Light paths in large polyhedral maps with prescribed minimum degree

S. Jendrol'
Department of Geometry and Algebra
P. J. Šafárik University and Institute of Mathematics
Slovak Academy of Sciences
Jesenná 5, 04154 Košice
Slovakia
jendrol@kosice.upjs.sk
H.-J. Voss
Department of Algebra
Technical University Dresden
Mommsenstrasse 13
D-01062 Dresden
Germany
voss@math.tu-dresden.de

Abstract

Let k be an integer and \mathbb{M} be a closed 2-manifold with Euler characteristic $\chi(\mathbb{M}) \leq 0$. We prove that each polyhedral map G on \mathbb{M} with minimum degree δ and large number of vertices contains a k-path P, a path on k vertices, such that: (i) for $\delta \geq 4$ every vertex of P has, in G, degree bounded from above by $6 k-12, k \geq 8$ (It is also shown that this bound is tight for k even and that for k odd this bound cannot be lowered below $6 k-14$); (ii) for $\delta \geq 5$ and $k \geq 68$ every vertex of P has, in G, a degree bounded from above by $6 k-2 \log _{2} k+2$. For every $k \geq 68$ and for every \mathbb{M} we construct a large polyhedral map such that each k-path in it has a vertex of degree at least $6 k-72 \log _{2}(k-1)+112$. (iii) The case $\delta=3$ was dealt with in an earlier paper of the authors (Light paths with an odd number of vertices in large polyhedral maps. Annals of Combinatorics 2(1998), 313-324) where it is shown that every vertex of P has, in G, a degree bounded from above by $6 k$ if $k=1$ or k even, and by $6 k-2$ if $k \geq 3, k$ odd; these bounds are sharp.

The paper also surveys previous results in this field.

1. Introduction

This paper continues the investigations of $[7,8,9]$. Some of the definitions of [7] are repeated.

In this paper all manifolds are compact 2-dimensional manifolds. If a graph G is embedded in a manifold \mathbb{M} then the closure of the connected components of $\mathbb{M}-G$ are called the faces of G. If each face is a closed 2-cell and each vertex has valence at least three then G is called a map in \mathbb{M}. If, in addition, no two faces have a multiply connected union then G is called a polyhedral map in \mathbb{M}. This condition on the union of two faces is equivalent to saying that any two faces that meet, meet on a single vertex or a single edge. When two faces in a map meet in one of these two ways we say that they meet properly.
In the following, let $\mathbb{S}_{g}\left(\mathbb{N}_{q}\right)$ be an orientable (a non-orientable) surface of genus g (genus q) respectively. We say that H is a subgraph of a polyhedral map G if H is a subgraph of the underlying graph of the map G.

The degree of a face α of a polyhedral map is the number of edges incident to α. Vertices and faces of degree j are called j-valent vertices and j-valent faces, respectively. Let $v_{i}(G)$ and $p_{i}(G)$ denote the number of i-valent vertices and i valent faces, respectively. For a polyhedral map G let $V(G), E(G)$ and $F(G)$ be the vertex set, the edge set and the face set of G, respectively. The cardinality of the set $V(G)$ is called the order of G. The degree of a vertex A in G is denoted by $\operatorname{deg}_{G}(A)$ or $\operatorname{deg}(A)$ if G is known from the context. A path and a cycle on k vertices is defined to be the k-path and the k-cycle, respectively. The length $\rho(p)$ and $\rho(C)$ of a path p and a cycle C, respectively, is the number of its edges. A k-path passing through vertices A_{1}, \ldots, A_{k} is denoted by $\left[A_{1}, A_{2}, \ldots, A_{k}\right]$ provided that $A_{i} A_{i+1} \in E(G)$ for any $i=1,2, \ldots, k-1$.

It is an old classical consequence of the famous Euler's formula that each planar graph contains a vertex of degree at most 5. A beautiful theorem of Kotzig [11, 12] states that every 3 -connected planar graph contains an edge with degree-sum of its endvertices being at most 13. This result was further developed in various directions and served as a starting point for discovering many structural properties of embeddings of graphs, see e.g. $[1,4,5,7,8,13]$.

Recently the following problem has been investigated.
Problem 1. For a given connected graph H let $\mathcal{G}(H, \mathbb{M})$ be the family of all polyhedral maps on a closed 2 -manifold \mathbb{M} with Euler characteristic $\chi(\mathbb{M})$ having a subgraph isomorphic with H. What is the minimum integer $\phi(H, \mathbb{M})$ such that every polyhedral map $G \in \mathcal{G}(H, \mathbb{M})$ contains a subgraph K isomorphic with H for which

$$
\operatorname{deg}_{G}(A) \leq \phi(H, \mathbb{M}) \text { for every vertex } A \in V(K) ?
$$

If such a minimum does not exist we write $\phi(H, \mathbb{M})=\infty$. If such a minimum exists H is called light.

The answer to this question for \mathbb{S}_{0} and \mathbb{N}_{1} is given in Theorem 1 ; the answer for each 2-manifold other then \mathbb{S}_{0} and \mathbb{N}_{1} is given in Theorem 2.

Theorem 1. (Fabrici and Jendrol', [1]) Let k be an integer, $k \geq 1$. Then

$$
\begin{aligned}
& \phi\left(P_{k}, \mathbb{S}_{0}\right)=\phi\left(P_{k}, \mathbb{N}_{1}\right)=5 k, \quad \text { for any } k \geq 1 \\
& \phi\left(H, \mathbb{S}_{0}\right)=\phi\left(H, \mathbb{N}_{1}\right)=\infty, \text { for any } H \neq P_{k} .
\end{aligned}
$$

Theorem 2. (Jendrol and Voss, [7]) Let k be an integer, $k \geq 1$, and \mathbb{M} be a closed 2 -manifold with Euler characteristic $\chi(\mathbb{M}) \notin\{1,2\}$. Then
(i) $\phi\left(P_{1}, \mathbb{M}\right) \leq\left\lfloor\frac{5+\sqrt{49-24 \chi(\mathbb{M})}}{2}\right\rfloor$.
(ii) $2\left\lfloor\frac{k}{2}\right\rfloor\left\lfloor\frac{5+\sqrt{49-24 \chi(\mathbb{M})}}{2}\right\rfloor \leq \phi\left(P_{k}, \mathbb{M}\right) \leq k\left\lfloor\frac{5+\sqrt{49-24 \chi(\mathbb{M})}}{2}\right\rfloor, k \geq 2$.
(iii) $\phi(H, \mathbb{M})=\infty$, for any $H \neq P_{k}$.

In Theorem 2 the upper bound is sharp for even k.
For odd $k \geq 3$ the behaviour of $\phi\left(P_{k}, \mathbb{M}\right)$ has been investigated in [10]. If \mathbb{M} is the torus \mathbb{S}_{1} or Klein's bottle \mathbb{N}_{2} then Theorem 2 implies:

$$
\begin{aligned}
& \phi\left(P_{k}, \mathbb{S}_{1}\right)=\phi\left(P_{k}, \mathbb{N}_{2}\right)=6 k \text { if } k \text { is even, and } \\
& 6 k-6 \leq \phi\left(P_{k}, \mathbb{S}_{1}\right), \phi\left(P_{k}, \mathbb{N}_{2}\right) \leq 6 k, \text { if } k \geq 3 \text { is odd. }
\end{aligned}
$$

The exact result is
Theorem 3. (Jendrol and Voss, [9]) Let k be an integer, $k \geq 1$. Then

$$
\phi\left(P_{k}, \mathbb{S}_{1}\right)=\phi\left(P_{k}, \mathbb{N}_{2}\right)= \begin{cases}6 k, & \text { if } k=1 \text { or } k \text { is even }, \\ 6 k-2 & \text { if } k \text { is odd, } k \geq 3 .\end{cases}
$$

This result is also valid for polyhedral maps on 2-manifolds \mathbb{M} of Euler characteristic $\chi(\mathbb{M})<0$, if these maps have enough vertices. Thus the following problem has been investigated.

Problem 2. Let $N \geq 1$ be an integer. For a given connected graph H let $\mathcal{G}_{N}(H, \mathbb{M})$ be the family of all polyhedral maps of order $\geq N$ on a closed 2-manifold \mathbb{M} with Euler characteristic $\chi(\mathbb{M})$ having a subgraph isomorphic with H. What is the minimum integer $\phi_{N}(H, \mathbb{M})$ such that every polyhedral map $G \in \mathcal{G}_{N}(H)$ contains a subgraph K isomorphic with H for which

$$
\operatorname{deg}_{G}(A) \leq \phi_{N}(H, \mathbb{M}) \text { for every vertex } A \in V(K) ?
$$

Obviously, $\phi_{1}(H, \mathbb{M})=\phi(H, \mathbb{M})$.
Let N_{k} denote the largest number of vertices in a connected graph with maximum degree $\leq 6 k$ containing no path with k vertices. Obviously, $N_{k} \leq(6 k)^{k / 2+2}$.

A solution of Problem 2 gives

Theorem 4. (Jendrol' and Voss, [9]) For any 2-manifold \mathbb{M} with Euler characteristic $\chi(\mathbb{M})<0$, any integer $k \geq 1$ and any integer $N>30000(|\chi(\mathbb{M})|+1)^{3}\left(N_{k}+\right.$ $3(|\chi(\mathbb{M})|+1))$,
(i) $\phi_{N}\left(P_{k}, \mathbb{M}\right)= \begin{cases}6 k, & \text { if } k=1 \text { or } k \text { is even } \\ 6 k-2, & \text { if } k \geq 3 \text { is odd. }\end{cases}$
(ii) $\phi_{N}(H, \mathbb{M})=\infty$ for any $H \neq \bar{P}_{k}$.

In this paper we shall investigate the subclasses which contain all graphs of $\mathcal{G}_{N}(H, \mathbb{M})$ with a given minimum degree $\delta, \delta \geq 3$.
Problem 3. Let $N \geq 1$ be an integer. For a given connected graph H let $\mathcal{G}_{N}(\delta, H, \mathbb{M})$ be the family of all polyhedral maps of minimum degree $\geq \delta$ and order $\geq N$ on a closed 2-manifold \mathbb{M} with Euler characteristic $\chi(\mathbb{M})$ having a subgraph isomorphic with H. What is the minimum integer $\phi_{N}(\delta, H, \mathbb{M})$ such that every polyhedral map $G \in \mathcal{G}_{N}(\delta, H, \mathbb{M})$ contains a subgraph K isomorphic with H for which

$$
\operatorname{deg}_{G}(A) \leq \phi_{N}(\delta, H, \mathbb{M}) \text { for every vertex } A \in V(K) ?
$$

Let $\phi_{N}(\delta, H, \mathbb{M}):=\infty$ if such a bound does not exists, and $\phi(\delta, H, \mathbb{M}):=$ $\phi_{1}(\delta, H, \mathbb{M})$. Obviously, $\phi(H, \mathbb{M})=\phi_{1}(3, H, \mathbb{M})$ and $\phi_{N}(H, \mathbb{M})=\phi_{N}(3, H, \mathbb{M})$. Large graphs of $\mathcal{G}_{N}(\delta, H, \mathbb{M})$ with $\delta \geq 7$ do not exist, i.e., $\mathcal{G}_{N}(7, H, \mathbb{M})=\emptyset$ for large N.

The case $\delta=3$ has been dealt with in Theorems 1-4. For $\delta=4$ it is known
Theorem 5. (Fabrici, Hexel, Jendrol' and Walther, [2]) Let k be an integer, $k \geq 1$. Then
(a) $\phi\left(4, P_{1}, \mathbb{S}_{0}\right)=5, \phi\left(4, P_{2}, \mathbb{S}_{0}\right)=7, \phi\left(4, P_{3}, \mathbb{S}_{0}\right)=9, \phi\left(4, P_{4}, \mathbb{S}_{0}\right)=15$, $\phi\left(4, P_{5}, \mathbb{S}_{0}\right)=19, \phi\left(4, P_{6}, \mathbb{S}_{0}\right)=23, \phi\left(4, P_{7}, \mathbb{S}_{0}\right)=27 ;$
(b) $\phi\left(4, P_{k}, \mathbb{S}_{0}\right)=5 k-7$ for $k \geq 8$;
(c) $\phi\left(4, H, \mathbb{S}_{0}\right)=\infty$ for every connected planar graph $H \neq P_{k}(k \geq 1)$.

In a forthcoming paper we shall show that large triangulations of minimum degree ≥ 5 on compact 2-manifolds \mathbb{M} contain light triangles, light 4-cycles with one inner chord, and 5 -cycles with two inner chords. Here we shall prove a generalization of Theorem 5 to large polyhedral graphs on compact 2-manifolds \mathbb{M} of Euler characteristic $\chi(\mathbb{M}) \leq 0$.
Theorem 6. Let \mathbb{M} be a compact 2-manifold of Euler characteristic $\chi(\mathbb{M}) \leq 0$, and let $N>30000(|\chi(\mathbb{M})|+1)^{3} \cdot\left(N_{k}+3(|\chi(\mathbb{M})|+1)\right)$ be an integer. Then

$$
\begin{gathered}
\phi_{N}\left(4, P_{k}, \mathbb{M}\right)=6 k-12 \text { for all even } k \geq 8 \\
6 k-14 \leq \phi_{N}\left(4, P_{k}, \mathbb{M}\right) \leq 6 k-12 \text { for all odd } k \geq 9
\end{gathered}
$$

Theorem 7. Let k be an integer. Then

$$
5 k-235 \leq \phi\left(5, P_{k}, \mathbb{S}_{0}\right) \leq 5 k-7 \text { for all } k \geq 68
$$

Theorem 8. For any 2-manifold \mathbb{M} with Euler characteristic $\chi(\mathbb{M}) \leq 0$, any integer $k \geq 66$, and any integer $N>30000(|\chi(\mathbb{M})|+1)^{3} \cdot\left(N_{k}+3(|\chi(\mathbb{M})|+1)\right)$,

$$
6 k-72 \log _{2}(k-1)+112 \leq \phi_{N}\left(5, P_{k}, \mathbb{M}\right) \leq 6 k-\log _{2} k+2
$$

We can even prove:

Corollary 8.1.

$$
\phi_{N}\left(5, P_{k}, \mathbb{M}\right) \leq 6 k-2 \log _{2} k+2, \quad k \geq 68
$$

An obvious assertion is Theorem 9 (it can be proved in a similar way as Lemma 9).

Theorem 9. For each integer $k \geq 1$ there exists an integer $N=N(k)$ so that

$$
\phi_{N}\left(6, P_{k}, \mathbb{M}\right)=6
$$

2. Minimum degrees of graphs on \mathbb{M}

In this paper $\chi(\mathbb{M}) \leq 0$. Let G be a graph embedded in a compact 2-dimensional manifold \mathbb{M} of Euler characteristic $\chi(\mathbb{M})$. If G is a map, i.e. each face is a 2-cell then G fulfils Euler's formula

$$
n-e+f=\chi(\mathbb{M})
$$

where

$$
\chi(\mathbb{M})= \begin{cases}2(1-g) & \text { if } \mathbb{M}=\mathbb{S}_{g} \\ 2-q & \text { if } \mathbb{M}=\mathbb{N}_{q}\end{cases}
$$

If G contains a face F which is not a 2-cell than add an edge to its interior so that F is not subdivided. Add edges in this way until a 2-cell embedding is obtained. Let e^{*} denote the number of these edges then Euler's formula is fulfilled with

$$
n-\left(e+e^{*}\right)+f=\chi(\mathbb{M})
$$

where n, e and f denote the number of vertices, edges and faces of G, respectively. We summarize this in
Lemma 1. Let G be the embedding of a graph in a compact 2-dimensional manifold \mathbb{M} of Euler characteristic $\chi(\mathbb{M})$. Let e^{*} denote the maximum number of edges which can be added to G without changing the number of its faces (loops and multiple edges can be added). Then the Euler sum is

$$
n-e+f=\chi(\mathbb{M})+e^{*}
$$

where n, e and f denote the number of vertices, edges and faces of G, respectively.

Lemma 2. Let G be the embedding of a simple graph with minimum degree $\delta(G) \geq$ 2 in a compact 2-dimensional manifold \mathbb{M} of Euler characteristic $\chi(\mathbb{M})$. Let e^{*} denote the maximum number of edges which can be added to G without changing the number of its faces. Then $p_{0}=p_{1}=p_{2}=0$, and the number of edges of G is

$$
e \leq 3\left(n+|\chi(\mathbb{M})|-e^{*}\right)
$$

Proof. By Lemma 1 we have

$$
\begin{equation*}
n-e+f=\chi(\mathbb{M})+e^{*} \tag{1}
\end{equation*}
$$

On the boundary of each face F a vertex, say B lies. Since $\delta(G) \geq 2$ and the graph G is simple at least two edges incident with B belong to F. For the endvertices of these edges different from B the same is true. Hence F is bounded by at least three edges of $G . p_{0}=p_{1}=p_{2}=0$, and

$$
\begin{equation*}
3 f \leq 2 e \tag{2}
\end{equation*}
$$

The formulas (1) and (2) imply

$$
3\left(\chi(\mathbb{M})+e^{*}\right)=3 n-3 e+3 f \leq 3 n-3 e+2 e
$$

and

$$
e \leq 3\left(n+|\chi(\mathbb{M})|-e^{*}\right)
$$

Lemma 3. Let G be the embedding of a simple graph in a compact 2-dimensional manifold \mathbb{M} of Euler characteristic $\chi(\mathbb{M})$. Let e^{*} denote the maximum number of edges which can be added to G without changing the number of faces. If $e^{*}>|\chi(\mathbb{M})|$ then G has minimum degree $\delta(G) \leq 5$.
Proof. Assume that $\delta(G) \geq 6$ for some embedding G on \mathbb{M}. Then

$$
2 e=\sum_{X \in V(G)} \operatorname{deg}_{G}(X) \geq 6 n
$$

By Lemma 2 we have

$$
e \leq 3\left(n+|\chi(\mathbb{M})|-e^{*}\right)
$$

The assumption $e^{*}>|\chi(\mathbb{M})|$ implies

$$
6 n \leq 2 e \leq 6\left(n+|\chi(\mathbb{M})|-e^{*}\right)
$$

and

$$
0 \leq 6\left(|\chi(\mathbb{M})|-e^{*}\right)<0
$$

This contradiction proves the lemma.

Lemma 4. Let G be the embedding of a graph in a compact 2-dimensional manifold of Euler characteristic $\chi(\mathbb{M})$. Let e^{*} denote the maximum number of edges, which can be added to G without changing the number of faces of G. Then

$$
\sum_{j \geq 0}(6-j) v_{j}+2 \sum_{j \geq 0}(3-j) p_{j}=6\left(\chi(\mathbb{M})+e^{*}\right)
$$

Proof. By Lemma 1 we have

$$
n-e+f=\chi(\mathbb{M})+e^{*}
$$

With $2 e=\sum_{j \geq 0} j v_{j}=\sum_{j \geq 0} j p_{j}, n=\sum_{j \geq 0} v_{j}$, and $f=\sum_{j \geq 0} p_{j}$ the assertion of the lemma is true.

3. Proof of Theorem 8 - The upper bound

The proof follows the ideas of [1] and [8]. Suppose that there is a counterexample to our Theorem 9 having $n>3 \cdot 10^{4}(|\chi(\mathbb{M})|+1)^{3} \cdot\left(N_{k}+3(\mid \chi(\mathbb{M} \mid+1))\right.$ vertices, $k \geq 66$. Let G be a counterexample with the maximum number of edges among all counterexample having n vertices. A vertex A of the graph G is major (minor) if $\operatorname{deg}_{G}(A)>6 k-\left\lfloor\log _{2} k\right\rfloor+2\left(\leq 6 k-\left\lfloor\log _{2} k\right\rfloor+2\right.$, respectively). Note that each path on k vertices in G contains a major vertex.

Lemma 5. Every v-valent face $\alpha, v \geq 4$, of G is incident only with minor vertices.
Proof. Suppose there is a major vertex B incident with an v-valent face $\alpha, v \geq 4$. Let C be a diagonal vertex on α with respect to B. Because G is a polyhedral map we can insert an edge $B C$ into the v-valent face α. The resulting embedding is again a counterexample but with one edge more, a contradiction.

Each path with k vertices contains a major vertex.
Let H be the subgraph of G induced on the major vertices of G.
Lemma 6. The minimum degree of H is $\delta(H) \geq 6$.
Proof. Assume that H contains a vertex A of $\operatorname{degree} \operatorname{deg}_{H}(A) \leq 5$. On the other hand A is a major vertex in G, so the degree of A in G is $\operatorname{deg}_{G}(A) \geq 6 k-1$. Because of Lemma 5 the subgraph of G induced on the set of vertices consisting of A and its neighbours contains a wheel of length $\operatorname{deg}_{G}(A)$. The major vertices of the cycle of the wheel partition the minor vertices of this cycle into $\operatorname{deg}_{H}(A) \leq 5$ paths, and one of these paths has a length
$\geq\left\lceil\frac{\operatorname{deg}_{G}(A)-\operatorname{deg}_{H}(A)}{\operatorname{deg}_{H}(A)}\right\rceil \geq\left\lceil\frac{\operatorname{deg}_{G}(A)-5}{\operatorname{deg}_{H}(A)}\right\rceil \geq\left\lceil\frac{6 k-1-5}{5}\right\rceil=k+\left\lceil\frac{k-6}{5}\right\rceil \geq k$.
This contradiction proves Lemma 6.

Lemma 7. $\sum_{j>6}(j-6) v_{j}(H)+2 \sum_{j>3}(j-3) p_{j}(H) \leq 6|\chi(\mathbb{M})|$.
Proof. The subgraph H induced by the major vertices of G is possibly not a 2 -cell embedding in \mathbb{M}. Thus $e^{*} \geq 0$ edges have to be successively added so that the number of faces remains unchanged, and a 2 -cell embedding is obtained. Lemmas 3 and 6 imply

$$
\begin{equation*}
0 \leq e^{*} \leq|\chi(\mathbb{M})| \tag{1}
\end{equation*}
$$

and with Lemma 4

$$
\sum_{j \geq 0}(6-j) v_{j}(H)+2 \sum_{j \geq 0}(3-j) p_{j}(H)=6\left(\chi(\mathbb{M})+e^{*}\right) .
$$

By Lemmas 6 and 2 we have $p_{0}(H)=p_{1}(H)=p_{2}(H)=0$ and $v_{j}(H)=0, j=$ $0,1,2, \ldots, 5$. This implies $\sum_{j>6}(6-j) v_{j}(H)+2 \sum_{j>3}(3-j) p_{j}(H)=6\left(\chi(\mathbb{M})+e^{*}\right)$. $\chi(\mathbb{M})+e^{*}$ ranges between 0 and $-|\chi(\mathbb{M})|$, and $\sum_{j>6}(j-6) v_{j}(H)+2 \sum_{j>3}(j-3)$ $p_{j}(H) \leq 6 \mid(\chi(\mathbb{M}) \mid$.

Let H^{\prime} denote the subgraph of G generated by the minor vertices.
Lemma 8. The subgraph H induced by the major vertices of G has $n(H)$ vertices, where

$$
n(H)>15000(|\chi(M)|+1)^{3}-|\chi(M)| .
$$

Proof. By the maximality of G each face F of H contains no or precisely one component K of H^{\prime}. This component K has $\leq N_{k}$ vertices because it contains no path P_{k} on k vertices. By Lemma 7 each face F of H is bounded by $\leq 3(|\chi(\mathbb{M})|+1)$ vertices. Hence in each face F and its boundary lie $\leq N_{k}+3(|\chi(\mathbb{M})|+1)$ vertices of G. A lower bound for the number $f(H)$ of faces of H is obtained by dividing the number n of vertices of G by an upper bound for the number of vertices of G lying in the interior or on the boundary of a face. Therefore,

$$
\begin{equation*}
f(H) \geq \frac{n}{N_{k}+3(|\chi(\mathbb{M})|+1)} . \tag{2}
\end{equation*}
$$

By Lemma 2 each face of H is bounded by at least three edges, and

$$
3 f(H) \leq 2 e(H) \leq \sum_{j \geq 6} j v_{j}(H)=\sum_{j \geq 6}(j-6) v_{j}(H)+\sum_{j \geq 6} 6 v_{j}(H) .
$$

The sum $\sum_{j \geq 6} 6 v_{j}(H)=6 n(H)$, and by Lemma 7 the sum $\sum_{j \geq 6}(j-6) v_{j}(H) \leq$ $6|\chi(\mathbb{M})|$. Consequently,

$$
\begin{equation*}
3 f(H) \leq 6(\mid \chi(\mathbb{M})+n(H)) . \tag{3}
\end{equation*}
$$

Finally we get with (2)

$$
n(H) \geq \frac{1}{2} f(H)-|\chi(\mathbb{M})| \geq \frac{n}{2}\left(N_{k}+3(|\chi(\mathbb{M})|+1)\right)^{-1}-|\chi(\mathbb{M})|
$$

With $n>30000(|\chi(\mathbb{M})|+1)^{3}\left(N_{k}+3(|\chi(\mathbb{M})|+1)\right)$ we obtain

$$
n(H) \geq 15000(|\chi(\mathbb{M})|+1)^{3}-|\chi(\mathbb{M})| .
$$

A face is said to be a triangle if it is a 2 -cell bounded by a 3 -cycle.

Lemma 9. The subgraph H contains a vertex X with the property: X and all vertices Z having a distance at most three from X have degree 6 and are incident only with triangles.

Proof. By Lemma 7 we have

$$
\sum_{j>6}(j-6) v_{j}(H)+2 \sum_{j>3}(j-3) p_{j}(H) \leq 6|\chi(\mathbb{M})|
$$

The largest vertex degree is $\leq 6(|\chi(\mathbb{M})|+1)$ and the number of d-valent vertices, $d>6$, is $\leq 6|\chi(\mathbb{M})|$. The largest face size is $\leq 3(|\chi(\mathbb{M})|+1)$, the number of d-valent faces, $d>3$, is $\leq 3|\chi(\mathbb{M})|$ and by (1) the number of faces which are not 2-cells is $\leq|\chi(\mathbb{M})|$.
Let M_{0} denote the set of vertices having a degree >6, or lying on a face of size >3, or lying on a face which is no 2-cell. All vertices outside M_{0} have degree 6 (see Lemma 6) and are only incident with triangles. The number of vertices of M_{0} is bounded by

$$
\begin{aligned}
& \left|M_{0}\right| \leq 6|\chi(\mathbb{M})|+(3|\chi(\mathbb{M})|+|\chi(\mathbb{M})|) \cdot 3(|\chi(\mathbb{M})|+1) \\
& \left|M_{0}\right| \leq 20|\chi(\mathbb{M})|(|\chi(\mathbb{M})|+1)
\end{aligned}
$$

Let M_{i} denote the number of vertices having from M_{0} distance i. Since the maximum degree of the vertices of M_{0} is at most $6(|\chi(\mathbb{M})|+1)$ and all other vertices have degree 6 we have $\left|M_{1}\right| \leq\left|M_{0}\right| 6(|\chi(\mathbb{M})|+1),\left|M_{2}\right| \leq\left|M_{1}\right| \cdot 5,\left|M_{3}\right| \leq\left|M_{2}\right| \cdot 5$. This implies

$$
\sum_{j=0}^{3}\left|M_{i}\right| \leq 4000|\chi(M)|(|\chi(M)|+1)^{2}
$$

By Lemma 8 the number of vertices is

$$
n(H)>15000(|\chi(M)|+1)^{3}-|\chi(M)|
$$

Hence $\bigcup_{j=0}^{3} M_{i}$ does not contain all vertices of H, and H contains a vertex X having a distance at least four from M_{0}. So X has the required properties.

Next we study more precisely the properties of the components of the subgraph H^{\prime} of G induced by the minor vertices of G.
Lemma 10. Each triangle D of H contains a vertex $V \in V(H)$ which is adjacent only with $<k-\left\lfloor\log _{2} k\right\rfloor+2$ minor vertices lying in D.
Proof. Assume the contrary, i.e., there exists a triangle $[P, Q, R]$ of H such that each of its vertices is joint with $\geq k-\log k+2$ minor vertices inside of $[P, Q, R]$.

Let K denote the subgraph of G induced by the minor vertices of G lying in the interior of $[P, Q, R]$. Since G is a maximal counterexample K is a component of the subgraph H^{\prime} of G induced by the minor vertices of G. By Lemma 5 the vertex P and all its neighbours induce a wheel W_{P}. Correspondingly Q and R
are the naves of a wheel W_{Q} and W_{R}, respectively. Let p, q and r denote the path of $W_{P} \cap K, W_{Q} \cap K$, and $W_{R} \cap K$, respectively. Then p, q and q, r and r, p have a common endvertex Q^{\prime}, R^{\prime}, and P^{\prime}, respectively (a sketch of the situation is depicted in Fig. 1). Let p^{*}, q^{*} and r^{*} denote the longest $P^{\prime} Q^{\prime}$-path, $Q^{\prime} R^{\prime}$-path and $R^{\prime} P^{\prime}$-path, respectively. p and q have at least one second common vertex because otherwise $p \cup q$ would form a $P^{\prime} R^{\prime}$-path with $\geq 2(k-\log k+2) \geq k$ vertices. Each common vertex V of p and q and the vertices P and Q induce a separating path $P V Q$ of the subgraph of G induced by $[P, Q, R] \cup K$. Therefore by walking on p or q from Q^{\prime} to the other end P^{\prime} or R^{\prime}, respectively, the common vertices appear on p and q in the same order.

Fig. 1
Let $P_{1}=P^{\prime}, P_{2}, \ldots, P_{l+1}, l \geq 1$, be the common vertices of p and q. Between P_{i} and $P_{i+1}, 1 \leq i \leq l$, lies a block A_{i} of K.

Correspondingly, let $Q_{1}=Q^{\prime}, Q_{2}, \ldots, Q_{m+1}, m \geq 1$, and $R_{1}=R^{\prime}, R_{2}, \ldots$, $R_{o+1}, o \geq 1$, be the common vertices of q and r or r and p, respectively. Between Q_{i} and $Q_{i+1}, 1 \leq i \leq m$, and R_{j} and $R_{j+1}, 1 \leq j \leq o$, lies a block B_{i} or C_{j} of K, respectively. The intersection $V(p) \cap V(q) \cap V(r)$ is either empty or contains precisely one vertex $P_{l+1}=Q_{m+1}=R_{o+1}$. In the first case P_{l+1}, Q_{m+1} and R_{o+1} are pairwise distinct vertices of a block, say W (for this case see Fig. 1).

We need the concept of an H-bridge. Let H be an arbitrary subgraph of a graph $G, H \neq G$. There are two types of H-bridges \mathcal{L}. Firstly, $\mathcal{L} \cong K_{2}$, and the only edge of \mathcal{L} is not in H, but it joins two vertices of H. Secondly, \mathcal{L} is obtained from a component K of $G \backslash H$ by adding all K, H-edges and all endvertices of such edges.

The vertices of $H \cap \mathcal{L}$ are called the vertices of attachment of \mathcal{L}.
Next we show
(1)

If A_{i} is a block with at least two edges then $1 \leq \rho\left(p\left[P_{i}, P_{i+1}\right]\right) \leq \rho\left(p^{*}\left[P_{i}, P_{i+1}\right]\right)-1$.
Proof of (1). For convenience let $w:=p\left[P_{i}, P_{i+1}\right]$.
Since $A_{i} \not \neq K_{2}$ and A_{i} is 2-connected there exists at least one w-bridge; each w-bridge has at least two vertices of attachment (Note: a w-bridge can be a K_{2}).

Let \mathcal{L} be a w-bridge so that the partial path of w between two vertices of attachment has smallest length. Let A and A^{\prime} be these two vertices of attachment.

If the partial path $w\left[A, A^{\prime}\right]$ has a length ≥ 2 then each inner vertex of $w\left[A, A^{\prime}\right]$ has degree 3 in G - a contradiction(since $\delta(G) \geq 5$). Hence A and A^{\prime} are neighbours on $w, \mathcal{L} \not \nexists K_{2}$, and each A, A^{\prime}-path of \mathcal{L} has a length ≥ 2. Replacing in w the edge $\left(A, A^{\prime}\right)$ by an A, A^{\prime}-path of \mathcal{L} meeting no attaching vertex different from A and A^{\prime} we obtain a P_{i}, P_{i+1}-path v of A_{i} of length $>\rho(w)$. Consequently, $\rho\left(p\left[P_{i}, P_{i+1}\right]\right)=\rho(w) \leq \rho(v)-1 \leq \rho\left(p^{*}\left[P_{i}, P_{i+1}\right]\right)-1$.

Correspondingly, it can be proved

If B_{i} or C_{i} is a block with at least two edges then

$$
\begin{align*}
\rho\left(q\left[Q_{i}, Q_{i+1}\right]\right) & \leq \rho\left(q^{*}\left[Q_{i}, Q_{i+1}\right]\right)-1, \text { and } \tag{2}\\
\rho\left(r\left[R_{j}, R_{j+1}\right]\right) & \leq \rho\left(r^{*}\left[R_{j}, R_{j+1}\right]\right)-1
\end{align*}
$$

Moreover,

$$
\begin{aligned}
& \rho\left(p\left[P_{l+1}, Q_{m+1}\right]\right) \leq \rho\left(p^{*}\left[P_{l+1}, Q_{m+1}\right]\right)-1 \\
& \rho\left(q\left[Q_{m+1}, R_{o+1}\right]\right) \leq \rho\left(q^{*}\left[Q_{m+1}, R_{o+1}\right]\right)-1, \text { and } \\
& \rho\left(r\left[R_{o+1}, P_{l+1}\right]\right) \leq \rho\left(r^{*}\left[R_{o+1}, P_{l+1}\right]\right)-1
\end{aligned}
$$

Let $s=\left\lfloor\log _{2} k\right\rfloor-2$. Then each of the vertices P, Q, and R is adjacent to at least $k-s$ vertices of K, i.e., $\rho(p) \geq k-s-1, \rho(q) \geq k-s-1$, and $\rho(r) \geq k-s-1$. We consider all blocks touching p, i.e., we consider the chain of blocks $P_{1} A_{1} P_{2} A_{2} \ldots A_{l} P_{l+1} W B_{m+1} Q_{m} B_{m} \ldots Q_{2} B_{2} Q_{1}$ where W is empty if $P_{l+1}=B_{m+1}$. Let

$$
V_{1} D_{1} V_{1}^{\prime} V_{2} D_{2} V_{2}^{\prime} V_{3} \ldots V_{\alpha-1} D_{\alpha-1} V_{\alpha-1}^{\prime} V_{\alpha} D_{\alpha} V_{\alpha}^{\prime}
$$

be a new notation of this chain, where $D_{1}, \ldots, D_{\alpha}$ are the blocks with at least two edges, and $V_{i}^{\prime}=V_{i+1}$ if D_{i} and D_{i+1} have a common cut vertex or $V_{i}^{\prime} \neq V_{i+1}$ and D_{i} and D_{i+1} are joined by a path of length 1 or 2 consisting of one or two K_{2}-blocks (The latter case is only possible if $P_{l+1}=Q_{m+1}$). Since D_{i} is 2-connected, it is bounded by an outer cycle C_{i}. Let $d_{i}:=p\left[V_{i}, V_{i}^{\prime}\right]$ and $d_{i}^{\prime}:=C_{i} \backslash\left(p\left[V_{i}, V_{i}^{\prime}\right] \backslash\left\{V_{i}, V_{i}^{\prime}\right\}\right)$. Thus $d_{i} \cup d_{i}^{\prime}=C$ and $V\left(d_{i}\right) \cap V\left(d_{i}^{\prime}\right)=\left\{V_{i}, V_{i}^{\prime}\right\}$.

By assumption

$$
\begin{equation*}
\rho(p), \rho(q), \rho(r) \geq k-s-1 \tag{3}
\end{equation*}
$$

Fig. 2
Let p^{*} denote a longest $V_{1}, V_{\alpha}^{\prime}$-path. Then $p^{*}\left[V_{i}, V_{i}^{\prime}\right]$ is a longest V_{i}, V_{i}^{\prime}-path in the block D_{i}. The path $\left(d_{j}^{\prime} \backslash\left\{V_{j}^{\prime}\right\}\right) \cup d_{j} \cup p^{*}\left[V_{j}^{\prime}, V_{\alpha}^{\prime}\right]$ of $K, 1 \leq j \leq \alpha$, has a length $\leq k-2$ (see Fig. 2). By (3) and (1) with $V_{\alpha+1}=V_{\alpha}^{\prime}$ we have:

$$
\begin{aligned}
k-s-1 \leq \rho(p) & =\sum_{i=1}^{\alpha} \rho\left(p\left[V_{i}, V_{i+1}\right]\right) \\
& \leq \sum_{i=1}^{\alpha}\left(\rho\left(p^{*}\left[V_{i}, V_{i+1}\right]\right)-1\right)=\rho\left(p^{*}\right)-\alpha \leq(k-1)-\alpha
\end{aligned}
$$

Hence

$$
\begin{equation*}
\alpha \leq s \tag{4}
\end{equation*}
$$

By (1) the length of the partial path $\rho\left(p^{*}\left[V_{j}^{\prime}, V_{\alpha}^{\prime}\right]\right) \geq \rho\left(p\left[V_{j}^{\prime}, V_{\alpha}^{\prime}\right]\right)+\alpha-j$. With (3) these conditions imply

$$
\begin{aligned}
k-2 & \geq \rho\left(d_{j}^{\prime} \backslash\left\{V_{j}^{\prime}\right\}\right) \cup d_{j} \cup p^{*}\left[V_{j}^{\prime}, V_{\alpha}^{\prime}\right] \\
& =\rho\left(d_{j}^{\prime}\right)-1+\rho\left(d_{j}\right)+\rho\left(p^{*}\left[V_{j}^{\prime}, V_{\alpha}^{\prime}\right]\right) \\
& \geq \rho\left(d_{j}^{\prime}\right)-1+\rho\left(p\left[V_{j}, V_{j}^{\prime}\right]\right)+\rho\left(p\left[V_{j}^{\prime}, V_{\alpha}^{\prime}\right]\right)+\alpha-j \\
& =\rho\left(d_{j}^{\prime}\right)-1-\rho\left(p\left[V_{1}, V_{j}\right]\right)+\rho(p)+\alpha-j \\
& \geq \rho\left(d_{j}^{\prime}\right)-1-\rho\left(p\left[V_{1}, V_{j}\right]\right)+(k-s-1)+\alpha-j \\
& =\rho\left(d_{j}^{\prime}\right)-\rho\left(p\left[V_{1}, V_{j}\right]\right)+k-s+\alpha-j-2 .
\end{aligned}
$$

Hence

$$
\rho\left(d_{j}^{\prime}\right) \leq \rho\left(p\left[V_{1}, V_{j}\right]\right)+s-\alpha+j
$$

This implies

$$
\begin{equation*}
\rho\left(d_{j}^{\prime}\right) \leq \rho\left(p\left[V_{1}, V_{j}\right]\right)+(s+1)-j \text { for all } 1 \leq j \leq\left\lfloor\frac{\alpha+1}{2}\right\rfloor \tag{5}
\end{equation*}
$$

With (5) we shall prove
(6) $\quad \rho\left(d_{j}\right), \rho\left(d_{j}^{\prime}\right), \rho\left(d_{\alpha+1-j}\right), \rho\left(d_{\alpha+1-j}^{\prime}\right) \leq(s+1) 2^{j-1}$ for all $1 \leq j \leq\left\lfloor\frac{\alpha+1}{2}\right\rfloor$.

Proof of (6). By induction on j.

Case 1. Let $D_{j} \neq W$. For $j=1$ the validity of (5) is implied by (4):

$$
\rho\left(d_{1}^{\prime}\right) \leq \rho\left(p\left[V_{1}, V_{1}\right]\right)+(s+1)-1 \leq(s+1)
$$

For $j \geq 2$ by (4) it holds

$$
\rho\left(d_{j}^{\prime}\right) \leq\left(\sum_{i=1}^{j-1} \rho\left(d_{i}\right)+j\right)+(s+1)-j=\sum_{i=1}^{j-1} \rho\left(d_{i}\right)+(s+1)
$$

In the latter case the induction hypothesis implies:

$$
\rho\left(d_{j}^{\prime}\right) \leq(s+1) \sum_{i=1}^{j-1} 2^{i-1}+(s+1)=(s+1) 2^{j-1}
$$

Case 2. Let $D_{j}=W$. Then we have the situation depicted in Fig. 3.

Fig. 3
By the arguments of Case 1 we arrive at $\rho\left(w_{2}\right)+\rho\left(w_{3}\right)=\rho\left(d_{j}^{\prime}\right) \leq(s+1) 2^{j-1}$ and $\rho\left(w_{1}\right)<\rho\left(w_{1}\right)+\rho\left(w_{2}\right)=\rho\left(d_{j}^{*}\right) \leq(s+1) 2^{j-1}$. Hence also in Case 2 the proof of (6) for d_{j}^{\prime} is complete.
$\rho\left(d_{j}\right) \leq(s+1) 2^{j-1}$ can be proved by repeating the proof with the path r. $\rho\left(d_{\alpha+1-j}^{\prime}\right), \rho\left(d_{\alpha+1-j}\right) \leq(s+1) 2^{j-1}$ can be proved by reversing the block chain $V_{\alpha}^{\prime} D_{\alpha} V_{\alpha} V_{\alpha-1}^{\prime} D_{\alpha} V_{\alpha} \ldots$

With (6) and $\alpha \leq s$, see(4), the length of p is

$$
\begin{aligned}
k-s-1 & \leq \rho(p) \leq 2 \sum_{j=1}^{\left\lfloor\frac{s+1}{2}\right\rfloor}(s+1) 2^{j-1} \\
& =2(s+1)\left(2^{\left\lfloor\frac{s+1}{2}\right\rfloor-1}-1\right)
\end{aligned}
$$

With $s+1 \leq 2^{\frac{s+1}{2}}$ for $s=\left\lfloor\log _{2} k\right\rfloor-2 \geq 3$ we obtain

$$
k \leq 2^{s+1}=2^{\left\lfloor\log _{2} k\right\rfloor-1} \leq \frac{k}{2}
$$

This contradiction proves Lemma 10.
Next the proof of Theorem 8 will be completed. Lemma 9 implies the existence of a triangle D of H whose vertices have degree 6 . By Lemma 10 the triangle D contains a vertex, say P, which is adjacent only with $<k-\left\lfloor\log _{2} k\right\rfloor+2$ minor vertices lying in D. In all other triangles adjacent with P the vertex P is joint with $\leq k-2$ minor vertices. Hence the major vertex P has a degree

$$
\begin{aligned}
& \operatorname{deg}_{G}(P)<\operatorname{deg}_{H}(P)+\left(\operatorname{deg}_{H}(P)-1\right)(k-1)+\left(k-\left\lfloor\log _{2} k\right\rfloor+2\right) \\
& =\operatorname{deg}_{H}(P) \cdot k-\left\lfloor\log _{2} k\right\rfloor+2 \\
& \leq 6 \cdot k-\left\lfloor\log _{2} k\right\rfloor+2
\end{aligned}
$$

This contradicts our assumption that each major vertex has a degree greater than $6 \cdot k-\left\lfloor\log _{2} k\right\rfloor+2$.
This contradiction completes the proof of the upper bound of Theorem 8.
It can be proved that there is a major vertex Q incident with two triangles D and D^{\prime} of H such that Q is incident with $<k-\left\lfloor\log _{2} k\right\rfloor+2$ minor vertices in two triangles which proves the validity of the Corollary 8.1 related to Theorem 8.

4. Proof of Theorem 6 - The upper bound

The proof follows the ideas of [1] and [8]. Suppose that there is a counterexample to our Theorem 6 having $n>3 \cdot 10^{4}(|\chi(\mathbb{M})|+1)^{3} \cdot\left(N_{k}+3(|\chi(\mathbb{M})|+1)\right)$ vertices, $k \geq 8$. Let G be a counterexample with the maximum number of edges among all counterexamples having n vertices. A vertex A of the graph G is major (minor) if $\operatorname{deg}_{G}(A)>6 k-12(\leq 6 k-12$, respectively $)$.

The proof follows the ideas of section 3 .
First an analogue to Lemma 10 will be proved.
Lemma 11. In any triangle D of H each vertex V is adjacent only with $\leq k-2$ minor vertices lying in the interior of D. If one vertex is incident with $k-2$ minor vertices then one of the other vertices of D is incident with precisely one minor vertex in the interior of D.
Proof. Assume the contrary, i.e., there exists a triangle $D=[P, Q, R]$ of H such that P is joined with $k-1$ minor vertices of the interior of $[P, Q, R]$.

The notation of the proof of Lemma 10 is used again. The path p of all minor neighbours P in the interior of D belongs to a chain of blocks

$$
P^{\prime}=P_{1} A_{1} P_{2} A_{2} \ldots A_{l} P_{l+1} W B_{m+1} Q_{m+1} B_{m} \ldots B_{2} Q_{2} B_{1} Q_{1}=Q^{\prime}
$$

Assertion (1) of the proof of Lemma 10 is again valid. Hence by (1) all blocks A_{i} and B_{j} are one-edge blocks K_{2} (the part W consists of two one-edge blocks,
or is only one vertex). Since both vertices P_{1} and Q_{1} cannot be joint with all three vertices of $[P, Q, R]$ at least one of these vertices, say Q_{1}, is joint only with P and Q. Hence Q_{1} has degree $\operatorname{deg}_{G}\left(Q_{1}\right)=3$, a contradiction. This contradiction proves the validity of the first assertion of Lemma 11. Next let p have precisely $k-2$ vertices. Then B_{1} is no one-edge block K_{2} but all other blocks of the chain are oneedge blocks K_{2} (see Fig. 4 with $B_{1} \cong K_{4}^{-}$, where K_{4}^{-}denotes the complete graph on four vertices with one missing edge). Further $P_{1}=P^{\prime}$ is joint with all three vertices P, Q, R. Consequently, the vertex R has precisely one minor neighbour in the interior of $[P, Q, R]$.

Fig. 4

This completes the proof of Lemma 11.
With Lemma 11 we will complete the proof of Theorem 6. Lemma 9 implies that the subgraph H contains a vertex X with the property: X and all vertices P having a distance at most three from X have degree 6 and are incident only with triangles. If X is adjacent only with $\leq k-3$ minor vertices in each triangle incident with X then

$$
\operatorname{deg}_{G}(X) \leq \operatorname{deg}_{H}(X)+\operatorname{deg}_{H}(X)(k-3)=6 k-12 .
$$

Next let X be adjacent to precisely $k-2$ minor vertices of some triangle D. By Lemma 11 the triangle D is incident with a vertex Y having only one minor neighbour in D. If Y has $\leq k-3$ neighbours in one triangle different from D then

$$
\begin{aligned}
\operatorname{deg}_{G}(Y) & \leq \operatorname{deg}_{H}(Y)+\left(\operatorname{deg}_{H}(Y)-2\right)(k-2)+(k-3)+1 \\
& =5 k-4 \leq 6 k-12 \text { for } k \geq 8
\end{aligned}
$$

Next let Y be adjacent to precisely $k-2$ minor vertices in each of the five remaining triangles incident with Y. Then

$$
\begin{aligned}
\operatorname{deg}_{G}(Y) & \leq \operatorname{deg}_{H}(Y)+\left(\operatorname{deg}_{H}(Y)-1\right)(k-2)+(k-3)+1 \\
& =5 k-3 \leq 6 k-12 \text { for } k \geq 9
\end{aligned}
$$

In the case $k=8$ the proof will be continued.
The vertex Y and its neighbours create a wheel $W(Y)$ with the nave Y. Let C denote the cycle $W(Y) \backslash\{Y\}$ of $W(Y)$. If one vertex P of C is incident with two triangles D, D^{\prime} having only one minor neighbour of P in its interior then

$$
\operatorname{deg}_{G}(P) \leq \operatorname{deg}_{H}(P)+\left(\operatorname{deg}_{H}(P)-2\right)(k-2)+2=4 k \leq 6 k-12 .
$$

Next let each vertex of the cycle C be incident with at most one triangle of $W(Y)$ having precisely one neighbour in its interior. Then C contains three consecutive vertices $Z, Z^{\prime}, Z^{\prime \prime}$ being incident with a triangle of $W(Y)$ having precisely one minor neighbour in its interior.

The same arguments applied to the wheel $W\left(Z^{\prime}\right)$ lead to a vertex Q of H of valency $\operatorname{deg}_{G}(Q) \leq 6 k-12$. Thus in each case we arrive at a major vertex of a degree $\leq 6 k-12$. This contradicts our assumption that each major vertex has a degree $>6 k-12$. This contradiction completes the proof of the upper bound of Theorem 6.

5. Proof of Theorem 8 - the lower bound

Let I^{-}denote the plane graph obtained by embedding the icosahedron minus one vertex so that the outer face has size 5 .

The plane graphs $R_{2 s}$ and $R_{2 s+1}, s \geq 1$, are constructed as follows: In the inner face of the $2 s$-cycle $C_{2 s}=P_{1} P_{2} \ldots P_{s} Q_{s} \ldots Q_{1} P_{1}$ or the $(2 s+1)$-cycle $C_{2 s+1}=$ $P_{1} P_{2} \ldots P_{s} P_{s+1} Q_{s} \ldots Q_{1} P_{1}$ chords are introduced forming the path $Q_{1} P_{2} Q_{2} P_{3} Q_{3} \ldots$ $P_{s-1} Q_{s-1} P_{s}$ or $Q_{1} P_{2} Q_{2} P_{3} Q_{3} \ldots P_{s-1} Q_{s-1} P_{s} Q_{s}$, respectively (if $s=1$ then let $R_{2 s} \cong K_{2}$). Finally an edge of the outer face of I^{-}is identified with the edge $P_{s} Q_{s}$ of $C_{2 s}$ or $P_{s+1} Q_{s}$ of $C_{2 s+1}$, respectively (see Fig. 5).

A longest $P_{1} Q_{1}$-path w of $R_{2 s}$ and $R_{2 s+1}$ has length $l\left(R_{2 s}\right)=\rho(w)=2 s-1+9=$ $2 s+8$ and length $l\left(R_{2 s+1}\right)=\rho(w)=(2 s+1)+8=2 s+9$, respectively. A $P_{1} Q_{1}$-path of $R_{2 s}$ and $R_{2 s+1}$ bounding the outer face has length $a\left(R_{2 s}\right)=2 s-2+4=2 s+2$ and $a\left(R_{2 s+1}\right)=2 s-1+4=(2 s+1)+2=2 s+3$, respectively.

The plane graph $H_{2 s}$ or $H_{2 s+1}$ is obtained from two disjoint copies L^{\prime} and $L^{\prime \prime}$ of $R_{2 s}$ or $R_{2 s+1}$ by identifying the edge $P_{1}^{\prime} Q_{1}^{\prime}$ of L^{\prime} with the edge $P_{1}^{\prime \prime} Q_{1}^{\prime \prime}$ of $L^{\prime \prime}$ so that $P_{1}^{\prime}=Q_{1}^{\prime \prime}$ and $Q_{1}^{\prime}=P_{1}^{\prime \prime}$ are identified, respectively. The new vertices are denoted by V and W, respectively (if necessary also by $V(H \ldots)$ and $W(H \ldots)$). The length of a longest $V W$-path of $H \ldots$ is denoted by $l(H \ldots)$.

Next a chain of blocks $O_{t}=V_{0} B_{0} V_{1} B_{1} V_{2} \ldots V_{2 t+1} B_{2 t+1} V_{2 t+2}$ is defined having the following properties:
(1) $B_{0} \cong I^{-}$and V_{1}, V_{2} are two nonadjacent vertices on the outer face of I^{-}. The outer face of B_{0} has size 5 , and the bounding cycle of the outer face is subdivided by V_{1} and V_{2} into two arcs of lengths 2 and 3 .

Fig. 5
(2) $B_{2 j-1}, 1 \leq j \leq t+1$, is an one-edge block.
(3) $B_{2 j}, 1 \leq j \leq t$, is isomorphic to some $H_{2 s}$ or $H_{2 s+1}$, where s is chosen so that $l\left(B_{2 j}\right)=2 l\left(B_{2 j-2}\right)+1,2 \leq j \leq t, l\left(B_{2}\right)=11$ and $V_{2 j}=V$ and $V_{2 j+1}=W$. The outer face of $B_{2 j}$ has size $2\left(l\left(B_{2 j}\right)-6\right)$ and the bounding cycle of the outer face is subdivided by V and W into two arcs of length $l\left(B_{2 j}\right)-6$.

In Fig. 6 the chain O_{3} is depicted.
A longest $V_{0} V_{2 t+2}$-path of $O_{t}=V_{0} B_{0} V_{1} B_{1} \ldots V_{2 t} B_{2 t} V_{2 t+1} B_{2 t+1} V_{2 t+2}$ has length

$$
l\left(O_{t}\right)=\sum_{i=0}^{2 t+1} l\left(B_{i}\right)=l\left(B_{0}\right)+\sum_{j=1}^{t+1} l\left(B_{2 j-1}\right)+\sum_{j=1}^{t} l\left(B_{2 j}\right) .
$$

By (1) the length $l\left(B_{2 j-1}\right)=1$ and $l\left(B_{0}\right)=10$:

$$
l\left(O_{t}\right)=10+t+1+\sum_{j=1}^{t} l\left(B_{2 j}\right)
$$

By induction on j the assertions $l\left(B_{2 j+2}\right)=2 l\left(B_{2 j}\right)+1,1 \leq j \leq t-1$, and $l\left(B_{2}\right)=11$ imply $l\left(B_{2 j+2}\right)=11 \cdot 2^{j}+2^{j-1}+2^{j-2}+\cdots+1$, i.e.,

$$
\begin{equation*}
l\left(B_{2 j+2}\right)=12 \cdot 2^{j}-1, \text { and } l\left(O_{t}\right)=12 \cdot 2^{t}-1 \tag{4}
\end{equation*}
$$

Fig. 6: the chain O_{3}
An outer $V_{0} V_{2 t+2}$-path of O_{t} has length

$$
\begin{aligned}
a\left(O_{t}\right) & =a\left(B_{0}\right)+a\left(O_{t}\left[V_{2}, V_{2 t+2}\right]\right) \\
& =a\left(B_{0}\right)+\sum_{j=1}^{t+1} a\left(B_{2 j-1}\right)+\sum_{j=1}^{t} a\left(B_{2 j}\right) \\
& =a\left(B_{0}\right)+\sum_{j=1}^{t+1} l\left(B_{2 j-1}\right)+\sum_{j=1}^{t}\left(l\left(B_{2 j}\right)-6\right) \\
& =a\left(B_{0}\right)+l\left(O_{t}\left[V_{2}, V_{2 t+2}\right]\right)-6 t=a\left(B_{0}\right)-l\left(B_{0}\right)+l\left(O_{t}\right)-6 t
\end{aligned}
$$

the length $a\left(B_{0}\right)$ of the outer path of B_{0} belonging to w is 2 or 3 . Hence $a\left(B_{0}\right) \in$ $\{2,3\}$. With (4) this implies

$$
\begin{equation*}
a\left(O_{t}\right)=a\left(B_{0}\right)+12 \cdot 2^{t}-6 t-11, \text { where } a\left(B_{0}\right) \in\{2,3\} \tag{5}
\end{equation*}
$$

A generalized 3 -star S_{t} is constructed in the following way: three disjoint copies $O_{t}^{\prime}, O_{t}^{\prime \prime}$, and $O_{t}^{\prime \prime \prime}$ of the chain O_{t} are embedded in the plane and the vertices
$Z:=V_{2 t+2}^{\prime}=V_{2 t+2}^{\prime \prime}=V_{2 t+2}^{\prime \prime \prime}$ are identified. The obtained plane 3-star is embedded so that to the outer $V_{0}^{\prime} V_{0}^{\prime \prime}$-path the block B_{0}^{\prime} contributes two edges and the block $B_{0}^{\prime \prime}$ contributes three edges, and the corresponding requirement is also true for the outer $V_{0}^{\prime \prime} V_{0}^{\prime \prime \prime}$-path and the outer $V_{0}^{\prime \prime \prime} V_{0}^{\prime}$-path (see Fig. 7).

Fig. 7
Next let T be a triangulation of the compact 2-manifold \mathbb{M} of Euler characteristics $\chi(\mathbb{M}) \leq 0$ and minimum degree $\delta(T) \geq 6$ with a large number of vertices (such triangulation exists, see [9]). In each triangle $[A B C]$ of T we insert a generalized 3 -star S_{t} so that A, B, C and $V_{0}, V_{0}^{\prime \prime}, V_{0}^{\prime \prime \prime}$ appear in the same order around Z. We join each vertex of the outer $V_{0}^{\prime} V_{0}^{\prime \prime}$-path of T (not containing $V_{0}^{\prime \prime \prime}$) with A by an edge, each vertex of the outer $V_{0}^{\prime \prime} V_{0}^{\prime \prime \prime}$-path with B and each vertex of the outer $V_{0}^{\prime \prime \prime} V_{0}^{\prime}$-path with C by an edge (see Fig. 7). The obtained graph is denoted by G_{t}.

By (5) the outer $V_{0}^{\prime} V_{0}^{\prime \prime}$-path p has length

$$
\begin{aligned}
\rho(p) & =a\left(B_{0}^{\prime}\right)+12 \cdot 2^{t}-6 t-11+a\left(B_{0}^{\prime \prime}\right)+12 \cdot 2^{t}-6 t-11 \\
& =5+24 \cdot 2^{t}-12 t-22 .
\end{aligned}
$$

Hence the number of $A S_{t}$-edges is

$$
\begin{equation*}
\rho(p)+1=24 \cdot 2^{t}-12 t-16 \tag{6}
\end{equation*}
$$

The same is true for the number of $B S_{t}$-edges and $C S_{t}$-edges.
In G each vertex X of the triangulation T has a degree

$$
\begin{aligned}
\operatorname{deg}_{G_{t}}(X) & =\operatorname{deg}_{T}(X)+\operatorname{deg}_{T}(X)(a(p)+1) \\
& =\operatorname{deg}_{T}(X)+\operatorname{deg}_{T}(X)\left(24 \cdot 2^{t}-12 t-16\right) \\
& =\operatorname{deg}_{T}(X)\left(24 \cdot 2^{t}-12 t-15\right) \\
& \geq \delta(T)\left(24 \cdot 2^{t}-12 t-15\right), \text { and }
\end{aligned}
$$

$$
\begin{equation*}
\operatorname{deg}_{G_{t}}(X) \geq 6 \cdot 24 \cdot 2^{t}-72 t-90 \text { for each vertex } X \text { of } T \tag{7}
\end{equation*}
$$

The length of a longest $V_{0}^{\prime} V_{0}^{\prime \prime}$-path p^{*} is $\rho\left(p^{*}\right)=2 l\left(O_{t}\right)$. By construction each longest path of the generalized 3-star S_{t} has this length. Assertion (4) implies that each longest path of S_{t} has

$$
\begin{equation*}
\rho\left(p^{*}\right)+1=2 l\left(O_{t}\right)+1=24 \cdot 2^{t}-1 \text { vertices. } \tag{8}
\end{equation*}
$$

We put $k-1=\rho\left(p^{*}\right)+1=24 \cdot 2^{t}-1$ and $t=\log _{2} k-\log 24$. Then each path with k vertices contains a vertex Y of T. By (7) this vertex has a degree

$$
\begin{align*}
\operatorname{deg}_{G_{t}}(X) & \geq 6 \cdot 24 \cdot 2^{t}-72 t-90 \\
& =6 k-72\left(\log _{2} k-\log _{2} 24\right)-90 \tag{9}\\
& >6 k-72 \log _{2} k+240
\end{align*}
$$

Each path of G_{t} with k vertices contains a vertex of degree $>6 k-72 \log _{2} k+240$ for $k=24 \cdot 2^{t}, t=1,2, \ldots$. Next let k lie in between $12 \cdot 2^{t}=24 \cdot 2^{t-1}<k \leq$ $24 \cdot 2^{t}, t \geq 2$. Hence $\log _{2} k-\log _{2} 24 \leq t<\log _{2} k-\log _{2} 24+1$. We consider two cases.

Case 1. Let k be an even integer. We put $2 r:=24 \cdot 2^{t}-k$, where $0 \leq r \leq$ $12 \cdot 2^{t-1}-1$. In S_{t} we change the blocks near the "center" Z (see Fig. 7). Now this is described in more details. In S_{t} the blocks $B_{2 t}^{\prime}, B_{2 t}^{\prime \prime}$, and $B_{2 t}^{\prime \prime \prime}$ are pairwise isomorphic and $l\left(B_{2 t}^{\prime}\right)=l\left(B_{2 t}^{\prime \prime}\right)=l\left(B_{2 t}^{\prime \prime \prime}\right)=12 \cdot 2^{t-1}-1$.

If $t \geq 2$ and $0 \leq r \leq\left(12 \cdot 2^{t-1}-1\right)-10$ then replace $B_{2 t}^{\prime}, B_{2 t}^{\prime \prime}$, and $B_{2 t}^{\prime \prime \prime}$ by $\widetilde{B}_{2 t}^{\prime}, \widetilde{B}_{2 t}^{\prime \prime}$, and $\widetilde{B}_{2 t}^{\prime \prime \prime}$, respectively, with $\widetilde{B}_{2 t}^{\prime} \cong \widetilde{B}_{2 t}^{\prime \prime} \cong \widetilde{B}_{2 t}^{\prime \prime \prime} \cong H_{i}$, where $l\left(\widetilde{B}_{2 t}^{\prime}\right)=$ $l\left(H_{i}\right)=l\left(B_{2 t}^{\prime}\right)-r$.

If $t \geq 3$ and $\left(12 \cdot 2^{t-1}-1\right)-10<r \leq 12 \cdot 2^{t-1}-1$ then let $s:=\left(12 \cdot 2^{t-1}-1\right)-r$, where $s \leq 10$. Replace $B_{2 t}^{\prime}, B_{2 t}^{\prime \prime}$, and $B_{2 t}^{\prime \prime \prime}$ by $\widetilde{B}_{2 t}^{\prime}, \widetilde{B}_{2 t}^{\prime \prime}$, and $\widetilde{B}_{2 t}^{\prime \prime \prime}$, respectively, with $\widetilde{B}_{2 t}^{\prime} \cong \widetilde{B}_{2 t}^{\prime \prime} \cong \widetilde{B}_{2 t}^{\prime \prime \prime} \cong H_{i}$, where $l\left(\widetilde{B}_{2 t}^{\prime}\right)=l\left(H_{i}\right)=10$, i.e. $H_{i} \cong B_{0}$, and replace $\widetilde{B}_{2 t-2}^{\prime}, B_{2 t-2}^{\prime \prime}$, and $B_{2 t-2}^{\prime \prime \prime}$ by $\widetilde{B}_{2 t-2}^{\prime}, \widetilde{B}_{2 t-2}^{\prime \prime}$, and $\widetilde{B}_{2 t-2}^{\prime \prime \prime}$, respectively, with $\widetilde{B}_{2 t-2}^{\prime} \cong$ $\widetilde{B}_{2 t-2}^{\prime \prime} \cong \widetilde{B}_{2 t-2}^{\prime \prime \prime} \cong H_{j}$ and $l\left(\widetilde{B}_{2 t-2}^{\prime}\right)=l\left(H_{j}\right)=l\left(B_{2 t-2}^{\prime}\right)-s$. The construction is possible for $k \geq 66$. The new generalized 3 -star obtained from S_{t} by these replacements is denoted by \widetilde{S}_{t}. The same replacements applied to the chain of blocks O_{t} result in a chain of blocks \widetilde{Q}_{t}.

The assertions (5), (6) and (8) imply that by this method, a chain of blocks \widetilde{O}_{t} and a graph \widetilde{G}_{t} is obtained with

$$
\begin{gather*}
\rho\left(\widetilde{p}^{*}\right)+1=\rho\left(p^{*}\right)+1-2 r=24 \cdot 2^{t}-1-2 r=k-1, \text { and } \tag{10}\\
l\left(\widetilde{O}_{t}\right)=l\left(O_{t}\right)-r=12 \cdot 2^{t}-1-r=\frac{k}{2}-1, \text { and } \tag{11}\\
\rho(\widetilde{p})+1=\rho(p)+1-2 r=24 \cdot 2^{t}-12 t-16-2 r, \text { and } \tag{12}\\
a\left(\widetilde{O}_{t}\right)=a\left(B_{0}\right)+12 \cdot 2^{t}-6 t-11-2 r, \tag{13}
\end{gather*}
$$

where $a\left(B_{0}\right) \in\{2,3\}$. Hence $k=24 \cdot 2^{t}-2 r$, and

$$
\begin{aligned}
\operatorname{deg}_{\widetilde{G}_{t}}(X) & \geq \operatorname{deg}_{T}(X)+\operatorname{de}_{T}(X)(a(\widetilde{p})+1) \\
& =\operatorname{deg}_{T}(X)(a(\widetilde{p})+2) \\
& \geq 6\left(24 \cdot 2^{t}-2 r-12 t-15\right) \\
& =6\left(24 \cdot 2^{t}-2 r\right)-72 t-90 \\
& \geq 6 k-72 \log _{2} k+72 \log _{2} 24-162 .
\end{aligned}
$$

Consequently, each path of \widetilde{G}_{t} with k vertices contains a vertex Y of degree

$$
\operatorname{deg}_{\widetilde{G}_{t}}(Y)>6 k-72 \log _{2} k+118, k \geq 66
$$

Case 2. Let k be an odd integer. With $k>k-1, k-1$ even, we obtain

$$
\operatorname{deg}_{\widetilde{G}_{t}}(Y)>6(k-1)-72 \log _{2}(k-1)+118=6 k-72 \log _{2}(k-1)+112, k \geq 66
$$

This completes the proof of the lower bound in Theorem 8.
Note that (13) implies

$$
\begin{equation*}
a\left(\widetilde{O}_{t}\right) \geq \frac{k}{2}-\log _{2} k+18 \tag{14}
\end{equation*}
$$

6. Proof of Theorem 7 - the lower bound

We use R_{j} and H_{j} as defined in section 5 . Let $k \geq 66, k \equiv 2(\bmod 4)$, be an integer. Let $E_{k}=V_{0} B_{0} V_{1} B_{1} V_{2} B_{2} V_{3} B_{3} V_{4}$ be a chain of blocks with the following properties:
(1) $B_{0} \cong R_{j}$ with $j=\frac{k-2}{4}-9$, i.e., $l\left(B_{0}\right)=l\left(R_{j}\right)=\frac{k-2}{4}-1$,
(2) B_{1} and B_{3} are one-edge blocks, and
(3) $B_{2} \cong H_{j}$ with $j=\frac{k-2}{4}-9$, i.e., $l\left(B_{2}\right)=l\left(H_{j}\right)=\frac{k-2}{4}-1$.

Fig. 8. $l\left(\widetilde{O}_{t}\right)=\frac{k-2}{2}, l\left(H_{j}\right)=l\left(R_{j}\right)=\frac{k-2}{2}-1$.
The length of E_{k} is $l\left(E_{k}\right)=2\left(\frac{k-2}{4}-1\right)+2=\frac{k-2}{2}$.
A generalized 3 -star \bar{S}_{k} is constructed in the following way: three disjoint chains of blocks $O^{\prime}, O^{\prime \prime}, O^{\prime \prime \prime}$ are embedded into the plane, where $O^{\prime} \cong \widetilde{O}_{t}$ with $l\left(\widetilde{O}_{t}\right)=\frac{k-2}{2}$ and $O^{\prime \prime} \cong O^{\prime \prime \prime} \cong E_{k}$ with $l\left(E_{k}\right)=\frac{k-2}{2}$. The vertices $Z:=V_{2 t+2}^{\prime}=V_{4}^{\prime \prime}=V_{4}^{\prime \prime \prime}$ are identified so that the outer $V_{0}^{\prime \prime} V_{0}^{\prime \prime \prime}$-path $p^{\prime \prime}$ contains the outer path of $B_{0}^{\prime \prime}$ and $B_{0}^{\prime \prime \prime}$ of length $\frac{k-2}{4}-7>1$; and the outer $V_{0}^{\prime \prime \prime} V_{0}^{\prime}$-path $p^{\prime \prime \prime}$ and the outer $V_{0}^{\prime} V_{0}^{\prime \prime}$-path p^{\prime} contains the outer path of $B_{0}^{\prime \prime \prime}$ or $B_{0}^{\prime \prime}$ of length 1 , respectively (see the embedding of \bar{S}_{k} into a triangular face $[A, B, C]$ in Fig. 8).

Let $p^{* \prime}, p^{* \prime \prime}$, and $p^{* \prime \prime \prime}$ denote the longest $V_{0}^{\prime} V_{0}^{\prime \prime}$-path, $V_{0}^{\prime \prime} V_{0}^{\prime \prime \prime}$-path, and $V_{0}^{\prime \prime \prime} V_{0}^{\prime}$ path of \bar{S}_{k}. Obviously, $\rho\left(p^{* \prime}\right)=\rho\left(p^{* \prime \prime}\right)=\rho\left(p^{* \prime \prime \prime}\right)=k-2$, and $\rho\left(p^{\prime \prime}\right)=4+$ $4\left(\frac{k-2}{4}-7\right)=k-26$, and $\rho\left(p^{\prime \prime \prime}\right)=\rho\left(p^{\prime}\right) \geq 1+1+\left(\frac{k-2}{4}-7\right)+1+a\left(\widetilde{O}_{t}\right)>$ $\left(\frac{k-2}{4}-4\right)+\frac{k}{2}-6 \log _{2} k+18=\frac{3 k-2}{4}-6 \log _{2} k+14$.

Next let T be a triangulation of the plane having only vertices of degrees 5 and 6 , where any two vertices of degree 5 have a distance ≥ 4. In each triangle [$A, B, C]$ of T with all vertices of degree 6 we insert a generalized 3 -star \widetilde{S}_{t} of length $l\left(\widetilde{S}_{t}\right)=k-2, k \geq 66$, (defined in section 5) so that A, B, C and $V_{0}^{\prime}, V_{0}^{\prime \prime}, V_{0}^{\prime \prime \prime}$ appear in the same order around Z. We join all vertices of the outer $V_{0}^{\prime} V_{0}^{\prime \prime}$-path of \widetilde{S}_{t} (not containing $V_{0}^{\prime \prime \prime}$) with A, all vertices of the outer $V_{0}^{\prime \prime} V_{0}^{\prime \prime \prime}$-path with B and all vertices of the outer $V_{0}^{\prime \prime \prime} V_{0}^{\prime}$-path with C (see Fig. 8). In the same way in each triangle $[A, B, C]$ of T with degree $\operatorname{deg}_{T}(A)=\operatorname{deg}_{T}(C)=6$ and $\operatorname{deg}_{T}(B)=5$ a
generalized 3 -star \bar{S}_{k} of length $l\left(\bar{S}_{k}\right)=k-2$ is inserted. The obtained polyhedral plane graph G has the following properties. If X is a degree -5 vertex of T then

$$
\begin{aligned}
\operatorname{deg}_{G}(X) & >5+5\left(\rho\left(p^{\prime \prime}\right)+1\right)=5+5(k-26+1)=5(k-27) \\
& =5 k-120
\end{aligned}
$$

If X is a degree -6 vertex of T which is adjacent to a degree- 5 vertex of T then

$$
\operatorname{deg}_{G}(X)>6+2\left(\rho\left(p^{\prime}\right)+1\right)+4(\rho(\widetilde{p})+1)
$$

where p^{\prime} is an outer $V_{0}^{\prime} V_{0}^{\prime \prime}$-path of \bar{S}_{k} of length $\rho\left(p^{\prime}\right)=\frac{3 k-2}{4}-6 \log _{2} k+14$ and by (5) the path \widetilde{p} is an outer $V_{0}^{\prime} V_{0}^{\prime \prime}$-path of \widetilde{S}_{t} of length $\rho(\widetilde{p})=a\left(\widetilde{O}_{t}\right) \geq k-12 \log _{2} k+18$. Hence

$$
\begin{aligned}
\operatorname{deg}_{G}(X) & >6+2\left(\frac{3 k-2}{4}-6 \log _{2} k+15\right)+4\left(k-12 \log _{2} k+19\right) \\
& =5 k-220+\left(\frac{k}{2}-60 \log _{2} k+331\right), \text { and } \\
\operatorname{deg}_{G}(X) & >5 k-220
\end{aligned}
$$

If X is a degree- 6 vertex of T which is not adjacent to a degree- 5 vertex of T then assertion (9) of section 4 implies

$$
\begin{aligned}
\operatorname{deg}_{G}(X) & >6 k-72 \log _{2} k+240 \\
& =(5 k-220)+\left(k-72 \log _{2} k+460\right), \text { and } \\
\operatorname{deg}_{G}(X) & >5 k-220 \text { for all } k \geq 66, \quad k \equiv 2(\bmod 4) .
\end{aligned}
$$

Hence

$$
\operatorname{deg}_{G}(X)>5(k-3)-220=5 k-235
$$

for all $k \geq 66$. This completes the proof of the lower bound of Theorem 7 .

7. Proof of Theorem 6 - the lower bound

Each compact 2-manifold \mathbb{M} of Euler characteristic $\chi(\mathbb{M}) \leq 0$ has a triangulation T of \mathbb{M} of minimum degree with the property: in every triangle T of \mathbb{M} a root vertex is labelled so that each vertex X of T is no root vertex of at least four triangles incident with X. Such a triangulation has been constructed in [9].

Into every triangular face $O=\left[A_{1}, A_{2}, A_{3}\right]$ of T we insert a generalized 3 -star consisting of a central vertex Z and three paths starting in Z, one of length $\left\lceil\frac{k}{2}\right\rceil$ and the others of length $\left\lfloor\frac{k}{2}\right\rfloor$, where w.l.o.g. A_{1} is the root vertex of T. To each path $P_{1} P_{2} P_{3} P_{4} \ldots Z$ the edges $P_{1} P_{3}$ and $P_{2} P_{4}$ are added. Let the paths be denoted by p_{1}, p_{2}, and p_{3} so that p_{1} and p_{2} have length $\left\lfloor\frac{k}{2}\right\rfloor$ and p_{3} has length $\left\lceil\frac{k}{2}\right\rceil$. In O the vertex A_{i} is joined with all vertices of p_{i} and p_{i+1} which can be reached from A_{i} (note that in such a path $P_{1} P_{2} P_{3} P_{4} \ldots Z$ either the vertex P_{2} or the vertex P_{3} cannot be reached from A_{i}). The obtained triangulation is denoted by G.

The root vertex A_{1} of O is joint with $\left\lfloor\frac{k}{2}\right\rfloor+\left\lfloor\frac{k}{2}\right\rfloor-3$ vertices of the inserted 3 -star, and the two other vertices are joint with $\left\lfloor\frac{k}{2}\right\rfloor+\left\lceil\frac{k}{2}\right\rceil-3$ of its vertices. Since each vertex X of T is incident with at least 6 triangles, and X is no root vertex of at least 4 of them, the vertex X has a degree

$$
\begin{aligned}
\operatorname{deg}_{G}(X) & \geq \operatorname{deg}_{T}(X)+4\left(\left\lfloor\frac{k}{2}\right\rfloor+\left\lceil\frac{k}{2}\right\rceil-3\right)+2\left(\left\lfloor\frac{k}{2}\right\rfloor+\left\lfloor\frac{k}{2}\right\rfloor-3\right) \\
& \geq\left\{\begin{array}{l}
6 k-12, \text { for even } k \geq 8 \\
6 k-14, \text { for odd } k \geq 9
\end{array}\right.
\end{aligned}
$$

Each path with k vertices contains a vertex of T. This completes the proof of the lower bound of $\phi_{N}\left(4, P_{k}, \mathbb{M}\right), \chi(\mathbb{M}) \leq 0, k \geq 8$.

Acknowledgement

Support of Slovak VEGA Grant $1 / 7467 / 20$ is acknowledged.

References

[1]. I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs and Combinatorics 13 (1997), 245-250.
[2]. I. Fabrici, E. Hexel, S. Jendrol', H. Walther, On Vertex-degree Restricted Paths in Polyhedral Graphs, Discrete Math. 212 (2000), 61-73.
[3]. B. Grünbaum, Convex Polytopes, Interscience, New York (1967).
[4]. B. Grünbaum and G. C. Shephard, Analogues for tiling of Kotzig's theorem on minimal weights of edges, Ann. Discrete Math. 12 (1982), 129-140.
[5]. J. Ivančo, The weight of a graph, Ann. Discrete Math. 51 (1992), 113-116.
[6]. S. Jendrol', On face vectors of trivalent maps, Math. Slovaca 36 (1986), 367386.
[7]. S. Jendrol' and H.-J. Voss, A local property of polyhedral maps on compact 2-dimensional manifolds, Discrete Math. 212 (2000), 111-120.
[8]. S. Jendrol' and H.-J. Voss, A local property of large polyhedral maps on compact 2-dimensional manifolds, Graphs and Combinatorics 15 (1999), 303-313.
[9]. S. Jendrol' and H.-J. Voss, Light paths with an odd number of vertices in large polyhedral maps, Annals of Combinatorics 2 (1998), 313-324.
[10]. S. Jendrol' and H.-J. Voss, Light paths with an odd number of vertices in polyhedral maps, Czechoslovak Math. J. 50(125), 555-564.
[11]. A. Kotzig, Contribution to the theory of Eulerian polyhedra, Math. Čas. SAV (Math. Slovaca) 5 (1955), 111-113.
[12]. A. Kotzig, Extremal polyhedral graphs, Ann. New York Acad. Sci. 319 (1979), 569-570.
[13]. J. Zaks, Extending Kotzig's theorem, Israel J. Math. 45 (1983), 281-296.

