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Abstract

We continue the classification of the regular simple graphs in which,
for some t, any two adjacent vertices have exactly t common neighbors,
and the union of their neighbor sets misses exactly two vertices. Previ-
ously it was shown that for any such graph with n vertices, if t > 0 then
t + 8 ≤ n ≤ 3t + 6. Here we show that there is exactly one such graph
on n = 3t + 6 vertices, for each t = 1, 2, . . . , namely Kt+2,t+2,t+2 minus a
two-factor consisting of triangles.

Let G be a simple graph. For an edge e ∈ E(G) with end-vertices u, v let
t(e) = |N(u) ∩N(v)| and let J(e) = |N(u) ∪N(v)| (with neighborhoods taken in G,
of course). Let t(G) = |E(G)|−1

∑
e∈E(G) t(e), and let J(G) = maxe∈E(G) J(e). It is

shown in [3] that if G has m edges and n vertices, then 4m ≤ n(J(G) + t(G)), with
equality if and only if G is regular and t is a constant function (equivalently, G is
regular and J is a constant function; observe that J(e) + t(e) = d(u) + d(v)). This
conclusion also holds if J(G) is defined to be an arithmetic mean, and t(G) is a max.
Clearly this result generalizes Mantel’s famous theorem, i.e. Turan’s theorem with
r = 2 (see [5]).

To agree with the notation in [3] and [4], let us denote by ET (n, J, t) the set of
extremal graphs for the inequality above, on n vertices with J = J(G) and t = t(G).
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That is, ET (n, J, t) consists of the regular graphs on n vertices, of degree 2−1(J + t),
with each pair of adjacent vertices having exactly t common neighbors. These graphs
are “nearly strongly regular”; they are regular, and, in the lingo of strongly regular
graphs (see [5]), there is a common value λ of |N(u) ∩ N(v)| for adjacent vertices u
and v (namely, λ = t), but there might not be a µ (a common value of |N(u)∩N(v)|
for non-adjacent distinct u and v).

Since the totality of such graphs include the strongly regular graphs, we despair
of ever achieving a complete catalog, indexed by n, J , and t, of such graphs. But
some interesting results have been produced by fixing certain values of J = J(n).
In [2] it is shown that

⋃
n,t ET (n, n, t) consists of the regular Turàn graphs, i.e., the

complete r–partite graphs (for various r) with parts of equal size. In [3] it is shown
that

⋃
n,t ET (n, n − 1, t) consists of the complements of the strongly regular graphs

with µ = 1. (In general, if G ∈ str(n, k, λ, µ) then Ḡ ∈ ET (n, n−µ, n+µ−2−2k).)
In [4] it is shown that G ∈ ET (n, n − 2, 0) if and only if n is even and either G

is bipartite and regular (so G = Kn
2

, n
2

minus a one-factor) or G is one of the two
non-bipartite graphs given in [4]. (It has since been pointed out that this result for
n ≥ 10 is an easy consequence of a famous theorem of Andraśfai, Erdös and Sós
[1].) It is also proven in [4] that for t > 0, if ET (n, n − 2, t) is non-empty then
t + 8 ≤ n ≤ 3t + 6, and that in the case t = 1, the unique graph in ET (9, 7, 1) is the
line graph of K3,3.

Our aim here is to show that the extreme n = 3t+ 6 in the result just mentioned
is achievable for every t ≥ 1, and that the graph achieving it is unique.

Theorem 1 Suppose that t is a positive integer. Then G ∈ ET (3t + 6, 3t + 4, t)
if and only if G = Kt+2,t+2,t+2 − F , where F is the set of edges of a 2-factor of
Kt+2,t+2,t+2 consisting of triangles.

Remark. The graph G described above is the complement of the line graph of
K3,t+2.

Proof. It is straightforward to verify that Kt+2,t+2,t+2 −F ∈ ET (3t + 6, 3t + 4, t).
Suppose that G ∈ ET (3t+6, 3t+4, t). G is regular with degree 2−1(3t+4+ t) =

2t + 2.
For adjacent vertices u, v ∈ V (G), let T = T (u, v) = N(u)∩N(v), A = A(u, v) =

N(u) \ (T ∪ {v}), B = B(u, v) = N(v) \ (T ∪ {u}), and X = X(u, v) = {x, y} =
V (G) \ (N(u) ∪ N(v)). Observe that |A| = |B| = t + 1.

Claim 1. There are no edges among the vertices of T , and every vertex of T is
adjacent to each of x and y.
Proof. Suppose that w ∈ T ; w has t − 1 neighbors in common with u, other
than v, and these must be in T ∪ A. Suppose that w is adjacent to s vertices of
T . Then w is adjacent to t − 1 − s vertices of A, and, similarly, of B. Since w
might be adjacent to one or both of x, y, and is adjacent to both u and v, we have
2t + 2 = d(w) ≤ s + 2(t − 1− s) + 2 + 2 = 2t + 2− s. It follows that s = 0 and that
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w is adjacent to both x and y, which establishes the claim.

The first assertion of Claim 1, that there are no edges among the vertices of T ,
is equivalent to: G contains no K4’s.

It is a consequence of the proof of Claim 1 that each w ∈ T has t − 1 neighbors
in A and in B and each of these sets of t − 1 neighbors are independent (i.e., there
are no edges among them), because they are in T (u, w), or in T (v, w).

For a subset S of V (G), let 〈S〉 denote the subgraph of G induced by S.

Claim 2. Each of 〈A〉, 〈B〉 has exactly t edges.
Proof. It suffices to prove the claim for A. Let dA denote degree within 〈A〉. Each
a ∈ A has t common neighbors with u, and these are in A ∪ T . By remarks above,
counting the number of edges between A and T we have t(t−1) =

∑
a∈A(t−dA(a)) =

t|A| − ∑
a∈A dA(a) = t(t + 1) − 2|E(〈A〉)|, which clearly implies the claim.

For a ∈ A, it is clear from the proof of Claim 2 that dA(a) = t − |N(a) ∩ T |.

Claim 3. If t > 1 then there is at most one vertex of A which is adjacent to no
vertices of T , and if there is one, then 〈A〉 ∼= K1,t. (Of course, the same holds for
B.)
Proof. If there were two vertices of A each adjacent to no vertices of T , then each
would have degree t in 〈A〉, and so would jointly be incident to 2t − 1 edges in 〈A〉.
But 2t − 1 ≤ t only if t ≤ 1, so if t > 1 it is impossible that there could be two such
vertices, by Claim 2.

If there is one such vertex, it is of degree t in 〈A〉, which is of order t + 1 with
only t edges, by Claim 2. Thus 〈A〉 ∼= K1,t.

Claim 4. If t = 2 or t ≥ 5 then A contains a vertex which is adjacent to no vertex
of T (so 〈A〉 ∼= K1,t, by the preceding claim). If t = 3 the only possibility for 〈A〉
besides K1,3 is P4. If t = 4 the only possibility for 〈A〉 besides K1,4 is K1 + C4.
Proof. If t = 2 then 〈A〉 is a simple graph with 3 vertices and 2 edges, so
〈A〉 ∼= K1,2 and the vertex of degree 2 in 〈A〉 is adjacent to no vertex of T .

Suppose that each vertex of A is adjacent to something in T . Therefore, by
previous remarks, each vertex of A belongs to an independent set of t− 1 vertices in
A. Thus dA(a) ≤ 2 for each a ∈ A. Suppose t = 3. The only graphs on 4 vertices
with 3 edges and maximum degree 2 are K1 + K3 and P4; K1 + K3 is not possible
because the K3 together with u would make a K4, contradicting Claim 1.

If a, a′ ∈ A are adjacent, then a, a′ can have no common neighbors in T . (For if
a, a′ ∈ N(w), w ∈ T , then a, a′, w, and u induce a K4 in G, contradicting Claim 1.)
On the other hand, each is adjacent to at least t − 2 vertices of T , since each is of
degree ≤ 2 in 〈A〉. Therefore, 2(t − 2) ≤ |T | = t, so t ≤ 4.

If t = 4 the preceding shows that every vertex of A must have degree 2 or 0 in
〈A〉 (otherwise, we would have t− 2 + t− 1 ≤ t). The only graph on 5 vertices, with
degrees 2 or 0, with exactly 4 edges, is K1 + C4. The claim is proven.

Of course, the conclusions of Claim 4 hold with A replaced by B.
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Now suppose that 〈A〉 ∼= K1,t
∼= 〈B〉, whatever the value of t > 1. Let a0, b0

be the central vertices of degree t in 〈A〉, 〈B〉, respectively, and let A′ = A \ {a0},
B′ = B \ {b0}. From remarks preceding, 〈A′ ∪ T 〉 and 〈B′ ∪ T 〉 are regular bipartite
graphs of degree t − 1 with bipartitions A′, T and B′, T , respectively; thus they are
isomorphic to Kt,t minus a one-factor. Let w1, . . . , wt, a1, . . . , at, and b1, . . . , bt be
orderings of T , A′, and B′, respectively, such that for each j ∈ {1, . . . , t}, wj is
adjacent to each vertex in A′ except aj, and to each vertex in B′ except bj.

Claim 5. Suppose that t > 1 and 〈A〉 ∼= 〈B〉 ∼= K1,t, with w1, . . . , wt, a1, . . . , at,
b1, . . . , bt, a0, b0, A′ and B′ as above. Suppose that x is adjacent to no vertex of B′.
Then G ∼= Kt+2,t+2,t+2 − F as claimed in the Theorem.

The tripartition of V (G) is T ∪ {a0, b0}, A′ ∪ {v, y}, and B′ ∪ {u, x}. The two-
factor of which F is the set of edges is composed of the triangles ajbjwj, j = 1, . . . , t,
a0vx, and b0uy.

Proof. By Claim 1 x is adjacent to every vertex of T , so x must have t common
neighbors with each of these. Since T is an independent set and x is adjacent to
neither of u, v, these common neighbors all lie in A′∪B′∪{y}. Since, by assumption,
x has no neighbors in B′, and since each vertex of T is adjacent to only t − 1
vertices of A′, it follows that x is adjacent to every vertex of A′, and to y. Since
|A′ ∪ T ∪ {y}| = 2t + 1, x must be adjacent to exactly one of a0, b0.

Now, x and y already have t common neighbors in T , so y’s t+1 neighbors outside
of {x}∪T must be vertices not adjacent to x. Also, y needs t− 1 common neighbors
(other than x) with each vertex of T . It follows that y is adjacent to all the vertices
of B′, and to the vertex in {a0, b0} that x is not adjacent to.

Each aj ∈ A′ and wi ∈ T to which aj is adjacent (i.e., i 
= j) have common
neighbors u and x, and they must have t − 2 others; these can only be in B′. Thus
aj is adjacent to at least t − 2 and at most t − 1 vertices of B′. Since the degree of
aj is 2t + 2, and aj is not adjacent to any of the vertices of A′, nor to y, v, or wj, it
must be that aj is adjacent to t − 1 vertices of B′, and to b0. It is easy to see that
the vertex of B′ that aj is not adjacent to must be bj, if aj is to fulfill its common
neighbor obligations with the wi, i 
= j.

By the symmetry of the situation at this point, we see that because b0 is adjacent
to all of A′, a0 must be adjacent to all of B′. One is adjacent to x, the other to y,
which fills their degree count to 2t + 2. So a0, b0 are not adjacent.

Finally, note that b0 must have t common neighbors with each a ∈ A′, and b0 is
not adjacent to a0, u, or any vertex in T . Since a and b0 have only t − 1 common
neighbors in B′, it must be that b0 and x are adjacent. Symmetrically, a0 and y are
adjacent. The conclusion of the Claim is now easy to verify.

Claim 6. Suppose t ≥ 2 and 〈A〉 ∼= 〈B〉 ∼= K1,t. Then the conclusion of Claim 5
holds (and so the Theorem is proven, in these cases).

Proof. Let a0, . . . , at, b0, . . . , bt, w1, . . . , wt, A′ and B′ be as in Claim 5. Suppose
i, j ∈ {1, . . . , t}, i 
= j. Then ai and wj are adjacent, and neither is adjacent to aj ,
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nor to wi, so X(ai, wj) = {aj, wi}. It follows from Claim 1 that N(ai) ∩ N(wj) ⊆
N(aj) ∩ N(wi); therefore N(ai) ∩ N(wj) = N(aj) ∩ N(wi).

Since x is adjacent to each of w1, . . . , wt, it follows that if one vertex of A′ is
adjacent to x, then they all are. The same holds for B′ (and for y). So if x has
neighbors both in A′ and in B′, then A′∪B′∪T ⊆ N(x); therefore d(x) = 2t+2 ≥ 3t,
which is impossible if t > 2.

By Claim 5, we are done unless t = 2 and both x and y are adjacent to all vertices
of A′∪B′. In this case, we see that a1 and w2 have three common neighbors, namely,
u, x, and y. Since 3 
= 2, the case t = 2 is finished, and the claim is proven.

As mentioned above, it is shown in [4] that in the case t = 1, the only possibility
for G is the line graph of K3,3, which is self-complementary, so the Theorem holds
in this case. The cases t = 3, 〈A〉 = P4 and t = 4, 〈A〉 = K1 + C4 remain. We will,
in each case, show that the proposed form of 〈A〉 is impossible.

t = 3, 〈A〉 = P4. Let the vertices of 〈A〉 along the path one way or the other be
a1, a2, a3, a4. As noted previously, adjacent vertices in A have no common neighbors
in T . The adjacencies between T and A are determined by this and the fact that a1

and a4 each have two neighbors in T , a2 and a3 one each. Let the vertices of T be
w1, w2, w3, such that a1 is adjacent to w2, w3, a2 is adjacent to w1, a3 is adjacent to
w2, and a4 is adjacent to w1, w3.

Then, clearly, X(a2, w1) = {w2, w3}, so N(a2) ∪ N(w1) covers B and N(a2) ∩
N(w1) ⊆ N(w2) ∩ N(w3), by Claim 1. Therefore, a2 and w1 have no common
neighbors in B, because such a neighbor would have to be adjacent to w1, w2, and
w3. (This is impossible because 〈B〉 = P4 or K1,3, and so has no isolated vertices.)
So a2 must be adjacent to both x and y, in order that a2 have 3 common neighbors
(namely, x, y, and u) with w1.

By a similar argument, a3 is adjacent to both x and y. But, because neither a2

nor a3 is adjacent to v, their common neighbors must be in N(v), by Claim 1. This
contradiction dismisses this case.

t = 4, 〈A〉 = K1 + C4. Let the isolated vertex in 〈A〉 be a0, and let a1, a2, a3, and
a4 be the vertices around the cycle. Since adjacent vertices in 〈A〉 have no common
neighbor in T , and since each vertex a ∈ A has 4 − dA(a) neighbors in T , we may
as well suppose that T = {w1, w2, w3, w4} with a1 and a3 each adjacent to each of
w1, w2, and a2 and a4 each adjacent to each of w3, w4.

Then X(a1, w1) = X(a1, w2) = {w3, w4}. Thus B ⊆ N(a1)∪N(wi), i = 1, 2, and
N(a1) ∩ N(wi) ⊆ N(w3) ∩ N(w4), i = 1, 2, by Claim 1. Now, a1 and w1 must have
at least one common neighbor in B, since they have four common neighbors, and
outside of B the only candidates besides u are x and y. By the comments preceding,
any common neighbor of a1 and w1 in B must be adjacent to at least three vertices
of T , namely w1, w3, and w4.

Suppose 〈B〉 = K1+C4 and let b0 be the isolated vertex in 〈B〉. By the paragraph
above, b0 is the only possible common neighbor of a1 and w1 in B, so a1 is adjacent
to b0, x and y. Similarly, so is a2. But a1 and a2 are adjacent, and neither is adjacent
to v, so by Claim 1 all their common neighbors must be in N(v), which x and y are
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not.
Therefore, 〈B〉 = K1,4. Let b0 be the vertex of B adjacent to no vertices of T ,

and let b1, b2, b3, and b4 be the other vertices of B, with bi adjacent to wj if and only
if i 
= j. Since common neighbors of a1 and w1 are in N(w3)∩N(w4), a1 is adjacent
to neither of b3, b4.

Now, a1 must have 5 neighbors total in {x, y} ∪ B, so a1 must be adjacent to
b1, b2, b0, x, and y. Similarly, a2 must be adjacent to x and y. This leads to the same
contradiction as above: a1 and a2 have common neighbors outside of N(v). This
completes the proof of the Theorem. �
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