Maximally edge-connected digraphs

Angelika Hellwig Lutz Volkmann
Lehrstuhl II für Mathematik
RWTH Aachen
52056 Aachen
Germany
volkm@math2.rwth-aachen.de

Abstract

In this paper we present some new sufficient conditions for equality of edge-connectivity and minimum degree of graphs and digraphs as well as of bipartite graphs and digraphs.

1. Introduction

We consider finite graphs and digraphs without loops and multiple edges. For a vertex $v \in V(D)$ of a digraph D, the degree of v, denoted by $d(v)=d(v, D)$, is defined as the minimum value of its out-degree $d^{+}(v)=d^{+}(v, D)$ and its in-degree $d^{-}(v)=d^{-}(v, D)$. The degree sequence of D is defined as the nonincreasing sequence of the degrees of the vertices of D. For two vertex sets X, Y of a digraph or graph let (X, Y) be the set of arcs or edges from X to Y. If D is a digraph (graph) and $X \subseteq V(D)$, then let $D[X]$ be the subdigraph (subgraph) induced by X. For other graph theory terminology we follow Chartrand and Lesniak [3].

Sufficient conditions for equality of edge-connectivity and minimum degree for graphs and digraphs were given by several authors, for example: Chartrand [2], Lesniak [11], Plesník [12], Goldsmith and White [10], Bollobás [1], Goldsmith and Entringer [9], Soneoka, Nakada, Imase, and Peyrat [14], Plesník and Znám [13], Volkmann [15], [16], Fàbrega and Fiol [7], [8], Xu [17], and Dankelmann and Volkmann [4], [5], [6].

In this paper we present degree sequence, distance, and neighborhood conditions for equality of edge-connectivity and minimum degree of graphs and digraphs as well as of bipartite graphs and digraphs, which extend and generalize several known results.

2. Degree sequence conditions

We start with a simple and well known, but useful lemma.

Lemma 2.1 Let D be a digraph of edge-connectivity λ and minimum degree δ. If $\lambda<\delta$, then there exist two disjoint sets $X, Y \subset V(D)$ with $X \cup Y=V(D)$ and $|(X, Y)|=\lambda$ such that $|X|,|Y| \geq \delta+1$.

Proof. Suppose, without loss of generality, that $|X| \leq \delta$. Then we obtain the contradiction

$$
|X| \delta \leq \sum_{x \in X} d^{+}(x) \leq|X|(|X|-1)+\lambda \leq \delta(|X|-1)+\delta-1
$$

Next we will improve the following result by Dankelmann and Volkmann [5].
Theorem 2.2 (Dankelmann, Volkmann [5] 1997) Let D be a digraph of order n and edge-connectivity λ with degree sequence $d_{1} \geq d_{2} \geq \ldots \geq d_{n}=\delta$. If $\delta \geq\lfloor n / 2\rfloor$ or if $\delta \leq\lfloor n / 2\rfloor-1$ and

$$
\sum_{i=1}^{2 k} d_{n+1-i} \geq k n-3
$$

for some k with $2 \leq k \leq \delta$, then $\lambda=\delta$.
Theorem 2.3 Let D be a digraph of order n and edge-connectivity λ with degree sequence $d_{1} \geq d_{2} \geq \ldots \geq d_{n}=\delta$. If $\delta \geq\lfloor n / 2\rfloor$ or if $\delta \leq\lfloor n / 2\rfloor-1$ and

$$
\sum_{i=1}^{2 k} d_{n+1-i} \geq \max \{k(n-1)-1,(k-1) n+2 \delta-1\}
$$

for some k with $2 \leq k \leq \delta$, then $\lambda=\delta$.
Proof. Suppose to the contrary that $\lambda<\delta$. Then, according to Lemma 2.1, there exist two disjoint sets $X, Y \subset V(D)$ with $X \cup Y=V(D)$ and $|(X, Y)|=\lambda$ such that $|X|,|Y| \geq \delta+1$. This leads to $\delta \leq\lfloor n / 2\rfloor-1$.

Now let $S \subseteq X$ and $T \subseteq Y$ be two k-sets with $2 \leq k \leq \delta$. If we choose S such that the number of arcs of (X, Y) incident with S is minimal, then we conclude

$$
\begin{equation*}
\sum_{v \in S} d^{+}(v) \leq k(|X|-1)+\delta-1-\min \{\delta-1,|X|-k\} \tag{1}
\end{equation*}
$$

If we choose T such that the number of arcs of (X, Y) incident with T is minimal, then we conclude

$$
\begin{equation*}
\sum_{v \in T} d^{-}(v) \leq k(|Y|-1)+\delta-1-\min \{\delta-1,|Y|-k\} . \tag{2}
\end{equation*}
$$

Case 1. Let $\delta-1 \leq|X|-k$ and $\delta-1 \leq|Y|-k$. The inequalities (1) and (2) imply the following contradiction to the hypothesis:

$$
\begin{aligned}
\sum_{i=1}^{2 k} d_{n+1-i} & \leq \sum_{v \in S \cup T} d(v) \leq k(|X|-1)+k(|Y|-1) \\
& =k(n-2)<k(n-1)-1
\end{aligned}
$$

Case 2. Let $\delta-1 \leq|X|-k$ and $\delta-1 \geq|Y|-k$. In view of Lemma 2.1, we have $-|Y| \leq-\delta-1$. Hence (1) and (2) lead to the following contradiction to the hypothesis:

$$
\begin{aligned}
\sum_{i=1}^{2 k} d_{n+1-i} & \leq \sum_{v \in S \cup T} d(v) \leq k(|X|-1)+k(|Y|-1)+\delta-1-|Y|+k \\
& \leq k n-k+\delta-1-\delta-1=k(n-1)-2<k(n-1)-1
\end{aligned}
$$

Case 3. The case $\delta-1 \geq|X|-k$ and $\delta-1 \leq|Y|-k$ can be proved analogously to Case 2.

Case 4. Let $\delta-1 \geq|X|-k$ and $\delta-1 \geq|Y|-k$. Then (1) and (2) yield to the following contradiction to the hypothesis:

$$
\begin{aligned}
\sum_{i=1}^{2 k} d_{n+1-i} & \leq \sum_{v \in S \cup T} d(v) \\
& \leq k(|X|-1)+\delta-1-|X|+k+k(|Y|-1)+\delta-1-|Y|+k \\
& \leq k n+2 \delta-n-2=(k-1) n+2 \delta-2 \\
& <(k-1) n+2 \delta-1
\end{aligned}
$$

Corollary 2.4 Let G be a graph of order n and edge-connectivity λ with degree sequence $d_{1} \geq d_{2} \geq \ldots \geq d_{n}=\delta$. If $\delta \geq\lfloor n / 2\rfloor$ or if $\delta \leq\lfloor n / 2\rfloor-1$ and

$$
\sum_{i=1}^{2 k} d_{n+1-i} \geq \max \{k(n-1)-1,(k-1) n+2 \delta-1\}
$$

for some k with $2 \leq k \leq \delta$, then $\lambda=\delta$.
Proof. Define the digraph D on the vertex set $V(G)$ by replacing each edge of G by two arcs in opposite directions and apply Theorem 2.3.

3. Distance maximal sets

Let u and v be two vertices of a graph (digraph) D. The distance $d_{D}(u, v)=$ $d(u, v)$ from u to v is the length of a shortest (directed) path from u to v in D. The distance $d_{D}(X, Y)$ from a vertex set X to a vertex set Y in D is given by

$$
d_{D}(X, Y)=d(X, Y)=\min _{x \in X, y \in Y} d(x, y)
$$

A pair of vertex sets X and Y of D with distance $d_{D}(X, Y)=k, k \in \mathbf{N}$, is called k-distance maximal, if there exist no vertex sets $X_{1} \supseteq X$ and $Y_{1} \supseteq Y$ with $X_{1} \neq X$ or $Y_{1} \neq Y$ such that $d_{D}\left(X_{1}, Y_{1}\right)=k$.

Theorem 3.1 Let D be a strong connected digraph of edge-connectivity λ and minimum degree δ. If for all 3-distance maximal pairs of vertex sets X and Y there exists an isolated vertex u in $D[X \cup Y]$, then $\lambda=\delta$.

Proof. Suppose to the contrary that $\lambda<\delta$. Then, there exist two disjoint sets $S, T \subset V(D)$ with $S \cup T=V(D)$ and $|(S, T)|=\lambda$. Now let $A \subseteq S$ and $B \subseteq T$ be the sets of vertices incident with an arc of (S, T). Furthermore, we define $A_{0}=S-A$ and $B_{0}=T-B$. In view of our assumption, we see that $|A|,|B| \leq \lambda<\delta$. Now we shall investigate two cases.

Case 1. Let $A_{0}, B_{0} \neq \emptyset$. Then, clearly, the distance from A_{0} to B_{0} in D is finite and at least 3. Choose a 3-distance maximal pair X and Y with $A_{0} \subseteq X$ and $B_{0} \subseteq Y$. According to our assumption, there is an isolated vertex in $D[X \cup Y]$. If $u \in A_{0}$, then we obtain the contradiction $\delta \leq\left|N^{+}(u)\right| \leq|A|<\delta$. If $u \in B_{0}$, then we obtain the contradiction $\delta \leq\left|N^{-}(u)\right| \leq|B|<\delta$. If $u \in A$, then the definition of A and the fact that u has positive neighbors only in $A \cup B$ leads to the contradiction

$$
\begin{aligned}
\delta & \leq d^{+}(u)=\left|N^{+}(u) \cap B\right|+\left|N^{+}(u) \cap A\right| \\
& \leq\left|N^{+}(u) \cap B\right|+\sum_{x \in N^{+}(u) \cap A}\left|N^{+}(x) \cap B\right| \\
& \leq \sum_{x \in A}\left|N^{+}(x) \cap B\right|=\lambda<\delta .
\end{aligned}
$$

Analogously, $u \in B$ leads to the contradiction

$$
\begin{aligned}
\delta & \leq d^{-}(u)=\left|N^{-}(u) \cap A\right|+\left|N^{-}(u) \cap B\right| \\
& \leq\left|N^{-}(u) \cap A\right|+\sum_{x \in N^{-}(u) \cap B}\left|N^{-}(x) \cap A\right| \\
& \leq \sum_{x \in B}\left|N^{-}(x) \cap A\right|=\lambda<\delta .
\end{aligned}
$$

Case 2. Let $A_{0}=\emptyset$ or $B_{0}=\emptyset$. If $A_{0}=\emptyset$, then we obtain the same contradiction for an arbitrary vertex $w \in A=S$ instead of $u \in A$. Finally, if $B_{0}=\emptyset$, then we obtain the same contradiction for an arbitrary vertex $w \in B=T$ instead of $u \in B$.

Since we have discussed all possible cases, the proof is complete.
Corollary 3.2 (Dankelmann, Volkmann [4] 1995) Let G be a connected graph of edge-connectivity λ and minimum degree δ. If for all 3-distance maximal pairs of vertex sets $X, Y \subset V(G)$ there exists an isolated vertex in $G[X \cup Y]$, then $\lambda=\delta$.

Corollary 3.3 If in a strong connected digraph D there exist no four vertices $u_{1}, v_{1}, u_{2}, v_{2}$ with

$$
d\left(u_{1}, u_{2}\right), d\left(u_{1}, v_{2}\right), d\left(v_{1}, u_{2}\right), d\left(v_{1}, v_{2}\right) \geq 3
$$

then $\lambda=\delta$.

Proof. If $X, Y \subseteq V(D)$ is a pair of 3-distance maximal sets, then the hypothesis yields $\min \{|X|,|Y|\} \leq 1$, and the desired result is immediate by Theorem 3.1.

Corollary 3.4 (Plesník, Znám [13] 1989) If in a connected graph G there exist no four vertices $u_{1}, v_{1}, u_{2}, v_{2}$ with

$$
d\left(u_{1}, u_{2}\right), d\left(u_{1}, v_{2}\right), d\left(v_{1}, u_{2}\right), d\left(v_{1}, v_{2}\right) \geq 3
$$

then $\lambda=\delta$.
Corollary 3.5 If D is a digraph of diameter at most two, then $\lambda=\delta$.
Corollary 3.6 (Plesnik [12] 1975) If G is a graph of diameter at most two, then $\lambda=\delta$.

Corollary 3.7 Let D be a digraph of order n. If $d^{+}(x)+d^{-}(y) \geq n-1$ for all pairs of nonadjacent vertices x and y, then $\lambda=\delta$.

Corollary 3.8 (Lesniak [11] 1974) Let G be a graph of order n. If $d(x)+d(y) \geq n-1$ for all pairs of nonadjacent vertices x and y, then $\lambda=\delta$.

Corollary 3.9 Let D be a digraph of order n. If $n \leq 2 \delta+1$, then $\lambda=\delta$.
Corollary 3.10 (Chartrand [2] 1966) Let G be a graph of order n. If $n \leq 2 \delta+1$, then $\lambda=\delta$.

4. Bipartite graphs and digraphs

In the sequel let D be a bipartite graph or a digraph with bipartition $V(D)=$ $V^{\prime} \cup V^{\prime \prime}$. We adopt the convention that for every subset X of $V(D)$, we denote the set $X \cap V^{\prime}$ by X^{\prime} and $X \cap V^{\prime \prime}$ by $X^{\prime \prime}$.

A pair of vertex sets X and Y of a bipartite graph or digraph D with $d_{D}\left(X^{\prime}, Y^{\prime}\right)=$ k, and $d_{D}\left(X^{\prime \prime}, Y^{\prime \prime}\right)=k, k \in \mathbf{N}$, is called (k, k)-distance maximal, if there exist no vertex sets $X_{1} \supseteq X$ and $Y_{1} \supseteq Y$ with $X_{1} \neq X$ or $Y_{1} \neq Y$ such that $d_{D}\left(X_{1}^{\prime}, Y_{1}^{\prime}\right)=d_{D}\left(X_{1}^{\prime \prime}, Y_{1}^{\prime \prime}\right)=k$.

Analogously to Theorem 3.1, one can prove the following Theorems 4.1 and 4.6, which generalize the corresponding results in [4] for graphs.

Theorem 4.1 Let D be a strong connected bipartite digraph of edge-connectivity λ and minimum degree δ. If for all (4,4)-distance maximal pairs of vertex sets X and Y there exists an isolated vertex in $D[X \cup Y]$, then $\lambda=\delta$.

Corollary 4.2 Let D be a bipartite digraph with bipartition $V(D)=V^{\prime} \cup V^{\prime \prime}$. If $d(x, y)=2$ for all different $x, y \in V^{\prime}$, then $\lambda=\delta$.

Corollary 4.3 (Dankelmann, Volkmann [4]) Let G be a bipartite graph with bipartition $V(G)=V^{\prime} \cup V^{\prime \prime}$. If $d(x, y)=2$ for all different $x, y \in V^{\prime}$, then $\lambda=\delta$.

Corollary 4.4 If D is a bipartite digraph of diameter at most three, then $\lambda=\delta$.
Corollary 4.5 (Plesník, Znám [13] 1989) If G is a bipartite graph of diameter at most three, then $\lambda=\delta$.

Theorem 4.6 Let D be a bipartite digraph of edge-connectivity λ, minimum degree δ, and diameter at most 4 . If for all $(4,4)$-distance maximal pairs of vertex sets X and Y with $\left|X^{\prime}\right|,\left|Y^{\prime}\right|,\left|X^{\prime \prime}\right|,\left|Y^{\prime \prime}\right| \geq 2$, there exists a vertex $u \in X \cup Y$ such that $d^{+}(u, D[X \cup Y]), d^{-}(u, D[X \cup Y]) \leq 1$, then $\lambda=\delta$.

Also the next lemma, an analogue to Lemma 2.1 for bipartite digraphs, is well known but useful.

Lemma 4.7. Let D be a bipartite digraph of edge-connectivity λ and minimum degree δ. If $\lambda<\delta$, then there exist two disjoint sets $X, Y \subset V(D)$ with $X \cup Y=V(D)$ and $|(X, Y)|=\lambda$ such that $\left|X^{\prime}\right|,\left|X^{\prime \prime}\right|,\left|Y^{\prime}\right|,\left|Y^{\prime \prime}\right| \geq \delta$.

Proof. In view of Lemma 2.1, $|X| \geq \delta+1$. Hence, there exists a vertex $u \in X$ such that $N^{+}(u) \subseteq X$. If, without loss of generality, $u \in X^{\prime \prime}$, then it follows $\left|X^{\prime}\right| \geq \delta$. Now there exists a vertex $v \in X^{\prime}$ such that $N^{+}(v) \subseteq X$, and hence $\left|X^{\prime \prime}\right| \geq \delta$. Similarly one can show that $\left|Y^{\prime}\right|,\left|Y^{\prime \prime}\right| \geq \delta$.

As a generalization of a result of Goldsmith and White [10] for graphs, Xu [17] has given in 1994 the following sufficient condition for equality of edge-connectivity and minimum degree of a digraph.

Theorem 4.8 (Xu [17] 1994) Let D be a digraph of order n. If there are $\lfloor n / 2\rfloor$ disjoint pairs of vertices $\left(v_{i}, w_{i}\right)$ with $d\left(v_{i}\right)+d\left(w_{i}\right) \geq n$ for $i=1,2, \ldots,\lfloor n / 2\rfloor$, then $\lambda=\delta$.

In [5], Dankelmann and Volkmann gave a short proof of Xu's theorem. Applying the next theorem, we present two analogue results to Theorem 4.8 for bipartite digraphs.

Theorem 4.9 (Dankelmann, Volkmann [5] 1997) Let D be a bipartite digraph of order n, edge-connectivity λ, and degree sequence $d_{1} \geq d_{2} \geq \ldots \geq d_{n}=\delta$. If $\delta \geq\lceil(n+1) / 4\rceil$ or if $\delta \leq\lfloor n / 4\rfloor$ and

$$
\sum_{i=1}^{k}\left(d_{i}+d_{n+1-2 \delta+k-i}\right) \geq k(n-2 \delta)+2 \delta-1
$$

for some k with $1 \leq k \leq 2 \delta$, then $\lambda=\delta$.

Theorem 4.10 Let D be a bipartite (di)-graph of order $n \geq 2$, minimum degree δ, and edge-connectivity λ. If there are $\lfloor n / 2\rfloor$ disjoint pairs of vertices $\left(v_{i}, w_{i}\right)$ with $d\left(v_{i}\right)+d\left(w_{i}\right) \geq n-2 \delta+1$ for $i=1,2, \ldots,\lfloor n / 2\rfloor$, then $\lambda=\delta$.

Proof. If $\delta \geq\lceil(n+1) / 4\rceil$, then $\lambda=\delta$ by Lemma 4.7 or Theorem 4.9.
If $\delta \leq\lfloor n / 4\rfloor$, then from the $\lfloor n / 2\rfloor$ disjoint pairs of vertices choose $2 \delta-1$ pairs $\left(v_{1}^{\prime}, w_{1}^{\prime}\right),\left(v_{2}^{\prime}, w_{2}^{\prime}\right), \ldots,\left(v_{2 \delta-1}^{\prime}, w_{2 \delta-1}^{\prime}\right)$ containing the $2 \delta-1$ vertices of lowest degree of v_{i} and w_{i}. Then we deduce for $k=2 \delta-1$ that

$$
\begin{aligned}
\sum_{i=1}^{k}\left(d_{i}+d_{n+1-2 \delta+k-i}\right) & =\sum_{i=1}^{2 \delta-1}\left(d_{i}+d_{n+1-2 \delta+2 \delta-1-i}\right) \\
& =\sum_{i=1}^{2 \delta-1}\left(d_{i}+d_{n-i}\right) \\
& \geq \sum_{i=1}^{2 \delta-1}\left(d\left(v_{i}^{\prime}\right)+d\left(w_{i}^{\prime}\right)\right) \\
& \geq(2 \delta-1)(n-2 \delta+1) \\
& =(2 \delta-1)(n-2 \delta)+2 \delta-1 \\
& =k(n-2 \delta)+2 \delta-1 .
\end{aligned}
$$

Now Theorem 4.9 with $k=2 \delta-1$ leads to $\lambda=\delta$.
For even n we can prove a slightly better result.
Theorem 4.11 Let D be a bipartite (di)-graph of even order $n \geq 2$, minimum degree δ, and edge-connectivity λ. If there are $n / 2-1$ disjoint pairs of vertices $\left(v_{i}, w_{i}\right)$ with $d\left(v_{i}\right)+d\left(w_{i}\right) \geq n-2 \delta+1$ for $i=1,2, \ldots, n / 2-1$ and one further pair $\left(v_{j}, w_{j}\right)$ with $d\left(v_{j}\right)+d\left(w_{j}\right) \geq n-2 \delta$, then $\lambda=\delta$.

Proof. If $\delta \geq\lceil(n+1) / 4\rceil$, then $\lambda=\delta$ by Lemma 4.7 or Theorem 4.9. If $\delta \leq\lfloor n / 4\rfloor$, then from the $n / 2$ disjoint pairs of vertices choose 2δ pairs $\left(v_{1}^{\prime}, w_{1}^{\prime}\right),\left(v_{2}^{\prime}, w_{2}^{\prime}\right), \ldots$, $\left(v_{2 \delta}^{\prime}, w_{2 \delta}^{\prime}\right)$ containing the 2δ vertices of lowest degree of v_{i} and w_{i} and therefore containing the 2δ vertices of lowest degree in D. Then we deduce for $k=2 \delta$ that

$$
\begin{aligned}
\sum_{i=1}^{k}\left(d_{i}+d_{n+1-2 \delta+k-i}\right) & =\sum_{i=1}^{2 \delta}\left(d_{i}+d_{n+1-2 \delta+2 \delta-i}\right) \\
& =\sum_{i=1}^{2 \delta}\left(d_{i}+d_{n+1-i}\right) \\
& \geq \sum_{i=1}^{2 \delta}\left(d\left(v_{i}^{\prime}\right)+d\left(w_{i}^{\prime}\right)\right) \\
& \geq(2 \delta-1)(n-2 \delta+1)+n-2 \delta \\
& =2 \delta(n-2 \delta)+2 \delta-1 \\
& =k(n-2 \delta)+2 \delta-1 .
\end{aligned}
$$

Now Theorem 4.9 with $k=2 \delta$ leads to $\lambda=\delta$.

Example 4.12 Let H_{1} and H_{2} be two copies of the complete bipartite graph $K_{p, p}$ with $V\left(H_{1}\right)=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\} \cup\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{p}^{\prime}\right\}$ and $V\left(H_{2}\right)=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\} \cup$ $\left\{y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{p}^{\prime}\right\}$. We define the bipartite graph G as the union of H_{1} and H_{1} together with the new edges $x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{p-1} y_{p-1}$. Then $n(G)=n=4 p, \delta(G)=\delta=p$, and $\lambda(G)=\lambda=p-1=\delta-1$. Furthermore, $d\left(x_{p}\right)+d\left(x_{p}^{\prime}\right)=d\left(y_{p}\right)+d\left(y_{p}^{\prime}\right)=2 p=n-2 \delta$ and $d\left(x_{i}\right)+d\left(x_{i}^{\prime}\right)=d\left(y_{i}\right)+d\left(y_{i}^{\prime}\right)=2 p+1=n-2 \delta+1$ for $i=1,2, \ldots, p-1$.

This example shows that Theorem 4.11 is best possible in the sense that the condition that there are $n / 2-2$ disjoint pairs of vertices $\left(v_{i}, w_{i}\right)$ with $d\left(v_{i}\right)+d\left(w_{i}\right) \geq$ $n-2 \delta+1$ for $i=1,2, \ldots, n / 2-2$ and two further pairs with degree sum exactly $n-2 \delta$ does not guarantee $\lambda=\delta$.

For a non-complete digraph D let

$$
N C 2(D)=\min \left\{\left|N^{+}(x) \cup N^{+}(y)\right|,\left|N^{-}(x) \cup N^{-}(y)\right|: x, y \in V(D), d(x, y)=2\right\} .
$$

Theorem 4.13 Let D be a strong connected bipartite digraph of order $n \geq 3$, edgeconnectivity λ, and minimum degree δ. If $N C 2(D) \geq\lceil(n+1) / 4\rceil$, then $\lambda=\delta$.

Proof. Suppose to the contrary that $\lambda<\delta$ and thus $\delta \geq 2$. Then, by Lemma 4.7, there exist two disjoint sets $S, T \subset V(D)$ with $S \cup T=V(D),|(S, T)|=\lambda$, and $\left|S^{\prime}\right|,\left|S^{\prime \prime}\right|,\left|T^{\prime}\right|,\left|T^{\prime \prime}\right| \geq \delta$. Now let $A \subseteq S$ and $B \subseteq T$ be the set of vertices incident with an arc of (S, T). Furthermore, we define $A_{0}=S-A$ and $B_{0}=T-B$. If $V^{\prime} \cup V^{\prime \prime}$ is the bipartition of D, then let $A_{0}^{\prime}=A_{0} \cap V^{\prime}, A^{\prime}=A \cap V^{\prime}, A_{0}^{\prime \prime}=A_{0} \cap V^{\prime \prime}$, $A^{\prime \prime}=A \cap V^{\prime \prime}, B_{0}^{\prime}=B_{0} \cap V^{\prime}, B^{\prime}=B \cap V^{\prime}, B_{0}^{\prime \prime}=B_{0} \cap V^{\prime \prime}$, and $B^{\prime \prime}=B \cap V^{\prime \prime}$. In view of our assumption, we see that $|A|,|B| \leq \lambda<\delta$.

Firstly, we show that $A_{0}^{\prime}, A_{0}^{\prime \prime}, B_{0}^{\prime}, B_{0}^{\prime \prime} \neq \emptyset$. Suppose that $A_{0}^{\prime}=\emptyset$. If there is a vertex $v \in A_{0}^{\prime \prime}$, then $\delta \leq\left|N^{+}(v)\right|=\left|N^{+}(v) \cap A^{\prime}\right| \leq \lambda<\delta$, a contradiction. Consequently, $A_{0}^{\prime \prime}=\emptyset$. If there is a vertex $v \in A^{\prime}$, then

$$
\begin{aligned}
\delta & \leq\left|N^{+}(v)\right|=\left|N^{+}(v) \cap A^{\prime \prime}\right|+\left|N^{+}(v) \cap B^{\prime \prime}\right| \\
& \leq\left|N^{+}(v) \cap B^{\prime \prime}\right|+\sum_{x \in N^{+}(v) \cap A^{\prime \prime}}\left|N^{+}(x) \cap B^{\prime}\right| \\
& \leq \sum_{x \in A}\left|N^{+}(x) \cap B\right|=\lambda<\delta .
\end{aligned}
$$

a contradiction and hence $A^{\prime}=\emptyset$. Analogously, one can show that $A^{\prime \prime}=\emptyset$. This leads to the contradiction $S=\emptyset$ and so $A_{0}^{\prime} \neq \emptyset$. Similar to this proof $A_{0}^{\prime \prime}, B_{0}^{\prime}$, and $B_{0}^{\prime \prime}$ are nonempty.

Secondly, we show that $\left|A_{0}^{\prime}\right|,\left|A_{0}^{\prime \prime}\right|,\left|B_{0}^{\prime}\right|,\left|B_{0}^{\prime \prime}\right| \geq 2$. Without loss of generality, suppose that A_{0}^{\prime} consists of a single vertex u. Then it follows for each $x \in A_{0}^{\prime \prime}$

$$
\delta \leq\left|N^{+}(x)\right|=\left|N^{+}(x) \cap A_{0}^{\prime}\right|+\left|N^{+}(x) \cap A^{\prime}\right| \leq 1+\lambda \leq \delta
$$

and thus $\left|A^{\prime}\right|=\delta-1$ and $\left|A^{\prime \prime}\right|=0$. Therefore, $\left|A_{0}^{\prime \prime}\right| \geq 2$ and $N^{+}(x)=A^{\prime} \cup\{u\}$ for each vertex $x \in A_{0}^{\prime \prime}$. Since $A^{\prime \prime}=\emptyset$ and $\delta \geq 2$, the vertex u has at least two positive neighbors y, z in $A_{0}^{\prime \prime}$. Consequently, $d(y, z)=2$ and hence the hypothesis implies

$$
\frac{n+1}{4} \leq N C 2(D) \leq\left|N^{+}(y) \cup N^{+}(z)\right|=\left|A^{\prime}\right|+1=\delta .
$$

This yields $n \leq 4 \delta-1$, a contradiction to Lemma 4.7 or Theorem 4.9. Finally, we distinguish two cases.

Case 1. Assume that the four sets $A_{0}^{\prime}, A_{0}^{\prime \prime}, B_{0}^{\prime}, B_{0}^{\prime \prime}$ contain vertices of distance two. If $x, y \in A_{0}^{\prime}$ with $d(x, y)=2$, then it follows from $N^{+}(x) \cup N^{+}(y) \subseteq A_{0}^{\prime \prime} \cup A^{\prime \prime}$ and $N C 2(D) \geq(n+1) / 4$ that $\left|A_{0}^{\prime \prime} \cup A^{\prime \prime}\right| \geq(n+1) / 4$. Analogously, we obtain

$$
\left|A_{0}^{\prime} \cup A^{\prime}\right|,\left|B_{0}^{\prime} \cup B^{\prime}\right|,\left|B_{0}^{\prime \prime} \cup B^{\prime \prime}\right| \geq \frac{n+1}{4}
$$

These inequalities lead to the contradiction

$$
n=\left|A_{0}^{\prime} \cup A^{\prime}\right|+\left|A_{0}^{\prime \prime} \cup A^{\prime \prime}\right|+\left|B_{0}^{\prime} \cup B^{\prime}\right|+\left|B_{0}^{\prime \prime} \cup B^{\prime \prime}\right| \geq 4 \frac{n+1}{4}=n+1 .
$$

Case 2. Assume that at least one of the sets $A_{0}^{\prime}, A_{0}^{\prime \prime}, B_{0}^{\prime}, B_{0}^{\prime \prime}$, say A_{0}^{\prime}, does not contain two vertices of distance two. Because of $\left|A^{\prime \prime}\right|,\left|A^{\prime}\right|<\delta$, each vertex $u \in A_{0}^{\prime}$ has at least one positive neighbor u^{\prime} in $A_{0}^{\prime \prime}$, and u^{\prime} has at least one positive neighbor v in A_{0}^{\prime}. Since A_{0}^{\prime} does not contain two vertices of distance two, it follows $u=v$ and hence $\left|A^{\prime}\right|=\delta-1$ and $\left|A^{\prime \prime}\right|=0$.

Since no two vertices of A_{0}^{\prime} have distance two, we deduce $\left(N^{+}(u) \cap A_{0}^{\prime \prime}\right) \cap\left(N^{+}(v) \cap\right.$ $\left.A_{0}^{\prime \prime}\right)=\emptyset$ for all $u, v \in A_{0}^{\prime}$ with $u \neq v$. Because of $\left|A_{0}^{\prime}\right| \geq 2$ and $\left|A^{\prime \prime}\right|=0$, we therefore obtain $\left|A_{0}^{\prime \prime}\right| \geq 2 \delta$ and so $|S| \geq 3 \delta+1$. Hence, the bound $|T| \geq 2 \delta$ implies $n \geq 5 \delta+1$.

In addition, let $x, y \in N^{+}(u)$ with $x \neq y$ for an $u \in A_{0}^{\prime}$. Then, we have seen above that $N^{+}(x)=N^{+}(y)=A^{\prime} \cup\{u\}$. Hence, $d(x, y)=2$ and we arrive finally at the contradiction

$$
\frac{5 \delta+2}{4} \leq \frac{n+1}{4} \leq N C 2(D) \leq\left|N^{+}(x) \cup N^{+}(y)\right|=\delta .
$$

Corollary 4.14 (Dankelmann, Volkmann [4] 1995) Let G be a connected bipartite graph of order $n \geq 3$, edge-connectivity λ, and minimum degree δ. If $N C 2(G) \geq(n+$ 1) $/ 4$, then $\lambda=\delta$, where $N C 2(G)=\min \{|N(x) \cup N(y)|: x, y \in V(G), d(x, y)=2\}$.

References

[1] B. Bollobás, On graphs with equal edge-connectivity and minimum degree, Discrete Math. 28 (1979), 321-323.
[2] G. Chartrand, A graph-theoretic approach to a communication problem, SIAM J. Appl. Math. 14 (1966), 778-781.
[3] G. Chartrand and L. Lesniak, Graphs and Digraphs, 3rd Edition, Wadsworth, Belmont, CA, 1996.
[4] P. Dankelmann and L. Volkmann, New sufficient conditions for equality of minimum degree and edge-connectivity, Ars Combin. 40 (1995), 270-278.
[5] P. Dankelmann and L. Volkmann, Degree sequence conditions for maximally edge-connected graphs and digraphs, J. Graph Theory 26 (1997), 27-34.
[6] P. Dankelmann and L. Volkmann, Degree sequence conditions for maximally edge-connected graphs depending on the clique number, Discrete Math. 211 (2000), 217-223.
[7] J. Fàbrega and M.A. Fiol, Maximally connected digraphs, J. Graph Theory 13 (1989), 657-668.
[8] J. Fàbrega and M.A. Fiol, Bipartite graphs and digraphs with maximum connectivity. Discrete Appl. Math. 69 (1996), 271-279.
[9] D.L. Goldsmith and R.C. Entringer, A sufficient condition for equality of edgeconnectivity and minimum degree of a graph, J. Graph Theory 3 (1979), 251255.
[10] D.L. Goldsmith and A.T. White, On graphs with equal edge-connectivity and minimum degree, Discrete Math. 23 (1978), 31-36.
[11] L. Lesniak, Results on the edge-connectivity of graphs, Discrete Math. 8 (1974), 351-354.
[12] J. Plesník, Critical graphs of given diameter, Acta Fac. Rerum Natur. Univ. Comenian Math. 30 (1975), 71-93.
[13] J. Plesník and S. Znám, On equality of edge-connectivity and minimum degree of a graph, Arch. Math. (Brno) 25 (1989), 19-25.
[14] T. Soneoka, H. Nakada, M. Imase, and C. Peyrat, Sufficient conditions for maximally connected dense graphs, Discrete Math. 63 (1978), 53-66.
[15] L. Volkmann, Bemerkungen zum p-fachen Kantenzusammenhang in Graphen, An. Univ. Buccuresti Mat. 37 (1988), 75-79.
[16] L. Volkmann, Edge-connectivity in p-partite graphs, J. Graph Theory 13 (1989), 1-6.
[17] J.-M. Xu, A sufficient condition for equality of arc-connectivity and minimum degree of a digraph, Discrete Math. 133 (1994), 315-318.

