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P. J. Šafárik University and Institute of Mathematics
Slovak Academy of Sciences
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Abstract

Let k be an integer and M be a closed 2-manifold with Euler charac-
teristic χ(M) ≤ 0. We prove that each polyhedral map G on M with
minimum degree δ and large number of vertices contains a k-path P , a
path on k vertices, such that:

(i) for δ ≥ 4 every vertex of P has, in G, degree bounded from above
by 6k − 12, k ≥ 8 (It is also shown that this bound is tight for k even
and that for k odd this bound cannot be lowered below 6k − 14);

(ii) for δ ≥ 5 and k ≥ 68 every vertex of P has, in G, a degree
bounded from above by 6k−2 log2 k+2. For every k ≥ 68 and for every
M we construct a large polyhedral map such that each k-path in it has
a vertex of degree at least 6k − 72 log2(k − 1) + 112.

(iii) The case δ = 3 was dealt with in an earlier paper of the authors
(Light paths with an odd number of vertices in large polyhedral maps.
Annals of Combinatorics 2(1998), 313-324) where it is shown that every
vertex of P has, in G, a degree bounded from above by 6k if k = 1 or k
even, and by 6k − 2 if k ≥ 3, k odd; these bounds are sharp.

The paper also surveys previous results in this field.
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1. Introduction

This paper continues the investigations of [7, 8, 9]. Some of the definitions of
[7] are repeated.

In this paper all manifolds are compact 2-dimensional manifolds. If a graph G is
embedded in a manifold M then the closure of the connected components of M−G
are called the faces of G. If each face is a closed 2-cell and each vertex has valence
at least three then G is called a map in M. If, in addition, no two faces have a
multiply connected union then G is called a polyhedral map in M. This condition
on the union of two faces is equivalent to saying that any two faces that meet, meet
on a single vertex or a single edge. When two faces in a map meet in one of these
two ways we say that they meet properly.
In the following, let Sg (Nq) be an orientable (a non-orientable) surface of genus g
(genus q) respectively. We say that H is a subgraph of a polyhedral map G if H is
a subgraph of the underlying graph of the map G.

The degree of a face α of a polyhedral map is the number of edges incident to
α. Vertices and faces of degree j are called j-valent vertices and j-valent faces,
respectively. Let vi(G) and pi(G) denote the number of i-valent vertices and i-
valent faces, respectively. For a polyhedral map G let V (G), E(G) and F (G) be
the vertex set, the edge set and the face set of G, respectively. The cardinality of
the set V (G) is called the order of G. The degree of a vertex A in G is denoted
by degG(A) or deg(A) if G is known from the context. A path and a cycle on k
vertices is defined to be the k-path and the k-cycle, respectively. The length ρ(p)
and ρ(C) of a path p and a cycle C, respectively, is the number of its edges. A
k-path passing through vertices A1, . . . , Ak is denoted by [A1, A2, . . . , Ak] provided
that AiAi+1 ∈ E(G) for any i = 1, 2, . . . , k − 1.

It is an old classical consequence of the famous Euler’s formula that each planar
graph contains a vertex of degree at most 5. A beautiful theorem of Kotzig [11,
12] states that every 3-connected planar graph contains an edge with degree-sum
of its endvertices being at most 13. This result was further developed in various
directions and served as a starting point for discovering many structural properties
of embeddings of graphs, see e.g. [1, 4, 5, 7, 8, 13].

Recently the following problem has been investigated.

Problem 1. For a given connected graph H let G(H, M) be the family of all poly-
hedral maps on a closed 2-manifold M with Euler characteristic χ(M) having a
subgraph isomorphic with H. What is the minimum integer φ(H, M) such that ev-
ery polyhedral map G ∈ G(H, M) contains a subgraph K isomorphic with H for
which

degG(A) ≤ φ(H, M) for every vertex A ∈ V (K)?

If such a minimum does not exist we write φ(H, M) = ∞. If such a minimum
exists H is called light.

The answer to this question for S0 and N1 is given in Theorem 1; the answer for
each 2-manifold other then S0 and N1 is given in Theorem 2.

Theorem 1. (Fabrici and Jendrol’, [1]) Let k be an integer, k ≥ 1. Then
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φ(Pk, S0) = φ(Pk, N1) = 5k, for any k ≥ 1

φ(H, S0) = φ(H, N1) = ∞, for any H �= Pk.

Theorem 2. (Jendrol’ and Voss, [7]) Let k be an integer, k ≥ 1, and M be a closed
2-manifold with Euler characteristic χ(M) /∈ {1, 2}. Then

(i) φ(P1, M) ≤
⌊

5+
√

49−24χ(M)

2

⌋
.

(ii) 2
⌊

k
2

⌋ ⌊
5+

√
49−24χ(M)

2

⌋
≤ φ(Pk, M) ≤ k

⌊
5+

√
49−24χ(M)

2

⌋
, k ≥ 2.

(iii) φ(H, M) = ∞, for any H �= Pk.

In Theorem 2 the upper bound is sharp for even k.

For odd k ≥ 3 the behaviour of φ(Pk, M) has been investigated in [10]. If M is the
torus S1 or Klein’s bottle N2 then Theorem 2 implies:

φ(Pk, S1) = φ(Pk, N2) = 6k if k is even, and

6k − 6 ≤ φ(Pk, S1), φ(Pk, N2) ≤ 6k, if k ≥ 3 is odd.

The exact result is

Theorem 3. (Jendrol’ and Voss, [9]) Let k be an integer, k ≥ 1. Then

φ(Pk, S1) = φ(Pk, N2) =
{

6k, if k = 1 or k is even,

6k − 2 if k is odd, k ≥ 3.

This result is also valid for polyhedral maps on 2-manifolds M of Euler charac-
teristic χ(M) < 0, if these maps have enough vertices. Thus the following problem
has been investigated.

Problem 2. Let N ≥ 1 be an integer. For a given connected graph H let
GN (H, M) be the family of all polyhedral maps of order ≥ N on a closed 2-manifold
M with Euler characteristic χ(M) having a subgraph isomorphic with H. What
is the minimum integer φN (H, M) such that every polyhedral map G ∈ GN (H)
contains a subgraph K isomorphic with H for which

degG(A) ≤ φN (H, M) for every vertex A ∈ V (K)?

Obviously, φ1(H, M) = φ(H, M).

Let Nk denote the largest number of vertices in a connected graph with maxi-
mum degree ≤ 6k containing no path with k vertices. Obviously, Nk ≤ (6k)k/2+2.

A solution of Problem 2 gives
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Theorem 4. (Jendrol’ and Voss, [9]) For any 2-manifold M with Euler character-
istic χ(M) < 0, any integer k ≥ 1 and any integer N > 30000 (|χ(M)|+ 1)3(Nk +
3(|χ(M)| + 1)),

(i) φN (Pk, M) =
{

6k, if k = 1 or k is even
6k − 2, if k ≥ 3 is odd.

(ii) φN (H, M) = ∞ for any H �= Pk.

In this paper we shall investigate the subclasses which contain all graphs of
GN (H, M) with a given minimum degree δ, δ ≥ 3.

Problem 3. Let N ≥ 1 be an integer. For a given connected graph H let
GN (δ,H, M) be the family of all polyhedral maps of minimum degree ≥ δ and
order ≥ N on a closed 2-manifold M with Euler characteristic χ(M) having a sub-
graph isomorphic with H. What is the minimum integer φN (δ,H, M) such that
every polyhedral map G ∈ GN (δ,H, M) contains a subgraph K isomorphic with H
for which

degG(A) ≤ φN (δ,H, M) for every vertex A ∈ V (K)?

Let φN (δ,H, M) := ∞ if such a bound does not exists, and φ(δ,H, M) :=
φ1(δ,H, M). Obviously, φ(H, M) = φ1(3,H, M) and φN (H, M) = φN (3,H, M).
Large graphs of GN (δ,H, M) with δ ≥ 7 do not exist, i.e., GN (7,H, M) = ∅ for
large N .

The case δ = 3 has been dealt with in Theorems 1–4. For δ = 4 it is known

Theorem 5. (Fabrici, Hexel, Jendrol’ and Walther, [2]) Let k be an integer, k ≥ 1.
Then

(a) φ(4, P1, S0) = 5, φ(4, P2, S0) = 7, φ(4, P3, S0) = 9, φ(4, P4, S0) = 15,
φ(4, P5, S0) = 19, φ(4, P6, S0) = 23, φ(4, P7, S0) = 27;

(b) φ(4, Pk, S0) = 5k − 7 for k ≥ 8;
(c) φ(4,H, S0) = ∞ for every connected planar graph H �= Pk(k ≥ 1).

In a forthcoming paper we shall show that large triangulations of minimum de-
gree ≥ 5 on compact 2-manifolds M contain light triangles, light 4-cycles with one
inner chord, and 5-cycles with two inner chords. Here we shall prove a generaliza-
tion of Theorem 5 to large polyhedral graphs on compact 2-manifolds M of Euler
characteristic χ(M) ≤ 0.

Theorem 6. Let M be a compact 2-manifold of Euler characteristic χ(M) ≤ 0,
and let N > 30000(|χ(M)| + 1)3 · (Nk + 3(|χ(M)| + 1)) be an integer. Then

φN (4, Pk, M) = 6k − 12 for all even k ≥ 8

6k − 14 ≤ φN (4, Pk, M) ≤ 6k − 12 for all odd k ≥ 9.

Theorem 7. Let k be an integer. Then

5k − 235 ≤ φ(5, Pk, S0) ≤ 5k − 7 for all k ≥ 68.
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Theorem 8. For any 2-manifold M with Euler characteristic χ(M) ≤ 0, any
integer k ≥ 66, and any integer N > 30000(|χ(M)| + 1)3 · (Nk + 3(|χ(M)|+ 1)),

6k − 72 log2(k − 1) + 112 ≤ φN (5, Pk, M) ≤ 6k − log2 k + 2.

We can even prove:

Corollary 8.1.

φN (5, Pk, M) ≤ 6k − 2 log2 k + 2, k ≥ 68.

An obvious assertion is Theorem 9 (it can be proved in a similar way as Lemma
9).

Theorem 9. For each integer k ≥ 1 there exists an integer N = N(k) so that

φN (6, Pk, M) = 6.

2. Minimum degrees of graphs on M

In this paper χ(M) ≤ 0. Let G be a graph embedded in a compact 2-dimensional
manifold M of Euler characteristic χ(M). If G is a map, i.e. each face is a 2-cell
then G fulfils Euler’s formula

n − e + f = χ(M),

where

χ(M) =
{

2(1 − g) if M = Sg,

2 − q if M = Nq.

If G contains a face F which is not a 2-cell than add an edge to its interior so that
F is not subdivided. Add edges in this way until a 2-cell embedding is obtained.
Let e∗ denote the number of these edges then Euler’s formula is fulfilled with

n − (e + e∗) + f = χ(M),

where n, e and f denote the number of vertices, edges and faces of G, respectively.
We summarize this in

Lemma 1. Let G be the embedding of a graph in a compact 2-dimensional manifold
M of Euler characteristic χ(M). Let e∗ denote the maximum number of edges which
can be added to G without changing the number of its faces (loops and multiple edges
can be added). Then the Euler sum is

n − e + f = χ(M) + e∗,

where n, e and f denote the number of vertices, edges and faces of G, respectively.
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Lemma 2. Let G be the embedding of a simple graph with minimum degree δ(G) ≥
2 in a compact 2-dimensional manifold M of Euler characteristic χ(M). Let e∗

denote the maximum number of edges which can be added to G without changing
the number of its faces. Then p0 = p1 = p2 = 0, and the number of edges of G is

e ≤ 3(n + |χ(M)| − e∗).

Proof. By Lemma 1 we have

n − e + f = χ(M) + e∗ (1)

On the boundary of each face F a vertex, say B lies. Since δ(G) ≥ 2 and the graph
G is simple at least two edges incident with B belong to F . For the endvertices
of these edges different from B the same is true. Hence F is bounded by at least
three edges of G. p0 = p1 = p2 = 0, and

3f ≤ 2e. (2)

The formulas (1) and (2) imply

3(χ(M) + e∗) = 3n − 3e + 3f ≤ 3n − 3e + 2e,

and
e ≤ 3(n + |χ(M)| − e∗). �

Lemma 3. Let G be the embedding of a simple graph in a compact 2-dimensional
manifold M of Euler characteristic χ(M). Let e∗ denote the maximum number of
edges which can be added to G without changing the number of faces. If e∗ > |χ(M)|
then G has minimum degree δ(G) ≤ 5.

Proof. Assume that δ(G) ≥ 6 for some embedding G on M. Then

2e =
∑

X∈V (G)

degG(X) ≥ 6n.

By Lemma 2 we have
e ≤ 3(n + |χ(M)| − e∗).

The assumption e∗ > |χ(M)| implies

6n ≤ 2e ≤ 6(n + |χ(M)| − e∗),

and
0 ≤ 6(|χ(M)| − e∗) < 0.

This contradiction proves the lemma. �
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Lemma 4. Let G be the embedding of a graph in a compact 2-dimensional manifold
of Euler characteristic χ(M). Let e∗ denote the maximum number of edges, which
can be added to G without changing the number of faces of G. Then∑

j≥0

(6 − j)vj + 2
∑
j≥0

(3 − j)pj = 6(χ(M) + e∗).

Proof. By Lemma 1 we have

n − e + f = χ(M) + e∗.

With 2e =
∑

j≥0 jvj =
∑

j≥0 jpj , n =
∑

j≥0 vj , and f =
∑

j≥0 pj the assertion of
the lemma is true. �

3. Proof of Theorem 8 – The upper bound

The proof follows the ideas of [1] and [8]. Suppose that there is a counterexample
to our Theorem 9 having n > 3 · 104(|χ(M)| + 1)3 · (Nk + 3(|χ(M| + 1)) vertices,
k ≥ 66. Let G be a counterexample with the maximum number of edges among
all counterexample having n vertices. A vertex A of the graph G is major (minor)
if degG(A) > 6k − �log2 k	 + 2 (≤ 6k − �log2 k	 + 2, respectively). Note that each
path on k vertices in G contains a major vertex.

Lemma 5. Every v-valent face α, v ≥ 4, of G is incident only with minor vertices.

Proof. Suppose there is a major vertex B incident with an v-valent face α, v ≥ 4.
Let C be a diagonal vertex on α with respect to B. Because G is a polyhedral
map we can insert an edge BC into the v-valent face α. The resulting embedding
is again a counterexample but with one edge more, a contradiction. �

Each path with k vertices contains a major vertex.
Let H be the subgraph of G induced on the major vertices of G.

Lemma 6. The minimum degree of H is δ(H) ≥ 6.

Proof. Assume that H contains a vertex A of degree degH(A) ≤ 5. On the other
hand A is a major vertex in G, so the degree of A in G is degG(A) ≥ 6k − 1.
Because of Lemma 5 the subgraph of G induced on the set of vertices consisting
of A and its neighbours contains a wheel of length degG(A). The major vertices of
the cycle of the wheel partition the minor vertices of this cycle into degH(A) ≤ 5
paths, and one of these paths has a length

≥
⌈

degG(A) − degH(A)
degH(A)

⌉
≥

⌈
degG(A) − 5

degH(A)

⌉
≥

⌈
6k − 1 − 5

5

⌉
= k +

⌈
k − 6

5

⌉
≥ k.

This contradiction proves Lemma 6. �
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Lemma 7.
∑

j>6(j − 6)vj(H) + 2
∑

j>3(j − 3)pj(H) ≤ 6|χ(M)|.
Proof. The subgraph H induced by the major vertices of G is possibly not a 2-cell
embedding in M. Thus e∗ ≥ 0 edges have to be successively added so that the
number of faces remains unchanged, and a 2-cell embedding is obtained. Lemmas
3 and 6 imply

0 ≤ e∗ ≤ |χ(M)|, (1)

and with Lemma 4∑
j≥0

(6 − j)vj(H) + 2
∑
j≥0

(3 − j)pj(H) = 6(χ(M) + e∗).

By Lemmas 6 and 2 we have p0(H) = p1(H) = p2(H) = 0 and vj(H) = 0, j =
0, 1, 2, . . . , 5. This implies

∑
j>6(6−j)vj(H)+2

∑
j>3(3−j)pj(H) = 6(χ(M)+e∗).

χ(M) + e∗ ranges between 0 and −|χ(M)|, and
∑

j>6(j − 6)vj(H) + 2
∑

j>3(j − 3)
pj(H) ≤ 6|(χ(M)|. �

Let H ′ denote the subgraph of G generated by the minor vertices.

Lemma 8. The subgraph H induced by the major vertices of G has n(H) vertices,
where

n(H) > 15000(|χ(M)| + 1)3 − |χ(M)|.
Proof. By the maximality of G each face F of H contains no or precisely one
component K of H ′. This component K has ≤ Nk vertices because it contains no
path Pk on k vertices. By Lemma 7 each face F of H is bounded by ≤ 3(|χ(M)|+1)
vertices. Hence in each face F and its boundary lie ≤ Nk + 3(|χ(M)| + 1) vertices
of G. A lower bound for the number f(H) of faces of H is obtained by dividing
the number n of vertices of G by an upper bound for the number of vertices of G
lying in the interior or on the boundary of a face. Therefore,

f(H) ≥ n

Nk + 3(|χ(M)|+ 1)
. (2)

By Lemma 2 each face of H is bounded by at least three edges, and

3f(H) ≤ 2e(H) ≤
∑
j≥6

jvj(H) =
∑
j≥6

(j − 6)vj(H) +
∑
j≥6

6vj(H).

The sum
∑

j≥6 6vj(H) = 6n(H), and by Lemma 7 the sum
∑

j≥6(j − 6)vj(H) ≤
6|χ(M)|. Consequently,

3f(H) ≤ 6(|χ(M) + n(H)). (3)

Finally we get with (2)

n(H) ≥ 1
2
f(H) − |χ(M)| ≥ n

2
(Nk + 3(|χ(M)| + 1))−1 − |χ(M)|.

With n > 30000(|χ(M)| + 1)3(Nk + 3(|χ(M)| + 1)) we obtain

n(H) ≥ 15000(|χ(M)| + 1)3 − |χ(M)|. �

A face is said to be a triangle if it is a 2-cell bounded by a 3-cycle.
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Lemma 9. The subgraph H contains a vertex X with the property: X and all
vertices Z having a distance at most three from X have degree 6 and are incident
only with triangles.

Proof. By Lemma 7 we have∑
j>6

(j − 6)vj(H) + 2
∑
j>3

(j − 3)pj(H) ≤ 6|χ(M)|.

The largest vertex degree is ≤ 6(|χ(M)| + 1) and the number of d-valent vertices,
d > 6, is ≤ 6|χ(M)|. The largest face size is ≤ 3(|χ(M)|+1), the number of d-valent
faces, d > 3, is ≤ 3|χ(M)| and by (1) the number of faces which are not 2-cells is
≤ |χ(M)|.
Let M0 denote the set of vertices having a degree > 6, or lying on a face of size
> 3, or lying on a face which is no 2-cell. All vertices outside M0 have degree 6
(see Lemma 6) and are only incident with triangles. The number of vertices of M0

is bounded by

|M0| ≤ 6|χ(M)|+ (3|χ(M)|+ |χ(M)|) · 3(|χ(M)| + 1)

|M0| ≤ 20|χ(M)|(|χ(M)|+ 1).

Let Mi denote the number of vertices having from M0 distance i. Since the max-
imum degree of the vertices of M0 is at most 6(|χ(M)| + 1) and all other vertices
have degree 6 we have |M1| ≤ |M0|6(|χ(M)| + 1), |M2| ≤ |M1| · 5, |M3| ≤ |M2| · 5.
This implies

3∑
j=0

|Mi| ≤ 4000|χ(M)|(|χ(M)| + 1)2.

By Lemma 8 the number of vertices is

n(H) > 15000(|χ(M)| + 1)3 − |χ(M)|.

Hence
⋃3

j=0 Mi does not contain all vertices of H, and H contains a vertex X
having a distance at least four from M0. So X has the required properties. �

Next we study more precisely the properties of the components of the subgraph
H ′ of G induced by the minor vertices of G.

Lemma 10. Each triangle D of H contains a vertex V ∈ V (H) which is adjacent
only with < k − �log2 k	 + 2 minor vertices lying in D.

Proof. Assume the contrary, i.e., there exists a triangle [P,Q,R] of H such that
each of its vertices is joint with ≥ k − log k + 2 minor vertices inside of [P,Q,R].

Let K denote the subgraph of G induced by the minor vertices of G lying in
the interior of [P,Q,R]. Since G is a maximal counterexample K is a component
of the subgraph H ′ of G induced by the minor vertices of G. By Lemma 5 the
vertex P and all its neighbours induce a wheel WP . Correspondingly Q and R
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are the naves of a wheel WQ and WR, respectively. Let p, q and r denote the
path of WP ∩ K, WQ ∩ K, and WR ∩ K, respectively. Then p, q and q, r and r, p
have a common endvertex Q′, R′, and P ′, respectively (a sketch of the situation is
depicted in Fig. 1). Let p∗, q∗ and r∗ denote the longest P ′Q′-path, Q′R′-path and
R′P ′-path, respectively. p and q have at least one second common vertex because
otherwise p∪ q would form a P ′R′-path with ≥ 2(k − log k + 2) ≥ k vertices. Each
common vertex V of p and q and the vertices P and Q induce a separating path
PV Q of the subgraph of G induced by [P,Q,R] ∪ K. Therefore by walking on p
or q from Q′ to the other end P ′ or R′, respectively, the common vertices appear
on p and q in the same order.

Fig. 1

Let P1 = P ′, P2, . . . , Pl+1, l ≥ 1, be the common vertices of p and q. Between
Pi and Pi+1, 1 ≤ i ≤ l, lies a block Ai of K.

Correspondingly, let Q1 = Q′, Q2, . . . , Qm+1, m ≥ 1, and R1 = R′, R2, . . . ,
Ro+1, o ≥ 1, be the common vertices of q and r or r and p, respectively. Between
Qi and Qi+1, 1 ≤ i ≤ m, and Rj and Rj+1, 1 ≤ j ≤ o, lies a block Bi or Cj of
K, respectively. The intersection V (p) ∩ V (q) ∩ V (r) is either empty or contains
precisely one vertex Pl+1 = Qm+1 = Ro+1. In the first case Pl+1,Qm+1 and Ro+1

are pairwise distinct vertices of a block, say W (for this case see Fig. 1).
We need the concept of an H-bridge. Let H be an arbitrary subgraph of a graph

G, H �= G. There are two types of H-bridges L. Firstly, L ∼= K2, and the only
edge of L is not in H, but it joins two vertices of H. Secondly, L is obtained from a
component K of G \H by adding all K,H-edges and all endvertices of such edges.
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The vertices of H ∩ L are called the vertices of attachment of L.
Next we show

(1)
If Ai is a block with at least two edges then 1 ≤ ρ(p[Pi, Pi+1]) ≤ ρ(p∗[Pi, Pi+1])−1.

Proof of (1). For convenience let w := p[Pi, Pi+1].
Since Ai �∼= K2 and Ai is 2-connected there exists at least one w-bridge; each

w-bridge has at least two vertices of attachment (Note: a w-bridge can be a K2).
Let L be a w-bridge so that the partial path of w between two vertices of

attachment has smallest length. Let A and A′ be these two vertices of attachment.
If the partial path w[A,A′] has a length ≥ 2 then each inner vertex of w[A,A′]

has degree 3 in G – a contradiction(since δ(G) ≥ 5). Hence A and A′ are neighbours
on w, L �∼= K2, and each A,A′-path of L has a length ≥ 2. Replacing in w the
edge (A,A′) by an A,A′-path of L meeting no attaching vertex different from
A and A′ we obtain a Pi, Pi+1-path v of Ai of length > ρ(w). Consequently,
ρ(p[Pi, Pi+1]) = ρ(w) ≤ ρ(v) − 1 ≤ ρ(p∗[Pi, Pi+1]) − 1. �

Correspondingly, it can be proved

(2) If Bi or Ci is a block with at least two edges then

ρ(q[Qi,Qi+1]) ≤ ρ(q∗[Qi,Qi+1]) − 1, and

ρ(r[Rj , Rj+1]) ≤ ρ(r∗[Rj , Rj+1]) − 1.

Moreover,

ρ(p[Pl+1,Qm+1]) ≤ ρ(p∗[Pl+1,Qm+1]) − 1,

ρ(q[Qm+1, Ro+1]) ≤ ρ(q∗[Qm+1, Ro+1]) − 1, and

ρ(r[Ro+1, Pl+1]) ≤ ρ(r∗[Ro+1, Pl+1]) − 1.

Let s = �log2 k	 − 2. Then each of the vertices P,Q, and R is adjacent to
at least k − s vertices of K, i.e., ρ(p) ≥ k − s − 1, ρ(q) ≥ k − s − 1, and
ρ(r) ≥ k − s − 1. We consider all blocks touching p, i.e., we consider the chain
of blocks P1A1P2A2 . . . AlPl+1WBm+1QmBm . . . Q2B2Q1 where W is empty if
Pl+1 = Bm+1. Let

V1D1V
′
1V2D2V

′
2V3 . . . Vα−1Dα−1V

′
α−1VαDαV ′

α

be a new notation of this chain, where D1, . . . , Dα are the blocks with at least two
edges, and V ′

i = Vi+1 if Di and Di+1 have a common cut vertex or V ′
i �= Vi+1 and

Di and Di+1 are joined by a path of length 1 or 2 consisting of one or two K2-blocks
(The latter case is only possible if Pl+1 = Qm+1). Since Di is 2-connected, it is
bounded by an outer cycle Ci. Let di := p[Vi, V

′
i ] and d′

i := Ci\(p[Vi, V
′
i ]\{Vi, V

′
i }).

Thus di ∪ d′
i = C and V (di) ∩ V (d′

i) = {Vi, V
′
i }.

By assumption

(3) ρ(p), ρ(q), ρ(r) ≥ k − s − 1.
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Fig. 2

Let p∗ denote a longest V1, V
′
α-path. Then p∗[Vi, V

′
i ] is a longest Vi, V

′
i -path in the

block Di. The path (d′
j\{V ′

j }) ∪ dj ∪ p∗[V ′
j , V ′

α] of K, 1 ≤ j ≤ α, has a length
≤ k − 2 (see Fig. 2). By (3) and (1) with Vα+1 = V ′

α we have:

k − s − 1 ≤ ρ(p) =
α∑

i=1

ρ(p[Vi, Vi+1])

≤
α∑

i=1

(ρ(p∗[Vi, Vi+1]) − 1) = ρ(p∗) − α ≤ (k − 1) − α.

Hence

(4) α ≤ s.

By (1) the length of the partial path ρ(p∗[V ′
j , V ′

α]) ≥ ρ(p[V ′
j , V ′

α]) + α − j. With
(3) these conditions imply

k − 2 ≥ ρ(d′
j\{V ′

j }) ∪ dj ∪ p∗[V ′
j , V ′

α]

= ρ(d′
j) − 1 + ρ(dj) + ρ(p∗[V ′

j , V ′
α])

≥ ρ(d′
j) − 1 + ρ(p[Vj , V

′
j ]) + ρ(p[V ′

j , V ′
α]) + α − j

= ρ(d′
j) − 1 − ρ(p[V1, Vj ]) + ρ(p) + α − j

≥ ρ(d′
j) − 1 − ρ(p[V1, Vj ]) + (k − s − 1) + α − j

= ρ(d′
j) − ρ(p[V1, Vj ]) + k − s + α − j − 2.

Hence
ρ(d′

j) ≤ ρ(p[V1, Vj ]) + s − α + j.

This implies

(5) ρ(d′
j) ≤ ρ(p[V1, Vj ]) + (s + 1) − j for all 1 ≤ j ≤

⌊α + 1
2

⌋
With (5) we shall prove

(6) ρ(dj), ρ(d′
j), ρ(dα+1−j), ρ(d′

α+1−j) ≤ (s + 1)2j−1 for all 1 ≤ j ≤ �α + 1
2

	.

Proof of (6). By induction on j.
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Case 1. Let Dj �= W . For j = 1 the validity of (5) is implied by (4):

ρ(d′
1) ≤ ρ(p[V1, V1]) + (s + 1) − 1 ≤ (s + 1).

For j ≥ 2 by (4) it holds

ρ(d′
j) ≤ (

j−1∑
i=1

ρ(di) + j) + (s + 1) − j =
j−1∑
i=1

ρ(di) + (s + 1).

In the latter case the induction hypothesis implies:

ρ(d′
j) ≤ (s + 1)

j−1∑
i=1

2i−1 + (s + 1) = (s + 1)2j−1.

Case 2. Let Dj = W . Then we have the situation depicted in Fig. 3.

Fig. 3

By the arguments of Case 1 we arrive at ρ(w2) + ρ(w3) = ρ(d′
j) ≤ (s + 1)2j−1

and ρ(w1) < ρ(w1) + ρ(w2) = ρ(d∗,
j ) ≤ (s + 1)2j−1. Hence also in Case 2 the proof

of (6) for d′
j is complete.

ρ(dj) ≤ (s + 1)2j−1 can be proved by repeating the proof with the path r.
ρ(d′

α+1−j), ρ(dα+1−j) ≤ (s + 1)2j−1 can be proved by reversing the block chain
V ′

αDαVαV ′
α−1DαVα . . . .

With (6) and α ≤ s, see(4), the length of p is

k − s − 1 ≤ ρ(p) ≤ 2
� s+1

2 �∑
j=1

(s + 1)2j−1

= 2(s + 1)(2�
s+1
2 �−1 − 1).

91



With s + 1 ≤ 2
s+1
2 for s = �log2 k	 − 2 ≥ 3 we obtain

k ≤ 2s+1 = 2�log2 k�−1 ≤ k

2
.

This contradiction proves Lemma 10.

Next the proof of Theorem 8 will be completed. Lemma 9 implies the existence
of a triangle D of H whose vertices have degree 6. By Lemma 10 the triangle D
contains a vertex, say P , which is adjacent only with < k − �log2 k	 + 2 minor
vertices lying in D. In all other triangles adjacent with P the vertex P is joint
with ≤ k − 2 minor vertices. Hence the major vertex P has a degree

degG(P ) < degH(P ) + (degH(P ) − 1)(k − 1) + (k − �log2 k	 + 2)

= degH(P ) · k − �log2 k	 + 2

≤ 6 · k − �log2 k	+ 2.

This contradicts our assumption that each major vertex has a degree greater
than 6 · k − �log2 k	 + 2.
This contradiction completes the proof of the upper bound of Theorem 8.

It can be proved that there is a major vertex Q incident with two triangles D
and D′ of H such that Q is incident with < k − �log2 k	+ 2 minor vertices in two
triangles which proves the validity of the Corollary 8.1 related to Theorem 8.

4. Proof of Theorem 6 - The upper bound

The proof follows the ideas of [1] and [8]. Suppose that there is a counterexample
to our Theorem 6 having n > 3 · 104(|χ(M)| + 1)3 · (Nk + 3(|χ(M)| + 1)) vertices,
k ≥ 8. Let G be a counterexample with the maximum number of edges among all
counterexamples having n vertices. A vertex A of the graph G is major (minor) if
degG(A) > 6k − 12 (≤ 6k − 12, respectively).

The proof follows the ideas of section 3.
First an analogue to Lemma 10 will be proved.

Lemma 11. In any triangle D of H each vertex V is adjacent only with ≤ k − 2
minor vertices lying in the interior of D. If one vertex is incident with k−2 minor
vertices then one of the other vertices of D is incident with precisely one minor
vertex in the interior of D.

Proof. Assume the contrary, i.e., there exists a triangle D = [P,Q,R] of H such
that P is joined with k − 1 minor vertices of the interior of [P,Q,R].

The notation of the proof of Lemma 10 is used again. The path p of all minor
neighbours P in the interior of D belongs to a chain of blocks

P ′ = P1A1P2A2 . . . AlPl+1WBm+1Qm+1Bm . . . B2Q2B1Q1 = Q′.

Assertion (1) of the proof of Lemma 10 is again valid. Hence by (1) all blocks
Ai and Bj are one–edge blocks K2 (the part W consists of two one–edge blocks,
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or is only one vertex). Since both vertices P1 and Q1 cannot be joint with all
three vertices of [P,Q,R] at least one of these vertices, say Q1, is joint only with
P and Q. Hence Q1 has degree degG(Q1) = 3, a contradiction. This contradiction
proves the validity of the first assertion of Lemma 11. Next let p have precisely k−2
vertices. Then B1 is no one–edge block K2 but all other blocks of the chain are one–
edge blocks K2 (see Fig. 4 with B1

∼= K−
4 , where K−

4 denotes the complete graph
on four vertices with one missing edge). Further P1 = P ′ is joint with all three
vertices P,Q,R. Consequently, the vertex R has precisely one minor neighbour in
the interior of [P,Q,R].

Fig. 4

This completes the proof of Lemma 11.

With Lemma 11 we will complete the proof of Theorem 6. Lemma 9 implies
that the subgraph H contains a vertex X with the property: X and all vertices
P having a distance at most three from X have degree 6 and are incident only
with triangles. If X is adjacent only with ≤ k − 3 minor vertices in each triangle
incident with X then

degG(X) ≤ degH(X) + degH(X)(k − 3) = 6k − 12.

Next let X be adjacent to precisely k − 2 minor vertices of some triangle D. By
Lemma 11 the triangle D is incident with a vertex Y having only one minor neigh-
bour in D. If Y has ≤ k − 3 neighbours in one triangle different from D then

degG(Y ) ≤ degH(Y ) + (degH(Y ) − 2)(k − 2) + (k − 3) + 1

= 5k − 4 ≤ 6k − 12 for k ≥ 8.
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Next let Y be adjacent to precisely k−2 minor vertices in each of the five remaining
triangles incident with Y . Then

degG(Y ) ≤ degH(Y ) + (degH(Y ) − 1)(k − 2) + (k − 3) + 1

= 5k − 3 ≤ 6k − 12 for k ≥ 9.

In the case k = 8 the proof will be continued.
The vertex Y and its neighbours create a wheel W (Y ) with the nave Y . Let C

denote the cycle W (Y )\{Y } of W (Y ). If one vertex P of C is incident with two
triangles D,D′ having only one minor neighbour of P in its interior then

degG(P ) ≤ degH(P ) + (degH(P ) − 2)(k − 2) + 2 = 4k ≤ 6k − 12.

Next let each vertex of the cycle C be incident with at most one triangle of W (Y )
having precisely one neighbour in its interior. Then C contains three consecutive
vertices Z,Z′, Z ′′ being incident with a triangle of W (Y ) having precisely one minor
neighbour in its interior.

The same arguments applied to the wheel W (Z′) lead to a vertex Q of H of
valency degG(Q) ≤ 6k − 12. Thus in each case we arrive at a major vertex of a
degree ≤ 6k − 12. This contradicts our assumption that each major vertex has a
degree > 6k − 12. This contradiction completes the proof of the upper bound of
Theorem 6. �

5. Proof of Theorem 8 – the lower bound

Let I− denote the plane graph obtained by embedding the icosahedron minus
one vertex so that the outer face has size 5.

The plane graphs R2s and R2s+1, s ≥ 1, are constructed as follows: In the in-
ner face of the 2s-cycle C2s = P1P2 . . . PsQs . . . Q1P1 or the (2s+ 1)-cycle C2s+1 =
P1P2 . . . PsPs+1Qs . . . Q1P1 chords are introduced forming the path Q1P2Q2P3Q3 . . .
Ps−1Qs−1Ps or Q1P2Q2P3Q3 . . . Ps−1Qs−1PsQs, respectively (if s = 1 then let
R2s

∼= K2). Finally an edge of the outer face of I− is identified with the edge PsQs

of C2s or Ps+1Qs of C2s+1, respectively (see Fig. 5).
A longest P1Q1-path w of R2s and R2s+1 has length l(R2s) = ρ(w) = 2s−1+9 =

2s+8 and length l(R2s+1) = ρ(w) = (2s+1)+8 = 2s+9, respectively. A P1Q1-path
of R2s and R2s+1 bounding the outer face has length a(R2s) = 2s− 2 + 4 = 2s + 2
and a(R2s+1) = 2s − 1 + 4 = (2s + 1) + 2 = 2s + 3, respectively.

The plane graph H2s or H2s+1 is obtained from two disjoint copies L′ and L′′ of
R2s or R2s+1 by identifying the edge P ′

1Q
′
1 of L′ with the edge P ′′

1 Q′′
1 of L′′ so that

P ′
1 = Q′′

1 and Q′
1 = P ′′

1 are identified, respectively. The new vertices are denoted
by V and W , respectively (if necessary also by V (H . . . ) and W (H . . . ) ). The
length of a longest V W -path of H . . . is denoted by l(H . . . ).

Next a chain of blocks Ot = V0B0V1B1V2 . . . V2t+1B2t+1V2t+2 is defined having
the following properties:

(1) B0
∼= I− and V1, V2 are two nonadjacent vertices on the outer face of I−.

The outer face of B0 has size 5, and the bounding cycle of the outer face is
subdivided by V1 and V2 into two arcs of lengths 2 and 3.
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Fig. 5

(2) B2j−1, 1 ≤ j ≤ t + 1, is an one–edge block.
(3) B2j , 1 ≤ j ≤ t, is isomorphic to some H2s or H2s+1, where s is chosen

so that l(B2j) = 2l(B2j−2) + 1, 2 ≤ j ≤ t, l(B2) = 11 and V2j = V and
V2j+1 = W . The outer face of B2j has size 2(l(B2j)− 6) and the bounding
cycle of the outer face is subdivided by V and W into two arcs of length
l(B2j) − 6.

In Fig. 6 the chain O3 is depicted.
A longest V0V2t+2-path of Ot = V0B0V1B1 . . . V2tB2tV2t+1B2t+1V2t+2 has length

l(Ot) =
2t+1∑
i=0

l(Bi) = l(B0) +
t+1∑
j=1

l(B2j−1) +
t∑

j=1

l(B2j).

By (1) the length l(B2j−1) = 1 and l(B0) = 10:

l(Ot) = 10 + t + 1 +
t∑

j=1

l(B2j).

By induction on j the assertions l(B2j+2) = 2l(B2j) + 1, 1 ≤ j ≤ t − 1, and
l(B2) = 11 imply l(B2j+2) = 11 · 2j + 2j−1 + 2j−2 + · · · + 1, i.e.,

(4) l(B2j+2) = 12 · 2j − 1, and l(Ot) = 12 · 2t − 1.
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Fig. 6: the chain O3

An outer V0V2t+2-path of Ot has length

a(Ot) = a(B0) + a(Ot[V2, V2t+2])

= a(B0) +
t+1∑
j=1

a(B2j−1) +
t∑

j=1

a(B2j)

= a(B0) +
t+1∑
j=1

l(B2j−1) +
t∑

j=1

(l(B2j) − 6)

= a(B0) + l(Ot[V2, V2t+2]) − 6t = a(B0) − l(B0) + l(Ot) − 6t;

the length a(B0) of the outer path of B0 belonging to w is 2 or 3. Hence a(B0) ∈
{2, 3}. With (4) this implies

(5) a(Ot) = a(B0) + 12 · 2t − 6t − 11, where a(B0) ∈ {2, 3}.
A generalized 3-star St is constructed in the following way: three disjoint copies

O′
t, O′′

t , and O′′′
t of the chain Ot are embedded in the plane and the vertices
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Z := V ′
2t+2 = V ′′

2t+2 = V ′′′
2t+2 are identified. The obtained plane 3-star is embedded

so that to the outer V ′
0V ′′

0 -path the block B′
0 contributes two edges and the block

B′′
0 contributes three edges, and the corresponding requirement is also true for the

outer V ′′
0 V ′′′

0 -path and the outer V ′′′
0 V ′

0-path (see Fig. 7).

Fig. 7

Next let T be a triangulation of the compact 2-manifold M of Euler characteris-
tics χ(M) ≤ 0 and minimum degree δ(T ) ≥ 6 with a large number of vertices (such
triangulation exists, see [9]). In each triangle [ABC] of T we insert a generalized
3-star St so that A,B,C and V0, V

′′
0 , V ′′′

0 appear in the same order around Z. We
join each vertex of the outer V ′

0V ′′
0 -path of T (not containing V ′′′

0 ) with A by an
edge, each vertex of the outer V ′′

0 V ′′′
0 -path with B and each vertex of the outer

V ′′′
0 V ′

0-path with C by an edge (see Fig. 7). The obtained graph is denoted by Gt.
By (5) the outer V ′

0V ′′
0 -path p has length

ρ(p) = a(B′
0) + 12 · 2t − 6t − 11 + a(B′′

0 ) + 12 · 2t − 6t − 11

= 5 + 24 · 2t − 12t − 22.

Hence the number of ASt-edges is

(6) ρ(p) + 1 = 24 · 2t − 12t − 16.
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The same is true for the number of BSt-edges and CSt-edges.
In G each vertex X of the triangulation T has a degree

degGt
(X) = degT (X) + degT (X)(a(p) + 1)

= degT (X) + degT (X)(24 · 2t − 12t − 16)

= degT (X)(24 · 2t − 12t − 15)

≥ δ(T )(24 · 2t − 12t − 15), and

(7) degGt
(X) ≥ 6 · 24 · 2t − 72t − 90 for each vertex X of T.

The length of a longest V ′
0V ′′

0 -path p∗ is ρ(p∗) = 2l(Ot). By construction each
longest path of the generalized 3-star St has this length. Assertion (4) implies that
each longest path of St has

(8) ρ(p∗) + 1 = 2l(Ot) + 1 = 24 · 2t − 1 vertices.

We put k − 1 = ρ(p∗) + 1 = 24 · 2t − 1 and t = log2 k − log 24. Then each path
with k vertices contains a vertex Y of T . By (7) this vertex has a degree

(9)

degGt
(X) ≥ 6 · 24 · 2t − 72t − 90

= 6k − 72(log2 k − log2 24) − 90

> 6k − 72 log2 k + 240.

Each path of Gt with k vertices contains a vertex of degree > 6k−72 log2 k+240
for k = 24 · 2t, t = 1, 2, . . . . Next let k lie in between 12 · 2t = 24 · 2t−1 < k ≤
24 · 2t, t ≥ 2. Hence log2 k − log2 24 ≤ t < log2 k − log2 24 + 1. We consider two
cases.

Case 1. Let k be an even integer. We put 2r := 24 · 2t − k, where 0 ≤ r ≤
12 · 2t−1 − 1. In St we change the blocks near the ”center” Z (see Fig. 7). Now
this is described in more details. In St the blocks B′

2t, B
′′
2t, and B′′′

2t are pairwise
isomorphic and l(B′

2t) = l(B′′
2t) = l(B′′′

2t) = 12 · 2t−1 − 1.

If t ≥ 2 and 0 ≤ r ≤ (12 · 2t−1 − 1) − 10 then replace B′
2t, B

′′
2t, and B′′′

2t by
B̃′

2t, B̃
′′
2t, and B̃′′′

2t , respectively, with B̃′
2t

∼= B̃′′
2t

∼= B̃′′′
2t

∼= Hi, where l(B̃′
2t) =

l(Hi) = l(B′
2t) − r.

If t ≥ 3 and (12 ·2t−1−1)−10 < r ≤ 12 ·2t−1−1 then let s := (12 ·2t−1 −1)−r,
where s ≤ 10. Replace B′

2t, B
′′
2t, and B′′′

2t by B̃′
2t, B̃

′′
2t, and B̃′′′

2t , respectively, with
B̃′

2t
∼= B̃′′

2t
∼= B̃′′′

2t
∼= Hi, where l(B̃′

2t) = l(Hi) = 10, i.e. Hi
∼= B0, and replace

B′
2t−2, B

′′
2t−2, and B′′′

2t−2 by B̃′
2t−2, B̃

′′
2t−2, and B̃′′′

2t−2, respectively, with B̃′
2t−2

∼=
B̃′′

2t−2
∼= B̃′′′

2t−2
∼= Hj and l(B̃′

2t−2) = l(Hj) = l(B′
2t−2) − s. The construction

is possible for k ≥ 66. The new generalized 3-star obtained from St by these
replacements is denoted by S̃t. The same replacements applied to the chain of
blocks Ot result in a chain of blocks Q̃t.
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The assertions (5), (6) and (8) imply that by this method, a chain of blocks Õt

and a graph G̃t is obtained with

(10) ρ(p̃∗) + 1 = ρ(p∗) + 1 − 2r = 24 · 2t − 1 − 2r = k − 1, and

(11) l(Õt) = l(Ot) − r = 12 · 2t − 1 − r =
k

2
− 1, and

(12) ρ(p̃) + 1 = ρ(p) + 1 − 2r = 24 · 2t − 12t − 16 − 2r, and

(13) a(Õt) = a(B0) + 12 · 2t − 6t − 11 − 2r,

where a(B0) ∈ {2, 3}. Hence k = 24 · 2t − 2r, and

deg
eGt

(X) ≥ degT (X) + deT (X)(a(p̃) + 1)

= degT (X)(a(p̃) + 2)

≥ 6(24 · 2t − 2r − 12t − 15)

= 6(24 · 2t − 2r) − 72t − 90

≥ 6k − 72 log2 k + 72 log2 24 − 162.

Consequently, each path of G̃t with k vertices contains a vertex Y of degree

deg
eGt

(Y ) > 6k − 72 log2 k + 118, k ≥ 66.

Case 2. Let k be an odd integer. With k > k − 1, k − 1 even, we obtain

deg
eGt

(Y ) > 6(k − 1) − 72 log2(k − 1) + 118 = 6k − 72 log2(k − 1) + 112, k ≥ 66.

This completes the proof of the lower bound in Theorem 8.
Note that (13) implies

(14) a(Õt) ≥ k

2
− log2 k + 18.

6. Proof of Theorem 7 - the lower bound

We use Rj and Hj as defined in section 5. Let k ≥ 66, k ≡ 2( mod 4), be an
integer. Let Ek = V0B0V1B1V2B2V3B3V4 be a chain of blocks with the following
properties:

(1) B0
∼= Rj with j = k−2

4 − 9, i.e., l(B0) = l(Rj) = k−2
4 − 1,

(2) B1 and B3 are one–edge blocks, and
(3) B2

∼= Hj with j = k−2
4 − 9, i.e., l(B2) = l(Hj) = k−2

4 − 1.
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Fig. 8. l(Õt) = k−2
2 , l(Hj) = l(Rj) = k−2

2 − 1.

The length of Ek is l(Ek) = 2(k−2
4 − 1) + 2 = k−2

2 .

A generalized 3-star Sk is constructed in the following way: three disjoint chains
of blocks O′, O′′, O′′′ are embedded into the plane, where O′ ∼= Õt with l(Õt) = k−2

2

and O′′ ∼= O′′′ ∼= Ek with l(Ek) = k−2
2 . The vertices Z := V ′

2t+2 = V ′′
4 = V ′′′

4 are
identified so that the outer V ′′

0 V ′′′
0 -path p′′ contains the outer path of B′′

0 and B′′′
0

of length k−2
4 − 7 > 1; and the outer V ′′′

0 V ′
0-path p′′′ and the outer V ′

0V ′′
0 -path p′

contains the outer path of B′′′
0 or B′′

0 of length 1, respectively (see the embedding
of Sk into a triangular face [A,B,C] in Fig. 8 ).

Let p∗′, p∗′′, and p∗′′′ denote the longest V ′
0V ′′

0 -path, V ′′
0 V ′′′

0 -path, and V ′′′
0 V ′

0-
path of Sk. Obviously, ρ(p∗′) = ρ(p∗′′) = ρ(p∗′′′) = k − 2, and ρ(p′′) = 4 +
4(k−2

4 − 7) = k − 26, and ρ(p′′′) = ρ(p′) ≥ 1 + 1 + (k−2
4 − 7) + 1 + a(Õt) >

(k−2
4 − 4) + k

2 − 6 log2 k + 18 = 3k−2
4 − 6 log2 k + 14.

Next let T be a triangulation of the plane having only vertices of degrees 5
and 6, where any two vertices of degree 5 have a distance ≥ 4. In each triangle
[A,B,C] of T with all vertices of degree 6 we insert a generalized 3-star S̃t of length
l(S̃t) = k− 2, k ≥ 66, (defined in section 5) so that A,B,C and V ′

0 , V ′′
0 , V ′′′

0 appear
in the same order around Z. We join all vertices of the outer V ′

0V ′′
0 -path of S̃t

(not containing V ′′′
0 ) with A, all vertices of the outer V ′′

0 V ′′′
0 -path with B and all

vertices of the outer V ′′′
0 V ′

0-path with C (see Fig. 8). In the same way in each
triangle [A,B,C] of T with degree degT (A) = degT (C) = 6 and degT (B) = 5 a
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generalized 3-star Sk of length l(Sk) = k − 2 is inserted. The obtained polyhedral
plane graph G has the following properties. If X is a degree–5 vertex of T then

degG(X) > 5 + 5(ρ(p′′) + 1) = 5 + 5(k − 26 + 1) = 5(k − 27)

= 5k − 120.

If X is a degree–6 vertex of T which is adjacent to a degree–5 vertex of T then

degG(X) > 6 + 2(ρ(p′) + 1) + 4(ρ(p̃) + 1),

where p′ is an outer V ′
0V ′′

0 -path of Sk of length ρ(p′) = 3k−2
4 −6 log2 k+14 and by (5)

the path p̃ is an outer V ′
0V ′′

0 -path of S̃t of length ρ(p̃) = a(Õt) ≥ k− 12 log2 k + 18.
Hence

degG(X) > 6 + 2(
3k − 2

4
− 6 log2 k + 15) + 4(k − 12 log2 k + 19)

= 5k − 220 + (
k

2
− 60 log2 k + 331), and

degG(X) > 5k − 220.

If X is a degree–6 vertex of T which is not adjacent to a degree–5 vertex of T then
assertion (9) of section 4 implies

degG(X) > 6k − 72 log2 k + 240

= (5k − 220) + (k − 72 log2 k + 460), and

degG(X) > 5k − 220 for all k ≥ 66, k ≡ 2(mod 4).

Hence
degG(X) > 5(k − 3) − 220 = 5k − 235

for all k ≥ 66. This completes the proof of the lower bound of Theorem 7.

7. Proof of Theorem 6 - the lower bound

Each compact 2-manifold M of Euler characteristic χ(M) ≤ 0 has a triangulation
T of M of minimum degree with the property: in every triangle T of M a root vertex
is labelled so that each vertex X of T is no root vertex of at least four triangles
incident with X. Such a triangulation has been constructed in [9].

Into every triangular face O = [A1, A2, A3] of T we insert a generalized 3-star
consisting of a central vertex Z and three paths starting in Z, one of length �k

2 �
and the others of length � k

2 	, where w.l.o.g. A1 is the root vertex of T . To each
path P1P2P3P4 . . . Z the edges P1P3 and P2P4 are added. Let the paths be denoted
by p1, p2, and p3 so that p1 and p2 have length � k

2 	 and p3 has length � k
2 �. In O

the vertex Ai is joined with all vertices of pi and pi+1 which can be reached from
Ai (note that in such a path P1P2P3P4 . . . Z either the vertex P2 or the vertex P3

cannot be reached from Ai). The obtained triangulation is denoted by G.
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The root vertex A1 of O is joint with � k
2 	+� k

2 	−3 vertices of the inserted 3-star,
and the two other vertices are joint with �k

2 	 + � k
2 � − 3 of its vertices. Since each

vertex X of T is incident with at least 6 triangles, and X is no root vertex of at
least 4 of them, the vertex X has a degree

degG(X) ≥ degT (X) + 4
(⌊

k

2

⌋
+

⌈
k

2

⌉
− 3

)
+ 2

(⌊
k

2

⌋
+

⌊
k

2

⌋
− 3

)
≥

{
6k − 12, for even k ≥ 8

6k − 14, for odd k ≥ 9.

Each path with k vertices contains a vertex of T . This completes the proof of the
lower bound of φN (4, Pk, M), χ(M) ≤ 0, k ≥ 8.
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