On an extremal subfamily of an extremal family of nearly strongly regular graphs

P.D. Johnson Jr.*

Department of Discrete and Statistical Sciences 235 Allison Lab Auburn University, Alabama 36849 U. S. A. johnspd@mail.auburn.edu

K.J. Roblee[†]

Department of Mathematics Youngstown State University Youngstown, Ohio, U. S. A.

Abstract

We continue the classification of the regular simple graphs in which, for some t, any two adjacent vertices have exactly t common neighbors, and the union of their neighbor sets misses exactly two vertices. Previously it was shown that for any such graph with n vertices, if t > 0 then $t + 8 \le n \le 3t + 6$. Here we show that there is exactly one such graph on n = 3t + 6 vertices, for each $t = 1, 2, \ldots$, namely $K_{t+2,t+2,t+2}$ minus a two-factor consisting of triangles.

Let G be a simple graph. For an edge $e \in E(G)$ with end-vertices u, v let $t(e) = |N(u) \cap N(v)|$ and let $J(e) = |N(u) \cup N(v)|$ (with neighborhoods taken in G, of course). Let $t(G) = |E(G)|^{-1} \sum_{e \in E(G)} t(e)$, and let $J(G) = \max_{e \in E(G)} J(e)$. It is shown in [3] that if G has m edges and n vertices, then $4m \leq n(J(G) + t(G))$, with equality if and only if G is regular and t is a constant function (equivalently, G is regular and J is a constant function; observe that J(e) + t(e) = d(u) + d(v)). This conclusion also holds if J(G) is defined to be an arithmetic mean, and t(G) is a max. Clearly this result generalizes Mantel's famous theorem, i.e. Turan's theorem with r = 2 (see [5]).

To agree with the notation in [3] and [4], let us denote by ET(n, J, t) the set of extremal graphs for the inequality above, on n vertices with J = J(G) and t = t(G).

Australasian Journal of Combinatorics 25(2002), pp.279-284

^{*} Contract grant sponsor: ONR

[†] Contract grant number: N00014-97-1-1067

That is, ET(n, J, t) consists of the regular graphs on n vertices, of degree $2^{-1}(J+t)$, with each pair of adjacent vertices having exactly t common neighbors. These graphs are "nearly strongly regular"; they are regular, and, in the lingo of strongly regular graphs (see [5]), there is a common value λ of $|N(u) \cap N(v)|$ for adjacent vertices uand v (namely, $\lambda = t$), but there might not be a μ (a common value of $|N(u) \cap N(v)|$ for non-adjacent distinct u and v).

Since the totality of such graphs include the strongly regular graphs, we despair of ever achieving a complete catalog, indexed by n, J, and t, of such graphs. But some interesting results have been produced by fixing certain values of J = J(n). In [2] it is shown that $\bigcup_{n,t} ET(n, n, t)$ consists of the regular Turàn graphs, i.e., the complete r-partite graphs (for various r) with parts of equal size. In [3] it is shown that $\bigcup_{n,t} ET(n, n - 1, t)$ consists of the complements of the strongly regular graphs with $\mu = 1$. (In general, if $G \in str(n, k, \lambda, \mu)$ then $\overline{G} \in ET(n, n - \mu, n + \mu - 2 - 2k)$.)

In [4] it is shown that $G \in ET(n, n-2, 0)$ if and only if n is even and either G is bipartite and regular (so $G = K_{\frac{n}{2},\frac{n}{2}}$ minus a one-factor) or G is one of the two non-bipartite graphs given in [4]. (It has since been pointed out that this result for $n \ge 10$ is an easy consequence of a famous theorem of Andraśfai, Erdös and Sós [1].) It is also proven in [4] that for t > 0, if ET(n, n-2, t) is non-empty then $t+8 \le n \le 3t+6$, and that in the case t = 1, the unique graph in ET(9, 7, 1) is the line graph of $K_{3,3}$.

Our aim here is to show that the extreme n = 3t + 6 in the result just mentioned is achievable for every $t \ge 1$, and that the graph achieving it is unique.

Theorem 1 Suppose that t is a positive integer. Then $G \in ET(3t + 6, 3t + 4, t)$ if and only if $G = K_{t+2,t+2,t+2} - F$, where F is the set of edges of a 2-factor of $K_{t+2,t+2,t+2}$ consisting of triangles.

Remark. The graph G described above is the complement of the line graph of $K_{3,t+2}$.

Proof. It is straightforward to verify that $K_{t+2,t+2,t+2} - F \in ET(3t+6, 3t+4, t)$. Suppose that $G \in ET(3t+6, 3t+4, t)$. G is regular with degree $2^{-1}(3t+4+t) = 2t+2$.

For adjacent vertices $u, v \in V(G)$, let $T = T(u, v) = N(u) \cap N(v)$, $A = A(u, v) = N(u) \setminus (T \cup \{v\})$, $B = B(u, v) = N(v) \setminus (T \cup \{u\})$, and $X = X(u, v) = \{x, y\} = V(G) \setminus (N(u) \cup N(v))$. Observe that |A| = |B| = t + 1.

Claim 1. There are no edges among the vertices of T, and every vertex of T is adjacent to each of x and y.

Proof. Suppose that $w \in T$; w has t - 1 neighbors in common with u, other than v, and these must be in $T \cup A$. Suppose that w is adjacent to s vertices of T. Then w is adjacent to t - 1 - s vertices of A, and, similarly, of B. Since w might be adjacent to one or both of x, y, and is adjacent to both u and v, we have $2t + 2 = d(w) \le s + 2(t - 1 - s) + 2 + 2 = 2t + 2 - s$. It follows that s = 0 and that

w is adjacent to both x and y, which establishes the claim.

The first assertion of Claim 1, that there are no edges among the vertices of T, is equivalent to: G contains no K_4 's.

It is a consequence of the proof of Claim 1 that each $w \in T$ has t-1 neighbors in A and in B and each of these sets of t-1 neighbors are independent (i.e., there are no edges among them), because they are in T(u, w), or in T(v, w).

For a subset S of V(G), let $\langle S \rangle$ denote the subgraph of G induced by S.

Claim 2. Each of $\langle A \rangle$, $\langle B \rangle$ has exactly t edges.

Proof. It suffices to prove the claim for A. Let d_A denote degree within $\langle A \rangle$. Each $a \in A$ has t common neighbors with u, and these are in $A \cup T$. By remarks above, counting the number of edges between A and T we have $t(t-1) = \sum_{a \in A} (t-d_A(a)) = t|A| - \sum_{a \in A} d_A(a) = t(t+1) - 2|E(\langle A \rangle)|$, which clearly implies the claim.

For $a \in A$, it is clear from the proof of Claim 2 that $d_A(a) = t - |N(a) \cap T|$.

Claim 3. If t > 1 then there is at most one vertex of A which is adjacent to no vertices of T, and if there is one, then $\langle A \rangle \cong K_{1,t}$. (Of course, the same holds for B.)

Proof. If there were two vertices of A each adjacent to no vertices of T, then each would have degree t in $\langle A \rangle$, and so would jointly be incident to 2t - 1 edges in $\langle A \rangle$. But $2t - 1 \leq t$ only if $t \leq 1$, so if t > 1 it is impossible that there could be two such vertices, by Claim 2.

If there is one such vertex, it is of degree t in $\langle A \rangle$, which is of order t + 1 with only t edges, by Claim 2. Thus $\langle A \rangle \cong K_{1,t}$.

Claim 4. If t = 2 or $t \ge 5$ then A contains a vertex which is adjacent to no vertex of T (so $\langle A \rangle \cong K_{1,t}$, by the preceding claim). If t = 3 the only possibility for $\langle A \rangle$ besides $K_{1,3}$ is P_4 . If t = 4 the only possibility for $\langle A \rangle$ besides $K_{1,4}$ is $K_1 + C_4$. **Proof.** If t = 2 then $\langle A \rangle$ is a simple graph with 3 vertices and 2 edges, so

 $\langle A \rangle \cong K_{1,2}$ and the vertex of degree 2 in $\langle A \rangle$ is adjacent to no vertex of T. Suppose that each vertex of A is adjacent to something in T. Therefore, by previous remarks, each vertex of A belongs to an independent set of t-1 vertices in A. Thus $d_A(a) \leq 2$ for each $a \in A$. Suppose t = 3. The only graphs on 4 vertices with 3 edges and maximum degree 2 are $K_1 + K_3$ and P_4 ; $K_1 + K_3$ is not possible because the K_3 together with u would make a K_4 , contradicting Claim 1.

If $a, a' \in A$ are adjacent, then a, a' can have no common neighbors in T. (For if $a, a' \in N(w), w \in T$, then a, a', w, and u induce a K_4 in G, contradicting Claim 1.) On the other hand, each is adjacent to at least t-2 vertices of T, since each is of degree ≤ 2 in $\langle A \rangle$. Therefore, $2(t-2) \leq |T| = t$, so $t \leq 4$.

If t = 4 the preceding shows that every vertex of A must have degree 2 or 0 in $\langle A \rangle$ (otherwise, we would have $t - 2 + t - 1 \leq t$). The only graph on 5 vertices, with degrees 2 or 0, with exactly 4 edges, is $K_1 + C_4$. The claim is proven.

Of course, the conclusions of Claim 4 hold with A replaced by B.

Now suppose that $\langle A \rangle \cong K_{1,t} \cong \langle B \rangle$, whatever the value of t > 1. Let a_0, b_0 be the central vertices of degree t in $\langle A \rangle, \langle B \rangle$, respectively, and let $A' = A \setminus \{a_0\}$, $B' = B \setminus \{b_0\}$. From remarks preceding, $\langle A' \cup T \rangle$ and $\langle B' \cup T \rangle$ are regular bipartite graphs of degree t - 1 with bipartitions A', T and B', T, respectively; thus they are isomorphic to $K_{t,t}$ minus a one-factor. Let $w_1, \ldots, w_t, a_1, \ldots, a_t$, and b_1, \ldots, b_t be orderings of T, A', and B', respectively, such that for each $j \in \{1, \ldots, t\}, w_j$ is adjacent to each vertex in A' except a_j , and to each vertex in B' except b_j .

Claim 5. Suppose that t > 1 and $\langle A \rangle \cong \langle B \rangle \cong K_{1,t}$, with $w_1, \ldots, w_t, a_1, \ldots, a_t$, $b_1, \ldots, b_t, a_0, b_0, A'$ and B' as above. Suppose that x is adjacent to no vertex of B'. Then $G \cong K_{t+2,t+2,t+2} - F$ as claimed in the Theorem.

The tripartition of V(G) is $T \cup \{a_0, b_0\}$, $A' \cup \{v, y\}$, and $B' \cup \{u, x\}$. The two-factor of which F is the set of edges is composed of the triangles $a_j b_j w_j$, $j = 1, \ldots, t$, $a_0 v x$, and $b_0 u y$.

Proof. By Claim 1 x is adjacent to every vertex of T, so x must have t common neighbors with each of these. Since T is an independent set and x is adjacent to neither of u, v, these common neighbors all lie in $A' \cup B' \cup \{y\}$. Since, by assumption, x has no neighbors in B', and since each vertex of T is adjacent to only t - 1 vertices of A', it follows that x is adjacent to every vertex of A', and to y. Since $|A' \cup T \cup \{y\}| = 2t + 1$, x must be adjacent to exactly one of a_0, b_0 .

Now, x and y already have t common neighbors in T, so y's t+1 neighbors outside of $\{x\} \cup T$ must be vertices not adjacent to x. Also, y needs t-1 common neighbors (other than x) with each vertex of T. It follows that y is adjacent to all the vertices of B', and to the vertex in $\{a_0, b_0\}$ that x is not adjacent to.

Each $a_j \in A'$ and $w_i \in T$ to which a_j is adjacent (i.e., $i \neq j$) have common neighbors u and x, and they must have t-2 others; these can only be in B'. Thus a_j is adjacent to at least t-2 and at most t-1 vertices of B'. Since the degree of a_j is 2t+2, and a_j is not adjacent to any of the vertices of A', nor to y, v, or w_j , it must be that a_j is adjacent to t-1 vertices of B', and to b_0 . It is easy to see that the vertex of B' that a_j is not adjacent to must be b_j , if a_j is to fulfill its common neighbor obligations with the w_i , $i \neq j$.

By the symmetry of the situation at this point, we see that because b_0 is adjacent to all of A', a_0 must be adjacent to all of B'. One is adjacent to x, the other to y, which fills their degree count to 2t + 2. So a_0, b_0 are not adjacent.

Finally, note that b_0 must have t common neighbors with each $a \in A'$, and b_0 is not adjacent to a_0 , u, or any vertex in T. Since a and b_0 have only t - 1 common neighbors in B', it must be that b_0 and x are adjacent. Symmetrically, a_0 and y are adjacent. The conclusion of the Claim is now easy to verify.

Claim 6. Suppose $t \ge 2$ and $\langle A \rangle \cong \langle B \rangle \cong K_{1,t}$. Then the conclusion of Claim 5 holds (and so the Theorem is proven, in these cases).

Proof. Let $a_0, \ldots, a_t, b_0, \ldots, b_t, w_1, \ldots, w_t, A'$ and B' be as in Claim 5. Suppose $i, j \in \{1, \ldots, t\}, i \neq j$. Then a_i and w_j are adjacent, and neither is adjacent to a_j ,

nor to w_i , so $X(a_i, w_j) = \{a_j, w_i\}$. It follows from Claim 1 that $N(a_i) \cap N(w_j) \subseteq N(a_j) \cap N(w_i)$; therefore $N(a_i) \cap N(w_j) = N(a_j) \cap N(w_i)$.

Since x is adjacent to each of w_1, \ldots, w_t , it follows that if one vertex of A' is adjacent to x, then they all are. The same holds for B' (and for y). So if x has neighbors both in A' and in B', then $A' \cup B' \cup T \subseteq N(x)$; therefore $d(x) = 2t+2 \ge 3t$, which is impossible if t > 2.

By Claim 5, we are done unless t = 2 and both x and y are adjacent to all vertices of $A' \cup B'$. In this case, we see that a_1 and w_2 have three common neighbors, namely, u, x, and y. Since $3 \neq 2$, the case t = 2 is finished, and the claim is proven.

As mentioned above, it is shown in [4] that in the case t = 1, the only possibility for G is the line graph of $K_{3,3}$, which is self-complementary, so the Theorem holds in this case. The cases t = 3, $\langle A \rangle = P_4$ and t = 4, $\langle A \rangle = K_1 + C_4$ remain. We will, in each case, show that the proposed form of $\langle A \rangle$ is impossible.

 $\mathbf{t} = \mathbf{3}, \langle \mathbf{A} \rangle = \mathbf{P}_{\mathbf{4}}$. Let the vertices of $\langle A \rangle$ along the path one way or the other be a_1, a_2, a_3, a_4 . As noted previously, adjacent vertices in A have no common neighbors in T. The adjacencies between T and A are determined by this and the fact that a_1 and a_4 each have two neighbors in T, a_2 and a_3 one each. Let the vertices of T be w_1, w_2, w_3 , such that a_1 is adjacent to w_2, w_3, a_2 is adjacent to w_1, a_3 is adjacent to w_2 , and a_4 is adjacent to w_1, w_3 .

Then, clearly, $X(a_2, w_1) = \{w_2, w_3\}$, so $N(a_2) \cup N(w_1)$ covers B and $N(a_2) \cap N(w_1) \subseteq N(w_2) \cap N(w_3)$, by Claim 1. Therefore, a_2 and w_1 have no common neighbors in B, because such a neighbor would have to be adjacent to w_1, w_2 , and w_3 . (This is impossible because $\langle B \rangle = P_4$ or $K_{1,3}$, and so has no isolated vertices.) So a_2 must be adjacent to both x and y, in order that a_2 have 3 common neighbors (namely, x, y, and u) with w_1 .

By a similar argument, a_3 is adjacent to both x and y. But, because neither a_2 nor a_3 is adjacent to v, their common neighbors must be in N(v), by Claim 1. This contradiction dismisses this case.

 $\mathbf{t} = \mathbf{4}, \langle \mathbf{A} \rangle = \mathbf{K}_1 + \mathbf{C}_4$. Let the isolated vertex in $\langle A \rangle$ be a_0 , and let a_1, a_2, a_3 , and a_4 be the vertices around the cycle. Since adjacent vertices in $\langle A \rangle$ have no common neighbor in T, and since each vertex $a \in A$ has $4 - d_A(a)$ neighbors in T, we may as well suppose that $T = \{w_1, w_2, w_3, w_4\}$ with a_1 and a_3 each adjacent to each of w_1, w_2 , and a_2 and a_4 each adjacent to each of w_3, w_4 .

Then $X(a_1, w_1) = X(a_1, w_2) = \{w_3, w_4\}$. Thus $B \subseteq N(a_1) \cup N(w_i)$, i = 1, 2, and $N(a_1) \cap N(w_i) \subseteq N(w_3) \cap N(w_4)$, i = 1, 2, by Claim 1. Now, a_1 and w_1 must have at least one common neighbor in B, since they have four common neighbors, and outside of B the only candidates besides u are x and y. By the comments preceding, any common neighbor of a_1 and w_1 in B must be adjacent to at least three vertices of T, namely w_1, w_3 , and w_4 .

Suppose $\langle B \rangle = K_1 + C_4$ and let b_0 be the isolated vertex in $\langle B \rangle$. By the paragraph above, b_0 is the only possible common neighbor of a_1 and w_1 in B, so a_1 is adjacent to b_0 , x and y. Similarly, so is a_2 . But a_1 and a_2 are adjacent, and neither is adjacent to v, so by Claim 1 all their common neighbors must be in N(v), which x and y are

not.

Therefore, $\langle B \rangle = K_{1,4}$. Let b_0 be the vertex of B adjacent to no vertices of T, and let b_1, b_2, b_3 , and b_4 be the other vertices of B, with b_i adjacent to w_j if and only if $i \neq j$. Since common neighbors of a_1 and w_1 are in $N(w_3) \cap N(w_4)$, a_1 is adjacent to neither of b_3, b_4 .

Now, a_1 must have 5 neighbors total in $\{x, y\} \cup B$, so a_1 must be adjacent to b_1, b_2, b_0, x , and y. Similarly, a_2 must be adjacent to x and y. This leads to the same contradiction as above: a_1 and a_2 have common neighbors outside of N(v). This completes the proof of the Theorem. \Box

References

- B. Andraśfai, P. Erdös, and V. T. Sós, On the connection between chromatic number, maximal clique and minimal degree of a graph, Discrete Math. 8 (1974), 205-218.
- [2] C. E. Edwards, P. D. Johnson Jr. and Zs. Tuza, Another extremal property of some Turán graphs, European J. Comb. 8 (1987), 27-28.
- [3] D. G. Hoffman and P. D. Johnson Jr., An extremal family of strongly regular graphs, Congress Numer 78 (1990), 119-122.
- [4] P. D. Johnson Jr. and K. J. Roblee, More extremal graphs for a maximaljoint-neighborhood, average-triangles-per-edge inequality, Congress Numer 140 (1999), 87-95.
- [5] D. B. West, Introduction to graph theory, Prentice Hall, Upper Saddle River, NJ, 1996.

(Received 30 Jan 2001)