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Abstract

We discuss the properties of uniform hypergraphs which have precisely
one partition (i.e., a unique coloring apart from permutation of the colors)
under the condition that in each edge, there exist three vertices which
belong to precisely two classes of the partition. In particular, we investi-
gate the relation between unique colorability, number of colors, and the
cardinalities of color classes.

1 Introduction

A mixed hypergraph [18] is a triple H = (V, C,D), where V is the vertex set and each
of C, D is a family of subsets of V , the C-edges and D-edges, respectively. A proper
k-coloring of a mixed hypergraph is a mapping from the vertex set X into a set of k
colors 1, 2, . . . , k so that each C-edge has two vertices with a common color and each
D-edge has two vertices with different colors. A mixed hypergraph is k-colorable if
it has a proper coloring with at most k colors.

A strict k-coloring is a proper k-coloring using all the k colors. The maximum
number of colors in a strict coloring of H is the upper chromatic number χ̄(H) ;
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the minimum number is the lower chromatic number χ(H). Thus, colorings of hy-
pergraphs in the classical sense (see e.g. [1]) represent the particular case of mixed
hypergraphs restricted to C = ∅. For each k, let rk = rk(H) be the number of
partitions of the vertex set into k nonempty parts (color classes) such that the
coloring constraint is satisfied on each edge. The vector R(H) = (r1, . . . , rn) =
(0, . . . , 0, rχ, . . . , rχ̄, 0, . . . , 0) is the chromatic spectrum of H, introduced in [16]. The
set of values k such that H has a strict k-coloring is the feasible set of H, written
S(H) ; this is the set of indices i such that ri > 0.

Definition 1 A mixed hypergraph H is called uniquely colorable [15] (uc hyper-
graph, or uc for short) if it has precisely one strict coloring apart from permutations
of colors.

Equivalently, H is uc if it allows exactly one feasible partition of the vertex set
V into color classes. Let us agree that the expression “unique coloring” means
in the sequel “unique partition” into the corresponding number of color classes.
Evidently, if H is a uc hypergraph, then χ(H) = χ̄(H) = χ and rχ(H) = 1, therefore
R(H) = (0, . . . , 0, 1, 0, . . . , 0) (and conversely, a hypergraph with this spectrum is
uc).

Definition 2 A mixed hypergraph H = (V, C,D) is a bi-hypergraph [17, 14] if
C = D.

In contrast to classical colorings of hypergraphs, mixed hypergraphs may have
no colorings at all. A mixed hypergraph having no colorings is uncolorable [16, 17].
Otherwise it is called colorable. The first paper about uncolorable mixed hypergraphs
is [14]. The colorability problem takes a mixed hypergraph as input, and asks whether
it admits at least one coloring.

The problem which is closest to the colorability problem is that of unique col-
orability . In the classical coloring theory of graphs, the only objects having this
property are the complete graphs (cliques). In the literature the term “uniquely
colorable” has been used to denote graphs which have a unique coloring with the
mimimum number of colors. But such graphs, other than cliques, have additional
colorings using more colors and are therefore not uniquely colorable when viewed as
mixed hypergraphs.

It turns out that uniquely colorable mixed hypergraphs represent the relevant
generalizations of cliques from the point of view of colorings. The first paper on
uniquely colorable mixed hypergraphs is [15]. As it was shown there, the structure of
uniquely colorable mixed hypergraphs is unexpectedly rich. Namely, every colorable
mixed hypergraph can be embedded into some uniquely colorable mixed hypergraph
as an induced subhypergraph. In addition, in [15] the authors investigated the role
of uniquely colorable subhypergraphs being separators, studied recursive operations
(orderings and subset contractions) and unique colorings, and proved that it is NP -
hard to decide whether a mixed hypergraph is uniquely colorable.

The following weaker property was discussed in [15]: a mixed hypergraph which
has a unique coloring with χ̄ colors and a unique coloring with χ colors is called
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weakly uniquely colorable. This trivially includes all uniquely colorable graphs in the
usual sense.

Motivated by [15], the following classes of uniquely colorable mixed hypergraphs
have been characterized: those with χ = n−1 and χ = n−2 in [12]; mixed hypertrees
in [11]; and circular mixed hypergraphs in [19], see also [13]. Moreover, based on the
idea of unique colorability, pseudo-chordal mixed hypergraphs as a generalization of
chordal graphs have been introduced and described in [20].

A mixed hypergraph is r-uniform if all the C- and D-edges are of size r. In this
paper we consider the class of r-uniform mixed bi-hypergraphs. It is convenient to
make no difference between the expressions like “bi-edge,” “r-tuple,” and “subset of
r vertices which is a C- and D-edge at the same time.” The special case r = 3 of
such hypergraphs derived from Steiner Triple Systems (each block considered as a
C- and D-edge) has been investigated recently in [3, 7, 8, 9, 10] and in some further
papers. These STS-bi-hypergraphs are generally not uniquely colorable. The study
of unique colorability in important particular cases like them may lead to a better
understanding of the behavior of colorings in more general settings.

There is, however, one more motivation for the study of r-uniform uc bi-hyper-
graphs. The fact discovered recently is that mixed hypergraphs may have gaps in
their chromatic spectra, i.e. zeros may occur between positive values for the number
of strict colorings [5, 6]. In fact, much stronger results have been proved, for instance :

Theorem 1 [6] A finite set S of positive integers is the feasible set of some mixed
hypergraph whose spectrum has ri ∈ {0, 1} for each i if and only if 1 /∈ S or
max(S) ≤ 2.

Such mixed hypergraphs found so far are not uniform bi-hypergraphs, though
they are “everywhere uc” in the sense that for each k, if there exists a strict k-
coloring then there is precisely one.

Theorem 2 [6] For each integer r ≥ 3, there exists an r-uniform bi-hypergraph
H = (V, C,D) whose chromatic spectrum contains a gap.

These mixed hypergraphs are not “everywhere uc.” Hence, it remains an open
question whether every feasible set of integers may be a feasible set of some r-uniform
bi-hypergraph whose spectrum has ri ∈ {0, 1} for all χ ≤ i ≤ χ̄. The study of the
properties of uniform uc bi-hypergraphs will contribute to the knowledge necessary
for finding the answer.

2 Characterizations of unique colorability

We call an r-uniform bi-hypergraph saturated if it is uniquely colorable and adding
any r-tuple to it makes it uncolorable. Throughout the paper, r will be at least 3,
and “hypergraph” means “r-uniform bi-hypergraph.”

Notation For a given partition (coloring) P0 of a hypergraph H, and for a given r,
Hr(P0) = H(P0) is the hypergraph consisting of all those r-tuples which have some
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pair of vertices with a common color and also some pair with distinct colors — that
is, the r-tuples which are consistent with the given coloring.

Let us fix r. A partition (coloring) P0 is called unique if H(P0) is uniquely
colorable. Our aim is to give a characterization of unique colorings in this sense.

2.1 The Main Lemma

As one can easily see, for any given r, the number k of colors in a unique coloring
must be at least r− 1. Indeed, otherwise we can split a color class into two, without
violating the conditions on coloring, and hence producing another coloring, contrary
to the assumption of uniqueness.

The goal of this section is to prove an assertion that we call the Main Lemma. It
contains necessary and sufficient conditions to be an “alternative” of a given coloring.
This important notion is defined as follows :

Definition 3 For a given coloring P0, P is an alternative (of P0) if it is a proper
coloring of H(P0). A coloring is always an alternative of itself. Here we emphasize
that “P is an alternative of P0” is not a symmetric relation.

We next introduce two conditions for colorings :

Union Condition: Every pair of color classes has a union of size at least r.

Size Condition : The underlying vertex set has more than (r − 1)2 vertices.

These two conditions are called the Basic Conditions. Clearly, a unique coloring
satisfies the Union Condition. It also satisfies the Size Condition since otherwise we
could make another coloring with color classes all smaller than r. Consequently,
every unique coloring satisfies the Basic Conditions.

Given a coloring P0, a set is crossing if it intersects every color class of P0 in at
most one point.

Remark Though, for an arbitrary set, “ polychromatic ” (i.e., having all the colors
different) and “ crossing ” mean the same property, we have chosen two different
expressions, since r-tuples and color classes of an alternative play different roles.

Main Lemma Given a coloring P0, satisfying the basic conditions, the coloring
P �= P0 is an alternative of P0 if and only if it has fewer than r color classes, and
for all of its “big” classes X ( i.e., for |X | ≥ r)

– either X is the subset of some class in P0 (“subclass”) (1)

– or X is crossing. (2)

Proof. For the ‘if’ part, take a P satisfying all properties in the assumption, and
take some r-tuple R from H(P0). If it is not properly colored by P , then there are
two possibilities : R is polychromatic or it is contained in some class X of P . The
first possibility can be excluded since |P| < r. For the second possibility, |X | ≥ r
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thus X is a subclass or crossing, and, appropriately, R is monochromatic in P0, or
polychromatic in P . Both cases are impossible, proving the assertion.

For the ‘only if’ part, first we prove some claims. We begin with the second
condition of the Main Lemma.

Claim 1 If P is an alternative, then each of its big classes has property (1) or (2).

Proof. Otherwise, let us pick a class X of P , satisfying neither (1) nor (2). Let c,
c′ be two common vertices of X and of some class X0 ∈ P0. There exists a Y0 in P0,
different from X0, intersecting X in some vertex c′′, since r ≥ 3. Extending the set
{c, c′, c′′} to an r-element subset of X , we get an edge of H(P0) which is not properly
colored by P , and hence P is not an alternative. This contradiction proves Claim 1.

�

Claim 2 If |P| ≥ r and P is an alternative, then P0 is its refinement, i.e. every
color class of P0 is a subset of some color class of P.

Proof. Otherwise we find a color class X0 in P0 and two classes X and Y in P
which intersect X0. Now we prove that for all such X0, X , and Y , necessarily every
class in P different from X and Y is contained in X0. Suppose not, and let some
F in P have some vertex f /∈ X0. Let c and d be a common vertex of X0 with X
and Y , respectively. Then the triple {c, d, f} can be extended to an r-tuple which is
properly colored by P0 but not by P . So, for the original X and Y , this statement is
true and because of r ≥ 3, there exists some third class X ′ in P which is contained
in X0. The set X0 cannot cover the whole V , thus at least one among X and Y does
have some vertices outside X0. Say, this class is X . Then, taking X ′ instead of X ,
and repeatedly applying the statement above, we obtain that X ⊆ X0, contrary to
the choice of X . This proves Claim 2. �

Claim 3 All alternatives different from P0 have at most r − 1 color classes.

Proof. Otherwise, by Claim 2, P0 is a refinement of P . They are different, so P
has some class X which is the union of several P0-classes. If |X | < r, then we violate
the Union Condition, and if |X | ≥ r then, by Claim 1, it has to be a subclass or
crossing. The former is impossible, while the latter implies that all the P0-classes
contained in X have exactly one element, contradicting the Union Condition. �

By the claims above, the ‘only if’ part, and thus the whole Main Lemma, is
proved. �

2.2 The Extension Lemma and unique (r − 1)-colorings

In the next two sections, in two lemmas (Lemmas 3 and 4, the “implication lemmas”),
we will show how the uniqueness of a coloring can be derived from that of another
one. Furthermore, in this section, we characterize the unique r − 1-colorings.
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First we introduce the following concept.

Strong Union Condition: Every pair of color classes has a union of size at least
2r − 1.

Lemma 1 If a unique coloring has exactly r − 1 color classes, then it satisfies the
strong union condition.

Proof. Otherwise, let us consider two color classes X and Y with union of size at
most 2r − 2. Taking another coloring P ′ by splitting the union into two classes of
sizes at most r − 1, the new coloring will be an alternative by the Main Lemma.
(Since r ≥ 3, a set of 2r − 2 elements admits more than one splitting.) �

The next lemma will be used repeatedly.

Lemma 2 If a unique coloring has exactly r − 1 color classes, then one of the fol-
lowing two cases occurs:

– all of its color classes are of size at least r, or

– one color class is of size r − 1 and the others are of size ≥ r.

Proof. Consider the unique coloring. First, suppose there exists some color class
X of size at most r − 2 in it. By the Size Condition, we have some color class Y
of cardinality at least r. Putting a vertex from Y into X , we get another coloring
which is an alternative by the Main Lemma, a contradiction.

Thus we may now assume that we have more than one class of size r − 1. Then
the strong union condition is not satisfied, contradicting Lemma 1. �

Definition 4 To extend a color class C, means to replace it by a set C ′ ⊃ C such
that every v ∈ C ′ −C is a new vertex. Of course, in this way the underlying set will
become larger, too.

Lemma 3 If we extend a color class of a unique coloring (using any number of
colors), then the new coloring will be unique, too.

Proof. Let the original coloring be P and the new one be P ′. We may assume that
P ′ is obtained from P by adding one vertex f to a color class F of P . Suppose for
a contradiction that P ′ is not unique and there exists an alternative P̃ �= P ′.

The Main Lemma can be applied for P ′ and P̃ . So, P̃ has fewer than r color
classes, and every class of at least r elements either is contained in some class of P ′

or is crossing. The “trace” T R of P̃ on P is defined as the following coloring:

T R = {T = X̃ ∩ V : X̃ ∈ P̃ , T �= ∅}

where V denotes the set of vertices of P .
Obviously, |T R| < r. Let T be a class in T R, with |T | ≥ r. Let T be the trace of

some X ∈ P̃ , then |X | ≥ r, consequently X is a “subclass” or crossing. In the first
case, T will be contained in some color class of P as well, while in the second case,
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T will be crossing in P . So, T R is an alternative of P , but the latter is supposed to
be unique, thus the only possibility is T R = P .

Thus |P| < r, so that |P| = r − 1.

Furthermore, T R = P implies that P̃ can be obtained by adding f to a color
class Z of P different from F . This Z is the trace of a color class Z̃ in P̃ . By Lemma
2, |Z| ≥ r − 1 so that |Z̃| ≥ r. Thus by the Main Lemma, Z̃ is either a subclass or
crossing in P ′. It is clearly not a subclass, and if it is crossing then |Z| = 1 which is
a contradiction since we have seen that |Z| ≥ r − 1 ≥ 2. �

In the next section we shall give another implication lemma, for the addition of
color classes.

Now we give the characterization of unique colorings with exactly r − 1 colors,
which is fairly simple.

Theorem 3 A coloring with exactly r − 1 colors is unique if and only if one of the
following two cases occurs :

– all of its color classes are of size at least r, or
– one color class is of size r − 1 and the others are of ≥ r.

Proof “Only if ”: This is just Lemma 2.

“If ”: By Lemma 3, it is enough to prove the statement for the coloring P0 with
one color class of size r − 1 and with the other classes of size exactly r. Take an
alternative P . Since there are no crossing classes, every big class of P coincides with
some class in P0. If P has more than one “small” class, then it does not cover the
underlying set; and otherwise it is equal to P0. �

2.3 The Addition Lemma

In this section we prove a lemma on the effect of adding a color class to a coloring.
First we prove a claim.

Claim 4 Let the coloring Q with r colors have a 1-element color class and another
class of r−1 vertices, and let all the remaining classes have exactly r vertices. Then
Q is unique.

Proof. Let V be the underlying set of Q. Let us consider an alternative C different
from Q, if any exists. The Main Lemma implies that |C| ≤ r − 1 and every class of
C has at most r vertices. At the same time, |V | = (r − 1)r. Therefore, each class in
C must have exactly r vertices. All the subclasses have to be identical to the color
classes of C containing them, and so there are two cases : all the classes of C are
subclasses or all of them are crossing. The first case is obviously impossible (C = Q),
and the second one is also excluded since the presence of a 1-element color class in
Q does not allow more than one crossing class in C. �

Remark Q is an example for a unique coloring which does not satisfy the Strong
Union Condition.
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Lemma 4 If we add a new color class to a unique coloring in such a way that the
Union Condition remains valid, then the new coloring will be unique, too.

Proof. Let the original coloring be P and the new one be P ′. Suppose that P ′ is
not unique and there exists an alternative P̃ �= P ′. The basic conditions are satisfied
by P ′ (since we assumed the Union Condition for it, while the Size Condition holds
already for P) so that the Main Lemma can be applied. Similarly to the proof of
Lemma 3, the trace T R can be defined, and T R will be an alternative of P . Since
the latter is unique, the only possibility is T R = P , and thus |P| = |T R| < r.
Now consider a coloring P ′ from a unique coloring P having r − 1 colors, applying
Lemma 2 we know the possible forms of P . It follows, in particular, that P ′ can be
constructed by extending the color classes of the coloring Q in Claim 4. So, Lemma
3 can be applied and the uniqueness of P ′ is verified. �

2.4 More than r − 1 colors

In this section we characterize unique colorings for at least r colors, and give a slightly
simpler result for the particular case of exactly r colors.

We need some preliminaries for obtaining the main result, Theorem 4 below.

Throughout this section P0 is assumed to satisfy the Basic Conditions.

For a fixed coloring P0, and an alternative P of it, the three parts of P can be
seen in Figure 3: the big subclasses, the big crossing classes and the union of small
classes. Their number will be denoted by g, c and s, respectively. The number of big
classes in P0 is denoted by t.

Claim 5 We may assume that in P, every big subclass is identical to the class in
P0 containing it.

Proof. If a given subclass is a proper subset of a color class P0 in P0 and we change
it to P0, then some crossing classes will decrease by 1 and some small classes will
become one smaller, which means (by the Main Lemma) that the coloring will remain
an alternative. (Some classes of P may become empty.) If necessary, we execute this
transformation several times.

The only problem could be if the new coloring is identical to P0. But the trans-
formation does not increase the number of colors, thus the original coloring P would
have at least r colors, which contradicts the Main Lemma. �

Claim 6 We may assume that the big subclasses are the largest parts X1, ...Xg.

Proof. Otherwise, suppose we have a P = Xi ∈ P and for some j < i, B = Xj

has no big subclass. Let us change P to B and for all P ′ ∈ P intersecting B, replace
P ′ ∩ B with a subset S′ ⊆ Xi, such that |S′| ≤ |P ′ ∩ B| and the modified classes
cover Xi. So we get an alternative of P0, by the arguments above. After using
this transformation possibly several times, the assumption stated by Claim 6 will be
true for the alternative obtained and this alternative will differ from P0, similarly as
above. �
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g = 0

Figure 1: No big subclasses, 5 big crossing classes.

Let N denote the union of the big crossing classes and the small classes of P . In
other words, N is the union of the set system

P0 \ {X ∈ P0 ∩ P, X is big} .

In Figures 1, 2 and 3, we have drawn the classes of P0 in decreasing order of their
cardinalities as columns : X1, X2, . . . , Xk. The height of each Xi is proportional to
its size.

For g ≤ k − r let h = h(g) = |Xg+r| and for g > k − r let h(g) = 0. We may
assume that the big crossing classes of P will be sets of the form

Yi := {v ∈ N : the height of v is i}

with some 1 ≤ i ≤ h. Thus, the maximum possible number c of big crossing classes is
h(g). Furthermore, g (the number of big subclasses in P) clearly determines c = cg.

For g > k − r, c is necessarily 0.
In Figure 3 also we have drawn a possible alternative coloring P of P0. In Figures

1 and 2 we have shown the colorings determined by g = 0 and g = t. These colorings
are not alternatives of P0. All the three figures correspond to the example below.

Let us define the set of “remaining vertices”:

U = Ug := V −
g⋃

j=1

Xj −
c⋃

i=1

Yi.
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g = t

Figure 2: 2 big subclasses, no big crossing classes.

Y1

Y2

Y3

Y4

Y5

g = 1

Figure 3: 1 big subclass and 5 big crossing classes
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(For c = 0,
⋃c

i=1 Yi = ∅, of course.)

If we fix g, the problem is to cover the set U with small classes of P . By the
Main Lemma, we have that |P| ≤ r−1, thus we can use at most r−1− g− c classes
for them. Therefore, if P0 is not unique, then for at least one g, the inequality

|U | ≤ (r − 1)(r − 1 − g − c) (3)

must hold. And also conversely, if (3) holds for some g, then an appropriate alterna-
tive P = Pg exists and P0 is not unique. In this way, we have proved the following
result :

Theorem 4 Suppose that the partition P0 with k ≥ r classes satisfies the Basic
Conditions. Then P0 is not unique if and only if there exists some 0 ≤ g ≤ t such
that the inequality (3) is valid.

Example Observe that g cannot be restricted to the values 0 and t in Theorem 4.

Using the same notation as above, let r ≥ 10 be an even number, X1 = 3r/2,
X2 = r, X3 = X4 = ... = Xr/2−2 = r − 1, Xr/2−1 = ...Xr−1 = r − 2, finally
Xr = Xr+1 = r/2. Here the values 0 and t do not give any alternative different from
P0, while the value g = 1 does. (Figures 1, 2 and 3 show these cases for r = 10.)

For the particular case of k = r, the situation is much simpler:

Theorem 5 Let P0 with k = r satisfy the Basic Conditions. Then P0 is not unique
if and only if for g = 0 or g = t, the inequality (3) is valid.

Problem Is there a nice analogue of Theorem 3 for more than r colors?

References

[1] C. Berge, Hypergraphs — Combinatorics of Finite Sets. North-Holland, 1989.

[2] E. Bulgaru and V.I. Voloshin, Mixed interval hypergraphs. Discrete Applied
Math. 77(1) (1997), 24–41.

[3] C. Colbourn, J. Dinitz and A. Rosa, Bicoloring Steiner Triple Systems. Electron.
J. Combin. 6 (1999), #R25.

[4] T.R. Jensen and B. Toft, Graph Coloring Problems. Wiley-Interscience, New
York, 1995.

[5] T. Jiang, D. Mubayi, Zs. Tuza, V. Voloshin and D.B. West, Chromatic spectrum
is broken. 6th Twente Workshop on Graphs and Combinatorial Optimization,
26–28 May, 1999 (H.J. Broersma, U. Faigle and J.L. Hurink, eds.) University of
Twente, May, 1999, 231–234.

43



[6] T. Jiang, D. Mubayi, Zs. Tuza, V. Voloshin and D.B. West, The chromatic
spectrum of mixed hypergraphs. Graphs and Combinatorics, 18 (2002), 309–
318.

[7] G. Lo Faro, L. Milazzo and A. Tripodi, On the Upper and Lower Chromatic
Numbers of BSQSs(16). Electron. J. Combin. 8(1) (2001) R6.

[8] G. Lo Faro, L. Milazzo and A. Tripodi, The first BSTS with different upper and
lower chromatic numbers. Australas. J. Combin. 22 (2000), 123–133.

[9] L. Milazzo and Zs. Tuza, Upper chromatic number of Steiner triple and quadru-
ple systems. Discrete Math. 174 (1997), 247–259.

[10] L. Milazzo and Zs. Tuza, Strict Colourings for Classes of Steiner Triple Systems.
Discrete Math. 182 (1998), 233–243.

[11] A. Niculitsa and V.I. Voloshin, About uniquely colorable mixed hypertrees.
Discussiones Mathematicae: Graph Theory. Vol. 20, No. 1, 2000, pp. 81–91.

[12] A. Niculitsa and H.-J. Voss, A characterization of uniquely colorable mixed
hypergraphs of order n with upper chromatic numbers n−1 and n−2. Australas.
J. Combin. 21 (2000), 167–177.

[13] A. Niculitsa, V.I. Voloshin and H.-J. Voss, Uniquely colorable and circular mixed
hypergraphs. 6th Twente Workshop on Graphs and Combinatorial Optimization,
26–28 May, 1999 (Broersma H.J., Faigle U. and Hurink J.L., eds.), University
of Twente, May, 1999, 173–176.

[14] Zs. Tuza and V.I. Voloshin, Uncolorable mixed hypergraphs. Discrete Applied
Math. 99 (2000), 209–227.

[15] Zs. Tuza, V. Voloshin and H. Zhou, Uniquely colorable mixed hypergraphs.
Discrete Math., 248 (2002), 221-236.

[16] V.I. Voloshin, The mixed hypergraphs. Comput. Sci. J. Moldova Vol. 1, No.
1(1) (1993), 45–52.

[17] V.I. Voloshin, On the upper chromatic number of a hypergraph. Australas. J.
Combin. 11 (1995), 25–45.

[18] V.I. Voloshin, Coloring Mixed Hypergraphs: theory, algorithms and applica-
tions. AMS, Providence, 2002.

[19] V.I. Voloshin and H.-J. Voss, Circular Mixed hypergraphs I: colorability and
unique colorability. Preprint Inst. of Algebra MATH-AL-3-2000, Technische
Universität Dresden (2000). Proceedings of the Thirty-first Southeastern Inter-
national Conference on Combinatorics, Graph Theory and Computing (Boca
Raton, FL, 2000). Congr. Numer. 144 (2000), 207–219.

44



[20] V.I. Voloshin V.I and H. Zhou, Pseudo-chordal mixed hypergraphs. Discrete
Math. 202 (1999), 239–248.

(Received 17/7/2001)

45


