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Abstract

For each even integer b ≥ 2 we prove that a graph G with n vertices has
an even [2, b]-factor if G is 2-edge connected and each vertex of G has
degree at least max{3, 2n

b+2
}.

1 Introduction

Tutte’s f -factor theorem [16, 4] has evolved in many directions. Surveys are given
in [1].

Lovász derived an extensive [g, f ]-factor theory [11, 12, 13] which has been con-
tinued by other authors [5, 10].

Connected factors are treated in [6, 8, 9]. Odd factors have been treated by
Amahashi, Yuting, Kano, Topp and Vestergaard.

Amahashi [2] extended Tutte’s 1-factor theorem to {1, 3, 5, ..., 2t−1} factors, and
Yuting, Kano [17] generalized this further: for an integer valued function f given on
V (G) they define H to be a [1, f ]-odd factor of G if for every vertex x in G, dH(x) is
odd and satisfies 1 ≤ dH(x) ≤ f(x). They then prove that G has a [1, f ]-odd factor
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if and only if deletion of any set S of vertices leaves a graph whose number o(G−S)
of odd components is not larger than

∑
x∈S f(x), i.e.

G has a [1, f ]-odd factor ⇔ o(G − S) ≤
∑
x∈S

f(x). (∗)

Using Sumner’s theory [14] on minimal barriers, Topp and Vestergaard [15] proved
that it is not necessary to test (*) for all subsets S of V (G), but only for some of
them. As one consequence they show that if G is of even order n and if no vertex v
in G is the center of an induced K1,nf(v)+1-star, then G has a [1, f ]-odd factor.

In this paper we shall consider even factors. In general, existence of even factors
is not deducible from the existence of odd factors.

2 Notation

We consider graphs without loops or multiple edges. A graph G has vertex set
V (G) and edge set E(G). The order of G is |G| = |V (G)| = n. For subsets X, Y
of V (G) we denote by eG(X, Y ) the number of edges in G having one end-vertex
in X and the other in Y . Thus eG(v, V (G) − v) = dG(v) is the degree of v and
δ(G) = min{dG(v) | v ∈ V (G)} is the smallest degree in G.

A subgraph of G containing all of V (G) but possibly not all of E(G) is called a
spanning subgraph of G or a factor in G.

Let g, f be mappings from V (G) into the nonnegative integers Z
+
0 and let g(v) ≤

f(v), ∀ v ∈ V (G). Then F is called a [g, f ]-factor of G if F is a factor of G with
g(v) ≤ dF (v) ≤ f(v), ∀v ∈ V (G). A factor F satisfying dF (v) ≡ 0 (mod 2), ∀v ∈
V (G), is called even.

An edge e ∈ E(G) is a bridge if G−e has more components than G and v ∈ V (G)
is a cut-vertex if G−v has more components than G. A graph with at least 3 vertices
is 2-edge connected if it is connected and has no bridge; G is 2-vertex connected if G
is connected and has no cut-vertex.

A block in a graph with no isolated vertex is either a bridge together with its
two end-vertices, or it is a maximal 2-vertex connected subgraph of G. The latter is
called a proper block of G.

Consider functions g, f on V (G) with g(v) ≤ f(v) for each v ∈ V (G), and an
ordered pair X, Y of disjoint subsets of V (G). A component C of G − (X ∪ Y ) is
called odd if

∑
v∈V (C) f(v) + eG(V (C), Y ) is an odd number. The number of odd

components in G − (X ∪ Y ) is denoted by hG(X, Y ). When clear from the context
we may omit reference to G.

3 Complete bipartite graphs

Let us observe that K1,q has no [2, b]-factor; and K2,q has no proper [2, b]-factor, and
so, it has an even one if and only if q is even and q ≤ b.

Existence of an even factor with degrees bounded by the constant b is character-
ized in Theorem 1 below.
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Theorem 1 For 3 ≤ p ≤ q let Kp,q be a complete, bipartite graph and let b ≥ 2 be
an even integer. Then the graph Kp,q has an even [2, b]-factor if and only if q ≤ b

2
p.

Remark: As b is even, the inequality q ≤ b
2
p is equivalent to b ≥ 2	 q

p

.

Proof: ⇓: Let F be an even [2, b]-factor of Kp,q. Then 2q ≤ |E(F )| ≤ bp and
q ≤ b

2
p follows.

⇑: Assume q ≤ b
2
p. Let q = rp+ s, 0 ≤ s < p. Necessarily 1 ≤ r ≤ b

2
, and if r = b

2

then s = 0.
Let x1, x2, . . . , xp be the vertices of one colour class, and y1, . . . , yp; yp+1, yp+2,

. . . , y2p; y2p+1, . . . , y3p; . . . ; y(r−1)p+1, . . . , yrp; yrp+1, yrp+2, . . . , yrp+s the vertices of the
other colour class of Kp,q.

For s ≥ 2, form the r + 1 cycles:

C1 = x1y1x2y2 . . . xpyp

C2 = x1yp+1x2yp+2 . . . xpy2p

...

Ci = x1y(i−1)p+1x2y(i−1)p+2 . . . xpyip

...

Cr = x1y(r−1)p+1x2y(r−1)p+2 . . . xpyrp

Cr+1 = x1yrp+1x2yrp+2 . . . xsyrp+s.

The union F =
⋃r+1

i=1 Ci is an even [2, b]-factor of Kp,q because V (F ) = V (G), and
all vertices have in F even degree at least two and at most b: Certainly dF (yi) =
2, 1 ≤ i ≤ q, and for xj, 1 ≤ j ≤ p, we have, since s > 0 implies r < b

2
, that

dF (xj) ≤ 2r + 2 = 2	 q
p

 = b.

For s = 1, we have b ≥ 2(r + 1),

1. if p ≥ 4, in the preceding definition we replace the cycle Cr+1 by the cycle
C ′

r+1 = x2yq−1x3yq, and F = (
⋃r

i=1 Ci) ∪ C ′
r+1; we have dF (yi) is 2 or 4, for

each i; and for each j, we have dF (xj) ≤ 2(r − 1) + 4 = 2r + 2 ≤ b;

2. if p = 3, then let C ′′
r = x1yq−2x2yq−3 and C ′′

r+1 = x1yqx3yq−1.

So, for s = 1 with F = (
⋃r−1

i=1 Ci) ∪C ′′
r ∪C ′′

r+1 we have dF (yi) = 2 for each i; and for
each j, we have dF (xj) ≤ 2(r − 1) + 4 = 2r + 2 ≤ b.

For s = 0 we have q = rp, r ≤ b
2
, and F =

⋃r
i=1 Ci is an even [2, b]-factor of Kp,q

since dF (xj) = 2r ≤ b, 1 ≤ j ≤ p.
This proves Theorem 1. �
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So we conclude as follows.

Corollary For 3 ≤ p ≤ q, the least even integer b such that the bipartite graph Kp,q

has an even [2, b] factor is b = 2	 q
p

.

Generalization Above, with G = Kp,q, 3 ≤ p ≤ q, we have p + q = n and δ(G) = p.
The conditions p ≥ 2q

b
, p ≥ 3 translate into δ ≥ max{3, 2n

b+2
} which in the following

section as a generalization is proven to be a sufficient condition for any 2-edge con-
nected graph to contain an even [2, b]-factor. Furthermore, for q = b

2
p the graphs

Kp,q demonstrate that the condition δ ≥ max{3, 2n
b+2

} is strict.

4 General graphs

Below, we cite a theorem by Lovász characterizing graphs having an even [g, f ]-factor
and a fortiori an even [2, b]-factor. We use Lovász’s theorem to derive Theorem 2,
which only gives a sufficient condition for G to contain an even [2, b]-factor. However,
Theorem 2 has the advantage of being easy to apply.

Lovász’ parity [g, f ]-factor Theorem [11, 3]. Let G be a graph, let g and f
map V (G) into the nonnegative integers such that g(v) ≤ f(v), ∀ v ∈ V (G), and
g(v) ≡ f(v)(mod 2), ∀ v ∈ V (G). Then G contains a [g, f ]-factor F such that
dF (v) ≡ f(v)(mod 2), ∀ v ∈ V (G), if and only if, for every ordered pair X, Y of
disjoint subsets of V (G)

∑
y∈Y

dG(y) −
∑
y∈Y

g(y) +
∑
x∈X

f(x) − h(X, Y ) − e(X, Y ) ≥ 0.

Let b ≥ 2 be an even integer and in the theorem above, let g(v) = 2, f(v) =
b, ∀ v ∈ V (G). Then we immediately obtain

Corollary G contains an even [2, b]-factor if

∑
y∈Y

dG(y)−2|Y |+b|X |−h(X, Y )−e(X, Y ) ≥ 0 (∗∗)

for all ordered pairs X, Y of disjoint subsets of V (G).

In Theorem 2 below we describe an important class of graphs which satisfy (**).

Theorem 2 Let b ≥ 2 be an even integer and let G be a 2-edge connected graph with
n vertices and with minimum degree δ(G) ≥ max{3, 2n

b+2
}. Then G contains an even

[2, b]-factor.

We generalize this result in the following form.

Corollary Let b ≥ 2 be an even integer and let G be a graph such that

(i) each vertex of G belongs to a proper block of G, and
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(ii) each block B in G satisfies δ(B) ≥ max{3, 2|B|
b+2

}, and

(iii) each cut vertex in G has degree at most b.

Then G has an even [2, b]-factor.

The corollary follows immediately by applying Theorem 2 to each block of G.
We shall prove Theorem 2 by demonstrating that (**) holds.

Proof: Let X, Y be any pair (X = ∅ or Y = ∅ may occur) of disjoint subsets of
V (G). Certainly

∑
y∈Y

dG(y) ≥ eG(Y, V (G) − Y ) ≥ eG(X, Y ) + h(X, Y ) (1)

and we can find the following inequality.

∑
y∈Y

dG(y) − 2|Y | + b|X | − h(X, Y ) − eG(X, Y ) ≥ −2|Y | + b|X |. (2)

Thus, if −2|Y | + b|X | ≥ 0, inequality (**) and hence Theorem 2 holds. We may
therefore assume that for some pairs X, Y we have

−2|Y | + b|X | < 0. (3)

For pairs X, Y with |X | ≥ δ(G) = δ we can use (3) together with |X | + |Y | ≤ n (as
X ∩ Y = ∅) to obtain

δ ≤ |X | <
2

b
|Y | ≤ 2

b
(n − |X |) ≤ 2

b
(n − δ) (4)

giving

δ <
2n

b + 2
, (5)

but that contradicts the hypothesis δ ≥ 2n
b+2

, so no pair X, Y satisfying (3) can have
|X | ≥ δ(G). We thus henceforth have

−2|Y | + b|X | < 0 and |X | ≤ δ − 1. (6)

Case 1 |Y | ≥ b + 1:
There are at most |X ||Y | edges between X and Y , so

e(X, Y ) ≤ |X ||Y |. (7)

Each odd component of G − (X ∪ Y ) contains at least one vertex, so

h(X, Y ) ≤ n − |X | − |Y |. (8)

Define
τ =

∑
y∈Y

d(y) − 2|Y | + b|X | − h(X, Y ) − e(X, Y ). (9)
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Using (7), (8), and dG(y) ≥ δ, we obtain

τ ≥ δ|Y | − 2|Y | + b|X | − n + |X | + |Y | − |X ||Y |, (10)

τ ≥ (δ − 1)|Y | + ((b + 1) − |Y |) |X | − n. (11)

Since b + 1 − |Y | ≤ 0 and |X | ≤ δ − 1, we obtain

τ ≥ (δ − 1)|Y | + (b + 1 − |Y |)(δ − 1) − n, (12)

τ ≥ (b + 1)(δ − 1) − n. (13)

By hypothesis δ ≥ 2n
b+2

, so

τ ≥ (b + 1)

(
2n

b + 2
− 1

)
− n (14)

and

τ ≥ b

b + 2
n − b − 1. (15)

For n ≥ b + 4 we obtain

τ ≥ b − 2

b + 2
, (16)

and as b ≥ 2 we have that τ ≥ 0.
That is, (**) holds for n ≥ b + 4.
If n ≤ b + 3 we use δ ≥ 3 in (13) to obtain the continuation

τ ≥ (b + 1)2 − (b + 3) = b − 1 ≥ 1 ≥ 0. (17)

Thus (**), and hence Theorem 1, is proven in Case 1.

Case 2 |Y | ≤ b (and still −2|Y | + b|X | ≤ 0, |X | ≤ δ − 1):
From |X | < 2

b
|Y | ≤ 2 we get that |X | equals 0 or 1.

Let h1 = h1(X, Y ) be the number of odd components C of G − (X ∪ Y ) with
e(C, Y ) = 1, and let h2 = h2(X, Y ) be the number of odd components C of G− (X∪
Y ) having e(C, Y ) > 1, i.e. e(C, Y ) ≥ 3. Then h(X, Y ) = h1 + h2.

Case 2.1 |Y | ≤ b and |X | = 0:
From X = ∅ we infer h1 = 0, since a single edge between Y and an h1-component

C of G − Y would be a bridge of G; but that contradicts the hypothesis that G is
2-edge connected. Thus, h(X, Y ) = h2. Furthermore X = ∅ implies by definition
that e(X, Y ) = ∅. We use this and

∑
y∈Y dG(y) ≥ 3h2 to obtain

∑
y∈Y

d(y) − 2|Y | + b|X | − h(X, Y ) − e(X, Y ) ≥ 3h2 − 2|Y | − h2. (18)
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If |Y | ≤ h2, we see immediately that (**) holds. Otherwise, |Y | > h2, and together
with δ(G) ≥ 3 we obtain

∑
y∈Y

dG(y) − 2|Y | − h2 ≥ |Y | − h2 > 0. (19)

Thus (**) holds in Case 2.1.

Case 2.2 |Y | ≤ b and |X | = 1:
As

∑
y∈Y dG(y) ≥ h1 + 3h2 + e(X, Y ), h(X, Y ) = h1 + h2

we have

∑
y∈Y

dG(y) − 2|Y | + b − h(X, Y ) − e(X, Y ) (20)

≥ h1 + 3h2 + e(X, Y ) − 2|Y | + b − h1 − h2 − e(X, Y ) (21)

= 2h2 − 2|Y | + b. (22)

For |Y | ≤ h2 + b/2 we see that (**) holds.
For |Y | > h2 + b/2 we use b − e(X, Y ) ≥ b − |Y | ≥ 0 to obtain that

∑
y∈Y

d(y) − 2|Y | + b − h1 − h2 − e(X, Y ) ≥ (δ − 2)|Y | − h1 − h2. (23)

As |X | = 1 and δ ≥ 3 we observe that each h1-component C of G− (X ∪Y ) contains
at least two vertices. Let c′ be the unique vertex in C which has a neighbour in Y
and let c ∈ C \ c′. Then e(c, X ∪ Y ) ≤ 1 and c has at least δ − 1 neighbours in

C. So C contains at least δ vertices. Therefore h1 ≤ n−|Y |−h2−1
δ

. Using this and
−n

δ
≥ − b+2

2
, |Y | ≥ h2 + b+1

2
in (22) we obtain

(δ − 2)|Y | − h1 − h2 ≥ (δ − 2)

(
h2 +

b + 1

2

)
− n − |Y | − h2 − 1

δ
− h2 (24)

≥ (δ − 3)

(
h2 +

b

2
+

1

2

)
− 1

2
+

|Y | + h2 + 1

δ
. (25)

This expression is nonnegative if δ ≥ 4, and if δ = 3 we use |Y | ≥ b+1
2

≥ 3
2

to obtain
|Y |
3

≥ 1
2

and we get the same conclusion.
Thus Case 2.2, and with that Theorem 2, is proven. �

In Theorem 2 it is necessary to demand δ(G) ≥ 3 as shown by the following
example.

Example 1 G has n = 14 vertices such that one vertex v has 11 neighbours, all of
degree 2. Three of them, x, y, z, also have another common neighbour w, dG(w) = 3,
and four of them share a common neighbour u, dG(u) = 4.

This graph G has n = 14, δ(G) = 2, is 2-edge connected, and with b = 12 it
satisfies δ(G) ≥ 2n

b+2
as 2 ≥ 2·14

12+2
; but G has no even [2, 12]-factor F since each of
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Figure 1: Example 1.
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z

Figure 2: Example 2.

x, y, z must be in F with degree 2, but then w will be in F with degree 3, which is
not an even number.

A graph with bridges may have an even factor; this is the case for two circuits
joined by an edge, but in Theorem 2 the condition that G is 2-edge connected cannot
be omitted.

Example 2 Let G be the graph on 16 vertices consisting of one vertex with exactly
3 neighbours x, y, z such that the remaining 12 vertices form 3 disjoint K4’s, and x is
joined by two edges to one K4, y by two edges to the second K4 and z by two edges
to the third K4. Let b = 4; we have n = 16, δ = 3 and 3 = δ ≥ 16

4+2
, but G has no

even factor.
Other conditions: Considering degree sums σk(G) = min{dG(v1) + dG(v2) + . . . +

dG(vk) | v1, . . . , vk is a set of independent vertices}, it might for k = 2 be conjec-
tured that σ2(G) ≥ max{6, 4n

b+2
} implies existence of an even [2, b]-factor.

Another condition, suggested by an anonymous referee, is that δ(G) ≥ 3 and
σk+1(G) ≥ n implies that G has an even [2, 2k]-factor. This is a generalization
of Theorem 2 since certainly σk+1(G) ≥ n is satisfied if δ ≥ max{3, n

k+1
} and by

Theorem 2 that gives an even [2, 2k]-factor of G.
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