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Abstract

Maximum distance holey packing MDHP(2, k, v, g) was first introduced
by Yin and used to construct an optimal (g+1)-ary constant weight code
(v, k, 2k−3) CWC. In this paper, an optimal holey packing OHPd(2, k,v, g)
is introduced to construct an optimal (g + 1)-ary constant weight code
(v, k, d) CWC. For k = 4, d = 4 and g = 2, it is proved that there exists
an OHPd(2, k, v, g) for any integer v ≡ 2 (mod 3) and v ≥ 5.

1 Introduction

The concept of an H-design H(v, g, k, t) was first introduced by Hanani [3] as a
generalization of Steiner systems (the notion of H-design is due to Mills [4]). As
stated in Etzion [2] and Yin et al. [10], an optimal (g + 1)-ary (v, k, d) constant
weight code (CWC) over Zg+1 can be constructed from a given H(v, g, k, t). For
convenience, when two codewords obtained from blocks B1 and B2 have distance d,
we simply say that B1 and B2 have distance d. In the code which is related to an
H(v, g, k, t), it is not difficult to see that k− t+1 ≤ d ≤ 2(k− t)+1. An H(v, g, k, t)
which forms a code with minimum Hamming distance d is denoted by GSd(t, k, v, g)
and called a generalized Steiner system. If d = 2(k − t) + 1, it is simply denoted by
GS(t, k, v, g).

Much work has been done for the existence of GS(t, k, v, g) when t = 2 and k = 3.
However, not much is known for other cases. Especially, for the case of t = 2 and
k = 4, there are only partial results on GS(2, 4, v, 2). In order to save space, we omit
these references; the interested reader may see [7] and the references therein.
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The concept of maximum distance holey packing MDHP(2, k, v, g) was first in-
troduced by Yin (see [8]), and was used to construct (g + 1)-ary (v, k, 2(k − 2) + 1)
CWC. The definition of holey packing was also first introduced by Yin (see [9]). Let
k, g and v ≥ k be integers. A holey packing k-HP of type gv is an ordered triple
(X ,G,B), where X is a gv-set (of points), G is a partition of X into v holes (or groups)
of g points, and B is a collection of k-subsets (called blocks) of X such that any pair
of points from distinct groups occurs in at most one of the blocks and no block con-
tains two distinct points from the same group. A maximum distance holey packing
MDHP(2, k, v, g), is defined as a k-HP of type gv with g > 1 and BN(2, k, v, g) blocks
whose derived code has minimum Hamming distance d = 2(k − 2) + 1, where

BN(2, k, v, g) =




⌊
vg
k

⌊
(v−1)g

k−1

⌋⌋
− 1, if (v − 1)g ≡ 0 (mod k − 1) and

v(v − 1)g2 �≡ 0 (mod k(k − 1));⌊
vg
k

⌊
(v−1)g

k−1

⌋⌋
, otherwise.

Let PN(2, k, v, g) denote the packing number, that is, the maximum number
of blocks in a k-HP of type gv. The value of PN(2, k, v, g) is bounded above by
BN(2, k, v, g) (see [8]), that is,

PN(2, k, v, g) ≤ BN(2, k, v, g). (1)

Similar to the way that a (g + 1)-ary (v, k, d) CWC can be constructed from a
GSd(2, k, v, g), we can also construct a (g+1)-ary CWC from a k-HP of type gv with
some extra properties. An optimal holey packing OHPd(2, k, v, g) is defined as a k-
HP of type gv with g > 1 and BN(2, k, v, g) blocks whose derived code has minimum
Hamming distance d. In what follows, a (g + 1)-ary (v, k, d) CWC with g > 1 is
said to be optimal if it has BN(2, k, v, g) codewords. Note that if d = 2k − 3, then
an OHPd(2, k, v, g) is just the same as an MDHP(2, k, v, g). It is easy to see that
a GS(2, k, v, g) is a special MDHP(2, k, v, g). Similarly, a GSd(2, k, v, g) is a special
OHPd(2, k, v, g). The existence of MDHP(2, 3, v, g) for g = 2, 3 has been completely
solved (see [10], [5]). The existence of GS4(2, 4, v, g) for g = 2, 3, 6 was also completely
solved in [7]. So, it is natural to determine the existence of OHP4(2, 4, v, g) for
g = 2, 3, 6. In this paper, it is proved that there exists an OHPd(2, k, v, g) for any
integer v ≡ 2 (mod 3) and v ≥ 5. We state the main result as follows.

Theorem 1.1 There exists an OHP4(2, k, v, 2) for any integer v ≡ 2 (mod 3) and
v ≥ 5.

For general background on design theory, see [1].

2 Product Constructions

In this section, we will give some recursive constructions, which will be used to prove
Theorem 1.1 in the next section.
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In order to establish recursive constructions for MDHP(2, k, v, g), Wang et al. [5]
defined the notion of incomplete MDHP. Similarly, we define an incomplete OHP as
follows. An incomplete optimal holey packing, denoted by IOHP4(2, 4, (n+u, u), g), is
a quadruple (X ,G1, G2, B), where X is a g(n+u)-set (of points), G1 = {G1, G2, · · · ,
Gn+u} is a partition of X into n + u point classes (called groups) of size g, G2 =
{H1, H2, · · · , Hu} ⊆ G1 and B is a collection of 4-subsets (called blocks) of X which
satisfies the following properties :
(1) each block of B intersects each group of G1 in at most one point;

(2) no block contains two distinct points of Y =
u⋃

i=1
Hi;

(3) every pair of points {x, y} from distinct groups, such that at least one of x, y is
in X \ Y , occurs in at most one block;
(4) u ≥ 0 and g(n+u− 1) ≡ g(u− 1) ≡ c (mod (k− 1)), where c is a certain integer
satisfying 0 ≤ c ≤ k − 1;
(5) the number of pairs of points (not both in Y ) from distinct groups which do not
occur in any block of B is cng

2
; and

(6) the derived code has minimum Hamming distance 4.

It is clear that if u = 0 or 1, then an IOHP4(2, 4, (n + u, u), g) is just an
OHP4(2, 4, n +u, g). The following result is similar to Theorem 4.1 in [8].

Lemma 2.1 An IOHP4(2, 4, (n+u, u), g) contains BN(2, 4, n+u, g)−BN(2, 4, u, g)
blocks.

Similar to Lemma 6.9 and Lemma 6.7 in [7], we have the following.

Lemma 2.2 Let m, n, u be integers such that u = 0 or 1, n �∈ {2, 6}. Suppose there
exist both a GS4(2, 4, m, g) and an OHP4(2, 4, n + u, g). Then there exist both an
IOHP4(2, 4, (mn + u, n + u), g) and an OHP4(2, 4, mn + u, g).

Lemma 2.3 Let m, t, u, h, s, w and a be integers such that h = sg, n = sw, w ≥ 2a,
0 ≤ sa ≤ u, 1 ≤ t ≤ w and (w, a) �= (5, 1). Suppose the following designs exist:
(1) A 4-GDD(hm) with the property that its blocks can be partitioned into t sets
S0, S1, · · · , St−1 and each group can be partitioned into s subgroup of size g such that
the minimum distance in Sr, 0 ≤ r ≤ t − 1, is 4 with respect to the subgroups.
(2) An IOHP4(2, 4, (n + u, u), g).
Then there exists an IOHP4(2, 4, (e, f), g), where e = mn + (m − 1)sa + u, f =
(m− 1)sa+u or (m− 1)sa+n+u. Further, if there exists an OHP4(2, 4, f, g), then
there exists an OHP4(2, 4, e, g).

3 Proof of Theorem 1.1

In order to prove Theorem 1.1, some direct constructions are needed.
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For v ≡ 2 (mod 6), to construct an OHP4(2, 4, v, 2) in Z2v, it suffices to find
a set of base blocks, A = {B1, · · · , Bs}, s = v−2

6
, such that (V ,G,B) forms an

OHP4(2, 4, v, 2), where V = Z2v, G = {G0, G1, · · · , Gv−1}, Gi = {i + vj : 0 ≤ j ≤
1}, 0 ≤ i ≤ v − 1, and B = {B + j : B ∈ A, 0 ≤ j ≤ v − 1}. For convenience,
we write A = {{0, x, y, z} : {x, y, z} ∈ S}. So, for each A we need only display the
corresponding S.

Lemma 3.1 There exists an OHP4(2, 4, v, 2) for each v ∈ {8, 14, 20, 38, 68, 74}.

Proof For each v, with the aid of a computer, we have found a set of base blocks.
We list the corresponding S below.

v = 8
S: {1, 3, 7}.

v = 14
S : {{1, 3, 10}, {4, 12, 17}.

v = 20
S : {1, 3, 9}, {4, 11, 15}, {5, 17, 27}.

v = 38
S : {28, 40, 43}, {8, 45, 67}, {16, 30, 66}, {13, 14, 19}, {2, 27, 34}, {11, 29, 52}.

v = 68
S : {24, 34, 135}, {5, 8, 99}, {50, 119, 123}, {19, 49, 77}, {18, 92, 103}, {20, 56, 113},

{15, 27, 98}, {2, 41, 72}, {16, 22, 104}, {9, 41, 90}, {7, 21, 47}.
v = 74

S : {1, 27, 100}, {8, 87, 93}, {77, 102, 107}, {43, 50, 83}, {2, 20, 96}, {14, 58, 95},
{64, 86, 124}, {12, 47, 51}, {10, 92, 137}, {78, 106, 135}, {9, 32, 68}, {3, 117, 132}.

For v ≡ 5 (mod 6), to construct an OHP4(2, 4, v, 2) in Z2v, it suffices to find
a set of base blocks, A = {B1, · · · , Bs}, s = v−2

3
, such that (V ,G,B) forms an

OHP4(2, 4, v, 2), where V = Z2v, G = {G0, G1, · · · , Gv−1}, Gi = {i + vj : 0 ≤ j ≤
1}, 0 ≤ i ≤ v − 1, and B = {B + 2j : B ∈ A, 0 ≤ j ≤ v − 1}. For convenience, we

write A =
1⋃

i=0
{{i, x, y, z} : {x, y, z} ∈ Si}. So, for each A we need only display the

corresponding Si, 0 ≤ i ≤ 1.

Lemma 3.2 There exists an OHP4(2, 4, v, 2) for each v ∈ {5, 11, 17, 23, 47, 59, 83}.

Proof For each v, with the aid of a computer, we have found a set of base blocks.
We list the corresponding Si, 0 ≤ i ≤ 1, below.

v = 5
S0 : {1, 3, 4}; S1 : Ø.
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v = 11
S0 : {1, 2, 5}, {4, 13, 16}; S1 : {3, 8, 15}.

v = 17
S0 : {1, 2, 5}, {4, 10, 18}, {7, 12, 21}; S1 : {3, 12, 27}, {4, 17, 23}.

v = 23
S0 : {13, 34, 39}, {6, 8, 24}, {29, 31, 32}, {9, 27, 36};
S1 : {12, 32, 33}, {5, 39, 44}, {7, 23, 36}.

v = 47
S0 : {51, 58, 72}, {6, 23, 38}, {39, 43, 52}, {3, 26, 70}, {10, 75, 92}, {5, 25, 93},

{1, 33, 64}, {7, 67, 91};
S1 : {23, 60, 76}, {6, 46, 66}, {15, 45, 53}, {37, 49, 77}, {17, 42, 50}, {80, 84, 93},

{12, 40, 58}.
v = 59

S0 : {48, 73, 106}, {8, 52, 61}, {1, 63, 117}, {89, 93, 103}, {4, 15, 54}, {34, 47, 55},
{7, 31, 82}, {83, 88, 104}, {3, 6, 98}, {22, 87, 94};

S1 : {12, 51, 68}, {19, 41, 102}, {61, 81, 93}, {48, 67, 86}, {45, 82, 114}, {14, 24, 42},
{17, 44, 89}, {7, 43, 91}, {50, 90, 92}.
v = 83

S0 : {71, 86, 134}, {8, 9, 54}, {51, 84, 98}, {73, 107, 108}, {3, 49, 56}, {20, 137, 147},
{26, 132, 154}, {27, 35, 47}, {18, 28, 70}, {16, 66, 91}, {24, 105, 126}, {65, 67, 122},
{43, 68, 74}, {7, 55, 162};

S1 : {14, 104, 137}, {15, 18, 115}, {72, 87, 109}, {66, 138, 143}, {74, 127, 136},
{5, 148, 150}, {37, 55, 78}, {12, 73, 111}, {83, 110, 151}, {7, 103, 128}, {52, 82, 88},
{45, 107, 135}, {38, 51, 125}.

Lemma 3.3 There exists an IOHP4(2, 4, (8, 2), 2).

Proof Let X = Z12, G1 = {{i, i + 6} : 0 ≤ i ≤ 5}. Let

B = {{0, 9, 10}, {1, 2, 6}, {3, 5, 7}, {4, 8, 11}}.

Developing B +3 mod 12, we obtain a 3-RGDD(26).

Let Ai be the blocks obtained by adjoining ∞i to Bi, where Bi = {B + 3i :
B ∈ B}, 0 ≤ i ≤ 3. Let V = X ∪ {∞0, · · · ,∞3}, G = G1 ∪ {{∞0,∞1}, {∞2,∞3}},
H = {{∞0,∞1}, {∞2,∞3}}, A =

3⋃
i=0

Ai. Then (V ,G,H,A) is the desired packing.

This completes the proof.

Lemma 3.4 If v ≡ 5 (mod 12) and v ≥ 29, then there exists an OHP4(2, 4, v, 2).
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Proof Write v = 12s+5; then s ≥ 2. Take m = 3s+1, n = 4, u = 1 in Lemma 2.2;
there exists an OHP4(2, 4, v, 2). The existence of GS4(2, 4, m, 2) comes from Theorem
1.6 in in [7], and the OHP4(2, 4, 5, 2) from Lemma 3.2. This completes the proof.

The following result was stated in [6] (note that there exists a GS4(2, 4, 7, 4) from
[6]).

Lemma 3.5 For m = 4, 7, there exists a 4-GDD(4m) whose groups can be partitioned
into two subgroups of size 2 each and whose blocks can be partitioned into two sets
S0 and S1 such that the minimum distance of Si, 0 ≤ i ≤ 1, is 4 with respect to the
subgroups.

Lemma 3.6 There exist both an IOHP4(2, 4, (26, 8), 2) and an OHP4(2, 4, 26, 2).

Proof With the 4-GDD(44) from Lemma 3.5 and the IOHP4(2, 4, (8, 2), 2) from
Lemma 3.3, take m = 4, h = 4, g = 2, s = 2, w = 3, u = 2, t = 2 and a = 0 in
Lemma 2.3 to obtain an IOHP4(2, 4, (26, 8), 2). Since there exists an OHP4(2, 4, 8, 2)
from Lemma 3.1, then an OHP4(2, 4, 26, 2) exists from Lemma 2.3. This completes
the proof.

Lemma 3.7 Suppose N(n) = p ≥ 5, 0 ≤ a ≤ n − 1, 0 ≤ b ≤ p − 5. If there exists
an OHP4(2, 4, 3(a + b) + 8, 2), then there exists an OHP4(2, 4, 18n + 3(a + b) + 8, 2).

Proof Since N(n) = p ≥ 5, there exists a TD(p + 2, n). From b ≤ p − 5, we have
b + 7 ≤ p + 2, and hence there exists a TD(b + 7, n). Delete point x and another
n − a − 1 points from the first group of the TD(b + 7, n), and delete n − 1 points
from each of the next b groups. Use x to redefine groups. We obtain a {6, 7, n}-
GDD(6n(a+b)1). Since N(n) ≥ 5, we have n > 6. So, from Theorem 1.8 in [7], there
exists a GS4(2, 4, q, 6) for q = 6, 7 and n. Give weight 6 to each point of the GDD,
partition each group of size 36 into 18 subgroup of size 2. From Lemma 3.6, there
exists an IOHP4(2, 4, (26, 8), 2). Adjoining another 8 groups of size 2, there exists an
OHP4(2, 4, 18n+3(a+b)+8, 2); the OHP4(2, 4, 3(a+b)+8, 2) comes from assumption
and the IOHP4(2, 4, (26, 8), 2) from Lemma 3.6. This completes the proof.

Lemma 3.8 There exists an OHP4(2, 4, v, 2) for all v ≡ 2 (mod 3) and 5 ≤ v ≤ 59.

Proof From Lemmas 3.1– 3.2, Lemma 3.4 and Lemma 3.6, we need only deal with
the values v for v ∈ {32, 35, 44, 50}. With the 4-GDD(44) from Lemma 3.5, take
m = 4, h = 4, g = s = 2, w = 4, u = 0, t = 2 and a = 0 in Lemma 2.3. We obtain an
OHP4(2, 4, 32, 2); the input design OHP4(2, 4, 8, 2) comes from Lemma 3.1. Similarly,
with the 4-GDD(47) from Lemma 3.5, take m = 7, h = 4, g = 2, s = 2, w = 3,
u = 2, t = 2 and a = 0 in Lemma 2.3; there exists an OHP4(2, 4, 44, 2). Take m = 7,
(n, u) = (5, 0) or (7, 1) in Lemma 2.2; an OHP4(2, 4, f, 2) exists, where f = 35 or 50.
This completes the proof.
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Lemma 3.9 Suppose n0 is the smallest number r satifying the following property:

N(r) ≥ 5, r ≥ 13; if r′ > r and N(r′) < 5, then N(r′ − 1) ≥ 5 and N(r′ + 1) ≥ 5.

Then there exists an OHP4(2, 4, v, 2) for all v ≥ 18n0 + 8.

Proof For each v ≥ 18n0 + 8, write v = 18n + 3a + 8, where 0 ≤ a ≤ 11. If
N(n) ≥ 5, then by taking b = 0 in Lemma 3.7, one gets an OHP4(2, 4, v, 2) since
there exists an OHP4(2, 4, w, 2) for all 8 ≤ w ≤ 41 from Lemma 3.8. If N(n) < 5, we
distinguish two cases. If a < 6, then v = 18(n−1)+3a+26. Since N(n−1) ≥ 5 and
3a+26 ≤ 41, there exists an OHP4(2, 4, v, 2). If a ≥ 6, then v = 18(n+1)+3a− 10.
Since N(n + 1) ≥ 5 and 8 ≤ 3a − 10 ≤ 23, there exists an OHP4(2, 4, v, 2). This
completes the proof.

It was stated in [1] that N(n) ≥ 5 for any n > 5 and n �∈ F = {6, 10, 14, 15, 18,
20, 22, 26, 30, 34, 38, 46, 60, 62}. So, from Lemma 3.9, one can obtain the following
result by taking n0 = 16.

Lemma 3.10 If v ≡ 2 (mod 3) and v ≥ 296, then there exists an OHP4(2, 4, v, 2).

In the following, we will show that there exists an OHP4(2, 4, v, 2) for all v ≡
2 (mod 3) and v < 296.

For convenience, let [x, y]ba denote the set of integers v for x ≤ v ≤ y and v ≡
b (mod a).

Lemma 3.11 If v ≡ 2 (mod 3) and 5 ≤ v < 296, then there exists an OHP4(2, 4,
v, 2).

Proof For v ∈ [98, 110]23 ∪ [134, 194]23 ∪ [206, 278]23, take n ∈ {5, 7, 8, 9, 11, 12, 13},
b = 0 in Lemma 3.7, and we obtain the result.

For v ∈ [197, 203]23, take n = 9, b = 3 and 6 ≤ a ≤ 8 in Lemma 3.7 to obtain the
result. The case v ∈ [278, 293]23 is obtained from the same lemma with n = 13, b = 6
and 6 ≤ a ≤ 11.

For v ∈ [80, 92]26, from Lemma 3.6, there exists an IOHP4(2, 4, (26, 8), 2). Take
m = 4, h = 4, g = 2, s = 2, w = 9, u = 8, t = 2 and 0 ≤ a ≤ 2 in Lemma 2.3,
and the result is obtained. The 4-GDD(44) comes from Lemma 3.5, and the input
designs are from Lemma 3.8.

For v ∈ [116, 128]26, take m = 4, h = 4, g = s = 2, w = 4, u = 0 and a = 0 in
Lemma 2.3 to obtain an IOHP4(2, 4, (32, 8), 2). Applying Lemma 2.3 with m = 4,
h = 4, g = 2, s = 2, w = 12, u = 8, t = 2 and 2 ≤ a ≤ 4, we obtain the result, and
the input designs are from Lemma 3.8.

From Lemmas 3.1–3.2, Lemma 3.4, Lemma 3.6 and the above results, only the
values v ∈ Q = {62, 71, 95, 119,131} remain to be dealt with. For each v ∈ Q, write
v = mn+u, where m ∈ {7, 10, 19}, n ∈ {5, 6, 10, 13, 17} and n+u ∈ {5, 8, 11, 14, 17}.
So, the result is obtained from Lemma 2.2. This completes the proof.
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We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1 Combine Lemma 3.10 and Lemma 3.11.
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