{IOHP}_{4}(2,4,(26,8), 2)$. Adjoining another 8 groups of size 2 , there exists an $\mathrm{OHP}_{4}(2,4,18 n+3(a+b)+8,2)$; the $\mathrm{OHP}_{4}(2,4,3(a+b)+8,2)$ comes from assumption and the $\operatorname{IOHP}_{4}(2,4,(26,8), 2)$ from Lemma 3.6. This completes the proof.

Lemma 3.8 There exists an $\operatorname{OHP}_{4}(2,4, v, 2)$ for all $v \equiv 2(\bmod 3)$ and $5 \leq v \leq 59$.
Proof From Lemmas 3.1-3.2, Lemma 3.4 and Lemma 3.6, we need only deal with the values v for $v \in\{32,35,44,50\}$. With the $4-\operatorname{GDD}\left(4^{4}\right)$ from Lemma 3.5, take $m=4, h=4, g=s=2, w=4, u=0, t=2$ and $a=0$ in Lemma 2.3. We obtain an $\mathrm{OHP}_{4}(2,4,32,2)$; the input design $\mathrm{OHP}_{4}(2,4,8,2)$ comes from Lemma 3.1. Similarly, with the $4-\operatorname{GDD}\left(4^{7}\right)$ from Lemma 3.5 , take $m=7, h=4, g=2, s=2, w=3$, $u=2, t=2$ and $a=0$ in Lemma 2.3; there exists an $\operatorname{OHP}_{4}(2,4,44,2)$. Take $m=7$, $(n, u)=(5,0)$ or $(7,1)$ in Lemma 2.2; an $\mathrm{OHP}_{4}(2,4, f, 2)$ exists, where $f=35$ or 50 . This completes the proof.

Lemma 3.9 Suppose n_{0} is the smallest number r satifying the following property:
$N(r) \geq 5, r \geq 13$; if $r^{\prime}>r$ and $N\left(r^{\prime}\right)<5$, then $N\left(r^{\prime}-1\right) \geq 5$ and $N\left(r^{\prime}+1\right) \geq 5$.
Then there exists an $\mathrm{OHP}_{4}(2,4, v, 2)$ for all $v \geq 18 n_{0}+8$.
Proof For each $v \geq 18 n_{0}+8$, write $v=18 n+3 a+8$, where $0 \leq a \leq 11$. If $N(n) \geq 5$, then by taking $b=0$ in Lemma 3.7, one gets an $\operatorname{OHP}_{4}(2,4, v, 2)$ since there exists an $\mathrm{OHP}_{4}(2,4, w, 2)$ for all $8 \leq w \leq 41$ from Lemma 3.8. If $N(n)<5$, we distinguish two cases. If $a<6$, then $v=18(n-1)+3 a+26$. Since $N(n-1) \geq 5$ and $3 a+26 \leq 41$, there exists an $\mathrm{OHP}_{4}(2,4, v, 2)$. If $a \geq 6$, then $v=18(n+1)+3 a-10$. Since $N(n+1) \geq 5$ and $8 \leq 3 a-10 \leq 23$, there exists an $\mathrm{OHP}_{4}(2,4, v, 2)$. This completes the proof.

It was stated in [1] that $N(n) \geq 5$ for any $n>5$ and $n \notin F=\{6,10,14,15,18$, $20,22,26,30,34,38,46,60,62\}$. So, from Lemma 3.9, one can obtain the following result by taking $n_{0}=16$.

Lemma 3.10 If $v \equiv 2(\bmod 3)$ and $v \geq 296$, then there exists an $\operatorname{OHP}_{4}(2,4, v, 2)$.
In the following, we will show that there exists an $\operatorname{OHP}_{4}(2,4, v, 2)$ for all $v \equiv$ $2(\bmod 3)$ and $v<296$.

For convenience, let $[x, y]_{a}^{b}$ denote the set of integers v for $x \leq v \leq y$ and $v \equiv$ $b(\bmod a)$.

Lemma 3.11 If $v \equiv 2(\bmod 3)$ and $5 \leq v<296$, then there exists an $\operatorname{OHP}_{4}(2,4$, $v, 2)$.

Proof For $v \in[98,110]_{3}^{2} \cup[134,194]_{3}^{2} \cup[206,278]_{3}^{2}$, take $n \in\{5,7,8,9,11,12,13\}$, $b=0$ in Lemma 3.7, and we obtain the result.

For $v \in[197,203]_{3}^{2}$, take $n=9, b=3$ and $6 \leq a \leq 8$ in Lemma 3.7 to obtain the result. The case $v \in[278,293]_{3}^{2}$ is obtained from the same lemma with $n=13, b=6$ and $6 \leq a \leq 11$.

For $v \in[80,92]_{6}^{2}$, from Lemma 3.6, there exists an $\operatorname{IOHP}_{4}(2,4,(26,8), 2)$. Take $m=4, h=4, g=2, s=2, w=9, u=8, t=2$ and $0 \leq a \leq 2$ in Lemma 2.3, and the result is obtained. The $4-\mathrm{GDD}\left(4^{4}\right)$ comes from Lemma 3.5, and the input designs are from Lemma 3.8.

For $v \in[116,128]_{6}^{2}$, take $m=4, h=4, g=s=2, w=4, u=0$ and $a=0$ in Lemma 2.3 to obtain an $\operatorname{IOHP}_{4}(2,4,(32,8), 2)$. Applying Lemma 2.3 with $m=4$, $h=4, g=2, s=2, w=12, u=8, t=2$ and $2 \leq a \leq 4$, we obtain the result, and the input designs are from Lemma 3.8.

From Lemmas 3.1-3.2, Lemma 3.4, Lemma 3.6 and the above results, only the values $v \in Q=\{62,71,95,119,131\}$ remain to be dealt with. For each $v \in Q$, write $v=m n+u$, where $m \in\{7,10,19\}, n \in\{5,6,10,13,17\}$ and $n+u \in\{5,8,11,14,17\}$. So, the result is obtained from Lemma 2.2. This completes the proof.

We are now in a position to prove Theorem 1.1.
Proof of Theorem 1.1 Combine Lemma 3.10 and Lemma 3.11.

Acknowledgement

The author wishes to thank Dr. Ge for his helpful discussion.

References

[1] C.J. Colbourn and J.H. Dinitz (eds.), The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, 1996.
[2] T. Etzion, Optimal constant weight codes over Z_{k} and generalized designs, Discrete Math. 169 (1997), 55-82.
[3] H. Hanani, On some tactical configurations, Canad. J. Math. 15 (1963), 702-722.
[4] W.H. Mills, On the covering of triples by quadruples, Congr. Numer. 10 (1974), 563-581.
[5] J. Wang, Y. Lu and J. Yin, Maximum distance holey packings of type 3^{n} with triples, J. Combin. Designs 8 (2000), 132-140.
[6] D. Wu, Constructions and existence of generalized Steiner systems $\mathrm{GS}_{d}(t, k, v, g)$, Ph.D. Thesis, Suzhou University, 2000.
[7] D. Wu, G. Ge and L. Zhu, Generalized Steiner systems $\mathrm{GS}_{4}(2,4, v, g)$ for $g=$ 2, 3, 6, J. Combin. Designs 9 (2001), 401-403.
[8] J. Yin, Maximum distance holey packings, Discrete Applied Math., to appear.
[9] J. Yin, Packing designs with equal-sized holes, J. Statist. Plan. Infer. 94 (2001), 393-403.
[10] J. Yin, Y. Lu and J. Wang, Maximum distance holey packings and related codes, Science in China (Series A) 42 (1999), 1262-1269.

