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Abstract

In many applications, (for example: air traffic control; robotics; ocean
surveillance and medical diagnostics) one needs to process and analyse
large volumes of data. The multisensor data association problem is con-
cerned with determining which measurements from one or more sensors
actually relate to the same object. This problem can be formulated as
a multidimensional assignment problem. In the application of bearing-
only data association, the solution of this NP-hard problem gives a list
of targets and their position. Unfortunately, this solution though math-
ematically correct may not be physically valid as false targets known as
ghosts may occur. This situation occurs whenever the number of tar-
gets is greater than or equal to the number of sensors. When ghosts
are present, the ambiguity problem can arise. The ambiguity problem is
the focus of this paper and we establish bounds on various sensor-target
configurations.
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1 Introduction

Data integration is a process that advanced species carry out on a day-to-day basis.
For example, the human brain processes information from the five sensors, eyes,
skin, ears, tongue and nose, to sample the environment, build an awareness of it,
and respond to observed changes in it. The process involved with using observations
from a number of sensors to build a coherent awareness and ability to respond is
referred to as multisensor data fusion.

Increasing technological advances in areas such as sensors, signal processing,
high performance computing and communications have made emulating the pro-
cess of multisensor data fusion practical ([15]). The military featured prominently in
early applications of data fusion such as: battlefield surveillance; automated target
identification and target tracking. Recently, the methods have been applied to non-
military situations such as monitoring of manufacturing processes; medical diagnosis;
robotics; and smart buildings ([8] and [16]).

A fundamental problem that arises in data fusion is that of utilising the data for
detection and localisation of objects. The underlying problem is referred to as the
data association problem. The characteristics of the application will determine how
the data association is carried out. For example, if the sensors are commensurate
(eg. two sonars, a towed array and a flank array) then the measurements can be
directly combined. That is, on a measurement-to-measurement basis. However, for
non-commensurate sensors (eg. a radar and a sonar), the data can be combined at
a measurement-to-track or track-to-track basis. Note that a track is a sequence of
measurements (of the same entity) over a specified time period.

The data association problem can be formulated in many different ways ([6],
[9], [11], [12], [13] and [17]). One formulation is as a multi-dimensional generalized
assignment problem. For m ≥ 3 sensors, the problem is computationally difficult (NP
hard). In the case of m = 3 sensors, the data association problem is formulated as a
three-dimensional assignment problem in [11] and [12], where the cost coefficients are
obtained by maximising the non-linear joint likelihood function of the measurement
partition.

The three-dimensional assignment problem has been the focus of considerable
attention as it occurs in many application areas, not just data association. A number
of algorithms, both exact and heuristic have been proposed. Exact methods include
Lagrangian relaxation (see [7], [11] and [14]) and Branch and Bound (see [4]). Tabu
search (see [10]), greedy, max-regret and reduced cost (see [2] and [4]) are some of the
heuristics that have been applied. Computational results, based on 300 randomly
generated problems reported in [1], [2] and [3] demonstrate that good solutions can
be obtained for practical sized problems.

The output from solving the data association problem using either heuristics or
exact methods is a list of targets and an estimate of their position. This list is
referred to as a hard assignment because once fixed, they cannot be changed. The
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other important thing to realise is that finding the list is not the end and that further
problems may still exist. One such problem is that of ambiguity in which the solution
presented may be mathematically correct but is physically invalid. This is referred to
as the ambiguity problem and is illustrated in Figure 1.1 where there are two sensors
(S1 and S2) and two targets. Here, without prior information you cannot declare
which points, {A, D} or {B, C} actually relate to the true targets. Note that only
one target can exist per line.

A

BC

D

S1
S2

Figure 1.1: Ambiguity for Two Sensors and Two Targets

This paper focuses on the ambiguity problem. We establish bounds on the number
of possible candidate targes for various sensor and target configurations. The paper is
organised as follows. Section 2 details the notation and terminology used throughout
the paper. Further, some basic results are established. The case when there are two
sensors is considered in Section 3. The three-sensor problem is considered in Section
4. We conclude this paper in Section 5 with a discussion when there are four or more
sensors. Methods for detecting and resolving ambiguity are also discussed.

2 Preliminaries

Given m sensors and n targets, it is assumed that no sensors are collocated and that
their positions are known. The sensors are of the same type so that the bearing-
only measurements can be directly combined. Also, every target in the problem is
detected by each of the sensors. No target can lie on the same line joining any two
sensors. Under these assumptions, a candidate target is any point that has m-lines,
one from each sensor, passing through it. Let f (m, n) denote the number of m-line
intersections. A ghost is a candidate target that is not a real target. That is, it
occurs when bearing-only measurements focussed at different targets intersect. This
is illustrated in Figure 2.1 for the case of two sensors (S1 and S2) and two targets
(T1 and T2).
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S1

T1

T2

Figure 2.1: Picture of a Ghost

An ambiguous situation is illustrated in Figure 1.1 for m = n = 2 and in Figure
2.2 for m = n = 3. In the case of Figure 2.2, without prior knowledge, it is impossible
to say which set, {A, E, F} or {B, C, G}, actually relates to the position of the true
targets. However, it is possible to eliminate point D since selecting it contradicts the
fact that there are three targets in the problem. So, with other information it may
be easy to classify candidate targets as ghosts in some instances. In general, when
the number of ghosts (that is black dots in Figures 1.1 and 2.2) in the problem is
greater than or equal to the number of targets, an ambiguous situation will arise.

S2S1
S3

B

A

C
D

F G
E

Figure 2.2: Ambiguous Situation for m = n = 3

As one might expect, as the number of targets increases, the occurrences of ghosts
can also increase. In some cases, the number of ghosts can be more than double the
number of true targets. This compounds the problem of determining which candidate
targets are ghosts and which are true targets. It also increases the chance of taking
a ghost into the solution since it is possible for a ghost to have a much lower cost
than a true target.

When there are more sensors than targets, the problem of ghosting is eliminated
as established in the following result.
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Lemma 2.1: For 1 ≤ n < m, f (m, n) = n.

Proof : Obviously f (n, n) ≥ n (see Figures 2.1 and 2.2). By increasing the number
of sensors (m > n), the true targets will now have m-line crossings and the ghosts will
still have n-line crossings. Thus, ghosts no longer exist in the problem. Therefore,
f (m, n) = n for m > n. �

Consequently, an ambiguous situation can only arise when m ≤ n. Bounds on
f (m, n) will help in identifying particular sensor-target configurations that have a
high number of ghosts. In general, the lower bound is given in the next theorem.

Lemma 2.2: Given m sensors and n targets, f (m, n) ≥ n for m ≥ 2 and n ≥ 1.

Proof : This comes from the fact that each target is an m-line crossing and there
are n targets, therefore f (m, n) ≥ n. �

The next sections look at specific cases for m = 2 and m = 3 where n ≥ 1 in
both cases.

3 Two-Sensor Case

Consider a problem that has m = 2 sensors and n targets. Sensors are distinguished
according to their field of view, φs. An omni-directional sensor has φs = 360◦ and a
forward-looking sensor has φs = 180◦ (referenced from the horizontal).

Lemma 3.1: In the case of two omni-directional sensors and n targets,

f (2, n) ≤ n2.

Proof : Consider sensor Si, i = 1, 2 with its n lines Li1, Li2, . . . , Lin directed at the
n targets. Observe that no two L′

1js or L′
2js can give rise to a 2-line crossing. So the

only possible 2-line crossings come from lines L1j and L2k, 1 ≤ j ≤ n and 1 ≤ k ≤ n.

Now consider line L2k. It can intersect each of the lines L11, L12, . . . , L1n and
hence can contribute up to n 2-line crossings. Consequently

f (2, n) ≤ n2,

as required. �
The general lower bound in Lemma 2.2 is valid, but is weak when there are more

than two targets. Now taking into account that some of the bearing lines may be
parallel, a sharper bound can be developed.

In Figure 3.1 there are two sensors, S1 and S2, in a plane that has been divided
into three regions, R1, R2 and R3. In the plane there are n targets distributed
such that there are a targets in R1, b targets in R2 and c targets in R3. That is,
n = a + b + c.

For this configuration the number of 2-line crossings is given by

f(2, n) = n2 − ac (1)
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where n2 comes from Lemma 5.3 and ac is subtracted because the rays from S1

focussed at the a targets in R1 will never intersect the rays from S2 focussed at the
c targets in R3.

S1 S2

a targets b targets c targets

R1 R2 R3

Figure 3.1: Problem Configuration

It is possible for rays from S1 and S2 to be parallel in R1 and/or R3 only. If
parallel rays occur, then we have over counted the number of 2-line crossings in (1).
Let i and j represent the number of targets associated with parallel rays in R1 and
R3 respectively. This is illustrated in Figure 3.2 for R1 where a = 3 and i = 3. Note
that lines that are parallel are the same style. The over-counting due to the parallel
rays is

i2 −
i∑

k=1

k = i2 − i

2
(i + 1) =

i

2
(i − 1)

where i2 is the maximum number of 2-line crossings for the i targets and the sum-
mation term is the actual number of 2-line crossings from the targets associated with
parallel rays.

S1 S2

R1 R2 R3

T2

T3

T1

Figure 3.2: Problem Configuration with Parallel Rays
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Similarly this can be applied to the j targets in R3. Then, by subtracting the
over-count from (1) it can be shown that the number of 2-line crossings is given by,

f(2, n) = n2 − ac −
(

i

2

)
−

(
j

2

)
. (2)

Lemma 3.2: In the case of two forward-looking sensors,

f(2, n) ≥ 1

2
n(n + 1). (3)

Proof : From (2),

f(2, n) = n2 − ac −
(

i

2

)
−

(
j

2

)

where a + b + c = n, 0 ≤ i ≤ a and 0 ≤ j ≤ c. So,

f(2, n) ≥ n2 − ac −
(

a

2

)
−

(
c

2

)

= n2 − 1

2
a(a + c − 1) − 1

2
c(a + c − 1)

= n2 − 1

2
(a + c)(a + c − 1)

= n2 − 1

2
(n − b)(n − b − 1)

≥ 1

2
n(n + 1).

�
Remark: The equality in equation (3) occurs when b = 0, i = a and j = c. This is
illustrated in Figure 3.3 for n = 6. Here, each target is associated with at least one
parallel line. Note that parallel lines have the same number of “<”.

S1 S2

Figure 3.3: Maximum Construction for f (2, 6) = 21
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Lemma 3.3: Given two omni-directional sensors,

f (2, n) ≥




1

4
n (n + 2) , for n even,

1

4
(n + 1)2 , for n odd.

Proof : Given the two sensors are omni-directional, let there be n1 targets above
and n2 targets below the sensors respectively, such that n = n1 +n2. Once again the
problem is to determine the minimum number of 2-line crossings.

If the problem is split into two parts, and the two sensors are considered to be
forward-looking at the n1 targets and the n2 targets respectively, then the problem
is the same as that in Lemma 3.2.

Hence,

f(2, n) = f(2, n1) + f(2, n2)

≥ 1

2
n1(n1 + 1) +

1

2
n2(n2 + 1)

=
1

2
n(n + 1) − n1n2

=
1

2
n(n + 1) − 1

4
(n1 + n2)

2 +
1

4
(n1 − n2)

2

≥




1

2
n(n + 1) −

(n

2

) (n

2

)
, for n even.

1

2
n (n + 1) −

(
n − 1

2

) (
n + 1

2

)
, for n odd.

=




1

4
n (n + 2) , for n even.

1

4
(n + 1)2 , for n odd.

as required. �
Lemmas 3.1 to 3.3 establish the following theorem.

Theorem 3.1: Given two omni-directional sensors,

1

4
n (n + 2) ≤ f (2, n) ≤ n2,

for even n and
1

4
(n + 1)2 ≤ f (2, n) ≤ n2,

for odd n.

Equality in both the lower and upper bound is achievable in Theorem 3.1. Fur-
ther, the configuration that gives the maximum number of crossings is unique. In
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general, the lower bound would be higher than the one given in Theorem 3.1 sim-
ply because it would be very unlikely in a real-world problem that the bearing lines
would be parallel.

4 Three-Sensor Case

In this case, the upper bound for m = 2 is still valid but is not very good. A stronger
bound is given in the next theorem.

Theorem 4.1: Given three forward-looking sensors

n ≤ f (3, n) ≤
⌊

3

4
n2 +

1

4

⌋
. (4)

Proof : The lower bound comes from Lemma 2.2. For the upper bound, Lemma 3.1
states that the maximum number of 2-line crossings is n2. Consider the two sensors
first, the most number of points a line from the third sensor, S3, can pass through
is 3 then 2 then 1 (see Figure 2.2). If the lines from S3 are placed such that they
pass through the most number of points in the set of 2-line crossings, the following
relationship can be established,

f (3, n) ≤ n2 − 2
[
1 + 2 + . . . +

n

2

]
+

n

2
,

for even n and

f (3, n) ≤ n2 − 2

[
1 + 2 + . . . +

(
n − 1

2

)]
,

for odd n.

These equations simplify to

f (3, n) ≤ 3

4
n2

for n even and

f (3, n) ≤ 3

4
n2 +

1

4
,

for n odd, which is the required upper bound. �
We refer to a feasible configuration as one in which exactly n targets can

be assigned to it. The upper bound in (4) is only achievable for odd n. For even
n, there exists a unique sensor-target configuration that could yield equality, but
it is not possible to assign ntargets. That is, the configuration is non-feasible as
illustrated in Figure 4.1 for the case when n = 4. Therefore, for even n, the upper
bound must be restated as,

f(3, n) <
3

4
n2.
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S1
S2

S3

Figure 4.1: Non-Feasible Configuration for Three Sensors and Four Targets

The authors in [5] make the comment “we may virtually eliminate the ghosting
problem in target position estimation by associating angle-only measurements of
four or more passive sensors”. It has been shown that as the number of sensors is
increased, the number of ghosts is significantly reduced. This is evident in a decrease
of candidate targets by approximately 25% for the three sensors case compared to
the two-sensor case. However, there still exists the possibility of accepting a ghost
into the solution and ambiguity such as that in Figure 2.2 occurring.

Theorems 3.1 and 4.1 give a range of possible values for f(2, n) and f(3, n),
respectively. It is interesting to know if for a given number of targets, the range is
achievable. This is the realisability problem. We investigate this problem for the
three sensor case when there are three and four targets. The idea is to construct
diagrams like those in Figures 2.2 and 4.1.

Consider first the case with three targets. From Theorem 4.1, the lower bound
for f(3, 3) is three and the upper bound is seven. The diagrams on the left in Figure
4.2 give examples whereby each number in this range is achievable. The black dots
indicate a candidate target and a white dot denotes a candidate target that is declared
to be an actual target.

An alternate way of representing the diagrams is via a grid-like system that is
given on the right of Figure 4.2. In the original diagram, the lines emanating from
sensor S1 correspond to the horizontal lines in the grid system. They are parallel
to maintain the fact that only one target exists per line. Similarly, the vertical and
diagonal lines map the lines from sensors S2 and S3 respectively. Once again, the
intersection between the three lines represents a candidate target and a white dot
denotes a true target. One observation is the fact that the grid does not necessarily
have to be regular. However, the upper bound is only achievable with a regular grid.
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S1 S3
S2

(a) f (3, 3) = 3

S1 S3
S2

(b) f (3, 3) = 4

S1 S3
S2

(c) f (3, 3) = 5

S1 S3
S2

(d) f (3, 3) = 6
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S1 S3
S2

(e) f (3, 3) = 7

Figure 4.2: Achievability of the Range for f(3, 3) and an Alternate Representation

Applying this idea to the case of four targets yields the diagrams in Figure 4.3.
The range of values for f(3, 4) is 4 to 12. Here, all values are achievable up to and
including 10.

S1

S3

S2

(a) f (3, 4) = 4

S1

S3

S2

(b) f (3, 4) = 5
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S1

S3

S2

(c) f (3, 4) = 6

S1

S3

S2

(d) f (3, 4) = 7

S1

S3

S2

(e) f (3, 4) = 8

S1

S3

S2

(f) f (3, 4) = 9
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S1

S3

S2

(g) f (3, 4) = 10

Figure 4.3: Achievability of the Range for f (3, 4) and an Alternate Representation

The configurations that give exactly 11 and 12 candidate targets are displayed in
Figures 4.4 and 4.5, respectively. In each case it is impossible to choose four targets
from the candidate targets without violating the fact that each line must have only
one target assigned to it. The verification of this involves routine checking. We
illustrate this with one example.

(a) (b) (c)

(d) (e)

Figure 4.4: Non-feasible Configurations for f(3, 4) = 11
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(a) (b)
Figure 4.5: Non-feasible Configurations for f (3, 4) = 12

Consider the configuration displayed in Figure 4.5(a). We assign labels to the
points (candidate targets) as below (Figure 4.6).

a

b

y

α β

γ

δ

x

Figure 4.6: Labelled Non-feasible Configuration for f(3, 4) = 12

Let T be a feasible set of targets. Consider points a and b (x and y) that have
exactly one vertical (horizontal) line passing through them. Observe that either a
and x ∈ T or b and y ∈ T . Now the only points that are not on a line passing
through a and x (b and y) are γ and δ (α and β). As each of γ and δ and α and β
are on the same line, the maximum number of targets that can be in T are 3. Hence
the configuration of Figure 4.5(a) is non-feasible.

Using a similar argument (but with more cases to consider) we can establish that
f(3, 6) < 27. Thus equality in equation (4) is not achievable for n = 4 and 6. We
conjecture that for all even n,

f(3, n) <
3

4
n2.

In fact, we believe that

f(3, n) ≤ 3

4
n2 − n

2

for even n.

We have shown that equality is achievable for n = 3 and can illustrate it for n = 5
and 7. We believe the upper bound in equation (4) is achievable for odd n.

121



Conjecture 1: Given three sensors and n targets, where n is even,

f(3, n) ≤
(

3

4
n2 − n

2

)
.

For Conjecture 1, a graph theoretical formulation of the feasibility problem can
be obtained as follows. We consider each candidate target as a vertex and we join two
vertices by an edge if there is a line passing through them in the grid representation.
We call the resulting graph G (n). For feasibility, we need to find a set of n vertices
no two of which are adjacent, that is, an independent set of n vertices in G (n). In
graph theoretic terminology the problem is to show that the “independence number”
of the graph is n. This is, for general graphs, a difficult problem.

5 Discussion

From Lemma 2.1 we know that the first occurrence of ambiguity is when m = n.
Also, the upper bound in equation (4) is a valid bound for m ≥ 4 as well. For general
n, we make the following conjecture:

Conjecture 2: Given n sensors and n targets,

f(n, n) ≤
{

2n + 1, for odd n,
2n, otherwise.

(5)

Constructions for the cases n = 2, 3 and 4 are given in Figure 5.1 and the results
in terms of f(n, n) are given in Table 5.1.

S1
S2

(a) f(2, 2) = 4

S1

S3

S2

(b) f(3, 3) = 7
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S1 S3

S2

S4

(c) f(4, 4) = 8

Figure 5.1: f(n, n) for n = 2, 3 and 4.

As the number of sensors and targets increase, the diagrams become much harder
to draw; for this reason, only the grid-like representation described in the previous
section is given for n = 5 and 6 in Figure 5.2.

(a) f(5, 5) = 11
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(b) f(6, 6) = 12

Figure 5.2: f(n, n) for n = 5 and 6.

For the ambiguity to occur, each bearing line emanating from the sensors has
a true target and a ghost on it. In the odd case, the extra ghost comes from the
intersection of the bearing lines crossing in the centre. A summary of the cases
is given in Table 5.1. The values in the table are the same as those given by the
conjecture in equation (5) giving support to our claim.

n f(n, n)
2 4
3 7
4 8
5 11
6 12

Table 5.1: Values of f(n, n) for varying n

The multisensor data association problem can be formulated as a three-dimensional
assignment problem that can be solved in a variety of ways. The solution of the as-
signment problem gives the number of targets and their corresponding positions. It
also says which measurements are false alarms. However, current algorithms do not
address the problem of ambiguity that was discussed in previous sections. An impli-
cation of the ambiguity is that current algorithms may converge to a mathematically
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correct solution, but this solution is not physically valid. Thus the effect of ambiguity
is the introduction of local minima into the solution space.

There are several ways of detecting ambiguity. One would be to consider the value
of the k-best solutions to the assignment problem. If two or more solutions had very
similar costs, this would indicate the presence of ambiguity. This is easily done in
a Branch and Bound algorithm by replacing the weak inequalities in the fathoming
test with strict inequalities and storing each of the solutions. At the conclusion of the
Branch and Bound algorithm, all the stored solutions will be the optimal solutions.

The solution to the assignment problem is x̂ijk for all i, j and k. By considering
a subset of the solution set where x̂ijk = 1, we can devise a brute force method to
generate the next best solution. This is explained via an example. Consider the
problem as given in Figure 5.3 where all targets are detected and there are no false
alarms. We know there are two solutions, γ1 and γ2 respectively, both with the same
optimal value of zoptimal. The first solution is

γ1 = {A, C, E} = {Zijk : x̂ijk = 1} = {Z312, Z121, Z233}
and the second

γ2 = {B, D, F} = {Zijk : x̂ijk = 1} = {Z211, Z132, Z323}.

2

S1
S3

S2

1
3

1

1

2
2

3

3

A

B

C
DE

F

Figure 5.3: Example of Ambiguity for Three Sensors and Three Targets Used to
Illustrate the Brute Force Method of Finding the k-Best Solution

Assuming that the algorithm converged to the first solution, if we set all of the
variables in γ1 to zero and resolved the problem with these variables fixed, we would
obtain another solution, zsoln2. In this instance because γ1 and γ2 are mutually
exclusive we would have zsoln2 = zoptimal or zsoln2 ≈ zoptimal. This would alert us
to the presence of ambiguity. In the non-ideal situations where there are missed
detections and false alarms and ambiguity present, we could have a situation where
some of the variables where x̂ijk = 1 may appear in both solution sets so it would
be foolish to fix all the variables that equal one to zero. To check for ambiguity in
this instance it would be more realistic to fix a variety of the variables to zero and
resolve the problem. It would be advisable to do this for a variety of combinations.
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It has also been observed that for m = n = 3 (see Figure 2.2), m = n = 4 and
m = n = 5 an alternating pattern between true targets and the ghosts. A method
for moving between one solution set to the other could be devised. When there
are more sensors than targets, ambiguity does not occur. So, one way of resolving
ambiguity could be to add additional sensors to the problem. In practice this is
not always possible and it will also increase the complexity of the problem to solve.
Alternatively, other information such as frequency could be used to resolve ambiguity.
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