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Abstract

In this note, we present two lower bounds for the spectral radius of the
Laplacian matrices of triangle-free graphs. One is in terms of the numbers
of edges and vertices of graphs, and the other is in terms of degrees and
average 2-degrees of vertices. We also obtain some other related results.

1 Introduction

Let G = (V, E) be a graph with the vertex set V (G) and the edge set E(G). The
value of a function f : V (G) �−→ R at a vertex y is defined by f(y). For y ∈ V (G),
we denote by d(y) the degree of y. The Laplacian matrix L(G) of G is defined by

L(x, y) =




d(y), if x = y,
−1, if x and y are adjacent,
0, otherwise.

It is easy to see that L(G) is singular, positive semidefinite. Hence the eigenvalues
of L(G) can be denoted by λ1(L(G)) ≥ · · · ≥ λn(L(G)) = 0. The spectrum of L(G)
can be used to obtain much information about the graph; for example, estimates for
the diameter of the graph (see the survey by Merris[8]). In particular, estimates or
bounds for λ1(L(G)) and λn−1(L(G)) are of great interest. Recently, some upper
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bounds for λ1(L(G)) have been obtained in terms of degrees and average 2-degrees
of vertices by Li and Zhang [7] and Merris [9]. As to the lower bounds for λ1(G),
Fiedler in [4] proved the following result:

λ1(L(G)) ≥ n

n − 1
max

x∈V (G)
{d(x)}. (1)

Recently, Grone and Merris in [5] improved the above result by showing that if
G has at least one edge, then

λ1(L(G)) ≥ max
x∈V (G)

{d(x)} + 1. (2)

In this note, we obtain two lower bounds for the spectral radius λ1(L(G)) of
triangle-free graphs; one is in terms of the numbers of edges and vertices of graphs,
and the other is in terms of degrees and average 2-degrees of vertices. We also obtain
some other related results. For triangle-free graphs, the second bound is better than
(2) of Grone and Merris.

2 Lemmas

In this section, we present some lemmas which will be used to obtain our main results.
We also give a new proof of inequality (2) and characterize the equality in (2).

Let G be a graph with the degree diagonal matrix D(G) and the (0,1)-adjacency
matrix A(G). Let Q(G) = D(G) + A(G).

Lemma 2.1 Let G be a graph. Then

λ1(L(G)) ≤ λ1(Q(G)). (3)

Moreover, if G is connected, then the equality in (3) holds if and only if G is a
bipartite graph.

Proof. Since the absolute value of any (x, y)-th entry in L(G) is no more than
the corresponding (x, y)-th entry in Q(G) and Q(G) is nonnegative and positive
semidefinite, the inequality in (3) follows from Wielandt’s theorem (see [1], Theo-
rem 2.2.14, for example). Moreover, if G is connected, then L(G) and Q(G) are
irreducible. Hence it follows from Wielandt’s theorem that the equality in (3) holds
if and only if L(G) = WQ(G)W−1, where W is a diagonal matrix whose diag-
onal entries have modulus one, say W = diag(eiθu , u ∈ V (G)), where i2 = −1
and θu is real. Let L(G) = (luv) and Q(G) = (quv). Then luv = ei(θu−θv)quv

and therefore ei(θu−θv) = 1 or − 1 if uv ∈ E(G). Since G is connected, for
any two distinct vertices u, v ∈ V (G), there exists a path u = u1u2 · · ·uk = v
in G. Thus, ei(θu−θv) =

∏k−1
j=1 ei(θuj−θuj+1) is 1 or −1. Therefore we may assume

that W = eiθW1, where W1 is a diagonal matrix whose diagonal entries are 1 or
−1. Moreover, L(G) = W1Q(G)W−1

1 . By comparing with corresponding entries of
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L(G) = W1Q(G)W−1
1 , it is easy to see that L(G) = WQ(G)W−1 if and only if G is

bipartite.

Remark: In fact, if G is bipartite and is not connected, the equality in (3) still
holds.

The follow lemma is well-known (see [8], for example).

Lemma 2.2 Let H be a bipartite subgraph of G. Then λ1(L(G)) ≥ λ1(Q(H)).

Now we are going to give a new proof of inequality (2).

Theorem 2.3 [5] Let G be a graph with at least one edge. Then

λ1(L(G)) ≥ max
x∈V (G)

{d(x)} + 1. (4)

Moreover, if G is connected, then the equality in (4) holds if and only if max
x∈V (G)

{d(x)} =

|V (G)| − 1, where |V (G)| is the cardinality of the vertex set V (G).

Proof. Let d(z) = max
x∈V (G)

{d(x)} and H be the bipartite subgraph of G with edge set

E(H) = {(z, x) ∈ E(G), x ∈ V (G)}. Then H is a star graph with d(z) + 1 vertices.
Thus λ1(L(H)) = d(z) + 1. Hence the inequality in (4) follows from Lemma 2.2.

Suppose that G is connected. If max
x∈V (G)

{d(x)} = |V (G)| − 1, then λ1(L(G)) ≥
|V (G)|. On the other hand, it is well known that |V (G)|−λ1(L(G)) is an eigenvalue
of L(G), where G is the complement of G. So |V (G)| − λ1(L(G)) ≥ 0. Hence the
equality in (4) holds.

Conversely, if d(z) = max
x∈V (G)

{d(x)} < |V (G)| − 1, then there exist vertices y1 and

y2 such that (z, y1) ∈ E(G), (z, y2) /∈ E(G) and (y1, y2) ∈ E(G), since G is connected.
Let H ′ be the bipartite subgraph of G with E(H ′) = E(H) ∪ {(y1, y2)}. Define the
function f : V (H ′) �−→ R by f(x) = 1, if x = z; f(x) = 1/d(z), if (x, z) ∈ E(G);
f(x) = 0, otherwise. Then

λ1(Q(H ′)) = max
f �=0

〈f, Q(H ′)f〉
〈f, f〉

≥ d(z)(1 + 1/d(z))2 + (1/d(z))2

1 + (1/d(z))2d(z)

> d(z) + 1.

Hence, by Lemma 2.2, λ1(L(G)) > d(z) + 1. This completes the proof.

Lemma 2.4 Let G be a triangle-free graph on |V (G)| vertices and |E(G)| edges.
Then there exists a bipartite subgraph H of G such that

|E(H)| ≥ max


4|E(G)|2

|V (G)|2 ,
|E(G)|

2
+

1

8
√

2

∑
x∈V (G)

√
d(x)




≥ max

{
4|E(G)|2
|V (G)|2 ,

|E(G)|
2

+
1

8
√

2
|E(G)|3/4

}
.

Proof. This follows from the results of Erdös et al. [3] and Shearer [10].

35



3 Lower bounds for spectral radius of

triangle-free graphs

Now we give the main results of this paper.

Theorem 3.1 Let G be a triangle-free graph. Then

λ1(L(G)) ≥ max

{
16|E(G)|2
|V (G)|3 ,

2|E(G)|
|V (G)| +

|E(G)|3/4

2
√

2|V (G)|

}
. (5)

Moreover, if G is the complete bipartite graph Kn,n of order 2n, then the equality in
(5) holds.

Proof. Let H be a bipartite spanning subgraph of G with the largest number of
edges. Hence by Lemmas 2.2 and 2.4, we have

λ1(L(G)) ≥ λ1(Q(H))

≥ 〈1, Q(H)1〉
〈1,1〉

=
4|E(H)|
|V (G)|

≥ max

{
16|E(G)|2
|V (G)|3 ,

2|E(G)|
|V (G)| +

|E(G)|3/4

2
√

2|V (G)|

}
,

where 1 is the vector with all coordinates 1. Moreover, if G is the complete bipartite
graph Kn,n of order 2n, then by (5), we have λ1(L(G)) ≥ 2n. On the other hand,
λ1(L(G)) ≤ 2n. Therefore, the equality in (5) holds.

From Theorem 3.1, it is easy to get a well known result, i.e., Turan’s Theorem.

Corollary 3.2 (Turan’s Theorem[2]) Let G be a connected graph with |E(G)| >
1
4
|V (G)|2. Then G contains at least one triangle.

Proof. If G does not contain any triangle, by Theorem 3.1, we have

16|E(G)|2
|V (G)|3 ≤ λ1(L(G)) ≤ |V (G)|.

Hence |E(G)| ≤ 1
4
|V (G)|2, which contradicts the condition of Corollary 3.2. There-

fore the result holds.

Corollary 3.3 Let G be a triangle-free graph with maximum degree ∆. Then the
smallest eigenvalue of the adjacency matrix A(G) satisfies

λn(A(G)) ≤ min

{
∆ − 16|E(G)|2

|V (G)|3 , ∆ − 2|E(G)|
|V (G)| − |E(G)|3/4

2
√

2|V (G)|

}
.
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Proof. Let D(G) be the degree diagonal matrix. Then

λ1(L(G)) ≤ λ1(D(G)) − λn(A(G)).

Hence the result follows from Theorem 3.1.

Now we are going to give the second lower bound for λ1(L(G)) in terms of degrees
and average 2-degrees. The average 2-degree of a vertex u, denoted by mu, is the
average of the degrees of its neighbors.

Theorem 3.4 Let G = (V, E) be a triangle-free graph. If du and mu are the degree
and the average 2-degree of a vertex u, respectively, then

λ1(L(G)) ≥ max
{

1

2
(du + mu +

√
(du − mu)2 + 4du, u ∈ V

}
. (6)

Proof. Let L(U) be the principal submatrix of L(G) corresponding to U , where
U = {u, v1, · · · , vk} is the closed neighborhood of a vertex u and du = k. Obviously,
λ1(L(G)) ≥ λ1(L(U)). Since G is triangle-free, we may assume that

L(U) =




du −1 −1 · · · −1
−1 dv1 0 · · · 0
· · · · · · · · · · · · · · ·
−1 0 0 · · · dvk


 .

With elementary calculations, we see that the characteristic polynomial of L(U)
is

det(λI − L(U)) = (λ − du −
k∑

i=1

1

λ − dvi

)
k∏

i=1

(λ − dvi
).

Note that λ1(L(G)) ≥ λ1(L(U)) > dvi
for each i = 1, · · · , k. Hence λ1(L(G))

satisfies

λ1(L(G)) − du ≥
k∑

i=1

1

λ1(L(G)) − dvi

.

By the Cauchy-Schwarz inequality, we have

k∑
i=1

(λ1(L(G)) − dvi
)

k∑
i=1

1

λ1(L(G)) − dvi

≥

 k∑

i=1

√
λ1(L(G)) − dvi√
λ1(L(G)) − dvi




2

= k2.

Hence

λ1(L(G)) − du ≥ k2∑k
i=1(λ1(L(G)) − dvi

)
=

du

λ1(L(G)) − mu

,

since mu = 1
k

∑k
i=1 dvi

. This inequality yields the desired result.

For d-regular triangle-free graphs, we have the following result.
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Corollary 3.5 Let G be a d-regular triangle-free graph on n vertices . Then

λ1(L(G)) ≥ max

{
4d2

n
, d +

√
d

}
. (7)

Proof. Since
16|E(G)|2
|V (G)|3 =

4d2

n
and 1

2
(du + mu +

√
(du − mu)2 + 4du = d +

√
d, the

inequality follows from Theorems 3.1 and 3.4.

Corollary 3.6 Let G be a d-regular graph on n vertices. If the complement G of G
is a triangle-free graph, then the algebraic connectivity of G satisfies

λn−1(L(G)) ≤ min

{
(3n − 2d − 2)(2d + 2 − n)

n
, d + 1 −√

n − 1 − d

}
.

Proof. Since λn−1(L(G)) = n − λ1(L(G)), the result follows from Corollary 3.5.

Remark. The bounds (2) and (5) are incomparable in general, as we will see
in Example 3.7. However, for triangle-free graphs, (6) is better than (2) of Grone
and Merris. In fact, if we denote by f(mu) the bracket of the right side in (6),
then f(mu) ≥ f(1) = du + 1, since f(mu)

′ ≥ 0. Furthermore, in [6], the authors
constructed, explicitly for every prime p ≡ 1 (mod 4), and found for infinitely many
values of n, a d (= p + 1)-regular triangle-free graph G on n vertices whose smallest
eigenvalue of the adjacency matrix exceeds −2

√
d − 1. Therefore the spectral radius

of the Laplacian matrix of G is no more than d + 2
√

d − 1. Hence the result of
Corollary 3.5 is good in some sense.

As the conclusion of this note, we give one example to illustrate our main results.
Example 3.7. Let G1 and G2 be graphs of order 6 and 7 respectively, as follows:
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G1 G2

Fig. 1

The largest eigenvalues of the Laplacian matrices of graphs G1 and G2 and their
lower bounds are as follows.

λ1(L(G)) bound in (5) bound in (6) bound in (2)
G1 5.56 4.74 4.57 4
G2 4.88 3.10 4.43 4

38



ACKNOWLEDGEMENT.

We would like to thank the anonymous referees for valuable comments, corrections
and suggestions, which resulted in an improvement of the original manuscript.

References

[1] A. Berman and R.S. Plemmons, Nonnegative Matrices in the Mathematical Sci-
ences, Academic 1979, reprint: Classics in Applied Mathematics 9, SIAM 1994.

[2] J.A. Bondy and U.S.R. Murty, Graph theory with applications, American Else-
vier Publishing Co., New York, 1976.

[3] P. Erdös, R. Faudree, J. Pach and J. Spencer, How to make a graph bipartite,
J. Combinatorial Theory (B) 45 (1988), 86–98.

[4] M. Fieder, Algebraic connectivity of graph, Czechoslovak Math. J. 23 (1973),
298–305.

[5] R. Grone and R. Merris, The Laplacian spectrum of a graph (II), SIAM J.
Discrete Math. 7 (1994), 221–229.

[6] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8
(1988), 261–277.

[7] J.S. Li and X.D. Zhang, A new upper bound for eigenvalues of the Laplacian
matrix of a graph, Linear Algebra and its Applications 265 (1997), 93–100.

[8] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra and its Ap-
plications 197/198 (1994), 143–176.

[9] R. Merris, A note on the Laplacian eigenvalues, Linear Algebra and its Appli-
cations 285 (1998), 33–35.

[10] J.B. Shearer, A note on bipartite subgraph of triangle-free graphs, Random
Structures Algorithms 3 (1992), 223–226.

(Received 12/3/2001)

39


