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Abstract

We prove that, for each p ≥ 1, there exists a polynomial time algorithm
for finding a minimum dominating set in the class of all (Kp, P5)-free
graphs.

Let G be a graph with vertex-set V (G) and edge-set E(G). The notation x ∼ y
(respectively, x �∼ y) means that vertices x, y ∈ V (G) are adjacent (respectively, non-
adjacent). Moreover, if X ⊆ V (G) and y ∈ V (G)\X , we write y ∼ X (respectively,
y �∼ X) to indicate that y is adjacent (respectively, non-adjacent) to all vertices in
X . The neighborhood of a vertex x ∈ V (G) is the set N(x) = NG(x) = {y ∈ V (G) :
x ∼ y}; the closed neighborhood of x is N [x] = {x} ∪ N(x). Similarly, for a set
X ⊆ V (G), N(X) =

⋃

x∈X

N(x) and N [X ] = X ∪N(X). We use the notation Pn and

Kn for a path and a complete graph of order n ≥ 1, respectively.
A set D ⊆ V (G) is a domination set in a graph G if every vertex of V (G)\D

is adjacent to a vertex of D. The domination number γ(G) of a graph G is the
minimum cardinality of a dominating set in G. A dominating set G in G is minimum
if |D| = γ(G). For a set X ⊆ V (G) we say that X dominates N [X ].

Let Z be a set of graphs. A graph G is called Z-free if G does not contain any
graph of Z as an induced subgraph. It is well known (see Bertossi [1], Johnson [3],
and Korobitsin [4]) that the problem of finding a minimum dominating set is NP-
complete for both P5-free graphs and Kp-free graphs (p ≥ 3). We prove that this
problem can be solved in polynomial time for (Kp, P5)-free graphs.
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Definition 1. For n ≥ m ≥ 1 we define a graph H = S(n, m) as follows: V (H) =
A ∪ B, where A = {u1, u2, . . . , un} and B = {v1, v2, . . . , vm} are disjoint sets, and

E(H) = {uiuj : i, j ∈ {1, 2, . . . , n}, i �= j} ∪ {uivi : i = 1, 2, . . . , m}.

Any graph S(n, m) (n and m are not fixed) will be called a simple split graph
(Figure 1).

All graph of the form S(n, m) are split graphs in sense of Földes and Hammer
[2].
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Figure 1. The simple split graph S(m, n)

Theorem 1. For each p ≥ 1, there exists a polynomial time algorithm for finding a
minimum dominating set in the class of all (Kp, P5)-free graphs.

Proof. Let G be an arbitrary (Kp, P5)-free graph. Without loss of generality we may
assume that G is connected. Let us choose a subset D ⊆ V (G) such that

(1) D induces a simple split graph;

(2) D dominates the largest number of vertices among all subsets satisfying (1).

We denote by H the subgraph of G induced by D. We shall assume as in Defini-
tion 1 that V (H) = D = A∪B, where A = {u1, u2, . . . , un} and B = {v1, v2, . . . , vm}
are as in 1.

Suppose that D is not a dominating set in G. We consider a vertex x at distance
two from D. Clearly, D does not dominate by x. There exists a vertex w �∈ D such
that w ∼ x and N(w) ∩ D �= ∅.

Claim 1. N(w) ∩ A �= ∅.
Proof. Suppose that N(w)∩A = ∅. Since N(w)∩D �= ∅, there exists a vertex vi ∈ B
(1 ≤ i ≤ m) which is adjacent to w.
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If there is a vertex uj ∈ A\{ui} then the set {uj, ui, vi, w, x} induces P5, a
contradiction. Therefore n = i = 1, i.e., A = {u1} and B = {v1}. The set
D′ = {u1, v1, w, x} induces P4

∼= S(2, 2), D ⊂ D′ and D′ dominates more vertices
than D. This contradicts to the choice of D.

We introduce a partition of A:

A0 = {ui : ui �∼ w and i ∈ {m + 1, m + 2, . . . , n}},
A1 = {ui : ui ∼ w and i ∈ {m + 1, m + 2, . . . , n}},
A00 = {ui : ui �∼ w, vi �∼ w and i ∈ {1, 2, . . . , m}},
A01 = {ui : ui �∼ w, vi ∼ w and i ∈ {1, 2, . . . , m}},
A10 = {ui : ui ∼ w, vi �∼ w and i ∈ {1, 2, . . . , m}},
A11 = {ui : ui ∼ w, vi ∼ w and i ∈ {1, 2, . . . , m}},
and a partition of B:

B00 = {vi : ui ∈ A00},
B01 = {vi : ui ∈ A01},
B10 = {vi : ui ∈ A10},
B11 = {vi : ui ∈ A11}.

According to Claim 1, the vertex w is adjacent to a vertex u ∈ A.

Claim 2. A00 = B00 = ∅.
Proof. It sufficient to show that A00 = ∅. If there is a vertex ui ∈ A00 then the set
{vi, ui, u, w, x} induces P5, a contradiction.

We put
A′ = A10 ∪ A11 ∪ A1 ∪ {w} = (A ∩ N(w)) ∪ {w},

B′ = B10 ∪ {x} = (B\N(w)) ∪ {x},
and

D′ = A′ ∪ B′.

It is clear that D′ induces a simple split graph H ′. The vertex u ∈ N(w)∩A ⊆ A′

dominates A. The vertex w ∈ D′ dominates the set B01 ∪ B11. By Claim 2, B =
B01 ∪ B10 ∪ B11. Since B10 ⊆ D′, D′ dominates D.

The set D′ dominates x, but D does not. It follows from the choice of D that
there exists a vertex y that is dominated by D and not dominated by D′. Clearly,
y �∈ D ∪ D′.

Claim 3. y �∼ A.
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Proof. Since A10 ∪ A11 ∪ A1 ⊆ D′ and D′ does not dominate y, y �∼ A10 ∪ A11 ∪ A1.
By Claim 2, A = (A0 ∪ A01) ∪ (A10 ∪ A11 ∪ A1). Suppose that there exists a

vertex ui ∈ A0 ∪ A01 that is adjacent to y. We have y �∼ {w, x} ⊆ D′. Recall that
the vertex u ∈ A is adjacent to w, therefore u �∈ A0 ∪ A01 and u �= ui. Then the set
{y, ui, u, w, x} induces P5, a contradiction. Thus, y �∼ A0 ∪ A01 and y �∼ A.

Claim 4. (i) y ∼ B,

(ii) B10 = ∅, and

(iii) B = B01 ∪ B11 �= ∅.
Proof. (i) The vertex y is dominated by D = A ∪ B. By Claim 3, y �∼ A. Therefore
y is adjacent to a vertex vi ∈ B. If there exists a vertex vj ∈ B\{vi} that is
non-adjacent to y, then the set {vj, uj , ui, vi, y} induces P5, a contradiction. Hence
y ∼ B.

(ii) By Claim 2, B = B01 ∪B10 ∪B11. Since B10 ⊆ D′ and D′ does not dominate
y, y �∼ B10. According to (i), y ∼ B10. Hence B10 = ∅.

(iii) It follows from (ii) that B = B01 ∪ B11. The vertex y is dominated by the
set D′ = A′ ∪ (B01 ∪ B11). By Claim 3, y �∼ A. Thus, B01 ∪ B11 �= ∅.

Since B10 = ∅, we also have A10 = ∅. Now we consider two possible cases.

Case 1: |B| ≥ 2.

Claim 5. |A| = |B| = 2.

Proof. Since |B| ≥ 2, B contains two distinct vertices vi and vj . Then ui, uj ∈ A
and |A| ≥ 2. If there exists a vertex uk ∈ A\{ui, uj} then the set {vi, y, vj, uj , uk}
induces P5, a contradiction. It follows that |A| = 2 and |B| = 2.

By Claim 5, we may assume that A = {u1, u2} and B = {v1, v2}. By Claim 1, w
is adjacent to either u1 or u2. We may assume that w ∼ u2.

We consider the set D1 = {y, v2, u2, w, x}. Recall that x �∼ {u2, v2} ⊆ D, y �∼
{w, x} ⊆ D′, and y �∼ u2 ∈ A. Since D1 does not induce P5, v2 is adjacent to w
and D1 induces a subgraph H1

∼= S(3, 2). The set D1 dominates x, but D does not.
Hence there exists a vertex z that is dominated by D and not dominated by D1.
Clearly, z �∈ D ∪ D1 and z is adjacent to a vertex of {u1, v1} = D\D1.

If z ∼ u1 then the set {z, u1, u2, v2, y} induces P5, a contradiction. So z �∼ u1.
Then z ∼ v1 and the set {z, v1, y, v2, u2} induces P5, a contradiction.

Case 2: |B| = 1.

Let B = {v1}. By Claim 4, y ∼ v1.

Claim 6. w ∼ v1.
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Proof. Suppose that w �∼ v1. The set {x, w, u1, v1, y} can not induce P5, therefore
w �∼ u1. Recall that the vertex w is adjacent to the vertex u ∈ A. We have u �= u1

and the set {w, u, u1, v1, y} induces P5, a contradiction.

The set D2 = {u1, v1, w, x} induces a subgraph H2 isomorphic to either S(2, 2)
(when w �∼ u1) or S(3, 1) (when w ∼ u1). Since D2 dominates x and D does not,
there exists a vertex z �∈ D ∪ D2 ∪ {y} and z �∼ {u1, v1, w, x}. If z ∼ y then the
set {z, y, v1, w, x} induces P5, a contradiction. So z �∼ y. Since D dominates z, z
is adjacent to a vertex ui ∈ A\{u1}. Then the set {z, ui, u1, v1, y} induces P5, a
contradiction.

Thus, we have shown that D is a dominating set in G. Since G does not contain Kp

as an induced subgraph, n = |A| ≤ p−1. So γ(G) ≤ |D| = |A|+|B| ≤ 2|A| ≤ 2(p−1).
Since γ(G) is bounded above, a minimum domination set can be found by considering
all t-subsets of V (G) with t ≤ 2(p − 1) in polynomial time.

Corollary 1. If G is a (Kp, P5)-free graph, then a minimum dominating set of G
can be found in time O(np).

Proof. The statement follows from the proof of Theorem 1.

Corollary 2. If G is a P5-free graph and the largest clique in G has size ω, then
γ(G) ≤ 2ω.

Proof. The statement follows from the proof of Theorem 1.

Corollary 3. Each (Kp, P5)-free graph contains a dominating set D with |D| ≤ 2p−2
that induces a simple split graph.

However, a (Kp, P5)-free graph may have a minimum dominating set that does
not induces a simple split graph. For example, any minimum dominating set in C5

[a 5-cycle] induces O2 = K2 [a graph with two non-adjacent vertices]. Clearly, O2 is
not a simple split graph.

Corollary 4. The domination number of a P5-free k-colorable graph can be found in
polynomial time.

Corollary 5. The domination number of a P5-free planar graph can be found in
polynomial time.

By a result of Földes and Hammer [2], the class of all split graphs coincides with
the class of all (2K2, C4, C5)-free graphs. Since 2K2 is an induced subgraph of P5, a
split graph must be P5-free.
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Corollary 6. The domination number of a Kp-free split graph can be found in poly-
nomial time.

Open Problem 1. Find the maximum value of q such that the domination number
in the class of all (Kp, Pq)-free graphs can be found in polynomial time.

For a graph G, the class of all G-free graphs is called a monogenic class. Koro-
bitsin [4] proved that the domination number of a graph in a monogenic class P of
all G-free graphs can be found in polynomial time if G is an induced subgraph of P4

with (possibly) isolated vertices. Otherwise the problem is NP-complete. For bigenic
classes, the problem is much more complicated. A bigenic class is a hereditary class
with exactly two minimal forbidden induced subgraphs.

Open Problem 2. Let S = {{G1, G2} : none of G1, G2 is an induced subgraph of
the other }. Find a partition S1 ∪ S2 = S such that

• for each pair {G1, G2} ∈ S1, the domination number in the bigenic class of all
{G1, G2}-free graphs can be found in polynomial time, and

• for each pair {G1, G2} ∈ S2, the domination number problem in the bigenic
class of all {G1, G2}-free graphs is NP-complete.
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