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Abstract

For each n ≥ 1 and 1 ≤ j ≤ n we show the existence of an extended
Skolem sequence of order n starting with the symbol j.

1 Introduction

In this paper [x, y] = {n | x ≤ n ≤ y, n an integer}. A Skolem sequence of order
n is a partition of the set [1, 2n] into pairs {(ai, bi)}n

i=1 such that bi−ai = i for 1 ≤ i ≤
n. The partition into pairs {(7, 8), (2, 4), (3, 6), (1, 5)} is then a Skolem sequence of
order 4, and it may be equivalently stored in the sequence 42324311, where i ∈ [1, 4]
occurs in positions ai, bi. The existence of Skolem sequences was settled in 1958 by
Skolem [8]: a Skolem sequence exists if and only if n ≡ 0, 1 (mod 4). Since then a
number of variations have been considered and a growing list of names have cropped
up in the literature. To describe these to the unfamiliar reader we employ an explicit
notation. For sets of integers D = {d1, . . . , dn}, S = {s1, . . . , s2n} a (D, S)-sequence
is a partition of S into pairs {(ai, bi)}n

i=1 such that bi − ai = di for 1 ≤ i ≤ n. A
Skolem sequence is then more compactly described as a ([1, n], [1, 2n])-sequence. A
summary of some variations on Skolem’s theme is given in Section 2, and we also
refer the reader to the survey [6] in this regard. Our immediate goal however is to
develop terminology that is not weighed down with historical references, but that is
also descriptive without being too terse. Viewing Skolem and Skolem-like sequences
as packings or tilings seems to satisfy these requirements, and fits in nicely with the
terminology already in the literature (e.g. see [7]).

The notion of packing arises from the sequence representation of a general (D, S)-
sequence, where underscores (some authors prefer the star, ∗, or a zero) indicate
unused positions or holes in the sequence. For instance 242 34 311 is a
([1, 4], [1, 10]\{4, 7})-sequence with two holes, suggesting that we view the sequence
4232411 without holes as a perfect packing or tiling of the “difference tiles” 4 4,
3 3, 2 2, 11 into a set of eight contiguous positions. The underscores in a difference
tile hold positions not used by the tile, and these may be occupied in the course
of forming a packing by filling them with symbols from other tiles. In general we
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say that a set of differences D packs perfectly if a (D, [1, 2|D|])-sequence exists.
A packing such as 11232 3 that leaves the next to last position unused is called
hooked, and we say that the differences [1, 3] (really the difference tiles 11, 2 2,
3 3) can be hooked if they can be packed into a hooked sequence with no other
holes. Joining hooks is a useful way to reduce the number of holes in a sequence, e.g.
64758463573 8 joins to 2 211 to give a perfect packing of differences [1, 8]. A packing
is extended if it has exactly one hole, suggesting that the positions are no longer
contiguous due to an extension of the length of the sequence. For example, 11232 3,
232 311 and 3 23211 are all extended, and all possible (up to a parity constraint)
positions of the hole are achieved. We say that differences [1, 3] can be extended in
all possible ways. Sequences 11232 3, 11 232 3 and 3113 2 2 show that [1, 3] can
be hooked-extended in all possible ways, i.e. a hook is left at the end, after which
all possible positions of the remaining hole can be achieved. In what follows we will
use ε as a convenient shorthand to represent “ ”.

We now describe the main result of this paper. As noted in [1] it is trivial to con-
struct for each order n ≥ 1 an extended Skolem sequence, (i.e. a ([1, n], [1, 2n]\{k})-
sequence) for example 8642 2468 75311357 is one of order 8. However, it is consid-
erably more difficult to construct such a sequence if the difference at the start of
the sequence is specified. Such sequences are a natural first step towards solving the
problem of constructing Skolem and Skolem-like sequences with a specified difference
in a specified position. Small examples are easily constructed: 11 for n = 1 and 112 2
begins and ends with 1 and 2. For n = 3 we assemble 11 and 3 232 as needed. For
n = 4 we exhibit a single sequence, 11�34�2324, where any symbol with an arrow over
it can be rewritten at the end of the sequence. We call this operation pivoting, since
one occurrence of the symbol remains fixed, but the other occurrence moves to the
opposite side of the fixed occurrence. Continuing, 52�42̃�354311, solves our problem
for n = 5, where a tilde, ,̃ indicates that we pivot to the left instead of to the right.
We shall prove that, without exception, an extended Skolem sequence of order n can
have its starting symbol specified, thereby answering the query posed in the title.

2 Some Useful Results

A short inventory of sequences we require later is given below.

Lemma 2.1 We have

1. (a) [2] A ([1, n], [1, 2n+1]\{k})-sequence exists if and only if n ≡ 0, 1 (mod 4)
for k odd and n ≡ 2, 3 (mod 4) for k even.

(b) [4] A ([2, n], [1, 2n−1]\{k})-sequence exists if and only if n ≡ 0, 1 (mod 4)
for k odd and n ≡ 2, 3 (mod 4) for k even.

(c) [4] A ([3, n], [1, 2n−3]\{k})-sequence exists if and only if n ≡ 2, 3 (mod 4)
for k odd and n ≡ 0, 1 (mod 4) for k even, with the exception of n ≤ 4
and (n, k) = (5, 2), (5, 6), (6, 1), (6, 5), (6, 10).
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2. (a) [4] A ([1, n], [1, 2n + 2]\{k, 2n + 1})-sequence exists if and only if n ≡
2, 3 (mod 4) for k odd and n ≡ 0, 1 (mod 4) for k even, with the exception
of (n, k) = (1, 2).

(b) [5] A ([2, n], [1, 2n]\{k, 2n − 1})-sequence exists if and only if n ≡ 2, 3
(mod 4) for k odd and n ≡ 0, 1 (mod 4) for k even, with the exception of
(n, k) = (3, 3).

3. [3], [7]

(a) A ([d, d + m − 1], [1, 2m])-sequence exists if and only if m ≥ 2d − 1 and
m ≡ 0, 1 (mod 4) for d odd and m ≡ 0, 3 (mod 4) for d even.

(b) A ([d, d + m− 1], [1, 2m + 1]\{2m})-sequence exists if and only if m(m−
2d + 1) + 2 ≥ 0 and m ≡ 2, 3 (mod 4) for d odd and m ≡ 1, 2 (mod 4)
for d even.

The ([d, d + m− 1], [1, 2m])-sequences of Lemma 2.1(3) are called Langford se-
quences of defect d and length m. Similarly a ([2, n], [1, 2n]\{k, 2n−1})-sequence
is called a hooked-extended Langford sequence of defect 2 and length n−1, whereas a
([1, n], [1, 2n+2]\{k, 2n+1})-sequence is called a hooked-extended Skolem sequence
and position k is the floating hole. Note that difference set [1, n] can hooked,
extended with a hole at position k, or hooked-extended with hole at position k un-
der precisely the same general conditions that difference set [2, n] can packed into
these shapes. This is because appending the difference tile “11” to any one of these
three shapes that [2, n] is packed into will give a packing of [1, n] into the same
general shape, i.e., the parity of the hole does not change. Note that hooking an
extended sequence causes the parity of the floating hole to change, so that extended
and hooked-extended sequences with the same differences fall into complementary
congruence classes modulo 4.

3 The Main Theorem

Let S(j; n), hS(j; n), ES(j; n) respectively denote a Skolem, hooked Skolem or ex-
tended Skolem sequence that begins with symbol j. A few special cases need to be
handled separately.

Lemma 3.1 The following sequences exist:

1. A S(n; n) for all n ≡ 0, 1 (mod 4).

2. A hS(n; n) for all n ≡ 2, 3 (mod 4), n �= 2.

Proof: If n ≡ 0, 1 (mod 4), n ≥ 4 then put n at the start of an extended Skolem
sequence of order n − 1 with hole in position n (possible by Lemma 2.1(1)). If
n ≡ 2, 3 (mod 4), n ≥ 3 then put n at the start of a hooked, extended Skolem
sequence of order n− 1 with hole in position n (possible by Lemma 2.1(1)). Since a
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S(1; 1) is trivial to construct, this completes the the proof of the lemma. �

For each n ≥ 1 let d(n) be the largest integer such that the differences [d(n), n]
can either be packed perfectly or can be hooked; then d(n) = �n+2

3
� by Lemma

2.1(3). The following lemma uses Langford sequences to construct ES(j; n) with j
in approximately the first third of the full set of differences.

Lemma 3.2 An ES(k; n) exists for all k, 1 ≤ k ≤ d(n) − 1.

Proof: By Lemma 2.1(3) for any 1 ≤ k ≤ d(n) the set [k, n] is either perfect or
hooked, so let L be the resulting sequence. If k − 1 = 2 then place 11 at the front
of L and hook or append 2 2 at the end of L depending on whether L is hooked or
not respectively. This gives an ES(2; n). If k − 1 �= 2 then by Lemma 3.1 [1, k − 1]
packs into a sequence, S, which is either a S(k − 1; k − 1) or a ES(k − 1; k − 1).
Hooking or appending S at the end of L as we did with the tile 2 2 and reversing
gives a ES(k−1; n). This gives constructions of ES(k−1; n) for each 1 ≤ k ≤ d(n),
and completes the proof. �

The next lemma gives direct constructions for extended Skolem sequences that
begin with differences in the middle third of the full set of differences.

Lemma 3.3 An ES(k; m) exists for all k, d(m) ≤ k ≤ 2d(m).

Proof: We make cases on m modulo 3.
Let m ≡ 1 (mod 3). If m = 1 the solution is trivial, so write m = 3n− 2, n ≥ 2,

and form the sequence

2n, 2n + 1, . . . , 3n − 3, 3n − 2, n, n + 1, . . . , 2n − 2,

2n − 1, n, 2n, n + 1, 2n + 1, . . . , 3n − 3, 2n − 2, 3n − 2, 2n − 1. (1)

If n = 4 the sequence is 8, 9, 10, 4, 5, 6, 7, 4, 8, 5, 9, 6, 10, 7. The diacritical marks
identify differences that fall into a pattern and/or they may indicate a small number
of differences that don’t fall into a pattern. The key property of this sequence is that
any one of the second occurrences of 4, 5, 6 and 7 can be pivoted to the front. The
sequences we will construct subsequently will all be variations of this basic sequence.

By Lemma 2.1(1) the differences [1, n − 1] can be arranged into a sequence, S,
which is either a Skolem sequence or a hooked Skolem sequence. Appending S to
(1) or its reverse gives ES(j; 3n − 2) for j = 2n, 2n − 1.

Pivoting any one of the differences j ∈ [n, 2n − 2] to the left in (1) puts j at the
start of the sequence, and leaves a hole at position 2j + 1. If n − 1 ≡ 0, 1 (mod 4)
append any Skolem sequence of order n−1 at the end of the pivoted sequence to get
a ES(j; 3n − 2), n ≤ j ≤ 2n − 2. On the other hand if n − 1 ≡ 2, 3 (mod 4) then
replace the difference 2n− 1 into positions 2j + 1, 2n + 2j, and (by Lemma 2.1(1) )
append an extended Skolem sequence of order n−1 with the hole aligned at position
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2n + 2j, thereby leaving one hole in the finished sequence at position 2n. This gives
sequences ES(j; 3n− 2), n ≤ j ≤ 2n− 2, when n− 1 ≡ 2, 3 (mod 4). Altogether we
have sequences ES(j; 3n − 2), n ≤ j ≤ 2n for n ≥ 2, as required.

Now let m ≡ 2 (mod 3). If m = 2 the solution is easy, so write m = 3n−1, n ≥ 2.
Consider again the pivoted version of sequence (1) with difference j ∈ [n, 2n − 1] at
the start of the sequence. It occupies 4n − 1 positions and has a hole at position
2j + 1. Put (new) difference 3n − 1 into positions 2j + 1, 3n + 2j and note that
3n+2j ≤ 6n−1 if and only if j ∈ [n, 1

2
(3n−1)] and 6n−1 is the number of positions

required for a ES(j; 3n− 1). By Lemma 2.1, parts (1), (2), the differences [1, n− 1]
can be extended/hooked extended in all possible ways, and the floating holes have
opposite parities in the hooked and unhooked cases. Thus if j ∈ [n, 1

2
(3n−1)] we may

fill positions 4n+2, 4n+3, . . . with a subsequence made of differences [1, n−1] so that
the second occurrence of 3n−1 is aligned with the floating hole and the subsequence
is hooked/unhooked as required by parity. This gives sequences ES(j; 3n − 1) for
j ∈ [n, 1

2
(3n− 1)]. To obtain sequences with j ∈ (1

2
(3n− 1), 2n] we begin by forming

the ({1, n} ∪ [n + 2, 3n − 1], [1, 4n])-sequence

ñ, 2n + 1, 2n + 2, . . . , 3n − 1, ñ, n + 2, n + 3, . . . , 2n

1, 1, 2n + 1, n + 2, 2n + 2, n + 3, . . . , 3n − 1, 2n (2)

for n ≥ 3.
Next we require a ([2, n − 1] ∪ {n + 1}, [1, 2n − 1]\{k})-sequence starting with

n + 1 for n ≥ 3; denote this sequence An. To show the existence of An we begin
A3 = 42 24, A4 = 5 23253 and for n ≥ 5 we use (by Lemma 2.1(1)) an extended or
hooked extended Langford sequence with differences [2, n− 1] and a hole at position
n + 1, which is then filled when difference n + 1 is placed at the start.

By placing An at the front or back of (2) we obtain sequences ES(j; 3n − 1),
j = n, n + 1. Pivoting a given j ∈ [n + 2, 2n] in (2) puts j at the start and leaves a
hole at position 2j + 1. Placing difference n + 1 into positions 2j + 1, 2j + n + 2 will
cause a collision if 2j+n+2 ≤ 4n+1, since 4n+1 is the length of the pivoted sequence.
However, if 2j + n + 2 > 4n + 1, or equivalently j ∈ (1

2
(3n− 1), 2n], then depending

on parity (by Lemma 2.1 parts (1), (2)) we fill positions 4n + 2, 4n + 3, . . . with an
extended or hooked-extended Skolem sequence with the floating hole aligned on the
second occurrence of n + 1. This gives sequences ES(j; 3n− 1), j ∈ (1

2
(3n− 1), 2n],

so altogether we have obtained sequences ES(j; 3n − 1), n ≤ j ≤ 2n, n ≥ 3.
Finally let m ≡ 0 (mod 3). If m = 3 the solution is easy, so write m = 3n, n ≥ 2.

For n ≥ 2 we construct

2n + 2, 2n + 3, . . . , 3n, n, n + 1, n + 2, . . . , 2n − 1, n, ε, n + 1

2n + 2, n + 2, 2n + 3, . . . , 2n − 1, 3n, 2̃n, ε2n−1, 2̃n; (3)

where all differences [n, 3n] occur except 2n+1 and there is a hole at position 2n+1.
If n − 1 ≡ 2, 3 (mod 4) then put difference 2n + 1 into positions 2n + 1, 4n + 2 and

fill the resulting subsequence 2̃n, ε, 2n + 1, ε2n−3, 2̃n with a hooked Skolem sequence
of order n− 1. The resulting sequence has no holes, ends with 2n and any difference
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j ∈ [n, 2n−1] can be pivoted to the front. On the other hand if n−1 ≡ 0, 1 (mod 4)
then first pivot j ∈ [n, 2n − 1] to the front of (3) leaving a hole at position 2j, put
difference 2n + 1 into positions 2j, 2n + 2j + 1 and fill the resulting subsequence
2̃n, ε2j−2n, 2n + 1, ε4n−2j−2, 2̃n with an extended Skolem sequence of order n − 1; the
resulting sequence ends with 2n, has one hole at position 2n + 2 and the pivoted
difference j at the front. Putting together the cases on n − 1 modulo 4, we obtain
sequences ES(j; 3n), n ≤ j ≤ 2n, n ≥ 2. �

The next two lemmas construct sequences with the starting symbol in approxi-
mately the last third of the full set.

Lemma 3.4 A ES(j; 3n − 1), 2n + 1 ≤ j ≤ 3n − 1, exists for n ≥ 3, and n ≡
2, 3 (mod 4).

Proof: For n = 3 the sequence 84�73643587625211 gives the required values 7 ≤ j ≤ 8,
so we take n ≥ 6 and form the sequence:

2̃n − 1, εn−1, 3̂n − 1, εn−4, 2̂n, ε, 2̃n − 1, 2n + 1,

2n + 2, . . . , 3n − 2, n, n + 1, n + 2, . . . , 2n − 2, 2̂n, n,

3̂n − 1, n + 1, 2n + 1, n + 2, 2n + 2, . . . , 2n − 2, 3n − 2, 1, 1. (4)

If n ≡ 2, 3 (mod 4) then we may pivot any j ∈ [2n + 1, 3n − 2] to the front of

this sequence and then (by Lemma 2.1(1) ) fill the subsequence 2̃n − 1, εn−1, 3̂n − 1,

εn−4, 2̂n, ε, 2̃n − 1, with a hooked, extended Langford sequence with differences
[2, n − 1], thereby obtaining sequences ES(j; 3n − 1), 2n + 1 ≤ j ≤ 3n − 2. An
ES(3n−1; 3n−1) exists by Lemma 3.1. Altogether we have sequences ES(j; 3n−1)
for 2n + 1 ≤ j ≤ 3n − 1, n ≡ 2, 3 (mod 4) and n ≥ 3. �

We now describe a recursive construction called twinning, which is useful for
making extended Skolem sequences that begin with differences in the last third of
the full set of differences. It is best illustrated by an example. Let S = 423243 11
and consider the four occurrences of the symbol 3 in SεS. The first and fourth 3’s
are in positions with difference 9+1+3, and the second and third 3’s are in positions
with difference 9 +1− 3, so we replace the four 3’s with two 13’s and two 7’s. Doing
this for all the differences and filling in the underscores with 10’s gives S′ below

SεS : 4 2 3 2 4 3 0 1 1 4 2 3 2 4 3 0 1 1
S′ : 14 12 13 8 6 7 10 11 9 6 8 7 12 14 13 10 9 11.

Clearly S′ has differences 9+1± [0, 4] = [6, 14], and S′ begins with 9+1+4 = 14. In
general, taking a sequence S, forming SεkS and replacing differences as above yields
a sequence S′ with differences � + k ± d for all d a difference of S, where � is the
length of S. Note that S′ begins with � + k + j, where j is the first symbol of S, and
that positions � + 1, . . . , � + k are unused. We say that S′ is the result of twinning
S at distance k.
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Lemma 3.5 The following recursions hold:

1. ∀j ∈ [1, n]∃ES(j; n) ⇒ ∀j ∈ [2n + 2, 3n + 1]∃ES(j; 3n + 1).

2. ∀j ∈ [1, n]∃ES(j; n) ⇒ ∀j ∈ [2n+3, 3n+2]∃ES(j; 3n+2), n ≡ 0, 3 (mod 4).

3. ∀j ∈ [1, n]∃ES(j; n) ⇒ ∀j ∈ [2n + 3, 3n + 3]∃ES(j; 3n + 3).

Proof: Twinning a sequence ES(j; n) at distance 0 and then appending the same
ES(j; n) to the twinned sequence gives a ES(2n + 1 + j; 3n + 1). As j varies over
[1, n] the quantity 2n + 1 + j varies over [2n + 2, 3n + 1], and (1) is proved.

Twin a sequence ES(j; n) at distance 1 to get ([n+2, 3n+2], [1, 4n+3]\{2n+2})-
sequence begining with 2n + 2 + j. If n + 1 ≡ 0, 1 (mod 4) then append a Skolem
sequence of order n + 1 to get a ES(2n + 2 + j; 3n + 2). As j varies over [1, n] the
quantity 2n + 2 + j varies over [2n + 3, 3n + 2], and (2) is proved.

By what we have just done we have at our disposal a ([n + 2, 3n + 2], [1, 4n +
3]\{2n + 2})-sequence starting with 2n + 3. Put difference 3n + 3 in positions 2n +
2, 5n + 5, and (by Lemma 2.1(2) ) depending on whether [1, n + 1] can be extended
or hooked-extended in all possible ways, construct an extended or hooked extended
packing of [1, n + 1] on positions [4n + 4, 6n + 6] or [4n + 4, 6n + 7] with the hole
aligned at position 5n+5. This gives an ES(2n+3; 3n+3). Twinning a ES(j; n) at
distance 2 gives a ([n+3, 3n+3], [1, 4n+4]\{2n+2, 2n+3})-sequence starting with
2n+3+j. Put difference 1 in positions 2n+2, 2n+3, and (by Lemma 2.1(1) ) append
any ([2, n + 2], [1, 2n + 3]\{k})-sequence at the end to get a ES(2n + 3 + j; 3n + 3).
Altogether the ES(2n+3; 3n+3) obtained earlier together with ES(2n+3+j; 3n+3)
for all j ∈ [1, n] gives (3). �

The proof of the main theorem is now straightforward.

Theorem 3.1 For each n ≥ 1 and each 1 ≤ j ≤ n there exists an extended Skolem
sequence of order n starting with the symbol j.

Proof: The proof is by induction on n. We have already verified the theorem for
1 ≤ n ≤ 5 in the introduction. We now take n > 5 and make cases depending on n
modulo 3.

Case: n ≡ 0 (mod 3). Write n = 3m, m ≥ 2. By Lemma 3.2 we have sequences
ES(j; 3m), 1 ≤ j ≤ m − 1, which together with sequences ES(j; 3m), m ≤ j ≤
2m, from Lemma 3.3 gives sequences ES(j; 3m), 1 ≤ j ≤ 2m. By Lemma 3.5 we
recursively obtain sequences ES(j; 3m), 2m + 1 ≤ j ≤ 3m, which completes the
construction of sequences ES(j; 3m), 1 ≤ j ≤ 3m, in this case.

Case: n ≡ 1 (mod 3). Write n = 3m + 1, m ≥ 2. By Lemma 3.2 we have sequences
ES(j; 3m + 1), 1 ≤ j ≤ m, which together with the sequences ES(j; 3m + 1),
m+1 ≤ j ≤ 2m+2, from Lemma 3.3 gives sequences ES(j; 3m+1), 1 ≤ j ≤ 2m+2.
By Lemma 3.5 we recursively obtain sequences ES(j; 3m+1), 2m+2 ≤ j ≤ 3m+1,
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which completes the construction of sequences ES(j; 3m + 1), 1 ≤ j ≤ 3m + 1, in
this case.

Case: n ≡ 2 (mod 3). Write n = 3m + 2, m ≥ 2. By Lemma 3.2 we have sequences
ES(j; 3m + 2), 1 ≤ j ≤ m, which together with sequences ES(j; 3m + 2), m + 1 ≤
j ≤ 2m + 2 from Lemma 3.3 gives sequences ES(j; 3m + 2), 1 ≤ j ≤ 2m + 2.

By Lemma 3.4 we have sequences ES(j; 3m + 2), 2m + 3 ≤ j ≤ 3m + 2, for
m ≥ 2 and m ≡ 1, 2 (mod 4). By Lemma 3.5 we recursively obtain sequences
ES(j; 3m + 2), 2m + 3 ≤ j ≤ 3m + 2, for m ≡ 0, 3 (mod 4), so altogether we have
sequences ES(j; 3m+2), 2m+3 ≤ j ≤ 3m+2. This completes the range of starting
symbols in this case and gives all sequences ES(j; 3m + 2), 1 ≤ j ≤ 3m + 2. The
main theorem is now proved. �

4 Conclusion

On the surface, the problem we have solved appears to be a two parameter prob-
lem: the order of the sequence and the starting symbol being the two parameters.
However, the position of the hole in our constructions was not fixed and this compen-
sates by adding a degree of freedom, making this problem more like a “11

2
” parameter

problem. For some potential applications of our sequences this is not an issue, but of
course one always is looking for sharper and more versatile tools to gain more control
in constructing sequences. An obvious next step then is to find better techniques
that will show the existence of S(j; n) and hS(j; n) for all j, and that will also have
an impact on solving other problems of a similar nature.
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