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Abstract

A cut edge in a graph G is an edge whose removal increases the number
of connected components of G. In this paper we determine the maximum
number of cut edges in a connected d-regular graph G of order p.

1 Introduction and definitions

All graphs considered in this paper are finite, undirected, loopless and without mul-
tiple edges. Let ∆(G) and δ(G) denote the largest degree and the smallest degree
of G respectively. A cut vertex of a graph G is a vertex whose removal increases
the number of connected components of the graph. A cut edge of a graph is defined
in a similar manner as an edge whose removal increases the number of connected
components of the graph. It is easy to see that a connected graph of order p has at
most p − 2 cut vertices and at most p − 1 cut edges. The problem of determining
the largest number of cut vertices or cut edges becomes non-trivial if one places ad-
ditional restrictions on the graph G. Many such problems have been considered in
the literature. Rao [5,6] determined the ranges of the number of cut vertices and the
number of cut edges in a graph of order p and size q. These problems with additional
constraints on the degrees such as ∆(G) ≤ d and δ(G) ≥ d are also considered in Rao
[6] and Rao [7]. The problem of determining the maximum number of cut vertices in
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a connected graph G of order n where δ(G) ≥ d is considered in Clark and Entringer
[3] for d ≥ 5, and in Albertson and Berman [1] for d ≥ 2. Nirmala and Rao [4] have
shown that the maximum number of cut vertices in a connected d-regular graph of
order n is either

⌊
2n−d−5

d+1

⌋
− 1 or

⌊
2n−d−5

d+1

⌋
− 2 for odd d ≥ 5, and have obtained an

upper bound for even d ≥ 6.

For integers p ≥ 1 and d ≥ 0, let g(p, d) denote the maximum number of cut
edges in a connected d-regular graph G of order p. We define g(p, d) to be zero if
there exists no connected d-regular graph of order p. The exact value of g(p, 3) has
been determined in Rao [6] and an upper bound for g(p, d) is obtained in Rao [7]. In
this paper we determine the exact value of g(p, d).

We define a pendant block of a graph G to be a block that contains exactly one
cut vertex of G. Let x be a cut vertex of a connected graph G and C1, C2, . . . be
the connected components of G − x. We define by a piece of G at x, a subgraph
Ci ∪ {x} from which the vertex x, but not its incident edges, is deleted (note that
some edges may be ‘hanging’). A neutral vertex of a graph G is a vertex which is not
a cut vertex. A nearly pendant block of G is a block which contains two cut vertices
of G. For general definitions and notation we refer to Chartrand and Lesniak [2].

2 The number of cut edges in a regular graph

Let G be a connected d-regular graph of order p. Clearly at least one of d and p is
even. It is easy to see that G has no cut edges if d is even. Thus g(p, d) = 0 if d is
even. Again g(p, 1) = 1 or 0 according as p = 2 or p > 2. Henceforth we will assume
that d ≥ 3 is an odd integer, p is an even integer and p ≥ d + 1.

Theorem 1. If p ≥ d2+2d+1, let p = d2+2d+1+m(d2−3)+δ, where 0 ≤ δ < d2−3
and δ = l(d + 1) + ε where 0 ≤ ε < d + 1. Then g(p, d) = d + m(d − 1) + l.
If 2(d + 2) ≤ p < d2 + 2d + 1, let p = 2(d + 2) + l(d + 1) + θ, where 0 ≤ θ < d + 1.
Then g(p, d) = l + 1. Finally, if d + 1 ≤ p < 2(d + 2) then g(p, d) = 0.

Proof: Let us first assume that p ≥ d2 +2d+1. Note that m and l are non-negative
integers and ε is an even integer. We will prove that the number of cut edges in an
arbitrary connected d-regular graph G of order p is at most d + m(d − 1) + l. This
is obviously true if G does not have any cut edges. If G has at least one cut edge
then we will apply a reduction procedure to the graph G and reduce it, in a finite
number of steps, to a connected graph H with exactly d + m(d − 1) + l cut edges.
We ensure that the number of cut edges of the graph does not decrease at each step
of the reduction process. This will prove the theorem in this case.

The graph H is described in the following. Take a graph H1 isomorphic to G1

of Figure 1. We attach to H1 a graph H2 isomorphic to G2 (of the same figure) by
identifying the vertex β of H1 with the vertex α of H2. Next we attach to H2 a graph
H3 isomorphic to G2 by identifying the vertex β of H2 with the vertex α of H3. In
this way we add graphs H2, H3, . . . , Hm+1 all isomorphic to G2.
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Figure 1

Now attach to Hm+1 a graph Hm+2 isomorphic to G3 of Figure 1 by identifying
β of Hm+1 with the vertex α of Hm+2. Let H be the resulting graph. Note that
in Figure 1, the blocks A1, A2, . . . , Ad−1, B1, B2, . . . , Bd−2 which are represented by
circles are pendant blocks on d + 2 vertices. Also C1, C2, . . . , Cl are nearly pendant
blocks on d + 1 vertices and D is a pendant block on d + 2 + ε vertices.

Let G be a connected d-regular graph, with at least one cut edge, of order p. We
will now apply the reduction procedure to G and reduce it to the graph H described
above.

It is easy to see that the size of a pendant block P of G is even or odd according
as the degree in P of the cut vertex belonging to P is odd or even.

Let P be a pendant block of G with size n. Clearly n ≥ d + 2. Let x be the cut
vertex in P and d1 the degree of x in P . Note that 2 ≤ d1 ≤ d− 1. The first step of
the reduction process is to replace the pendant block P by the graph G′ described
below.

Suppose n is odd. Note that d1 is even. In this case we take a d-regular graph on
the vertices of P − x which is the edge-disjoint union of (d − 1)/2 ≥ 1 Hamiltonian
cycles C1, C2, . . . , C d−1

2
and a perfect matching. This is possible since n−3 ≥ d−1 ≥

2. Now remove a matching M1 of size d1/2 from the perfect matching and join x to
the end vertices of the edges of M1. This is possible since n − 1 ≥ d1 + 2 ≥ 4. Let
G′ be the resulting graph. Clearly G′ is 2-connected.

Suppose n is even. Note that d1 is odd, d−2 ≥ d1 ≥ 3 and n ≥ d+3 ≥ 8. Choose
a vertex y �= x of P . Take a d-regular graph on the vertices of P − {x, y} which is
the edge disjoint union of (d − 1)/2(≥ 2) Hamiltonian cycles C1, C2, . . . , C d−1

2
and a

perfect matching. Join x and y. Now from the edges of C d−1
2

choose edge-disjoint
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matchings M1 and M2 of sizes (d1 − 1)/2(≥ 1) and (d− 1)/2(≥ 2) respectively. This
is possible since n − 2 ≥ d + 1 ≥ d1 + 3 ≥ 6. Remove the edges of M1 and M2 and
join the end vertices of the edges of M1(M2) to x(y). Let G′ be the resulting graph.
Now using the fact that there is a cycle passing through all the vertices of P −{x, y}
it is easy to check that G′ is 2-connected.

Thus it is easy to see in both the cases that there are (d − 3)/2 edge disjoint
cycles C1, C2, . . . , C(d−3)/2 in G′ not containing the cut vertex x. If the order of G′

is odd these cycles pass through all the neutral vertices of G′. Otherwise they pass
through all the neutral vertices of G′ except possibly one.

We now reduce the graph G until all pendant blocks, except possibly one, have
size d + 2 or d + 3. If P is a pendant block of size n > d + 3 then we replace P
by the graph G′ (described above) of order d + 2 or d + 3 according as n is odd or
even. Since the size of every pendant block has been reduced by an even number,
this procedure generates an even number of spare (unused) vertices which are now
transferred to one of the pendant blocks. Thus all pendant blocks of G contain d+2
or d + 3 vertices except possibly one, whose size may be larger than d + 3. This
exceptional pendant block is referred to as P ′ in the rest of the paper. Henceforth
we refer to the above step of the reduction process as Step 2.

Next we prove that G can be reduced to a graph in which all blocks adjacent to
any pendant block are cut edges.

Let P be a pendant block of G. Let B1, B2, . . . , Bt be blocks of G which are not
cut edges, adjacent to P . Note that t ≤ (d− 3)/2. Let a1b1 and a2b2 be edges of the
cycle C1 of P and the block B1 respectively. Remove them from G and introduce
the edges a1a2 and b1b2. Using the cycle C1 it is easy to check that this operation
combines P and B1 into a single block. Similarly the blocks Bi, i = 2, 3, . . . , t are
combined with P using the cycles Ci, i = 2, 3, . . . , t. This is Step 3 of the reduction
process.

The fourth step in the reduction process involves getting rid of pendant blocks
which are adjacent to more than one cut edge. This is done by replacing every
pendant block which is adjacent to k ≥ 2 cut edges by a non-pendant block of the
same size. Take a pendant block A which is adjacent to k ≥ 2 cut edges e1, e2, . . . , ek.
Clearly k ≤ d − 2. Let x be the cut vertex in A and Pi the piece at x containing ei.
Then the degree of x in A is d − k. We can assume that the size of A is d + 2 or
d + 3 according as k is odd or even.

Case i: k is odd. Note that k ≥ 3 and d + 2 − k(≥ 4) is even. Replace A by
a block A′ which is constructed as follows: Take the complete graph of order d + 2.
Choose k vertices x1, x2, . . . , xk and remove a cycle of length k passing through them
and a matching on the remaining d + 2 − k vertices. Let A′ be the resulting graph.
Clearly the degree of xi in A′ is d− 1 and the degree in A′ of every other vertex is d.

Case ii: k is even. Note that d + 3 − k(≥ 6) is even. Replace A by a block A′

on d + 3 vertices which has k vertices of degree d − 1 in A′ and d + 3 − k vertices
with degree d in A′. The block A′ is constructed as follows: Take a d-regular graph
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on d + 3 vertices which contains a perfect matching and remove a matching of size
k/2 from it. Let A′ be the resulting graph and let x1, x2, . . . , xk be the vertices with
degree d − 1 in A′.

After replacing the block A by A′ as explained above, we attach the piece Pi to
A′ at the vertex xi for i = 1, 2, . . . , k.

Thus every pendant block in the graph is adjacent to exactly one block which is
a cut edge. Also all pendant blocks except possibly one have size d + 2.

Next we reduce the graph G until at any cut vertex of G there is at most one
block of G which is not a cut edge. Suppose A and B are blocks which are not cut
edges and with a common cut vertex x.

Case i: One of the blocks A and B, A say, contains a cycle which does not pass
through x. Take an edge uv on that cycle and an edge wz in B − x. Remove the
edges uv and wz from G and introduce the edges uw and vz into G. Thus A and B
are combined into one block.

Case ii: There does not exist any cycle in A∪B − {x}. Let x1, x2, . . . , xk be all
the vertices in A ∪ B which have degree 2 in A ∪ B. Note that k ≥ 4. (Notice that
in this case A and B cannot be combined into a single block with the same degree
sequence.) Now replace A ∪ B by a cycle passing through x1, x2, . . . , xk. Let y be
a vertex which originally had an even degree d1 > 2 in A ∪ B. Then the pieces at
y not containing A and B together with y are attached to some pendant block as
explained below. Take a matching of d1/2 edges in that pendant block, remove them
and join the d1 end vertices to the vertex y.

Next let z be a vertex which originally had degree d2 in A ∪ B where d2 is odd.
Take a pendant block P of size d+2. Note that the cut vertex in P has degree d− 1
in P . Replace P by a graph G′′ which has one vertex of degree d − 1, one vertex,
say z′, of degree d2 and d vertices of degree d each. Now attach the pieces at z not
containing A and B at the vertex z′ of G′′. Note that in this procedure we have not
used the vertex z. Since the number of vertices in A ∪ B which have odd degree in
A ∪ B is even, the above procedure leaves an even number of unused (free) vertices
which can easily be put in a pendant block. Repeating this procedure as many times
as necessary, we finally get a graph with the property that at any cut vertex there is
at most one block which is not a cut edge.

Before proceeding further let us make an observation. The size n of a block B
which is adjacent to exactly k cut edges is odd or even according as k is odd or even.

This follows from the identity
n∑

i=1
di + k = nd, where the di are the degrees in B of

the vertices of B.

In the next step of the reduction process we get rid of blocks, with more than 2
vertices, which are adjacent to k ≥ 3 cut edges. Firstly let A be a block of size n ≥ 3
which is adjacent to k ≥ d cut edges. Note that these are the only blocks that are
adjacent to A. We now shrink the block A to a single vertex a. This produces n− 1
free vertices (unused vertices of A) which will be placed in some pendant block as
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explained below.

Case i: k = d. Note that n is odd and hence the n − 1 free vertices can easily
be placed into a pendant block.

Case ii: k > d. In this case the procedure of shrinking A to a single vertex a,
makes the degree of a equal to k > d. The degree of a can be made d by removing
k − d of the pieces at a. Each of these k − d pieces is now attached to some pendant
block successively in the following way.

Let P be a pendant block of size d + 2. Recall that the block adjacent to P is a
cut edge, and hence the unique cut vertex (say x) in P has degree d − 1 in P . Now
replace P by a block of size d + 1 which has two vertices of degree d − 1 and d − 1
vertices of degree d each. Let y be the other vertex of degree d− 1 in P . Now attach
a piece (removed from a) at the vertex y. In this process we get, in all, n− 1 + k− d
free (unused) vertices. Since n − 1 + k − d is even, these free vertices can easily be
put in a pendant block.

Next take a block A which is adjacent to k cut edges where 3 ≤ k ≤ d − 1. We
first show that the size of A is at least d + 1. Suppose the size of A is n ≤ d. Let

(d1, d2, . . . , dn) be the degree sequence of A. Then
n∑

i=1
di = nd − k ≥ (n − 1)d + 1.

But di ≤ n− 1, so we get n(n− 1) ≥ (n− 1)d + 1, a contradiction which proves that
n ≥ d + 1. Now let e1, e2, . . . , ek be the cut edges adjacent to A. Replace the block
A by a block B on d+1 vertices such that two vertices x1, x2 of B have degree d− 1
in B and the rest have degree d. Attach the pieces starting with e1 and e2 to B at
the vertices x1 and x2 respectively. Attach the remaining pieces to some pendant
blocks successively as explained in the preceding paragraph. By this process we get
n − (d + 1) + k − 2 free (unused) vertices. Since n + k − d − 3 is even these vertices
can easily be put in some pendant block.

Thus the graph is reduced until every block in the graph is either pendant or
nearly pendant, every nearly pendant block has size 2 or d + 1, every pendant block
is adjacent to exactly one block which is a cut edge, and every pendant block, except
possibly one, has size d + 2.

Now we bring together all the cut vertices with d pieces so that the subgraph
generated by them is a tree. For this, if a block C on more than two vertices
separates two vertices x and y each of which is a cut vertex with d pieces, remove
the block C together with a cut edge and introduce C along with the cut edge at a
pendant block as shown in Figure 2.

Thus the graph can be reduced until it consists of a tree T such that all its
nonpendant vertices have degree d in T with a chain of nearly pendant blocks and
one pendant block attached at each pendant vertex of T . Call each such chain a
‘terminal chain’. Now the tree T can be chosen to be a path. We can also assume
that all the terminal chains except possibly one consist of a pendant block. Let l′ be
the number of nearly pendant blocks different from K2 contained in the exceptional
terminal chain. We may assume that all the pendant blocks except the one in the
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exceptional terminal chain contain d + 2 vertices. Let α be the vertex common to T
and the exceptional terminal chain. If l′ is greater than d−2, the first 2d−2 blocks in
the exceptional terminal chain can be replaced by a graph isomorphic to G2 of Figure
1 thereby gaining two free vertices. When l′ = d − 2 and the size of the pendant
block in the exceptional terminal chain is at least 2d + 1 we replace the exceptional
terminal chain by a graph isomorphic to G2 of Figure 1 with a pendant block at
the vertex β, thereby increasing the number of cut edges. Thus when l′ = d − 2 we
may take that the size of the pendant block in the exceptional terminal chain is at
most 2d.

We can now assume that the pendant block in the exceptional terminal chain has
at most 2d + 2 vertices since otherwise we can get an extra cut edge. Let m′ + 1 be
the number of cut vertices with d pieces of the resulting graph. Now counting the
number of vertices in the exceptional terminal chain we see that l′ and m′ coincide
with l and m respectively, defined in the statement of the theorem. Thus the final
graph coincides with H described at the beginning of the proof.

Next let 2d + 4 ≤ p < d2 + 2d + 1. By a procedure similar to that used when
p ≥ d2 + 2d + 1, we reduce any connected d-regular graph on p vertices with at least
one cut edge, to the graph shown in Figure 3 without decreasing the number of cut
edges. Note that A2, A3, . . . , Al+1 are blocks on d + 1 vertices, A1 is a block on d + 2
vertices and Al+2 is a block on d + 2 + θ vertices.

Al+1 Al+2A2A1

Figure 3

Finally it is easy to see that when d + 1 ≤ p < 2(d + 2), g(p, d) = 0. This
completes the proof of the theorem.
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