
Maximum 2-independent sets of random cubic
graphs

W. Duckworth∗

Department of Computing
Macquarie University
Sydney, NSW 2019

Australia
billy@ics.mq.edu.au

Abstract

We present a simple, yet efficient, heuristic for finding a large 2-inde-
pendent set of cubic graphs. We analyse the performance of this heuris-
tic, which is a randomised greedy algorithm, on random n-vertex cubic
graphs using differential equations. In this way, we are able to prove that
the expected size of the 2-independent set returned by the algorithm is
asymptotically almost surely greater than 0.20485n.

1 Introduction

A k-independent set of a graph, G, is a subset, I, of the vertices of G such that the
distance between any two vertices of I in G is at least k + 1. We are interested in
finding k-independent sets of large cardinality. Kong and Zhao [7] showed that for
every k ≥ 2, finding a maximum k-independent set of a graph is NP-hard, even when
restricted to regular bipartite graphs [8]. For other basic graph theory definitions
not defined here, the reader is referred to, for example, Diestel [3].

Finding a large k-independent set of a graph has applications in the fields of
job-scheduling on k-machines, VLSI design layout, routing and channel assignment
location [5]. Many of these applications are in the field of distributed computing [9]
and, as networks often have bounded or even regular degree, it is of interest to
consider algorithms for finding large k-independent sets of such graphs.

Many problems that remain NP-hard when the input is restricted to d-regular
graphs are often polynomial time solvable when d ≤ 2. Therefore, cubic (i.e. 3-
regular) graphs may be considered to be of most interest in this regard.

∗ This research was carried out whilst the author was in The Department of Mathematics and
Statistics, The University of Melbourne, VIC 3010, Australia

Australasian Journal of Combinatorics 27(2003), pp.63–79

Due to the NP-hardness of the k-independent set problem, we are forced to
relax the optimality requirement and consider heuristics that find a solution that is
somehow close to optimal in a time that is bounded by a polynomial of the input size.
Simple heuristics often have a relatively poor worst-case performance as there may
exist many extremal input instances on which a simple algorithm may perform badly.
It is therefore natural to consider the average-case performance of such heuristics.
The performance of a simple heuristic may still be poor on average and therefore
more efficient algorithms may need to be developed. However, for k > 2 (in particular
for k ≥ 4) it seems difficult to find efficient heuristics that find large k-independent
sets of (regular) graphs that have a reasonable average-case performance, let alone,
worst-case performance. The heuristic for the 2-independent set problem we present
does not readily extend to larger values of k (and not at all for values of k > 3).
Heuristics that we have analysed that extend to larger values of k have a poorer
performance than the algorithm we present for k = 2.

We consider simple, connected, cubic graphs. When considering any such graph
on n vertices, we assume n to be even to avoid parity problems. Note that for n-vertex
cubic graphs, it is simple to show that the size of a maximum 2-independent set is
at most n/4 and at least n/10 implying that this problem is trivially approximable
with approximation ratio 2.5 for such graphs.

In [4] a deterministic algorithm for finding a large 2-independent set of cubic
graphs was presented and analysed. It was shown that the size of a maximum
2-independent set of an n-vertex cubic graph is at least n/8 + O(1). The linear
programming technique that was used to analyse the performance of the algorithm
that was presented, also demonstrated the existence of an infinite family of cubic
graphs for which the algorithm only achieves this bound.

As we consider cubic graphs that are generated u.a.r. (uniformly at random),
we need some notation. We use the notation P (probability), E (expectation) and
say that a property, B = Bn, of a random regular graph on n vertices holds a.a.s.
(asymptotically almost surely) if limn→∞ P(Bn)=1. For other random graph theory
definitions not defined here, the reader is referred to, for example, Janson et al. [6].

Assiyatun [1] recently gave existence proofs that bound the size of a maximum
2-independent set of random regular graphs. These results imply that the size of
a maximum 2-independent set, I , of a random n-vertex cubic graph a.a.s. satisfies
0.2315n ≤ |I| ≤ 0.2356n.

We present a simple, yet efficient, heuristic for finding a large 2-independent set
of cubic graphs. We analyse the performance of this heuristic, which is a randomised
algorithm, on random n-vertex cubic graphs using differential equations. We prove
that the expected size of the 2-independent set returned by the algorithm is a.a.s.
greater than 0.20485n.

The following section gives a brief description of our algorithm along with some
motivation as to why this algorithm has a reasonable average-case performance.
In Section 3 we describe the model we use for generating cubic graphs u.a.r. and
describe the notion of analysing the performance of algorithms on random graphs
using systems of differential equations. Details of our algorithm are given in Section 4
and its analysis is presented in Section 5 proving our a.a. sure lower bound.

64

2 A Greedy Heuristic

One of the simplest types of algorithm that may be used to approximate an NP-
hard graph-theoretic optimisation problem are greedy algorithms. These algorithms
iteratively make choices that seem (at the time) to be the most beneficial. At each
iteration, as each subsequent member of the set under construction is chosen, the
algorithm updates the graph by removing vertices and (or) edges in order that, once
the next selection has been made, the set constructed thus far satisfies the given
requirements (independence etc.).

At first glance, the simplest heuristic for approximating the 2-independent set
problem would be to repeatedly choose a vertex, v, for inclusion in the set, each
time, deleting all vertices at distance at most 2 from v (any such vertex is within
distance 3 of v and would therefore not be allowed to be chosen as part of the set,
having already chosen v). Unfortunately this heuristic is not guaranteed to produce
a set that is 2-independent. Consider a subgraph of the input graph with vertex set
{1, 2, 3, 4, 5, 6, 7} and edge set {(1, 2), (2, 3), (3, 4), (3, 5), (4, 6), (5, 7)}. Choose vertex
1 to be part of the 2-independent set and delete all vertices at distance at most 2
from vertex 1. This leaves the edges (4, 6) and (5, 7) intact. Then choose vertex 4
(which is at distance 3 from vertex 1) to be part of the set. The algorithm deletes
vertices 4 and 6 but no more as it has no knowledge that vertices 4 and 5 were
connected by a path of length 2. It could then continue and pick vertex 5 (which is
at distance 2 from vertex 4) to be part of the set.

A variation on this (for a cubic graph) would be to repeatedly select vertices
of degree 3 for inclusion in the set. Each time a vertex is chosen, delete all of its
neighbours. This is guaranteed to return a set that is 2-independent. However, this
algorithm has a worse average-case performance than the algorithm we present.

The heuristic we describe is a randomised greedy algorithm that is based on re-
peatedly selecting vertices of given current degree from an ever-shrinking subgraph
of the input graph. At the start of our algorithm all vertices have degree 3. Through-
out the algorithm, as vertices are chosen for inclusion in the set under construction,
edges are deleted and the algorithm terminates when all vertices have degree 0.

For a cubic graph, G, the algorithm constructs a subset, I, of the vertices of G
in a series of steps. Each step starts by selecting a vertex u.a.r. from those vertices
of a particular current degree. The first step is unique in the sense that it is the
only step in which a vertex is selected u.a.r. from the vertices of degree 3. We select
such a vertex, u, u.a.r. from all the vertices of the input graph to add to I. We then
delete all edges incident with u and its neighbours. Note that, as we assume the
input graph to be connected, after the first step and before the completion of the
algorithm, there always exists a vertex of current degree 1 or 2.

For each step after the first, if there exist vertices of current degree 1, such a
vertex, u, is chosen u.a.r. Otherwise we select u u.a.r. from those vertices of current
degree 2. We then investigate the degree(s) of the neighbour(s) of u. If u has one or
more neighbours of degree 3, we select such a vertex, v, u.a.r. to add to I and delete
all edges incident with v and its neighbours. If u has no neighbour of degree 3, we
delete the edges incident with u (without adding a vertex to I).

65

Note that each vertex chosen to be part of I is chosen from the vertices of degree
3 in the step that it is selected. Once each selection has been made, all edges incident
with the chosen vertex and its neighbours are deleted. These two facts guarantee
that the set I returned by the algorithm is 2-independent in G.

The steps in which the algorithm does not add a vertex to I are those when the
chosen vertex, v, and all its neighbours have degree less than 3. In such an instance,
choosing v to be part of I may lead to the set returned not being 2-independent
in G. As v had current degree less than 3, there must have been at least one edge
incident with v that has been deleted in a previous step. This edge may form part
of a path of length 2 between v and another vertex that has already been selected
(or that may be selected at some later time).

3 Random Graphs and Differential Equations

3.1 Generating Random Cubic Graphs

The model we use to generate a cubic graph u.a.r. was first described in its simplest
form by Bollobás [2] and may be summarised as follows. For an n-vertex cubic graph:
take 3n points in n buckets labelled 1 . . . n (with three points in each bucket) and
choose u.a.r. a disjoint pairing of the 3n points. If no pair contains two points from
the same bucket (which represents a loop) and no two pairs contain four points from
just two buckets (which represents a multiple edge), this represents a simple cubic
graph on n vertices with no loops and no multiple edges. The buckets represent
the vertices of the randomly generated cubic graph and each pair represents an edge
whose end-points are given by the buckets of the points in the pair. With probability
bounded below by a positive constant, loops and multiple edges do not occur (see,
for example, Wormald [11, Section 2.2]).

Generating a random cubic graph in this way may be considered as follows. Ini-
tially, all vertices have degree 0. Throughout the execution of the generation process,
vertices will increase in degree until the generation is complete and all vertices have
degree 3. We refer to the graph being generated throughout this process as the
evolving graph.

3.2 Analysis Using Differential Equations

One method of analysing the performance of a randomised algorithm is to use a sys-
tem of differential equations to express the expected changes in variables describing
the state of the algorithm during its execution. Wormald [12] gives an exposition
of this method and in [4] this method is applied to various other graph-theoretic
optimisation problems.

In order to analyse our algorithm using a system of differential equations, we
incorporate the algorithm as part of a pairing process that generates a random cubic
graph. In this way, we generate the random graph in the order that the edges are
examined by the algorithm.

66

During the generation of a random cubic graph we choose the pairs sequentially.
The first point, pi, of a pair may be chosen by any rule. The freedom of choice of pi

enables us to select it u.a.r. from the vertices of given current degree in the evolving
graph. In order to ensure that the cubic graph is generated u.a.r., the second point,
pj , of a pair must be selected u.a.r. from all the remaining free (i.e. unpaired) points.
We refer to selecting pj as choosing a mate for pi. Using B(pk) to denote the bucket
that the point pk belongs to, we say that the edge from B(pi) to B(pj) is exposed
and we say that B(pj) is hit by this exposed edge. Note that we may then determine
the current degree of the vertex represented by the bucket B(pj) without exposing
any further edges.

The incorporated algorithm and pairing process may be loosely summarised as
follows. Repeatedly select a vertex, u, u.a.r. from those vertices of given current
degree in the evolving graph and expose all remaining edges incident with u. This is
achieved by selecting each free point u.a.r. from the bucket corresponding to u and
selecting a mate for each of these points u.a.r. from all the remaining free points in the
evolving graph. The choice of whether to add a vertex to the set under construction
will depend on the current degrees of the vertices hit by these exposed edges. Further
edges may then be exposed. More detail is given in the following section.

In what follows, we denote the set of vertices of current degree i of the evolving
graph, at time t, by Vi = Vi(t) and let Yi = Yi(t) denote |Vi|. We may express the
state of the evolving graph at any point during the execution of the algorithm by
considering Y0, Y1 and Y2. In order to analyse our randomised algorithm for finding a
2-independent set, I, of cubic graphs, we calculate the expected change in this state
over one unit of time (a unit of time is defined more clearly in Section 5) in relation
to the expected change in the size of I. Let I = I(t) denote |I| at any stage of the
algorithm (time t) and let E∆X denote the expected change in a random variable
X conditional upon the history of the process. The equations representing E∆Yi

and E∆I are then used to derive a system of differential equations. The solutions
to the differential equations describe functions which represent the behaviour of the
variables Yi. Wormald [12, Theorem 6.1] describes a general result which guaran-
tees that the solutions of the differential equations almost surely approximate the
variables Yi. The expected size of the 2-independent set may be deduced from these
results.

4 The Algorithm

In Figure 1 we present our algorithm combined with a pairing process. This combi-
nation generates an n-vertex cubic graph, G, u.a.r. and, at the same time, finds a
subset, I, of the vertices of G.

In the algorithm, the function isolate(u) involves the process of exposing all the
remaining edges incident with the vertex u and then exposing all the remaining edges
incident with the vertices hit by the edges exposed from u. Note that all vertices
chosen to be part of the 2-independent set were in V0 at the start of the operation
that selected them. This, and the fact that isolate(u) is applied to all such vertices,

67

ensures that the set returned is 2-independent.

select u u.a.r. from V0;
I ← u;
isolate(u);

while (Y1 + Y2 > 0) do
if (Y2 > 0)

select u u.a.r. from V2;
expose an edge from u to a vertex v, say;
if (v ∈ V1)
I ← I ∪ v;
isolate(v);

endif
else

select u u.a.r. from V1;
expose two edges from u to vertices w and w′, say;
if (w ∈ V2 ∧ w′ ∈ V2) v ← NULL;
else if (w ∈ V1 ∧ w′ ∈ V2) v ← w;
else if (w ∈ V2 ∧ w′ ∈ V1) v ← w′;
else select v u.a.r. from {w,w′};
endif
if (v �= NULL)
I ← I ∪ v;
isolate(v);

endif
endif

enddo

Figure 1: Combined Algorithm and Pairing Process

The algorithm terminates when there are no remaining vertices of degree 1 or
2, which means that a connected component has been completely generated and a
2-independent set has been found in that component. It is well known that cubic
graphs are a.a.s. connected, so the result is a.a.s. a 2-independent set in the whole
graph.

We select the first element, u, of I u.a.r. from all of the vertices in the evolving
graph, expose all of its incident edges and expose all edges incident with the vertices
hit by the edges exposed from u. We say that the remainder of the combined algo-
rithm and pairing process proceeds in operations where each operation is denoted by
one iteration of the while loop. There are two basic types of operation. A Type 1
operation refers to an operation where Y2 = 0 and a vertex, u, is selected u.a.r. from

68

V1. Similarly, a Type 2 operation refers to an operation where Y2 > 0 and a vertex,
u, is selected u.a.r. from V2.

For both types of operation we expose all remaining edges incident with u and
investigate the degree(s) of the new neighbour(s) of u. If u has a new neighbour
of degree 1, we add this vertex to the 2-independent set (choosing randomly in the
case there is more than one). Otherwise, we simply start a new operation. If a
vertex, v, is selected by an operation for inclusion in the 2-independent set, all the
remaining edges incident with v are exposed and then we expose all the remaining
edges incident with the vertices hit by the edges exposed from v.

Figures 2 and 3 show the configurations that may be encountered by performing
operations of Type 1 and Type 2 respectively (a.a.s.). The larger circles represent
buckets with the points of that bucket represented by smaller circles. Points that
were (without a doubt) free (respectively used up) at the start of an operation are
coloured black (respectively white). Other points are shaded. Vertices labelled v are
chosen for inclusion in the 2-independent set. Vertices of unknown degree labelled µ
will have all their incident edges exposed and we refer to these vertices as rems (as,
if they are of degree i, they are removed from the set Vi).

1b

u

v

µµ

1a

u

1c

u

v

µ µ

Figure 2: Type 1: Select a vertex from V1

2c

v

µ µ

u u u

2b2a

Figure 3: Type 2: Select a vertex from V2

69

5 Algorithm Analysis

We analyse the combined algorithm and pairing process using differential equations
and in this way prove the following theorem.

Theorem 1 The size of a maximum 2-independent set of a random n-vertex cubic
graph is asymptotically almost surely greater than 0.20485n.

Proof The first operation of the algorithm involves randomly selecting the first
vertex of the 2-independent set and exposing the appropriate edges. We split the
remainder of the analysis into two distinct phases. We informally define Phase 1
as the period of time where any vertices in V2 that are created are used up almost
immediately and Y2 remains small. Once the rate of generating vertices in V2 becomes
larger than the rate that they are used up, the algorithm moves into Phase 2 and all
operations involve selecting a vertex from V2.

We define a clutch to be a series of operations in Phase i from an operation of
Type i up to but not including the next operation of Type i. We proceed with
an examination of each of the two phases, before giving a formal definition of the
distinction between the phases. Initially, one only needs to assume that the process
begins in Phase 1 and that in Phase 2 there are no operations of Type 1.

5.1 Preliminary Equations For Phase 1

The initial operation of Phase 1 is of Type 1 (at least a.a.s.). A vertex u is chosen
u.a.r. from V1 and all edges incident with u are exposed. Once the degrees of the
neighbours of u are known, a vertex may be chosen to be added to the 2-independent
set based on the criteria shown by Figure 2. The next operation of the algorithm
may be of Type 1 or Type 2 depending on the size of the set V2. For simplicity, we
consider operations of Type 2 first and then combine the equations given by these
operations with those given by the operations of Type 1.

Operations of Type 2 in Phase 1 involve the selection of a vertex u from V2. Let
s = s(t) denote the number of free points available in all buckets at a given stage
(time t). Note that

s =
∑2

i=0(3− i)Yi.

For our analysis it is convenient to assume that s > εn for some arbitrarily small but
fixed ε > 0. Later we discuss the last operations of the algorithm, when s ≤ εn.

The expected change in Yi due to changing the degree of a vertex of degree i from
i to i+ 1 by exposing one of its incident edges (at time t) is ρi + o(1) where

ρi = ρi(t) =
(i− 3)Yi + (4− i)Yi−1δi>0

s
, 0 ≤ i ≤ 2.

Here, for any statement Q, δQ represents 1 if Q evaluates to true and 0 otherwise.
To justify the definition of ρi, note that when the point in the vertex of degree i

was chosen, the number of points in the buckets corresponding to vertices currently

70

of degree i is (3 − i)Yi, and s is the total number of free points. In this case Yi

decreases; it increases if the selected point is from a vertex of degree i−1. These two
quantities are added because expectation is additive. The term o(1) comes about
because the values of all these variables may change by a constant during the course
of the operation being examined. Since s > εn the error is in fact O(1/n).

The expected change in Yi due to changing the degree of a rem from i to 0 and
increasing the degrees of its neighbours (other than v) by exposing all remaining
edges incident with the rem (at time t) is µi + o(1) where

µi = µi(t) =
(i− 3)Yi

s
+

(6Y0 + 2Y1)ρi

s
, 0 ≤ i ≤ 2.

The first term represents the removal of the rem from Vi. The expected number of
vertices of unknown degree incident with a rem is (6Y0 + 2Y1)/s + o(1) and each of
these will have its degree increased by 1 (giving the second term).

The expected change in Yi for an operation of Type 2 in Phase 1 (at time t) is
αi + o(1) where

αi = αi(t) = −δi=2 +
(i− 3)Yi

s
+

2Y1

s
δi=2 +

3Y0

s
2µi, 0 ≤ i ≤ 2.

We now consider operations of Type 1. The expected change in Yi for operation
1h given in Figure 2 (at time t) is βh,i + o(1) where

βa,i = βa,i(t) = −3δi=1 + 2δi=2, 0 ≤ i ≤ 2,

βb,i = βb,i(t) = −δi=0 − 2δi=1 + δi=2 + 2µi, 0 ≤ i ≤ 2 and

βc,i = βc,i(t) = −2δi=0 + 2µi, 0 ≤ i ≤ 2.

For an operation of Type 1 in Phase 1, the neighbours of u (the vertex selected at
random from V1) were in {V0∪V1} before the start of the operation, since Y2 = 0 when
the algorithm performs this type of operation. The probability that these neighbours
were in V0 or V1 are asymptotically 3Y0/s and 2Y1/s respectively. Therefore, the
probabilities that, given we are performing an operation of Type 1 in Phase 1, the
operation is of type 1a, 1b or 1c are P(1a) = 4Y 2

1 /s
2+o(1), P(1b) = 12Y0Y1/s

2+o(1)
and P(1c) = 9Y 2

0 /s
2 + o(1) respectively.

We define a birth to be the generation of a vertex in V2 by performing an operation
of Type 1 or Type 2 in Phase 1. The expected number of births from a Type 1
operation (at time t) is ν1 + o(1) where

ν1 = ν1(t) = 2P(1a) + (1 + 2µ2) P(1b) + 2µ2P(1c).

Here, for each case, we consider the probability that vertices of degree 1 become
vertices of degree 2 by exposing an edge incident with the vertex. An operation of

71

Type 1a generates two vertices of degree 2. An operation of Type 1b generates at
least one vertex of degree 2 plus possibly more depending on the degree(s) of the
other neighbours(s) of the rems. The number of births from an operation of Type
1c depends solely on the degree(s) of the other neighbours(s) of the rems.

Similarly, the expected number of births from a Type 2 operation (at time t) is
ν2 + o(1) where

ν2 = ν2(t) =
2Y1

s
+ 2µ2

3Y0

s
.

Consider the Type 1 operation at the start of the clutch to be the first generation
of a birth-death process in which the individuals are the vertices in V2, each giving
birth to a number of children (essentially independent of the others) with expected
number ν2. Then, the expected number in the jth generation is ν1ν2

j−1 and the
expected total number of births in the clutch is

ν1

1− ν2

.

For Phase 1, the expected change in Yi for a clutch is given by

E∆Yi = P(1a)βa,i + P(1b)βb,i + P(1c)βc,i +
ν1

1− ν2

αi + o(1). (1)

This assumes Y1 + Y2 �= 0, an eventuality which will be discussed later.
The equation giving the expected increase in I for a clutch in Phase 1 is given by

E∆I = P(1b) + P(1c) +
ν1

1− ν2

× 3Y0

s
+ o(1) (2)

as the contribution to the increase in the size of the 2-independent set by the Type
1 operation in a clutch is 1 if the operation is that of Type 1b or 1c; for each birth
we have a Type 2 operation (a.a.s.) and a Type 2 operation increases the size of the
2-independent set if the vertex hit by the edge exposed from u had degree 0 at the
start of the operation.

5.2 Preliminary Equations For Phase 2

In Phase 2, all operations are considered to be of Type 2 and therefore a clutch
consists of one operation. The expected change in Yi is given by

E∆Yi = αi + o(1). (3)

and the expected increase in I is given by

E∆I =
3Y0

s
+ o(1). (4)

72

5.3 The Differential Equations

We use the preliminary equations derived in the previous two subsections to formulate
a system of differential equations for each phase. Write Yi(t) = nzi(t/n), µi(t) =
nτi(t/n), βj,i(t) = nψj,i(t/n), s(t) = nξ(t/n), αi(t) = nχi(t/n) and νj(t) = nωj(t/n).
From the definitions of µ, β, s, α and ν we have

τi = (i−3)
ξ
zi + (6z0+2z1)((i−3)zi+(4−i)zi−1δi>0)

ξ2 , 0 ≤ i ≤ 2,

ψa,i = −3δi=1 + 2δi=2, 0 ≤ i ≤ 2,

ψb,i = −δi=0 − 2δi=1 + δi=2 + 2τi, 0 ≤ i ≤ 2,

ψc,i = −2δi=0 + 2τi, 0 ≤ i ≤ 2,

ξ =
∑2

i=0(3− i)zi,

χi = −δi=2 + (i−3)
ξ
zi + 2z1

ξ
δi=2 + 3z0

s
2τi, 0 ≤ i ≤ 2,

ω1 = 2
4z2

1

ξ2 + (1 + 2τ2)
12z0z1

ξ2 + 2τ2
9z2

0

ξ2 and

ω2 = 2z1

ξ
+ 3z0

ξ
2τ2.

Equation (1) representing E∆Yi for processing a clutch in Phase 1 forms the basis
of a differential equation. The differential equation suggested is

dzi

dx
=

4z2
1

ξ2
ψa,i +

12z0z1

ξ2
ψb,i +

9z2
0

ξ2
ψc,i +

ω1

1− ω2

χi, 0 ≤ i ≤ 2, (5)

where differentiation is with respect to x and xn represents the number, t, of clutches.
Equation (2) representing E∆I after processing a clutch in Phase 1 and writing

I(t) = nz(t/n) suggests the differential equation for z as

dz

dx
=

9z2
0

ξ2
+

12z0z1

ξ2
+

ω1

1− ω2

× 3z0

ξ
. (6)

For Phase 2, Equation (3) representing E∆Yi for processing a clutch suggests the
differential equation

dzi

dx
= χi, 0 ≤ i ≤ 2. (7)

Equation (4) representing E∆I after processing a clutch in Phase 2 suggests the
differential equation

dz

dx
=

3z0

ξ
. (8)

The solution to these systems of differential equations represents the cardinalities
of the sets Vi and I (scaled by 1/n) for given t. For Phase 1, the equations are (5)

73

and (6) with initial conditions z0(0) = 1, z1(0) = 0, z2(0) = 0 and z(0) = 0. The
initial conditions for Phase 2 are given by the final conditions for Phase 1 and the
equations are given by (7) and (8).

We use a result of [12] to show that during each phase, the functions representing
the solutions to the differential equations almost surely approximate the variables Yi

and I with error o(n). For this we need some definitions.
Consider a probability space, S, whose elements are sequences (q0, q1, . . .) where

each qt ∈ S. We use ht to denote (q0, q1, . . . , qt), the history of the process up to time
t, and Ht for its random counterpart. S(n)+ denotes the set of all ht = (q0, . . . , qt)
where each qi ∈ S, t = 0, 1, All these things are indexed by n and we will consider
asymptotics as n→∞.

We say that a function f(u1, . . . , uj) satisfies a Lipschitz condition on W ⊆ R
j if

a constant L > 0 exists with the property that

|f(u1, . . . , uj)− f(v1, . . . , vj)| ≤ L max
1≤i≤j

|ui − vi|

for all (u1, . . . , uj) and (v1, . . . , vj) in W . Note that max1≤i≤j |ui− vi| is the distance
between (u1, . . . , uj) and (v1, . . . , vj) in the �∞ metric.

For variables Y1, . . . , Ya defined on the components of the process, and W ⊆ R
a+1,

define the stopping time TW = TW (Y1, . . . , Ya) to be the minimum t such that

(t/n, Y1(t)/n, . . . , Ya(t)/n) /∈W.

The following is a restatement of [12, Theorem 6.1]. We refer the reader to that
paper for explanations, and to Wormald [10] for a similar result with virtually the
same proof.

Theorem 2 Let Ŵ = Ŵ (n) ⊆ R
a+1. For 1 ≤ l ≤ a, where a is fixed, let yl : S(n)+ →

R and fl : R
a+1 → R, such that for some constant C0 and all l, |yl(ht)| < C0n for all

ht ∈ S(n)+ for all n. Let Yl(t) denote the random counterpart of yl(ht). Assume the
following three conditions hold, where in (ii) and (iii) W is some bounded connected
open set containing the closure of

{(0, z1, . . . , za) : P(Yl(0) = zln, 1 ≤ l ≤ a) �= 0 for some n} .

(i) For some functions β = β(n) ≥ 1 and γ = γ(n), the probability that

max
1≤l≤a

|Yl(t+ 1)− Yl(t)| ≤ β,

conditional upon Ht, is at least 1− γ for t < min{TW , TŴ}.
(ii) For some function λ1 = λ1(n) = o(1), for all l ≤ a

|E(Yl(t+ 1)− Yl(t) |Ht)− fl(t/n, Y1(t)/n, . . . , Ya(t)/n) | ≤ λ1

for t < min{TW , TŴ}.

74

(iii) Each function fl is continuous, and satisfies a Lipschitz condition, on

W ∩ {(t, z1, . . . , za) : t ≥ 0},
with the same Lipschitz constant for each l.

Then the following are true.

(a) For (0, ẑ1, . . . , ẑa) ∈ W the system of differential equations

dzl

dx
= fl(x, z1, . . . , za), l = 1, . . . , a

has a unique solution in W for zl : R→ R passing through zl(0) = ẑl, 1 ≤ l ≤ a,
and which extends to points arbitrarily close to the boundary of W ;

(b) Let λ > λ1 + C0nγ with λ = o(1). For a sufficiently large constant C, with
probability 1− O(nγ + β

λ
exp(−nλ3

β3)),

Yl(t) = nzl(t/n) +O(λn)

uniformly for 0 ≤ t ≤ min{σn, TŴ} and for each l, where zl(x) is the solution
in (a) with ẑl = 1

n
Yl(0), and σ = σ(n) is the supremum of those x to which the

solution may be extended before reaching within �∞-distance Cλ of the boundary
of W .

First, we apply Theorem 2 within Phase 1. Define Ŵ ′ to be the vectors for which
z1 ≥ 0, z2 ≥ 0 and z1 + z2 > 0. Also, for an arbitrarily small ε > 0, define W to
be the set of all (t, z0, z1, z2, z) for which t > −ε, ξ > ε, ω2 < 1 − ε, z > −ε and
zi < 1 + ε where 0 ≤ i ≤ 2. Then W defines a domain for the variables t, zi and z
so that Theorem 2 may be applied to the process within Phase 1.

For part (i) of Theorem 2 we must ensure that Yi(t) does not change too quickly
throughout the process. As long as the expected number of births in a clutch is
bounded above, the probability of getting say nε births is O(n−K) for any fixed K.
This comes from a standard argument as in [12, page 141]. So part (i) of Theorem 2
holds with β = nε and γ = n−K . (Note that since t < TŴ ′, it follows that Y1+Y2 > 0,
so that the next operation is of Type 1 or Type 2.) Equations (1) and (2) verify
part (ii) of Theorem 2 for a function λ1 which goes to 0 sufficiently slowly. Note in
particular that since ξ > ε inside W , the assumption that s > εn used in deriving
these equations is justified. Part (iii) of Theorem 2 ensures that the rate of change
of the variables does not change too quickly in time. By the definition of the phase
and the domain W , it may be verified that the functions derived from equations (1)
and (2) are continuous on W and its boundary. This implies that the functions are
uniformly continuous. From this, the Lipschitz property of the functions required by
Theorem 2 part (iii) may be deduced.

The Lipschitz condition in Theorem 2 part (iii) prevents us from choosing a
domain which extends to the natural end of the phase which may occur at some
time t2, say. We choose a domain which the variables will almost surely remain

75

inside until time t1 = t2 − εn. We may also eliminate a set of undesirable states,
which we characterise by Y1 + Y2 ≤ 0.

The conclusion of Theorem 2 therefore holds for the process within Phase 1.
This implies that with probability 1−O(n1−K + nελ−1 exp(−n1−3ελ3)), the random
variables Yi and I a.a.s. remain within O(λn) of the corresponding deterministic
solutions to the differential equations (5) and (6) until a point arbitrarily close to
where it leaves the set W ′, or until t = TŴ if that occurs earlier. Note that the
latter may only occur when the algorithm has completely processed a component
of the graph and a random cubic graph is a.a.s. connected. Choosing K = 2 and
λ = nε−1/4, say, ensures that with probability 1− o(n), the differential equations for
Phase 1 almost surely approximate the variables Yi and I with error o(n).

We compute the ratio dzi/dz and we have

dzi

dz
=

4z2
1

ξ2 ψa,i + 12z0z1

ξ2 ψb,i +
9z2

0

ξ2 ψc,i + ω1

1−ω2
χi

9z2
0

ξ2 + 12z0z1

ξ2 + ω1

1−ω2
× 3z0

ξ
.

, 0 ≤ i ≤ 2,

where differentiation is with respect to z and all functions may be taken as functions
of z. By solving (numerically) this system of differential equations, we find that
the solution hits a boundary of the domain at ω2 = 1 − ε (for ε = 0 this would
approximately be when z ≥ 0.1031). We now formally define Phase 1 as the period
of time from time t=0 to the time t0 such that z = t0/n is the solution of ω2=1.

Our next aim is to show that by the time ε′n operations after the start of Phase
2 (for some ε′ > 0), the variable Y2 is a.a.s. at least some constant times n. For this,
the main requirement is that the variable ν2 increases significantly above 1, since
ν2 − 1 is the expected increase in Y2 when processing a vertex of V2.

Unfortunately, the expected increase in ν2 due to processing a vertex from V1

right near the end of Phase 1 is negative. So instead we consider the variable ν̂2

defined by setting Y2 = 0 in the definitions of all variables; that is,

ν̂2 = ν̂2(t) =
3Y0

ŝ
2µ̂2 +

2Y1

ŝ

where

µ̂2 = µ̂2(t) =
(6Y0 + 2Y1)ρ̂2

ŝ
,

ρ̂2 = ρ̂2(t) =
2Y1

ŝ
and

ŝ = 3Y0 + 2Y1.

Regarding ν̂2 as a function of Y0 and Y1 only, we may compute the expected
increase in ν̂2 due to an operation of Type 1 as

∂ν̂2

∂Y0

E0 +
∂ν̂2

∂Y1

E1 (9)

76

where Ei is the expected increase in Yi in such an operation. The latter may be
computed from the first three terms on the right hand side of (1). Plugging in the
values of Y0 and Y1 at the end of Phase 1 gives a positive quantity, approximately
5.14. For a Type 2 operation, the same calculation is used, but the values of E0 and
E1 come from αi as seen in (1). The result is 4.55.

Since the formula given by (9) is Lipschitz, it must remain positive for at least
ε1n operations after reaching time t0 − εn, for ε1 sufficiently small. Subject to the
choice of ε1, we may take ε arbitrarily small. It now follows by the usual large
deviation argument that the increase in ν̂2 between time t0 − εn and a time t1 when
ε1n operations have occurred in Phase 2 is a.a.s. at least c for some positive constant
c. By choosing ε sufficiently small, ν2 is a.a.s. arbitrarily close to 1 at time t0 − εn,
and so the same goes for ν̂2 since Y2 is a.a.s. very small in Phase 1. Thus ν̂2 > 1 + c1
a.a.s. at time t1 for some c1 > 0.

Once this value of ν̂2 is attained, since ν̂2 = ν2 when Y2 = 0 we may choose a
c > 0 such that either Y2 > cn or ν2 > 1 + c. In the former case we are well into
Phase 2 in the informal sense. In the latter case, due to the Lipschitz property of
ν2, for the next ε2n operations, processing a vertex from V2 produces an expected
1 + c/2 new vertices of V2. Again, using the usual large deviation argument, this
ensures that with high probability the process moves in the next ε2n operations into
a state where V2 > c2n, and is thus, again, firmly entrenched in Phase 2 in the
informal sense. Thus, in either case, there will be some time t2 which is followed by
c2n consecutive operations of Type 2, which means that the equations for Phase 2
are valid.

For Phase 2 and for arbitrary small ε, define W ′ to be the set of all (t, z0, z1, z2, z)
for which t > t2 − ε, ξ > ε, z > −ε and zi < 1 + ε where 0 ≤ i ≤ 2. Theorem 2
applies as in Phase 1 (with time shifted by subtracting t2) except that here, a clutch
consists of just one operation of Type 2. Note also that the starting point of the
process is randomised, which is permitted in Theorem 2.

For part (i) of Theorem 2 we must ensure that Yi(t) does not change too quickly
throughout the process. As a clutch in Phase 1 consists of just one operation, the
expected change in any of the variables Yi for a clutch is at most a constant (in fact
Y0 may decrease by at most 7). So part (i) of Theorem 2 holds with β = 7 and γ = 0.
Parts (ii) and (iii) of Theorem 2 may be deduced in a similar manner to those for
Phase 1.

The conclusion of Theorem 2 therefore holds for the process within Phase 2.
This implies (taking λ = o(1) tending to 0 sufficiently slowly) that with probability
1 − O(λ−1 exp(−nλ3)), the random variables Yi and I a.a.s. remain within O(λn)
of the corresponding deterministic solutions to the differential equations (7) and (8)
until a point arbitrarily close to where it leaves the set W . Choosing, for example,
λ = n−1/4, makes this success probability 1− o(n) and the error o(n).

Computing the ratio dzi/dz gives

dzi

dz
=

χi

3z0

ξ

, 0 ≤ i ≤ 2.

By solving this we see that the solution hits a boundary of W ′ at ξ = ε. Theorem 2

77

ensures that the random variables Yi and I in Phase 2 a.a.s. remain within o(n) of
the corresponding deterministic solutions to the differential equations (7) and (8)
until a point arbitrarily close to where it leaves the domain W ′.

From the point in Phase 2 after which Theorem 2 does not apply until the comple-
tion of the algorithm, the change in each variable per step is bounded by a constant.
Hence, letting ε tend to 0 sufficiently slowly, in o(n) steps the change in the random
variables Yi and I is o(n).

The differential equations were solved using a Runge-Kutta method, giving ξ = ε
in Phase 2 at z > 0.20485. This corresponds to the size of the 2-independent set
(scaled by 1/n) when all vertices are used up, thus proving the theorem. �

6 Remarks

The existence proofs recently shown by Assiyatun [1] that bound the size of a
maximum 2-independent set of a random d-regular graph imply that the size of
a maximum 2-independent set, I , of a random n-vertex cubic graph a.a.s. satisfies
0.2315n ≤ |I| ≤ 0.2356n. However, there is no algorithm that guarantees to find a
2-independent set of a random n-vertex cubic graph that is a.a.s. at least 0.2315n.

We have presented a simple, yet efficient, polynomial time heuristic for finding a
large 2-independent set, I, of cubic graphs and shown that the expected size of I is
a.a.s. greater than 0.20485n.

References

[1] H. Assiyatun, Large Subgraphs of Regular Graphs. Doctoral Thesis, Department
of Mathematics and Statistics, The University of Melbourne, Australia, 2001.

[2] B. Bollobás, Random Graphs. Academic Press, 1985.

[3] R. Diestel, Graph Theory. Springer-Verlag, 1997.

[4] W. Duckworth, Greedy Algorithms and Cubic Graphs. Doctoral Thesis, Depart-
ment of Mathematics and Statistics, The University of Melbourne, Australia,
2001.

[5] M. Hota, M. Pal and T.K. Pal, An Efficient Algorithm for Finding a Maximum
Weight k-Independent Set on Trapezoid Graphs. Computational Optimization
and Applications 18(1) (2001), 49–62.

[6] S. Janson, T. �Luczak and A. Rucinski, Random Graphs. Wiley, 2000.

[7] M.C. Kong and Y. Zhao, On Computing Maximum k-Independent Sets. Con-
gressus Numerantium 95 (1993), 47–60.

[8] M.C. Kong and Y. Zhao, Computing k-Independent Sets for Regular Bipartite
Graphs. Congressus Numerantium 143 (2000), 65–80.

78

[9] S. Kutten and D. Peleg, Fast Distributed Construction of Small k-dominating
Sets and Applications. Journal of Algorithms 28(1) (1998), 40–66.

[10] N.C. Wormald, Differential Equations for Random Processes and Random
Graphs. Annals of Applied Probability 5 (1995), 1217–1235.

[11] N.C. Wormald, Models of Random Regular Graphs. In Surveys in Combina-
torics, (Canterbury 1999), Cambridge University Press, Cambridge, 1999, 239–
298.

[12] N.C. Wormald, The Differential Equation Method for Random Graph Processes
and Greedy Algorithms. In Lectures on Approximation and Randomized Algo-
rithms, PWN, Warsaw, 1999, 73–155. M. Karoński and H-J. Prömel (editors).

(Received 14/8/2001; revised 23/5/2002)

79

