G-designs, G-packings and G-coverings of λK_v with a bipartite graph G of six vertices

Zhihe Liang*

Department of Mathematics Hebei Normal University Shijiazhuang 050016 P.R. China

Abstract

Let λK_v be the complete multigraph with v vertices, where any two distinct vertices x and y are joined by λ edges (x, y). Let G be a finite simple graph. A G-design (G-packing, G-covering) of λK_v , is denoted by (v, G, λ) -GD $((v, G, \lambda)$ -PD, (v, G, λ) -CD). In this paper, we determine the existence spectrum for the G-designs of λK_v , $\lambda > 1$, and construct the maximum packings and the minimum coverings of λK_v with G for any positive integer λ , where the bipartite graph G has six vertices and $e(G) \leq 6$.

1 Introduction

Throughout this paper, graphs are finite, undirected and have no isolated vertices. A complete multigraph of order v and index λ , denoted by λK_v , is a graph with v vertices, where any two distinct vertices x and y are joined by λ edges (x, y). Let G be a finite simple graph. A G-design (G-packing, G-covering) of λK_v , denoted by (v, G, λ) -GD $((v, G, \lambda)$ -PD, (v, G, λ) -CD), is a pair (X, \mathcal{B}) where X is the vertex set of K_v and \mathcal{B} is a collection of subgraphs of K_v , called blocks, such that each block is isomorphic to G and any two distinct vertices in K_v are joined in exactly (at most, at least) λ blocks of \mathcal{B} . A G-packing (G-covering) is said to be maximum (minimum), denoted by (v, G, λ) -MPD(MCD), if no other such G-packing (G-covering) has more (fewer) blocks. The number of blocks in a maximum G-packing (minimum G-covering), denoted by $p(v, G, \lambda)$ ($c(v, G, \lambda)$), is called the packing (covering) number. It is well known that

$$p(v, G, \lambda) \le \lfloor \frac{\lambda v(v-1)}{2e(G)} \rfloor \le \lceil \frac{\lambda v(v-1)}{2e(G)} \rceil \le c(v, G, \lambda)$$

Australasian Journal of Combinatorics 25(2002), pp.221-240

^{*} This research was supported by HBUT.

where e(G) denotes the number of edges in G, $\lfloor x \rfloor$ denotes the greatest integer y such that $y \leq x$ and $\lceil x \rceil$ denotes the least integer y such that $y \geq x$. A (v, G, λ) -PD $((v, G, \lambda)$ -CD) is said to be *optimal* and denoted by (v, G, λ) -OPD $((v, G, \lambda)$ -OCD) if the left (right) equality holds. Obviously, there exists a (v, G, λ) -GD if and only if $p(v, G, \lambda) = c(v, G, \lambda)$ and a (v, G, λ) -GD can be regarded as (v, G, λ) -OPD or (v, G, λ) -OCD.

By a $L_{\lambda}(\mathcal{D})$ of a packing \mathcal{D} , called the *leave edge graph*, we mean a subgraph of λK_v whose edges are the complement of \mathcal{D} in λK_v . The number of edges in $L_{\lambda}(\mathcal{D})$ is denoted by $|L_{\lambda}(\mathcal{D})|$. In particular, when \mathcal{D} is maximum, $|L_{\lambda}(\mathcal{D})|$ is called the *leave edge number* and is denoted by $l_{\lambda}(v)$. Similarly, the *repeat edge graph* $R_{\lambda}(\mathcal{D})$ of a covering \mathcal{D} is a subgraph of λK_v and its edges are the complement of λK_v in \mathcal{D} . When \mathcal{D} is minimum, $|R_{\lambda}(\mathcal{D})|$ is called the *repeat edge number* and is denoted by $r_{\lambda}(v)$. Generally, the symbols $L_{\lambda}(\mathcal{D})$, $l_{\lambda}(v)$, $R_{\lambda}(\mathcal{D})$ and $r_{\lambda}(v)$ can be denoted more briefly by L_{λ} , l_{λ} , R_{λ} and r_{λ} . It is not difficult to show the following result: If there exists a (v, G, λ) -GD, then $p(v, G, \lambda) = c(v, G, \lambda) = \frac{\lambda v(v-1)}{e(G)}$, i.e., $l_{\lambda} = r_{\lambda} = 0$.

If there exists $a(v, G, \lambda)$ -GD, then $p(v, G, \lambda) = c(v, G, \lambda) = \frac{\lambda v(v-1)}{e(G)}$, i.e., $l_{\lambda} = r_{\lambda} = 0$. Else,

$$\begin{aligned} &l_{\lambda} = \lambda v(v-1)/2 - e(G) \cdot p(v, \ G, \ \lambda) > 0 \ and \\ &r_{\lambda} = e(G) \cdot c(v, \ G, \ \lambda) - \lambda v(v-1)/2 > 0. \end{aligned}$$

Many researchers have been involved in graph design, graph packing and graph covering of λK_v with five vertices or less(see [1–10]). Yin [11] listed the spectrum of graph designs of K_v with six vertices and $e(G) \leq 6$. (See Table A.)

For the cycle C_6 , there exists a $(v, C_6, 1)$ -GD if and only if $v \equiv 1, 9 \pmod{12}$. Furthermore, J.A. Kennedy [12] obtained following theorem:

Theorem For any positive integer λ , the packing number $p(v, C_6, \lambda)$ and covering number $c(v, C_6, \lambda)$ are determined.

When the six-vertex graph G contains an odd cycle and $e(G) \leq 6$, Z.Liang [13] gave the G-design, maximum G-packing and minimum G-covering of λK_v .

Let the bipartite graph G have six vertices and its edge number be not greater than 6; for such G, the G-design, maximum G-packing and minimum G-covering of λK_v is solved in this paper.

Subsequently, the following notations $(a, b \in Z)$ are used frequently: $[a,b] = \{x \in Z \mid a \leq x \leq b\}, [a,b]_k = \{x \in Z \mid a \leq x \leq b, x \equiv a \pmod{k}\}$ for $a, b \in Z, [a, b, \dots, c] + i = [a + i, b + i, \dots, c + i]$ and $(Z_n)_m = \{i_m \mid i \in Z_n\}$. The edge set $\{(a_1, a_2), (a_2, a_3), \dots, (a_{n-1}, a_n)\}$ is denoted by (a_1, a_2, \dots, a_n) ; the graph G is denoted by [a, b, c, d, e, f].

note	G_1	G_2	G_3
		_	
graph	a b c d e f	a b c d e f	$\begin{array}{c} a \ b \ c \\ \hline d \ e \ f \end{array}$
spectrum	$v \equiv 0,1 \pmod{3} \ v \ge 6$	$v \equiv 0,1 \pmod{8} \ v \ge 8$	$v \equiv 0,1 \pmod{8} \ v \ge 8$
note	G_4	G_5	G_6
graph	a b e fd	abc fed	b a f
spectrum	$v \equiv 0,1 \pmod{8} \ v \ge 8$	$v \equiv 0,1 \pmod{5} \ v \ge 6$	$v \equiv 0,1 \pmod{5} \ v > 6$
note	G_7	G_8	G_9
graph	$\begin{array}{c} a \ b \ c \ f \end{array}$	a b c d	$\stackrel{a \ b}{\longleftrightarrow} \stackrel{c \ f}{\underset{d \ e}{\prod}}$
spectrum	$v \equiv 0,1 \pmod{5} \ v > 6$	$v \equiv 0,1 \pmod{5} \ v \ge 6$	$v \equiv 0,1 \pmod{5} \ v \ge 6$
note	G_{10}	G_{11}	G_{12}
graph	c d e f	a bc ed	$\overset{a}{\underset{b c}{\sqcup}} \overset{d}{\underset{f}{\sqcup}} \overset{e}{\underset{f}{\sqcup}}$
spectrum	$v \equiv 0,1 \pmod{5} \ v \ge 6$	$v \equiv 0,1 \pmod{5} \ v > 6$	$v \equiv 0, 1, 4, 9 \pmod{12}$
note	G_{13}	G_{14}	G_{15}
graph	a d f e b c	$ \begin{array}{c} a \ d \ e \\ \hline \\ b \ c \ f \end{array} $	a b e f c d
spectrum	$v \equiv 0, 1, 4, 9 \pmod{12}$	$v \equiv 0, 1, 4, 9 \pmod{12}$	$v \equiv 0, 1, 4, 9 \pmod{12}$

Table A

2 Recursion

By K_{n_1,n_2,\dots,n_h} we mean the complete multipartite graph with h parts of sizes n_1, n_2, \dots, n_h . Let $X = \bigcup_{1 \le i \le h} X_i$ be the vertex set of K_{n_1,n_2,\dots,n_h} where X_i $(1 \le i \le h)$ are disjoint sets with $|X_i| = n_i$ and $v = \sum_{1 \le i \le h} n_i$. For any fixed graph G, if K_{n_1,n_2,\dots,n_h} can be decomposed into edge-disjoint subgraphs isomorphic to G, then we call $(X, \mathcal{G}, \mathcal{A})$ a holey G-design, where $\mathcal{G} = \{X_1, X_2, \dots, X_h\}$, and \mathcal{A} is the collection of all subgraphs called G-blocks (or simply blocks). Each set $X_i(1 \le i \le h)$ is said to be a hole and the multiset $\{n_1, n_2, \dots, n_h\}$ is a type of the holey G-design. We denote the design by G-HGD $(n_1^1n_2^1 \cdots n_h^1)$ (or $K_{n_1,n_2,\dots,n_h}/G$) and use an "exponential" notation to describe its type in general: a type $1^i 2^j 3^k \cdots$, denotes i occurrences of 1, j occurrences of 2, etc. A G-HGD $(1^{v-w}w^1)$ is called an *incomplete G*-design,

denoted by (v, w, G, 1)-*IGD*. Obviously, a (v, G, 1)-*GD* is a *G*-*HGD*(1^{*v*}), which can be thought of as a (v, w, G, 1)-*IGD* with w = 0 or 1.

Theorem 2.1 If there exist $(n_i, G, 1)$ -GD for $i \in [1, h]$ and G- $HGD(n_i^1 n_j^1)$ for $i \neq j$ and $i, j \in [1, h]$, then there exists a (n, G, 1)-GD for $n = \sum_{1 \leq i \leq h} n_i$.

Corollary 2.2 Suppose that there exist (n, G, 1)-GD and G-HGD (n^2) ; then there exists a (sn, G, 1)-GD for any positive integer s.

Corollary 2.3 Suppose that there exists a G- $HGD(n^2)$; then there exist G- $HGD(n^s)$ for any positive integer s.

Theorem 2.4 If there exist (n + n', n', G, 1)-IGD, (n + n', G, 1)-GD (or CD, PD) and G- $HGD(n^2)$, then there exists a (mn+n', G, 1)-GD(or CD, PD) for any positive integer m and integer $n' \ge 0$.

Theorem 2.5 If there exist (n, G, 1)-GD, G- $HGD(n^2)$, G- $HGD(n^1m^1)$ and (n + m, G, 1)-GD (or PD, CD), then there exists a (tn + m, G, 1)-GD (or PD, CD) for any positive integer t.

Theorem 2.6 If there exist (u, w, G, 1)-*IGD*, G-*HGD* $(n_1^1 n_2^1 \cdots n_t^1 u^1)$ and $(n_i, G, 1)$ -*GD* for $i \in [1, t]$, then there exists a $(u + \sum_{1 \le i \le t} n_i, w, G, 1)$ -*IGD*.

Theorem 2.7 If there exist G- $HGD(n_1^1n_2^1\cdots n_t^1)$ and $(n_i + w, w, G, 1)$ -IGD for $i \in [1, t]$, then there exists a $(w + \sum_{1 \le i \le t} n_i, w, G, 1)$ -IGD.

Theorem 2.8 If there exist (n, w, G, 1)-*IGD* and (w, G, 1)-*GD* (PD, CD), then there exists a (n, G, 1)-*GD* (PD, CD).

Theorem 2.9 [6] If there exist G- $HGD(n^1m_i^1)$ for i = 1, 2, then there exist G- $HGD((an)^1(bm_1 + cm_2)^1)$ for integers $a \ge 1$ and b or $c \ge 1$.

Theorem 2.10 If there exist G- $HGD(n^2)$, G- $HGD((n + r)^1n^1)$,(n, G, 1)-GD and (n+r, G, 1)-GD(PD, CD) for $1 \le r \le n-1$, then there exist (v, G, 1)-GD(PD, CD) for any integer $v \ge n$.

Theorem 2.11 Let *l* be the leave edge number of the (n, G, 1)-*OPD* and $\bar{\lambda} = e(G)/\gcd(e(G), l)$. If there exist (n, G, λ) -*OPD* and (n, G, λ) -*OCD* for $1 \le \lambda \le \bar{\lambda}$, then there exist (n, G, λ) -*OPD* and (n, G, λ) -*OCD* for any positive integer λ .

The following theorem is a modified version of Theorem 4 in Section 3 of [14].

Theorem 2.12 Given positive integers v, λ and μ . Let X be a v-set.

(1) Suppose that there exists a (v, G, λ) -MPD = (X, D) with leave edge graph $L_{\lambda}(D)$ and a (v, G, μ) - $MPD = (X, \mathcal{E})$ with leave edge graph $L_{\mu}(\mathcal{E})$. If $|L_{\lambda}(D)| + |L_{\mu}(\mathcal{E})| = l_{\lambda+\mu}(v) < e(G)$, then there exists a $(v, G, \lambda + \mu)$ -MPD with leave edge graph $L_{\lambda}(D) \cup L_{\mu}(\mathcal{E})$.

(2) Suppose that there exists a (v, G, λ) - $MCD = (X, \mathcal{D})$ with repeat edge graph $R_{\lambda}(\mathcal{D})$ and a (v, G, μ) - $MCD = (X, \mathcal{E})$ with repeat edge graph $R_{\mu}(\mathcal{E})$. If $|R_{\lambda}(\mathcal{D})| + |R_{\mu}(\mathcal{E})| = r_{\lambda+\mu}(v) < e(G)$, then there exists a $(v, G, \lambda + \mu)$ -MCD with repeat edge graph $R_{\lambda}(\mathcal{D}) \cup R_{\mu}(\mathcal{E})$.

(3) Suppose that there exists a (v, G, λ) -MPD = (X, D) with leave edge graph $L_{\lambda}(D)$ and a (v, G, μ) - $MCD = (X, \mathcal{E})$ with repeat edge graph $R_{\mu}(\mathcal{E})$. If $R_{\mu}(\mathcal{E}) \subset L_{\lambda}(D)$ and $|L_{\lambda}(D)| - |R_{\mu}(\mathcal{E})| = l_{\lambda+\mu}(v) < e(G)$, then there exists a $(v, G, \lambda+\mu)$ -MPD with leave edge graph $L_{\lambda}(D) \setminus R_{\mu}(\mathcal{E})$.

(4) Suppose that there exists a (v, G, λ) - $MCD = (X, \mathcal{D})$ with repeat edge graph $R_{\lambda}(\mathcal{D})$ and a (v, G, μ) - $MPD = (X, \mathcal{E})$ with leave edge graph $L_{\mu}(\mathcal{E})$. If $L_{\mu}(\mathcal{E}) \subset R_{\lambda}(\mathcal{D})$ and $|R_{\lambda}(\mathcal{D})| - |L_{\mu}(\mathcal{E})| = r_{\lambda+\mu}(v) < e(G)$, then there exists a $(v, G, \lambda + \mu)$ -MCD with repeat edge graph $R_{\lambda}(\mathcal{D}) \setminus L_{\mu}(\mathcal{E})$.

If we replace MPD and MCD by OPD and OCD respectively, then the theorem is also true.

Corollary 2.13 If there exist (v, G, λ_1) -GD and (v, G, λ_2) -GD, then there exists $(v, G, \lambda_1 + \lambda_2)$ -GD.

3 Holey graph designs and incomplete graph designs

Theorem 3.1 There exist $(8 + w, w, G_i, 1)$ -*IGD* for $i \in [2, 4], w \in [2, 7]$.

Proof Let $(8 + w, w, G_i, 1)$ -*IGD*= (X, \mathcal{A}) , for $i \in [2, 4]$, $w \in [2, 7]$; we construct \mathcal{A} as follows: w = 2 On the set $X = Z_8 \cup \{a, b\}$:

For G_2 :

 $\begin{matrix} [0,2,a,1,4,b]+i, \ i\in Z_8^*, \ [3,7,4,0,1,2], \ [7,0,6,2,3,4], \ [b,4,1,5,6,7], \ [0,2,a,1,4,5]. \\ \text{For } G_3 : \end{matrix}$

 $[a, 6, 4, b, 0, 3] + i, \ i \in Z_8^*, \ [1, 2, 6, 4, 0, 7], \ [2, 3, 7, 4, 5, 6], \ [0, 1, 5, a, 6, 7], \ [6, 4, 3, b, 0, 3].$ For $G_4:$

 $[a, 3, 2, 4, 5, b] + i, \ i \in \mathbb{Z}_8^*, [2, 6, 4, 0, 3, 5], \ [2, 5, 7, 0, 3, 6], \ [a, 3, 1, 0, 2, 5], \ [5, 6, 2, 4, 3, b]. \\ \underline{w = 3} \text{ On the set } X = \mathbb{Z}_8 \cup \{a, b, c\}: \text{ For } G_2: \ [a, 2, b, 0, 1, 3] + i, \ i \in \mathbb{Z}_8, \ [0, 4, c, 3, 6, 1] + i, \ i \in \{0, 1\}, \ [0, 3, 7, c, 6, 2], \ [2, 5, 0, c, 1, 4], \ [3, 7, 2, c, 5, 0].$

For G_3 : [a, 0, 2, b, 3, 4] + i, $i \in Z_8$, [0, 4, 7, c, 2, 5] + i, $i \in [0, 1]$, [7, 2, 6, 4, c, 5], [0, 3, 7, 1, c, 6], [6, 1, 4, 0, c, 7].

For G_4 : [a, 3, 0, 1, 2, b] + i, $i \in Z_8$, [2, 5, 0, 3, 4, c], [3, 7, 1, 4, 5, c], [5, 0, c, 2, 3, 7], [2, 7, c, 4, 5, 6], [4, 7, 6, 1, 2, 3].

 $\underline{w = 4} \text{ On the set } X = Z_8 \cup \{a, b, c, d\}: \text{For } G_2: [a, 2, b, 0, 1, c] + i, \ i \in Z_8^*, [3, 7, d, 0, 2, 5] + i, \ i \in [0, 3], \ [d, 4, b, 0, 1, c], \ [4, 6, d, 5, 7, 2], \ [a, 2, d, 7, 1, 6], \ [1, 4, d, 6, 0, 3].$

For G_3 : [a, 2, b, 0, 1, d] + i, $i \in Z_8$, [c, 1, 5, 2, 4, 7] + i, $i \in [0, 3]$, [7, c, 5, 6, 0, 3], [0, c, 6, 7, 1, 4], [0, 2, 5, 1, 3, 6].

For G_4 : [a, 3, 1, b, c, d] + i, $i \in Z_8^*$, [1, 5, 0, 7, 2, 3] + i, $i \in [0, 3]$, [a, 3, 5, 4, 7, 0], [4, 7, 6, 5, 0, 1], [4, 3, 7, 6, 1, 2], [4, 6, 1, b, c, d].

 $\underline{w = 5} \text{ On the set } X = Z_8 \cup \{a, b, c, d, e\}: \text{ For } G_2: [a, 2, b, 0, 1, c] + i, i \in Z_8, \\ [0, 4, d, 1, 3, e] + i, i \in [0, 3], [0, 3, d, 5, 7, e], [7, 4, d, 6, 0, e], [3, 6, d, 7, 1, e], [6, 1, d, 0, 2, e], \\ [1, 4, 7, 2, 5, 0].$

For G_3 : [a, 2, b, c, 0, 1] + i, $i \in Z_8$, [0, 4, 6, d, 1, e] + i, $i \in [0, 3]$, [3, 0, 2, d, 5, e], [7, 2, 4, d, 6, e], [6, 1, 3, d, 7, e], [6, 3, 5, d, 0, e], [1, 4, 7, 2, 5, 0].

For G_4 : [a, 3, 1, b, c, d] + i, $i \in Z_8$, [1, 5, 0, 7, 2, e] + i, $i \in [0, 3]$, [7, 2, 4, 3, 6, e], [3, 6, 5, 4, 7, e], [4, 7, 6, 5, 1, e], [2, 5, 7, 6, 1, e], [1, 4, 0, 3, 5, 6].

w = 6 On $X = Z_8 \cup \{a, b, c, d, e, f\}$: For G_2 : $[a, 2, b, 0, 1, 3] + i, i \in Z_8^*, [d, 2, e, 0, 3, f] + i$ $i, i \in \mathbb{Z}_8, [3, 7, b, 0, c, 4], [2, 6, 0, 1, c, 5], [1, 5, a, 2, c, 6], [0, 4, 1, 3, c, 7].$ For G_3 : [a, 0, 1, b, 3, 6] + i, $i \in \mathbb{Z}_8^*$, [d, 3, e, 0, 2, f] + i, $i \in \mathbb{Z}_8$, [b, 3, 7, 0, c, 4], [2, 6, 3, 1, c, 5], [0, 1, 5, 2, c, 6], [a, 0, 4, 3, c, 7].For G_4 : [a, 7, 0, 1, 3, b] + i, $i \in Z_8^*$, [0, 2, 1, d, e, f] + i, $i \in Z_8$, [c, 6, 0, 1, 3, b], [0, 4, c, 1, 2, 5], [1, 5, c, 0, 3, 4], [2, 6, 7, 3, a, c].<u>w=7</u> On the set $X = Z_8 \cup \{a, b, c, d, e, f, g\}$: For G_2 : $[a, 2, b, 0, 1, c] + i, i \in Z_8$, $[d, 1, e, 0, 2, f] + i, i \in \mathbb{Z}_8, [3, 6, 7, g, 0, 4], [4, 7, 6, g, 1, 5], [0, 3, 5, g, 2, 6], [6, 1, 4, g, 3, 7], [0, 1, 2, 3]$ [1, 4, 7, 2, 5, 0].For G_3 : [a, 2, b, 0, 1, c] + i, $i \in Z_8$, [d, 1, e, 0, 2, f] + i, $i \in Z_8$, [3, 6, 2, 7, g, 0], [0, 4, 7, 6, g, 1], [0, 3, 7, 5, g, 2], [6, 1, 4, 7, 2, 5], [1, 5, 0, 3, g, 4].For G_4 : [a, 2, 0, 1, b, c] + i, $i \in Z_8$, [d, 1, 0, 2, e, f] + i, $i \in Z_8$, [g, 1, 0, 3, 4, 5], [g, 0, 2, 5, 6, 7], [3, 7, 1, 4, 5, 6], [4, 7, g, 2, 3, 6], [3, 6, g, 4, 5, 7].**Theorem 3.2** There exist G_i - $HGD(8^m)$ for $i \in [2, 4], m > 1$. **Proof** On the set $(Z_4)_1 \cup (Z_4)_2$, we construct $K_{4,4}/G_2$: $[1_1, 2_2, 1_2, 2_1, 3_2, 4_1], [3_1, 4_2, 1_1, 1_2, 4_1, 2_2], [1_2, 3_1, 3_2, 1_1, 4_2, 2_1], [4_1, 4_2, 2_1, 2_2, 3_1, 3_2].$ $K_{4,4}/G_3$: $[1_2, 2_1, 4_2, 1_1, 2_2, 3_1], [2_1, 2_2, 4_1, 1_2, 1_1, 4_2], [1_2, 3_1, 4_2, 4_1, 3_2, 1_1], [3_1, 3_2, 2_1, 1_2, 4_1, 4_2].$ $K_{4,4}/G_4$: $[1_1, 2_2, 1_2, 2_1, 3_1, 4_1], [1_1, 1_2, 2_2, 2_1, 3_1, 4_1], [4_1, 4_2, 3_2, 1_1, 2_1, 3_1], [3_2, 4_1, 4_2, 1_1, 2_1, 3_1].$ It follows from Theorem 2.9 that there exist G_i - $HGD(8^m)$ for $i \in [2, 4], m > 1$. **Theorem 3.3** If there exist $(8 + n', G_i, 1)$ -OPD(OCD), then there exist $(8m + n', G_i, 1)$ -OPD(OCD) $n', G_i, 1$)-OPD(OCD) for $i \in [2, 4], n' \in [2, 7]$ and m > 0. **Proof** By Theorem 2.4, 3.1 and 3.2, we obtain the theorem. **Theorem 3.4** There exist $(10 + w, w, G_i, 1)$ -*IGD* for $i \in [5, 11], w = 4, 7, 8, 9, 12, 13$. $K_{1,5}/G_6$ is trivial. By Theorem 2.9, we have $K_{10,w}/G_6$ for w = 4,7,Proof 8,9,10,12,13. On the set $Z_5 \cup \{a, b\}, K_{5,2}/G_7$: [1, a, 3, b, 4, 0], [1, b, 2, a, 4, 0]. $K_{5,2}/G_{11}$: [a, 2, b, 1, 3, 4], [b, 0, a, 1, 3, 4]. On the set $(Z_4)_1 \cup (Z_5)_2$, $K_{4,5}/G_5$: $[0_2, 0_1, 1_2, 3_1, 3_2, 2_1] + i$, $i \in [0, 1]$, $[0_2, 3_1, 2_2, 2_1, 4_2, 3_1, 3_2, 2_1] + i$. $[1_1], [1_2, 2_1, 0_2, 1_1, 3_2, 0_1].$ $K_{4.5}/G_8$: $[0_2, 0_1, 1_2, 3_1, 3_2, 2_1], [1_2, 1_1, 2_2, 0_1, 4_2, 2_1], [2_1, 0_2, 3_1, 4_2, 1_1, 2_2], [0_2, 1_1, 3_2, 2_1, 4_2, 0_1].$ $K_{4.5}/G_{10}$: $[0_1, 1_2, 2_1, 0_2, 1_1, 3_2], [1_1, 1_2, 3_1, 4_2, 2_1, 2_2], [2_1, 1_2, 0_1, 3_2, 3_1, 0_2], [3_1, 1_2, 1_1, 2_2, 0_1, 4_2].$ On the set $Z_5 \cup \{a, b, c, d, e\}, K_{5,5}/G_5$: [4, a, 1, b, 2, c], [1, c, 3, d, 4, e],[0, b, 3, e, 2, a], [2, d, 0, c, 4, b], [d, 1, e, 0, a, 3]. $K_{5,5}/G_8$: [0, a, 2, b, 3, c], [2, e, 4, b, 0, c], [b, 1, a, 4, d, 3], [c, 0, d, 1, e, 2], [1, c, 3, e, 0, d]. $K_{5,5}/G_{10}$: [4, e, 3, b, 2, d], [c, 0, a, 3, e, 4], [3, c, 1, d, 4, a], [2, b, 0, a, 1, e], [1, d, 2, c, 0, b]. On the set $(Z_5)_1 \cup (Z_5)_2$, $K_{5,5}/G_9$: $[3_1, 4_2, 0_1, 0_2, 1_1, 3_2] \pmod{5}$. On the set $\{(Z_4)_1 \cup \{\infty\}\} \cup (Z_4)_2, K_{5,4}/G_9: [3_2, \infty, 0_1, 0_2, 1_1, 2_2] \pmod{4}$. From $K_{5,4}/G_i$, i = 5, 8, 9, 10, we can obtain $K_{10,4}/G_i$, $K_{10,8}/G_i$, $K_{5,8}/G_i$ and $K_{10,12}/G_i$ for i = 5, 8, 9, 10. From $K_{5,5}/G_i$, i = 5, 8, 9, 10, we can obtain $K_{10,5}/G_i$ and $K_{10,10}/G_i$ for i = 5, 8, 9, 10. By $K_{5,2}/G_i$, i = 7, 11, we can obtain $K_{10,5}/G_i$ and $K_{10,j}/G_i$ for j = 2, 4, 8, 10, 12, i = 7, 11. By $K_{10,4}/G_i$ and $K_{10,5}/G_i$, $i \in [5, 11]$, we can obtain $K_{10,9}/G_i$ for $i \in [5, 11]$. By $K_{10,8}/G_i$ and $K_{10,5}/G_i$, $i \in [5, 11]$, we can obtain $K_{10,13}/G_i$ for $i \in [5, 11]$.

On the set $X = Z_5 \cup \{a, b\}$:

 $\begin{array}{l} (7,2,G_5,1)\text{-}IGD = (X,\mathcal{A}), \ \mathcal{A}: \ [0,1,2,a,4,b], \ [a,1,b,2,3,0], \ [a,0,2,4,3,b], \ [a,3,1,4,0,b].\\ (7,2,G_8,1)\text{-}IGD = (X,\mathcal{A}), \ \mathcal{A}: \ [3,0,4,1,b,2], \ [0,2,3,4,b,a], \ [2,1,0,b,3,a], \ [b,2,a,1,3,4].\\ (7,2,G_{10},1)\text{-}IGD = (X,\mathcal{A}), \ \mathcal{A}: \ [1,b,3,4,0,2], \ [b,a,0,1,2,3], \ [a,0,2,b,3,1], \ [2,3,b,4,a,0].\\ \text{When } i = 5,8,10, \ \text{by } K_{5,5}/G_i \ \text{and} \ (7,2,G_i,1)\text{-}IGD, \ \text{we obtain} \ (12,2,G_i,1)\text{-}IGD.\\ \text{When } i = 6,7,11, \ \text{by } K_{10,2}/G_i \ \text{and} \ (10,G_i,1)\text{-}GD, \ \text{we obtain} \ (12,2,G_i,1)\text{-}IGD.\\ \text{On the set } X = Z_{10} \cup \{a,b\}, \ (12,2,G_9,1)\text{-}IGD = (X,\mathcal{A}), \ \mathcal{A}: \ [a,2,0,1,3,6] + i, \ [b,2,5,6,8,1] + i, \ i \ \in \ [1,4] \ \text{and} \ [0,5,a,7,b,8], \ [1,6,a,9,b,0], \ [3,8,a,1,b,2], \ [2,7,0,1,3,6], \ [4,9,5,6,8,1]. \ \text{By} \ (12,2,G_i,1)\text{-}IGD \ \text{and} \ K_{10,5}/G_i, \ \text{we have} \ (10 + 7,7,G_i,1)\text{-}IGD.\\ \text{Again since there exist} \ (10,G_i,1)\text{-}GD \ \text{and} \ G_i\text{-}HGD(10^1w^1) \ \text{for} \ w = 4,8,9,12,13, \ \text{there exist} \ (10 + w,w,G_i,1)\text{-}IGD \ \text{for} \ w = 4,7,8,9,12,13 \ \text{and} \ i \in [5,11]. \\ \end{array}$

Theorem 3.5 If there exist $(10 + n', G_i, 1)$ -*OPD*(*OCD*), then there exist $(10m + n', G_i, 1)$ -*OPD*(*OCD*) for $i \in [5, 11]$, n' = 2, 3, 4, 7, 8, 9 and m > 0.

Proof By Theorem 2.4 and 3.4, we can obtain the theorem.

Theorem 3.6 When $m \neq 1, 4, 9 \pmod{12}$ and $6 \leq m \leq 17$, there exist G_i - $HGD((12)^n m^1)$ for $i \in [12, 15]$.

Proof On the set $X = \{1, 2, 3, 4, 5, 6\} \cup \{a, b\}$:

 $K_{6,2}/G_{12}$: [1, a, 3, b, 4, 5], [2, b, 6, a, 4, 5]. $K_{6,2}/G_{13}$: [1, a, 3, b, 4, 5], [2, b, 6, a, 4, 5]. By Theorem 2.9, there exist G_i - $HGD((12)^1m^1)$ for i = 12, 13 and m = 6, 8, 10, 12, 14.

On the set $X = \{1, 2, 3, 4\} \cup \{a, b, c\}$:

 $K_{3,4}/G_{14}$: [b, 1, a, 2, c, 3], [a, 3, b, 4, c, 1]. $K_{3,4}/G_{15}$: [1, c, 3, a, 4, b], [c, 2, a, 1, b, 3]. By Theorem 2.9, there exist G_i - $HGD((12)^1m^1)$ for i = 14, 15 and m = 6, 8, 12, 15. On the set $X = (Z_6)_0 \cup (Z_7)_1$

 $K_{6,7}/G_{12}: \ [0_0, 0_1, 1_0, 3_1, 2_0, 5_0] + i, \ i \in [0,3], \ [4_0, 4_1, 5_0, 0_1, 2_0, 3_0] + i, \ i \in [0,2].$

 $K_{6,7}/G_{13}$: $[4_1, 1_0, 1_1, 2_0, 5_1, 0_1] + i, i = 0, 1, 3, 4, [6_1, 3_0, 3_1, 4_0, 4_1, 5_1],$

 $[0_0, 0_1, 1_0, 2_1, 3_0, 4_0], [0_0, 6_1, 1_0, 3_1, 5_0, 2_0].$

 $K_{6,7}/G_{15}: [5_1, 1_0, 0_1, 0_0, 3_1, 2_0] + i, \ i \in [0,3], [3_1, 5_0, 4_1, 4_0, 0_1, 2_0], [2_1, 5_0, 5_1, 0_0, 1_1, 3_0], [4_1, 0_0, 6_1, 1_0, 2_1, 4_0].$

By $K_{6,7}/G_i$, $i \in [12, 15]$, we obtain $K_{12,7}/G_i$, $i \in [12, 15]$. By $K_{6,2}/G_i$, i = 12, 13and $K_{3,4}/G_i$, i = 14, 15, we obtain $K_{12,4}/G_i$, $i \in [12, 15]$. Therefore, $K_{12,11}/G_i$, $i \in [12, 15]$ can be obtained. By $K_{3,4}/G_i$ and $K_{6,7}/G_i$, i = 14, 15, we obtain $K_{12,10}/G_i$, i = 14, 15 and $K_{12,14}/G_i$, i = 14, 15. By $K_{6,2}/G_i$, i = 12, 13 and $K_{3,4}/G_i$, i = 14, 15, we obtain $K_{12,8}/G_i$, $i \in [12, 15]$. Furthermore, by $K_{12,7}/G_i$, $i \in [12, 15]$, we can obtain $K_{12,15}/G_i$, $i \in [12, 15]$. By $K_{12,7}/G_i$, $i \in [12, 15]$, and $K_{12,10}/G_i$, $i \in [12, 15]$, there are $K_{12,17}/G_i$ for $i \in [12, 15]$.

It follows from Theorem 2.1 that the theorem is true.

Theorem 3.7 When $i \in [12, 15]$, if there exist $(m, G_i, 1)$ -OPD(OCD) for m = 6, 7, 8, 10, 11 and $(12 + m, G_i, 1)$ -OPD(OCD) for m = 2, 3, 5, then there exist $(12k + m, G_i, 1)$ -OPD(OCD) for $k \ge 1, m = 2, 3, 5, 6, 7, 8, 10, 11$.

Proof Since there exist $(12, G_i, 1)$ -GD, it follows from Theorem 3.6, Theorem 2.5 and Theorem 2.10 that the theorem is true.

4 Packings and coverings for $\lambda = 1$

Let P be the necessary and sufficient condition for the existence of (v, G, 1)-GD. When v does not satisfy P, we discuss (v, G, λ) -PD and (v, G, λ) -CD. We easily obtain the following lemma:

Lemma 4.1 If there exists (v, G, 1)-*OPD* with leave-edge number $l_1 = 1$, then there exists (v, G, 1)-*OCD*.

Lemma 4.2 For any positive integer n, there exists a G_1 - $HGD(6^n)$.

Proof Since $K_{3,3}$ is 1-factorable, the lemma is true.

Theorem 4.3 There exist $(v, G_1, 1)$ -OPD (or OCD) for $v \equiv 2 \pmod{3}$.

Proof 1) Both $(8, 2, G_1, 1)$ -*IGD* and $(8, G_1, 1)$ -*OPD* are the same. On the vertex set $X = Z_6 \cup \{a, b\}$, let $(8, G_1, 1)$ -*OPD* = (X, \mathcal{B}) .

By Lemma 4.2, there exists a G_1 - $HGD(6^2)$. Therefore, there exist $(6m + 2, G_1, 1)$ -*OPD* (or *OCD*) for all $m \ge 1$.

2) On the vertex set $X = Z_6 \cup \{a, b, c, d, e\}$, we construct

A: [a, 0, b, 1, c, 2] and $[d, 0, e, 1, 2, 4] \pmod{6}$;

B: [1,4,2,3,0,5], [2,5,3,4,0,1], [0,3,1,2,4,5];

[0, 3, 1, 2, 4, 5]; D: [a, b, 1, 2, 3, 4].

It is easy to verify that $(X, A \cup B)$ is a $(11, 5, G_1, 1)$ -IGD, $(X, A \cup C)$ is a $(11, G_1, 1)$ -OPD and $(X, A \cup C \cup D)$ is a $(11, G_1, 1)$ -OCD. Therefore, there exist $(6m+5, G_1, 1)$ -OPD (or OCD) for all $m \ge 1$. It follows from 1) and 2) that the theorem is true.

Lemma 4.4 There is no $(6, G_i, 1)$ -*OCD* for i = 3, 4.

Proof If there exists a $(6, G_3, 1)$ -OCD, then $c(6, G_3, 1) = 4$ and there is one edge repeated; let the edge be (0, 1). The 0 and 1 must appear as a 2-degree vertex of two blocks, but 0 and 1 cannot appear as two 2-degree vertices of the same block. Four other vertices occupy one 2-degree vertex of four blocks, respectively. In this case, each edge of K_6 cannot appear only once in four blocks, except the edge (0, 1). This is a contradiction.

If there exists a $(6, G_4, 1)$ -OCD, then $c(6, G_4, 1) = 4$ and four 3-degree vertices in four blocks are distinctly labelled. Suppose a and b do not appear in any 3-degree vertex of the four blocks. Then the degree of vertex a is 1 in every block. In the five edges incident with vertex a in K_6 , one edge is not contained in any block: this is contrary to the definition of covering. **Theorem 4.5** There exist $(v, G_i, 1)$ -*OPD* (or *OCD*) for i = 2, 3, 4 and $v \neq 0$ or 1 (mod 8), except for $(6, G_i, 1)$ -*OCD* for i = 3 and 4.

Proof $\underline{v = 6}$: On the set $X = Z_6$, $(6, G_2, 1)$ - $OPD = (X, \mathcal{A})$, \mathcal{A} : [1, 4, 0, 2, 3, 5] + i, $i \in [0, 2]$. Leave edges: (5, 0, 1, 2).

 $(6, G_2, 1)$ - $OCD = (X, \mathcal{A} \cup \{[3, 4, 5, 0, 1, 2]\}).$

 $(6, G_3, 1)$ - $OPD=(X, \mathcal{A}), \mathcal{A}: [0, 1, 4, 3, 5, 2], [0, 3, 1, 2, 4, 5], [1, 2, 3, 5, 0, 4].$

Leave edges: 02, 15, 34.

 $(X, \mathcal{A} \cup \{[0, 2, 3, 1, 4, 5], [0, 1, 5, 2, 3, 4]\})$ is a $(6, G_3, 1)$ -*CD*. By Lemma 4.4, we have $c(6, G_3, 1) = 5$.

 $(6, G_4, 1)$ - $OPD=(X, \mathcal{A}), \mathcal{A}: [4, 5, 0, 1, 2, 3] + i = 0, 1, [1, 5, 4, 0, 2, 3]$ Leave edges: (5, 3, 2, 5).

 $(X, \mathcal{A} \cup \{[2, 3, 0, 1, 4, 5], [0, 1, 5, 2, 3, 4]\})$ is a $(6, G_4, 1)$ -*CD*. By Lemma 4.4, we have $c(6, G_4, 1) = 5$.

 $\underline{v=7}$: On the set $X = Z_7$, $(7, G_2, 1)$ - $OPD=(X, \mathcal{A})$, \mathcal{A} : [1, 4, 0, 2, 3, 5] + i, $i \in [0, 2]$, [2, 6, 5, 1, 0, 3], [1, 2, 5, 6, 0, 4].

 $(7, G_3, 1)$ - $OPD=(X, \mathcal{A}), \mathcal{A}: [2, 3, 6, 4, 5, 0], [2, 4, 0, 5, 6, 1], [3, 0, 6, 1, 2, 5],$

[0, 1, 5, 3, 4, 6], [1, 3, 5, 0, 2, 6].

 $(7, G_4, 1)$ - $OPD=(X, \mathcal{A}), \mathcal{A}: [4, 5, 0, 1, 2, 3]+i, i \in [0, 2], [1, 5, 4, 0, 3, 6], [0, 5, 6, 1, 2, 3].$ In this case $l_1 = 1$. Apply Lemma 4.1; there exist $(7, G_4, 1)$ -OCD for $i \in [2, 4].$

<u>v = 10</u>: Both (10, 2, G_i , 1)-*IGD* and (10, G_i , 1)-*OPD* are the same for i = 2, 3 and 4. Since $l_1 = 1$, there exist (10, G_4 , 1)-*OCD* for $i \in [2, 4]$.

<u>v = 11</u>: On the set $X = Z_{11}$, $(11, G_2, 1)$ - $OPD = (X, \mathcal{A})$, \mathcal{A} : [0, 2, 1, 4, 8, 3] + i, $i \in Z_{11}$, [7, 8, 3, 4, 5, 6], [2, 3, 8, 9, 10, 0]. Leave edges: (0, 1, 2) and 67.

 $(11, G_2, 1)$ - $OCD = (X, \mathcal{A} \cup \{[6, 7, 0, 1, 2, 4]\})$. Repeat edge: 24.

 $(11, G_3, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [5, 0, 2, 1, 4, 8] + i, i \in Z_{11},$

 $[2,3,4,7,8,9],\ [4,5,6,9,10,0].$ Leave edges: 01, 12 and 67.

 $(11, G_3, 1)$ - $OCD = (X, \mathcal{A} \cup \{[5, 6, 7, 0, 1, 2]\})$. Repeat edge: 56.

 $(11, G_4, 1)$ - $OPD=(X, \mathcal{A}), \mathcal{A}: [3, 8, 4, 7, 0, 6] + i, i \in \mathbb{Z}_{11}^* \setminus \{1\}, [0, 10, 4, 3, 5, 9],$

[5, 6, 8, 3, 7, 9], [2, 3, 4, 7, 0, 6], [9, 10, 5, 8, 1, 7]. Leave edges: 01, 12 and 67.

 $(11, G_4, 1)$ - $OCD = (X, \mathcal{A} \cup \{[6, 7, 1, 0, 2, 3]\})$. Repeat edge: 13.

v = 12: On the set $Z_8 \cup \{a, b, c, d\}$

 $(12, G_2, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [a, 2, b, 0, 1, c] + i, i \in \mathbb{Z}_8^*, [3, 7, d, 0, 2, 5] + i, i \in [0, 3], [a, d, b, 0, 1, c], [a, b, d, 4, 6, 1], [a, c, d, 5, 7, 2], [a, 2, d, 7, 1, 4], [b, c, d, 6, 0, 3].$ Leave edges: (b, d, c).

 $(12, G_2, 1)$ - $OCD = (X, \mathcal{A} \cup \{[a, 1, b, d, c, 2]\})$. Repeat edges: a1, c2.

 $(12, G_3, 1) - OPD = (X, \mathcal{A}), \ \mathcal{A}: \ [a, 2, b, 0, 1, d] + i, \ i \in \mathbb{Z}_8, \ [c, 1, 5, 2, 4, 7] + i, \ i \in [0, 3], \ i \in$

[a, c, 5, 6, 0, 3], [b, c, 6, 7, 1, 4], [b, a, d, 0, 2, 5], [7, c, 0, 1, 3, 6]. Leave edges: bd and cd.

 $(12, G_3, 1)$ - $OCD = (X, \mathcal{A} \cup \{[b, d, c, 0, 1, 2]\})$. Repeat edges: (0, 1, 2).

 $(12, G_4, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [a, 0, 1, b, c, d] + i, i \in \mathbb{Z}_8, [1, 5, 0, 7, 2, 3] + i, i \in [0, 3], i$

[a, b, 4, 3, 6, 7], [a, c, 5, 4, 7, 0], [a, d, 6, 5, 0, 1], [b, c, 7, 6, 1, 2]. Leave edges: bd and cd.

 $(12, G_4, 1)$ - $OCD = (X, \mathcal{A} \cup \{[0, 1, d, b, c, 2]\})$. Repeat edges: (0, 1), (d, 2).

 $\underline{v=13}$: On the set $Z_9 \cup \{a, b, c, d\}$

 $(13, G_2, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [a, 2, b, 0, 1, 5] + i, i \in \mathbb{Z}_9, [c, 4, d, 0, 2, 5] + i, i \in \mathbb{Z}_9^*, [0, 2, a, b, c, 4], [2, 5, a, c, d, 0].$ Leave edges: (a, d, b).

 $(13, G_2, 1)$ - $OCD = (X, \mathcal{A} \cup \{[0, 1, 2, a, d, b]\})$. Repeat edges: (0, 1), (a, 2).

 $(13, G_3, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [a, 1, 3, c, 2, 6] + i, i \in \mathbb{Z}_9, [b, 2, 3, d, 1, 4] + i, i \in \mathbb{Z}_9^*, [a, b, c, d, 1, 4], [b, 2, 3, a, c, d].$ Leave edges: (a, d, b).

 $(13, G_3, 1)$ - $OCD = (X, \mathcal{A} \cup \{[0, 1, 2, a, d, b]\})$. Repeat edges: (0, 1, 2).

 $(13, G_4, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [a, 3, 1, b, c, d] + i, i \in \mathbb{Z}_9, [1, 5, 0, 8, 2, 3] + i, i \in \mathbb{Z}_9^*, [1, 5, c, a, b, d], [a, b, 0, 8, 2, 3].$ Leave edges: (a, d, b).

 $(13, G_4, 1)$ - $OCD = (X, \mathcal{A} \cup \{[0, 1, d, b, a, 2]\})$. Repeat edges: (0, 1), (d, 2).

v = 14: On the $X = Z_{11} \cup \{a, b, c\},\$

 $(14, G_2, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [a, 2, b, 0, 4, c] + i, i \in Z_{11}, [2, 5, 0, 1, 6, 8] + i, i \in Z_{11}^*, [a, c, 0, 1, 6, 8].$ Leave edges: (a, b, c) and 25.

 $(14, G_2, 1)$ - $OCD = (X, \mathcal{A} \cup \{[2, 5, a, b, c, 0]\})$. Repeat edge: 0c.

 $(14, G_3, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [c, 3, 5, 0, 1, 6] + i, i \in \mathbb{Z}_{11}, [a, 2, 5, b, 0, 4] + i, i \in \mathbb{Z}_{11}^*, [c, a, 2, b, 0, 4].$ Leave edges: (a, b, c) and 25.

 $(14, G_3, 1)$ - $OCD = (X, \mathcal{A} \cup \{[2, 5, 0, a, b, c]\})$. Repeat edge: 05.

 $(14, G_4, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [1, 3, 0, a, 5, c] + i, i \in \mathbb{Z}_{11}, [2, 5, 0, 1, b, 4] + i, i \in \mathbb{Z}_{11}^*, [a, c, 0, 1, b, 4].$ Leave edges: (a, b, c) and 25.

 $(14, G_4, 1)$ - $OCD = (X, \mathcal{A} \cup \{[2, 5, b, a, c, 0]\})$.Repeat edge: 0b.

Since there exist $(15, 7, G_i, 1)$ -*IGD* and $(7, G_i, 1)$ -*OPD*(*OCD*), there exist $(15, G_i, 1)$ -*OPD*(*OCD*) for $i \in [2, 4]$. It follows from Theorem 3.3 that there exist $(v, G_i, 1)$ -*OPD*(*OCD*) for $i \in [2, 4], v \neq 0, 1 \pmod{8}$ and v > 6.

Lemma 4.6 $c(8, G_6, 1) = 7$, $c(7, G_6, 1) = 6$, $p(7, G_6, 1) = 3$, $c(7, G_9, 1) = 5$ and $p(7, G_9, 1) = 3$.

Proof If there exists a $(8, G_6, 1)$ -OCD, then it contains 6 blocks. In eight vertices on K_8 , there are two vertices that cannot occur on the center of the 6 blocks. Let the two vertices be a and b. The edge ab cannot occur on any block. This is a contradiction.

On $X = Z_5 \cup \{a, b, c\}$, set A: [0, 1, 2, a, b, c] + i, $i \in Z_5$, [a, b, c, 1, 2, 3], [c, b, 0, 1, 2, 3]. Then (X, A) is a $(8, G_6, 1)$ -CD, repeat edges: (1, a, 2), (a, 3), (0, c, 1), (2, c, 3). Similarly, we can show there is no $(7, G_6, 1)$ -OCD.

If there exists a $(7, G_6, 1)$ -*OPD*, then $p(7, G_6, 1) = 4$ and $l_1 = 1$. Let the other 3 vertices except the center of the 4 blocks be a, b and c; then edges ab, ac and bc cannot appear in the 4 blocks. This is a contradiction.

Let $X = Z_5 \cup \{a, b\}$, construction A: [0, 1, 2, 3, a, b], [4, 0, 1, 2, a, b], [3, 1, 2, 4, a, b]; B: [a, 1, 2, 3, 4, 0], [b, 1, 2, 3, 4, a], [1, 2, 3, 4, 0, a]. Then (X, A) is a $(7, G_6, 1)$ -PD, leave edges: (b, 1, a, 2, b, a), (1, 2). $(X, A \cup B)$ is a $(7, G_6, 1)$ -CD, repeat edges: (4, b, 3, a, 4, 1, 0, a, 1, 3).

The degree of every vertex on K_7 is 6. Since $G_9 = P_2 \cup C_4$, an *OPD* contains 4 cycles C_4 . Using enumeration, we know that at least an edge on K_7 cannot match with the 4 cycles C_4 . Therefore, there does not exist $(7, G_9, 1)$ -*OPD*. On the set $X = Z_7$, let A: [0, 5, 1, 2, 3, 6], [0, 3, 2, 4, 1, 5], [2, 6, 0, 1, 3, 4]; B: [1, 3, 0, 5, 4, 6], [0, 2, 3, 4, 6, 5]. Then (X, A) is a $(7, G_9, 1)$ -*PD* and leave edges are (5, 4, 6, 0), (0, 2), (6, 5, 3). And $(X, A \cup B)$ is a $(7, G_9, 1)$ -*OCD* and repeat edges are (1, 3, 4, 6), (0, 5).

Theorem 4.7 There exist $(v, G_i, 1)$ -*OPD* (or *OCD*) for $i \in [5, 11]$ and $v \not\equiv 0, 1 \pmod{5}$, for packing except for v = 7, i = 6 and 9; for covering except for (i, v) = 1

(6,7), (6,8) and (9,7).

Proof $\underline{v=7}$: The $(7, G_i, 1)$ -OPD with $(7, 2, G_i, 1)$ -IGD are the same when i = 5, 8, 10 (see the proof of Theorem 3.4).

On the set $X = Z_5 \cup \{a, b\}, (7, G_7, 1)$ - $OPD = (X, \mathcal{A}),$

- $\begin{aligned} \mathcal{A}: \; & [a,3,4,b,0,2], [4,2,1,0,3,a], \; [b,3,2,a,1,4], \; [2,0,4,1,3,b]. \\ & (7,G_9,1)\text{-}PD(CD); \; \text{see Lemma 4.6.} \\ & (7,G_{11},1)\text{-}OPD = (X,\mathcal{A}), \end{aligned}$
- $\underline{v=8}$: On the set $X = Z_5 \cup \{a, b, c\},\$

 $(8, G_5, 1)$ - $OPD = (X, A \cup B)$, leave edges: (a, b, c, a). $(8, G_5, 1)$ - $OCD = (X, A \cup C)$, repeat edges: (b, 0, 3).

A: [0, 1, 2, a, b, c] + i, $i \in Z_5$. $(8, G_6, 1)$ -OPD = (X, A), leave edges: (a, b, c, a).

 $(8, G_7, 1)$ - $OPD = (X, A \cup B)$, leave edges: (a, b, c, a). $(8, G_7, 1)$ - $OCD = (X, A \cup C)$, repeat edges: (c, 0, 3).

A: [a, 0, 1, 3, b, c] + i, $i \in [0, 3]$; B: [a, 4, 0, 2, b, c]; C: [2, b, a, c, 0, 4], [4, 0, 2, b, c, 1]. (8, G_8 , 1)- $OPD = (X, A \cup B)$, leave edges: (a, b, c, a). (8, G_8 , 1)- $OCD = (X, A \cup C)$,

repeat edges: (1, 2, b).

 $(8, G_{10}, 1)$ - $OPD = (X, A \cup B)$, leave edges: (a, b, c, a). $(8, G_{10}, 1)$ - $OCD = (X, A \cup C)$, repeat edges: (a, 1, 3).

 $(8, G_{11}, 1)$ - $OPD = (X, A \cup B)$, leave edges: (a, b, c, a). $(8, G_{11}, 1)$ - $OCD = (X, A \cup C)$, repeat edges: (2, 4, 3).

 $\underline{v = 9}: \text{ On } X = Z_7 \cup \{a, b\}, (9, G_5, 1) \text{-} OPD = (X, \mathcal{A}), \mathcal{A}: [a, 0, 1, 3, 6, b] \pmod{7}.$ (9, G₆, 1) - OPD=(X, \mathcal{A}), \mathcal{A}: [0, 1, 2, 3, a, b] \pmod{7}. (9, G_7, 1) \text{-} OPD = (X, \mathcal{A}), \mathcal{A}: [0, 1, 3, 6, a, b] (mod 7).

 $(9, G_8, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [0, 1, 3, 6, a, b] \pmod{7}.$

 $(9, G_9, 1)$ - $OPD = (X, \mathcal{A}), \quad \mathcal{A}: [2, 5, a, 0, 6, 1], [1, 4, a, 2, b, 3], [0, 1, b, 4, 6, 5], [0, 2, a, 4, 3, 5], [4, 5, 6, 3, 1, 2], [a, 6, b, 0, 5, 1], [6, b, 2, 4, 0, 3].$

 $(9, G_{10}, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [a, b, 0, 1, 3, 6] \pmod{7}. (9, G_{11}, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [0, 1, 3, 6, a, b] \pmod{7}.$

There exist $(9, G_i, 1)$ -OCD for $i \in [5, 11]$ by Lemma 4.1.

<u>v = 12</u>: By the proof of Theorem 3.4, there exist $(12, G_i, 1)$ -OPD for $i \in [5, 11]$. By Lemma 4.1, there exist $(12, G_i, 1)$ -OCD for $i \in [5, 11]$.

<u>v = 13</u>: For G_i , i = 5, 8, 9, 10, since the $(8, G_i, 1)$ -*OPD* is a $(8, 3, G_i, 1)$ -*IGD* (see v = 8), by Theorem 2.4 and $K_{5,5}/G_i$ we obtain $(13, G_i, 1)$ -*OPD*. By Theorem 2.9, $K_{5,1}/G_6 \Rightarrow K_{5,3}/G_6 \Rightarrow K_{10,3}/G_6$. From $K_{10,3}/G_6$ and $(10, G_6, 1)$ -*GD*, we can obtain $(13, G_6, 1)$ -*OPD*.

On the set $Z_5 \cup \{a, b, c\}, K_{5,3}/G_7$: [0, b, 1, a, 2, 3], [0, c, 3, b, 2, 4], [0, a, 4, c, 1, 2]. $K_{5,3}/G_{11}$: [c, 3, a, 0, 2, 4], [a, 1, b, 2, 3, 4], [b, 0, c, 1, 2, 4].

By Theorem 2.9, $K_{5,3}/G_i \Rightarrow K_{10,3}/G_i$. From $K_{10,3}/G_i$ and $(10, G_i, 1)$ -GD, we obtain $(13, G_i, 1)$ -OPD for i = 7, 11. Leave edges: (a, b, c, a)

In the same way, we can obtain $(13, G_i, 1)$ -OCD for $i \in [5, 11]$.

 $\underline{v = 14}: \text{ On the set } X = Z_{12} \cup \{a, b\}, (14, G_5, 1) - OPD = (X, \mathcal{A}), \mathcal{A}: [b, 0, 1, 3, 6, 10] + i, i \in Z_{12}, [7, 1, 6, 11, a, 5] + i, i \in [0, 3], [6, 0, 5, 10, a, 9], [10, 3, a, 4, 11, 5].$

 $\begin{array}{l} (14,G_6,1)\text{-}OPD=(X,\mathcal{A}), \ \mathcal{A} \text{:} \ [6,7,8,9,1,2]+i, \ i\in[0,3], \ [6,a,b,0,10,11]+i, \ i\in[0,3], \ [2,3,4,5,a,b]+i, \ i\in[0,2], \ [0,1,2,3,4,10], \ [1,2,3,4,10,11], \ [5,0,1,6,7,8], \ [10,2,3,4,5,11], \ [11,0,2,3,4,5], \ [a,0,1,5,10,11], \ [b,0,1,5,10,11]. \end{array}$

 $(14, G_7, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [0, 6, 9, 1, a, b]+i, i \in [0, 5], [2, 0, 3, 7, a, b]+i, i \in [0, 5], [1, 0, 5, 6, 8, 11] + i, i \in [0, 3], [11, 4, 9, 10, 0, 3], [4, 5, 10, 11, 0, 1].$

 $(14, G_8, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [0, 6, 9, 1, a, b] + i, [2, 0, 3, 7, a, b] + i, i \in [0, 5],$

 $[11, 0, 5, 6, 8, 10] + i, i \in [0, 4], [3, 10, 11, 4, 5, 1].$

 $(14, G_9, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [3, 9, 0, 1, 6, a] + i, i \in [0, 5], [2, 4, 0, 1, 6, b] + i, i \in [6, 10],$

 $\begin{matrix} [8,0,1,4,7,10], & [0,4,2,5,8,11], & [6,8,11,0,5,b], & [5,9,2,4,6,10], & [2,6,3,5,7,11], \\ [4,8,1,3,7,9], & [1,5,0,3,6,9]. \end{matrix}$

 $(14, G_{10}, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [a, b, 0, 2, 5, 9] + i, i \in \mathbb{Z}_{12},$

 $[7, 11, 0, 1, 6, 5] + i, i \in [0, 4], [4, 5, 10, 11, 0, 6].$

 $(14, G_{11}, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [0, 6, 9, 1, a, b] + i, [2, 0, 3, 7, a, b] + i, i \in [0, 5],$

 $[0,1,6,7,8,11]+i,\ i\in[1,4],\ [0,1,6,7,8,5],\ [5,0,11,1,4,6].$

By Lemma 4.1, we can obtain $(14, G_i, 1)$ -OCD for $i \in [5, 11]$.

<u>v = 17</u>: On the set $X = Z_{15} \cup \{a, b\}, (17, G_6, 1)$ -OPD = $(X, \mathcal{A}),$

 $\mathcal{A}: [0,3,4,5,6,7] \pmod{15}, [0,2,13,14,a,b] + 3i, i \in [0,4], [1,0,2,14,a,b] + 3i, i \in [0,4], [a,2,5,8,11,14], [b,2,5,8,11,14]. By Lemma 4.1, there exist (17, G_6, 1)-OCD.$ $<math display="block">\underbrace{v = 18}_{i=1}: \text{ On the set } X = Z_{15} \cup \{a,b,c\}, \text{ let } A: [0,1,2,3,4,5] \pmod{15}; \\ B = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 &$

 $\begin{array}{l} B\colon [0,6,7,a,b,c]+i,\ i\in Z_{15}; C\colon [0,6,7,a,b,c]+i,\ i\in Z_{15}\backslash\{0,1,6,7,8\},\ [a,b,c,0,1,6],\\ [b,c,0,1,2,7],\ [c,0,1,2,7,8],\ [6,12,13,0,b,c],\ [7,13,14,0,1,a],\ [8,14,0,1,a,b].\ \ \text{It is easy to verify that}\ (X,A\cup B)\ \text{is a}\ (18,G_6,1)\text{-}OPD\ \text{and}\ (X,A\cup C)\ \text{is a}\ (18,G_6,1)\text{-}OCD. \end{array}$

It follows from Theorem 3.5 and Lemma 4.6 that the theorem is true.

Lemma 4.8 $p(6, G_{12}, 1) = 1$, $c(6, G_{12}, 1) = 4$ and $c(6, G_{13}, 1) = 4$.

Proof Since $v(K_6) = v(G_{12}) = 6$, $V(K_6) = V(G_{12})$ and d(v) = 5 for every $v \in V(K_6)$. If $p(6, G_{12}, 1) = 2$, then there are two C_4 and two vertices whose degree is four on two G_{12} . In eight vertices of the two C_4 , there are two vertices on the K_6 which are used twice, and the degree of these two vertices is not four. Let x_1 and x_2 be the two 4-degree vertices; then $x_1(x_2)$ only appears in the pendant vertices of the other G_{12} , and the edge x_1x_2 is repeated once. This is contrary to the definition of packing.

Let Z_6 be the vertex set of K_6 . Since $(Z_6, \{[0, 1, 2, 3, 4, 5]\})$ is a $(6, G_{12}, 1)$ -PD, the packing number $p(6, G_{12}, 1) = 1$, leave edges: (0, 2, 4, 5, 2), (1, 4, 0, 5, 1, 3).

If there exists a $(6, G_{12}, 1)$ -OCD, then it contains three blocks and $r_1 = 3$. The three 4-degree vertices in the 3 blocks are different. Since $V(G_{12}) = V(K_6)$, the degree set of the three 4-degree vertices all are $\{4, 1, 1\}$ in the three blocks. In this case, there is a edge on K_6 that cannot appear in any block. This is a contradiction. Similarly, we can obtain $c(6, G_{13}, 1) = 4$.

Theorem 4.9 There exist $(v, G_i, 1)$ -*OPD* (or *OCD*) for $i \in [12, 15]$ $v \equiv 2, 3, 5, 6, 7, 8, 10, 11 \pmod{12}$, for packing except for v = 6, i = 12, for covering except for v = 6, i = 12 and 13.

Proof $\underline{v=6}$: By the above lemma, $(6, G_{12}, 1)$ -*OPD* does not exist. On $X = Z_6$, $(6, G_{13}, 1)$ - $OPD=(X, \mathcal{A}), \mathcal{A}: [0, 3, 1, 2, 4, 5], [0, 5, 1, 4, 3, 2].$ Leave edges: 01, 23, 45. $(6, G_{14}, 1)$ - $OPD=(X, \mathcal{A}), \mathcal{A}: [0, 3, 1, 2, 4, 5], [0, 5, 1, 4, 3, 2].$ Leave edges: 01, 25, 35. $(6, G_{14}, 1)$ -OCD= $(X, \mathcal{A} \cup \{[2, 5, 3, 0, 1, 4]\})$. Repeat edges: 20, 03, 14. $(6, G_{15}, 1)$ - $OPD=(X, \mathcal{A}), \mathcal{A}: [4, 1, 0, 3, 2, 5], [2, 0, 4, 3, 5, 1].$ Leave edges: 13, 24, 45. $(6, G_{15}, 1)$ - $OCD = (X, \mathcal{A} \cup \{[2, 4, 5, 1, 3, 0]\})$. Repeat edges: 51, 43, 30. <u>v = 7</u>: On $X = Z_7$. (7, G_{12} , 1)- $OPD = (X, \mathcal{A}), \mathcal{A}$: [3, 0, 1, 2, 5, 6], [0, 5, 3, 4, 2, 6], [1, 4, 5, 6, 0, 3]. Leave edges: 02, 15, 13. $(7, G_{12}, 1)$ - $OCD = (X, \mathcal{A} \cup \{[0, 2, 3, 1, 5, 4]\})$. Repeat edges: 01, 14, 23. $(7, G_{13}, 1)$ - $OPD = (X, \mathcal{A}),$ \mathcal{A} : [1, 2, 3, 0, 4, 6],[3, 4, 0, 5, 6, 1],[6, 1, 4, 5, 3, 2].Leave edges: (0, 2, 6, 3). $(7, G_{13}, 1)$ - $OCD = (X, \mathcal{A} \cup \{[1, 2, 6, 3, 0, 5]\})$ Repeat edges: (2, 1, 3, 5). $(7, G_{14}, 1)$ - $OPD=(X, \mathcal{A}), \mathcal{A}: [0, 1, 2, 3, 6, 4], [3, 4, 0, 5, 2, 6], [1, 4, 5, 6, 0, 2].$ Leave edges: 24, 15, 13. $(7, G_{14}, 1)$ -OCD= $(X, \mathcal{A} \cup \{[5, 0, 3, 1, 2, 4]\})$. Repeat edges: 50, 03, 12. $(7, G_{15}, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [5, 1, 0, 3, 2, 6], [2, 4, 0, 5, 3, 1], [0, 6, 1, 4, 5, 2].$ Leave edges: 02, 46, 63. $(7, G_{15}, 1)$ -OCD= $(X, \mathcal{A} \cup \{[4, 6, 0, 2, 3, 5]\})$. Repeat edges: 60, 23, 35. <u>v = 8</u>: On the set $X = Z_8$, $(8, G_{12}, 1)$ -OPD= $(X, \mathcal{A}), \mathcal{A}$: [0, 2, 4, 6, 3, 5], [2, 3, 0, 1, 4, 6], [5, 1, 3, 4, 7, 0], [2, 6, 7, 5, 0, 3]. Leave edges: 72, 17, 70, 37. $(8, G_{12}, 1)$ - $OCD = (X, \mathcal{A} \cup \{[1, 4, 0, 7, 2, 3]\})$. Repeat edges: 14, 40. $(8, G_{13}, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [0, 1, 2, 3, 6, 5], [6, 0, 2, 4, 7, 1], [1, 3, 4, 5, 7, 6],$ [2, 6, 7, 5, 3, 0]. Leave edges: 04, 47, 71, 27. $(8, G_{13}, 1)$ - $OCD = (X, \mathcal{A} \cup \{[4, 7, 2, 0, 1, 3]\})$. Repeat edges: 20, 03. $(8, G_{14}, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [0, 1, 2, 3, 5, 6], [0, 2, 4, 6, 1, 7], [5, 1, 3, 4, 0, 7],$ [5, 2, 6, 7, 4, 1]. Leave edges: 27, 73, 36, 05. $(8, G_{14}, 1)$ - $OCD = (X, \mathcal{A} \cup \{[6, 5, 0, 3, 7, 2]\})$. Repeat edges: 65, 30. $(8, G_{15}, 1)$ -OPD = $(X, \mathcal{A}), \mathcal{A}$: [5, 3, 0, 1, 2, 7], [7, 0, 2, 4, 6, 1],[6, 5, 1, 3, 4, 0],[0, 5, 2, 6, 7, 4]. Leave edges: 63, 37, 71, 14. $(8, G_{15}, 1)$ - $OCD = (X, \mathcal{A} \cup \{[6, 3, 7, 1, 4, 0]\})$. Repeat edges: 34, 40. <u>v = 10</u>: On the $X = Z_8 \cup \{a, b\}, (10, G_{12}, 1)$ -OPD = $(X, \mathcal{A}), \mathcal{A}$: $[0, 2, 1, 4, a, b] + i, i \in [0, 3], [5, 0, 7, 6, 1, 4], [b, 3, a, 1, 0, 7], [b, 2, a, 0, 3, 6].$ Leave edges: 72, 57, ab.

 $(10, G_{12}, 1)$ - $OCD = (X, \mathcal{A} \cup \{[a, b, 5, 7, 2, 0]\})$. Repeat edges: b5, a7, 70.

 $(10, G_{13}, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}:$

 $[0,2,1,4,a,b]+i,\;i\in[0,3],\;[1,b,2,7,0,5],\;[0,6,7,a,4,1],\;[5,0,1,6,3,a].$ Leave edges: 07, $ab,\;b3.$

 $(10, G_{13}, 1)$ - $OCD = (X, \mathcal{A} \cup \{[3, 7, 0, b, 5, a]\})$. Repeat edges: b0, 57, 73.

 $(10, G_{14}, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}:$

 $[0,2,1,4,6,a]+i,\;i\in[0,3],\;[7,6,5,0,b,4],\;[b,1,0,3,a,4],\;[2,a,5,b,6,1].$ Leave edges: 27, 7b, ba.

 $(10, G_{14}, 1)$ - $OCD = (X, \mathcal{A} \cup \{[a, 4, 3, b, 7, 2]\})$. Repeat edges: b3, 34, 4a.

 $(10, G_{15}, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}:$

 $[a,0,2,1,4,b]+i,\;i\in[0,3],\;[0,5,a,4,6,7],\;[5,7,a,b,1,6],\;[3,b,2,7,0,1].$ Leave edges: (a,6,0,3).

 $(10, G_{15}, 1)$ - $OCD = (X, \mathcal{A} \cup \{[1, a, 6, 0, 3, 2]\})$. Repeat edges: (1, a, 3, 2).

<u>v = 11</u>: On the set $X = Z_9 \cup \{a, b\}, (11, G_{12}, 1)$ -OPD = $(X, \mathcal{A}),$

 $\mathcal{A}: [0, 2, 1, 4, a, b] \pmod{9}.$

 $(11, G_{13}, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [0, 2, 1, 4, a, b] \pmod{9}.$

 $(11, G_{14}, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [a, 0, 1, 4, 8, 6] + i, i \in [0, 3], [b, 4, 5, 8, 3, 1] + i, [0, 1], [1, b, 6, 7, 3, 0], [5, 3, b, 7, 8, 0], [b, a, 8, 2, 6, 4].$

 $(11, G_{15}, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [a, 0, 2, 1, 4, b] \pmod{9}.$

Since $l_1 = 1$, there exist $(11, G_i, 1)$ -OCD for $i \in [12, 15]$.

v = 14: On the set $X = Z_{14}$,

 $\begin{array}{l} (14,G_{12},1)\text{-}OPD = (X,\mathcal{A}), \mathcal{A}: \ [5,1,3,0,6,7]+i, \ i \in [1,6], \ [12,8,10,7,13,6]+i, \ i \in [0,6], \ [1,3,4,5,6,0], \ [1,2,3,0,6,7]. \ (14,G_{12},1)\text{-}OCD = (X,\mathcal{A} \cup \{[13,0,1,2,3,4]\}). \\ (14,G_{13},1)\text{-}OPD = (X,\mathcal{A}), \mathcal{A}: \ [5,1,3,0,9,7]+i, \ i \in \{1,3,4,5,6\}, \ [12,8,10,7,2,6]+i, \ i \in [0,6], \ [1,2,3,0,9,13], \ [1,3,4,5,11,0], \ [2,7,3,5,0,6]. \ (14,G_{13},1)\text{-}OCD = (X,\mathcal{A} \cup \{[1,9,2,3,4,5]\}). \end{array}$

 $\begin{array}{l} (14,G_{14},1)\text{-}OPD=(X,\mathcal{A}),\,\mathcal{A}:\,[5,1,3,0,7,13]+i,\,\,i\in[1,6],\,[12,8,10,7,6,0]+i,\,\,i\in[0,6],\,[1,2,3,0,7,13],\,[1,3,4,5,0,13].\,\,(14,G_{14},1)\text{-}OCD=(X,\mathcal{A}\cup\{[1,2,3,4,5,6]\}).\\ (14,G_{15},1)\text{-}OPD=(X,\mathcal{A}),\,\mathcal{A}:\,[9,3,1,5,0,7]+i,\,\,i\in[1,6],\,[2,10,8,12,7,6]+i,\,\,i\in\{0,1,3,4,5,6\},\,[9,3,2,1,0,7],\,[12,4,3,1,5,0],\,[13,0,10,12,9,8].\,\,(14,G_{15},1)\text{-}OCD=(X,\mathcal{A}\cup\{[1,2,3,4,5,6]\}). \end{array}$

 $\begin{array}{l} (15,G_{12},1)\text{-}OCD = & (X,\mathcal{A} \cup \{[5,4,10,11,12,13]\}). \text{ Repeat edges: } (4,10), (5,11,13). \\ (15,G_{13},1)\text{-}OPD = & (X,\mathcal{A}), \ \mathcal{A} \text{: } [7,1,5,0,4,2] + i, \ i \in Z_{15} \setminus \{0,1,7\}, \ [0,7,1,5,6,2], \\ [7,14,8,12,0,13], \ [1,8,2,6,7,5], \ [1,2,3,4,0,5], \ [8,9,10,11,7,12]. \\ \text{Leave edges: } (13,14), (0,1,3). \end{array}$

 $\begin{array}{ll} (15,G_{13},1)\text{-}OCD = & (X,\mathcal{A} \cup \{[3,1,14,13,0,2]\}). \text{ Repeat edges: } (14,1), (3,13,2). \\ (15,G_{14},1)\text{-}OPD = & (X,\mathcal{A}), \ \mathcal{A}: \ [5,0,7,1,3,6] + i, \ i \in Z_{15} \setminus \{0,7\}, \ [5,0,7,1,3,2], \\ [12,7,14,8,10,9], \ [3,4,5,6,7,8], \ [10,11,12,13,14,0]. \ \text{Leave edges: } (8,9), (0,1,2). \\ (15,G_{14},1)\text{-}OCD = & (X,\mathcal{A} \cup \{[0,3,2,1,8,9]\}). \ \text{Repeat edges: } (8,1), (0,3,2). \\ (15,G_{15},1)\text{-}OPD = & (X,\mathcal{A}), \ \mathcal{A}: \ \ [10,7,0,5,1,3] + i, \ i \in Z_{15} \setminus \{0,7\}, \ \ [3,1,7,0,5,6], \\ [10,8,14,7,12,13], \ [6,7,8,9,10,11], \ \ [13,14,0,1,2,3]. \ \text{Leave edges: } (3,4,5), (11,12). \end{array}$

 $(15, G_{15}, 1)$ - $OCD = (X, \mathcal{A} \cup \{[3, 4, 11, 12, 5, 1]\})$. Repeat edges: (4, 11), (12, 5, 1).

<u>v = 17</u>: On the $X = Z_{17}$, $(17, G_{12}, 1)$ - $OPD = (X, \mathcal{A})$, \mathcal{A} : [2, 6, 12, 0, 7, 8] + i, $i \in Z_{17}$, [2, 3, 0, 1, 15, 4] + 6i, $i \in [0, 2]$, [6, 3, 4, 5, 2, 8] + 6i, $i \in [0, 1]$. Leave edges: (2, 16), (15, 16, 0, 14).

 $(17, G_{12}, 1)$ - $OCD = (X, \mathcal{A} \cup \{[5, 14, 0, 16, 15, 2]\})$. Repeat edges: (14, 5, 16).

 $(17, G_{13}, 1)$ - $OPD=(X, \mathcal{A}), \ \mathcal{A}: [2, 6, 12, 0, 14, 7] + i, \ i \in \mathbb{Z}_{17}^*, \ [0, 2, 6, 12, 16, 9], [1, 2, 3, 0, 5, 7], [5, 6, 7, 4, 9, 1], [7, 8, 9, 10, 5, 11], [12, 13, 14, 11, 10, 8],$

[15, 16, 0, 14, 13, 6]. Leave edges: (6, 3, 4), (12, 15, 1).

 $(17, G_{13}, 1)$ - $OCD = (X, \mathcal{A} \cup \{[6, 15, 1, 3, 12, 4]\})$. Repeat edges: (15, 6), (1, 3).

 $(17, G_{14}, 1)$ - $OPD = (X, \mathcal{A}), \mathcal{A}: [2, 6, 12, 0, 7, 15] + i, i \in \mathbb{Z}_{17}, [2, 3, 0, 1, 4, 7] + 6i, i \in [0, 2], [6, 3, 4, 5, 8, 11] + 6i, i \in [0, 1].$ Leave edges: (2, 5), (1, 15, 16, 0).

 $(17, G_{14}, 1)$ - $OCD = (X, \mathcal{A} \cup \{[1, 2, 5, 15, 16, 0]\})$. Repeat edges: (5, 15), (1, 2).

 $(17, G_{15}, 1)$ - $OPD=(X, \mathcal{A}), \mathcal{A}: [10, 2, 6, 12, 0, 7] + i, i \in \mathbb{Z}_{17}, [5, 2, 3, 0, 1, 4] + 3i, i \in [0, 4].$ Leave edges: (2, 16), (1, 15, 16, 0).

 $(17, G_{15}, 1)$ - $OCD = (X, \mathcal{A} \cup \{[3, 2, 1, 15, 16, 0]\})$. Repeat edges: (3, 2, 1).

<u>v = 18</u>: On the $X = Z_{17} \cup \{a\}$, (18, G_{12} , 1)-*OPD*=(X, A), A: [9, 6, 11, 5, 14, a]+i, i ∈ Z_{17}^* , [15, 0, 1, 8, 9, 6] + i, i ∈ [0, 6], [9, 6, 11, 5, 7, a], [14, 5, 15, 16, 0, 6]. Leave edges: (13, 15), (0, 7, 8).

 $(18, G_{12}, 1)$ - $OCD = (X, A \cup \{ [13, 15, 0, 7, 8, 9] \})$. Repeat edges: (13, 7, 9), (15, 0).

 $(18, G_{13}, 1)$ - $OPD=(X, \mathcal{A}), \mathcal{A}: [6, 0, 4, 1, 8, a]+i, i \in \mathbb{Z}_{17}, [1, 8, 10, 0, 9, 2]+i, i \in [0, 6], [0, 7, 9, 16, 8, 15].$ Leave edges: (16, 1), (8, 15, 0).

 $(18, G_{13}, 1)$ - $OCD = (X, \mathcal{A} \cup \{[8, 16, 1, 15, 2, 0]\})$. Repeat edges: (2, 16, 8), (1, 15).

By $K_{12,6}/G_i$, K_{12}/G_i and $(6, G_i, 1)$ -OPD(OCD) for i=14,15, we can obtain $(18, G_{12}, 1)$ -OPD(OCD). By $K_{12,j}/G_i$, K_{12}/G_i and $(j, G_i, 1)$ -OPD(OCD) for $j = 7, 8, 10, 11, i \in [12, 15]$, we have $(12 + j, G_i, 1)$ -OPD(OCD) for $j = 7, 8, 10, 11, i \in [12, 15]$.

From Theorem 2.5, Theorem 2.10 and Lemma 4.8, it follows that the theorem is true. $\hfill \Box$

5 Coverings and packings for $\lambda > 1$

Theorem 5.1 If there exist (v, G, 1)-*OPD* and (v, G, 1)-*OCD*, then when $r_1 = 1$ (or $l_1 = 1$), there exist (v, G, λ) -*OPD*(*OCD*) for any $\lambda \ge 1$.

Proof If $r_1 = 1$, then $l_1 = e(G) - 1$. For $1 \le \lambda \le e(G)$, we have $l_{\lambda} = e(G) - \lambda$ and $r_{\lambda} = \lambda$. When $\lambda = 1$, from the assumptions of the theorem, there exist (v, G, 1)-OPD and (v, G, 1)-OCD. We proceed by induction on λ for $1 \le \lambda < e(G)$. Suppose that there is (v, G, λ) -OPD = (X, D') and its leave edge graph is $L_{\lambda}(D')$. We can construct an isomorphic mapping f of the (v, G, 1)-OCD, such that the isomorphic image of the mapping f is (X, D) and its repeat edge graph $R_1(D)$ is a subgraph of $L_{\lambda}(D')$. It is easy to see that $(X, D \cup D')$ is a $(v, G, \lambda + 1)$ -OPD and its leave edge graph is $L_{\lambda}(D') \setminus R_1(D)$. It follows from Theorem 2.11 that there exist (v, G, λ) -OPDfor any positive integer λ .

When $1 \leq \lambda \leq e(G)$, we take the (v, G, 1)-OCD = (X, D), and construct $\lambda - 1$ isomorphic mappings of the (v, G, 1)-OCD, f_i , $i = 1, 2, \dots, \lambda - 1$, such that the repeat

edge graph of every f_i 's image is a subgraph of G, and these subgraphs are different. Let f_i 's isomorphic image be $(X, D_i), i = 1, 2, \dots, \lambda - 1$; then $(X, D \cup (\bigcup_{1 \le i \le \lambda - 1} D_i))$ is a (v, G, λ) -OCD. It follows from Theorem 2.11 that there exist (v, G, λ) -OCD for any positive integer λ .

When $l_1 = 1$, the theorem is true also.

Theorem 5.2 Let $l_1 = e(G)/2$ be an integer. If there exist (v, G, 1)-OPD = (X, \mathcal{A}) and (v, G, 1)- $OCD = (X, \mathcal{B})$, and $L_1(\mathcal{A}) \cong R_1(\mathcal{B})$, then there exist (v, G, λ) -OPD(OCD) for any positive integer λ .

Proof When $\lambda = 1$, this is well-known. When $\lambda = 2$, we can construct an isomorphic mapping, which transforms \mathcal{B} to \mathcal{B}' , and $R_1(\mathcal{B}) \cong R_1(\mathcal{B}')$ and $L_1(\mathcal{A}) = R_1(\mathcal{B}')$ are satisfied. We take (X, \mathcal{A}) and (X, \mathcal{B}') ; then $(X, \mathcal{A} \cup \mathcal{B}')$ is a (v, G, 2)-GD. It follows from Theorem 2.11 that there exist (v, G, λ) -OPD(OCD) for any positive integer λ .

Example Let $X = Z_7$, $(7, G_{15}, 1)$ -*OPD* = (X, A), A:

[5, 1, 0, 3, 2, 6], [2, 4, 0, 5, 3, 1], [0, 6, 1, 4, 5, 2], leave edges: 02, 46, 63.

 $(7, G_{15}, 1)$ - $OCD = (X, \mathcal{B}), \mathcal{B} = \mathcal{A} \cup \{[4, 6, 0, 2, 3, 5]\}, \text{ repeat edges: } 60, 23, 35.$

Transforming \mathcal{B} to \mathcal{B}' under the mapping $2 \to 4, 4 \to 5, 5 \to 3, 3 \to 6, 6 \to 2$ and $x \to x$ for other x. Then $(X, \mathcal{A} \cup \mathcal{B}')$ is a (v, G, 2)-GD.

Theorem 5.3 There exists a (v, G_1, λ) -OPD (or OCD) for $v \equiv 2 \pmod{3}$ and integer $\lambda \geq 1.$

Proof It immediately follows from Theorem 2.11 and Theorem 2.12.

Theorem 5.4 There exist (v, G_i, λ) -OPD (or OCD) for $i \in [2, 4], v \neq 0, 1 \pmod{8}$ and $\lambda > 1$, for covering except $(v, i, \lambda) = (6, 3, 1)$ and (6, 4, 1).

Proof Since $l_1 = 1$ when $v \equiv 2, 7 \pmod{8}$ and $r_1 = 1$ when $v \equiv 3, 6 \pmod{8}$, there exist (v, G_i, λ) -OPD (or OCD) for $i \in [2, 4]$ and $\lambda \geq 1$. When $v \equiv 4, 5 \pmod{8}$, $l_1 = 2 r_1 = 2$ and $\lambda = 2$. By Theorem 2.12, we can list the following table to get (v, G_i, λ) -OPD and (v, G_i, λ) -OCD for $1 \leq \lambda, i \in [2, 4]$.

for	G_2	for	G_3	for	G_4
L_1	•••	L_1	••••	L_1	••••
R_1	••••	R_1	•	R_1	⊷⊷

Lemma 5.5 [15] There exists $(v, K_{1,5}, \lambda)$ -GD if and only if $\lambda v(v-1) \equiv 0 \pmod{10}$, when $\lambda = 1, v \ge 10$; when λ is an even number, $v \ge 6$; when $\lambda > 1$ and λ is an odd number, $v \ge 6 + 5/\lambda$.

Lemma 5.6 (1). When $\lambda \geq 2$, there exist (n, G_6, λ) -*OPD*(*OCD*) for n = 7, 8, except for n = 7 and $\lambda = 3$. (2). When $\lambda \ge 2$, there exist $(7, G_9, \lambda)$ -OPD(OCD). **Proof** (1). <u>n = 8</u> On the set $X = Z_5 \cup \{a, b, c\}$, let $A = \{[3, 4, a, b, c, 0], [a, b, c, 0, 1, 2], \}$ $[b,c,0,1,2,3], \ [1,2,3,4,a,c], \ [2,1,3,4,a,c], \ [4,1,2,a,b,c], \ [0,1,2,4,b,c], \ [3,1,2,4,c], \ \ [3,1,2,4,c], \ \ [3,1,2,4,c], \ \ [3,1,2,4,c], \ \ [$ $[a, c], [b, 1, 2, 4, a, c]\}, B = \{[4, a, b, c, 0, 1]\}, C = \{[0, 1, 2, 3, 4, a], [c, a, 0, 1, 2, 4]\},$ $D = \{[0, 1, 2, a, b, c] + i | i \in \mathbb{Z}_5\} \cup \{[0, 1, 2, 3, 4, c], [a, b, c, 4, 0, 1], [c, a, b, 1, 2, 4]\}; \text{ then } i \in \mathbb{Z}_5\} \cup \{[0, 1, 2, 3, 4, c], [a, b, c, 4, 0, 1], [c, a, b, 1, 2, 4]\}; \text{ then } i \in \mathbb{Z}_5\} \cup \{[0, 1, 2, 3, 4, c], [a, b, c, 4, 0, 1], [c, a, b, 1, 2, 4]\}; \text{ then } i \in \mathbb{Z}_5\} \cup \{[0, 1, 2, 3, 4, c], [a, b, c, 4, 0, 1], [c, a, b, 1, 2, 4]\}; \text{ then } i \in \mathbb{Z}_5\}$

 $(X, A \cup C)$ is a $(8, G_6, 2)$ -*OPD*. Leave edge: 4a. $(X, A \cup B \cup C)$ is a $(8, G_6, 2)$ -*OCD*. Repeat edges: 4b, 4c, 40, 41. $(X, A \cup D)$ is a $(8, G_6, 3)$ -*OCD*. Repeat edge: a1. When $\lambda > 2$, from the following table and Theorem 2.12, we find that the theorem is true.

λ	1	2	3	4
L_{λ}	\leq	•	ŀ	•••
			$L_1 + L_2$	$L_2 + L_2$
R_{λ}	$K_{1,4} \cup K_{1,3}$	$K_{1,4}$:	$K_{1,3}$
				$R_2 - L_2$

 $\underline{n=7} \text{ On the set } X = Z_7, \text{ let } A = \{ [4,0,1,2,5,6] + i | i = 0,1,2,3 \} \cup \{ [1,0,2,3,4,5], [2,0,1,3,4,5], [3,0,1,2,4,5], [6,0,1,2,3,5] \}, B = \{ [4,0,1,2,3,5] \}; \text{ then } (X,A) \text{ is a } (7,G_6,2) \cdot OPD, \text{ leave edges: } 34,45. \ (X,A \cup B) \text{ is a } (7,G_6,2) \cdot OCD, \text{ repeat edges: } 42,40,41.$

In a $(7, G_6, 3)$ -CD, for every vertex on K_7 , sum of its degree number is not less than 18. Suppose that there exists $(7, G_6, 3)$ -OCD which contains 13 blocks. There is a vertex on the K_7 which appears in the center of the 13 blocks at most once, and the sum of its degree number is at most 5 + 12 = 17. This is a contradiction. We easily get $c(7, G_6, 3) = 14$.

When $\lambda \geq 2$, from the following table, we find that the theorem is true.

λ	1	2	3	4	5	6	7	8	9
L_{λ}	$K_{1,3} \cup K_3$	P_3	K_3	$K_{1,4}$	GD	P_2	P_3	$K_{1,3}$	$K_{1,4}$
			$L_1 - R_2$	$L_2 + L_2$		$L_2 - R_4$	$L_3 - R_4$	$L_4 - R_4$	$L_2 + L_7$
R_{λ}	$K_{1,4}\cup$	$K_{1,3}$	$K_{1,4} \cup K_{1,3}$	P_2	GD	$K_{1,4}$	$K_{1,3}$	P_3	P_2
	$K_{1,3} \cup P_3$			$R_2 - L_2$		$R_2 + R_4$	$R_3 - L_4$	$R_4 + R_4$	$R_7 - L_2$

(2). On the set $X = Z_7$, A: [2,4,0,1,3,6] + i, i = 0,1,2,5, [1,5,2,3,4,6], [1,6,4,5,2,0], [1,3,6,0,5,2], [1,4,5,6,3,0]; B: <math>[2,4,0,1,3,6] + i, i = 0,3,4,5,6, [3,6,1,2,4,0], [0,4,2,3,5,1], [1,4,0,2,5,3], [1,5,3,2,6,4]. The (X, A) is a $(7, G_9, 2)$ -OPD and leave edges are (0,3,4). The (X, B) is a $(7, G_9, 2)$ -OCD and repeat edges are (4,3,2,0). From the following table, we find that the theorem is true.

λ	1	2	3	4
L_{λ}	$\bigcup_{2 \le i \le 4} P_i$	P_3	$P_{\cup}P_3$	P_4
			$L_1 - R_2$	$L_2 + L_2$
R_{λ}	$P_2 \cup P_4$	P_4	$P_2 \cup P_2$	P_2
			$R_1 - L_2$	$R_2 - L_2$

Theorem 5.7 There exist (v, G_i, λ) -*OPD* (or *OCD*) for $i \in [5, 11]$, $v \neq 0, 1$ (mod 5) and $\lambda \geq 1$, for covering except $(i, v, \lambda) = (6, 8, 1)$, (6, 7, 1) and (6, 7, 3), for packing except $(i, v, \lambda) = (6, 7, 1)$ and (9, 7, 1).

Proof When $v \equiv 2, 4, 7, 9 \pmod{10}$, by Theorem 5.1 and Lemma 5.6, we find that the theorem is true. When $v \equiv 3, 8 \pmod{10}$, $\overline{\lambda} = 5$. By Theorem 2.12, we can list the following table to get (v, G_i, λ) -OPD and (v, G_i, λ) -OCD for $\lambda > 1$, $i \in [5, 11]$.

$G_i, i \in$	λ	1	2	3	4
$[5,8] \cup [10,11]$	L_{λ}	\leq	1	ŀ	••
			$L_1 - R_1$	$L_2 + L_1$	$L_2 + L_2$
{9}	L_{λ}	:	1		••
			$L_1 - R_1$	$L_2 + L_1$	$L_2 + L_2$
[5, 11]	R_{λ}			1	••••
			$R_1 + R_1$	$R_1 - L_2$	$R_2 - L_2$

Lemma 5.8 When $\lambda \geq 2$, there exist $(6, G_i, \lambda)$ -OPD(OCD) for i = 12, 13.

Proof On the set $X = Z_6$, let $A = \{[0, 3, 2, 1, 4, 5], [0, 5, 3, 1, 4, 2], [0, 4, 5, 2, 1, 3], [0, 5, 1, 4, 3, 2]\}, B = \{[0, 3, 4, 2, 1, 5]\};$ then $(X, A \cup B)$ is a $(6, G_{13}, 2)$ -GD. It is also $(6, G_{13}, 2)$ -OCD(OPD). Let $C = \{[0, 3, 1, 2, 4, 5], [0, 5, 1, 4, 3, 2], [0, 2, 3, 1, 5, 4], [2, 4, 3, 0, 5, 1]\};$ then $(X, A \cup C)$ is a $(6, G_{13}, 3)$ -OCD. The union of a $(6, G_{13}, 1)$ -OPD and a $(6, G_{13}, 2)$ -OPD is a $(6, G_{13}, 3)$ -OPD. Since there exists $(6, G_{13}, 2)$ -GD, there exist $(6, G_{13}, 2n)$ -GD for $n \ge 1$. Again by $(6, G_{13}, 3)$ -OPD(OCD), we find that there exist $(6, G_{13}, \lambda)$ -OCD for $\lambda \ge 2$.

On the set $X = Z_6$, let $A = \{[0, 2, 3, 1, 4, 5], [0, 3, 4, 2, 1, 5], [0, 4, 5, 3, 1, 2], [0, 5, 1, 4, 3, 2]\}, B = \{[0, 1, 2, 5, 3, 4]\}$; then $(X, A \cup B)$ is a $(6, G_{12}, 2)$ -GD. It is also a $(6, G_{12}, 2)$ -OCD or (OPD).

Let $C = \{[0, 1, 2, 3, 4, 5], [2, 0, 4, 5, 1, 3], [0, 5, 2, 1, 3, 4]\}, D = \{[4, 5, 0, 2, 1, 3]\};$ then $(X, A \cup C)$ is a $(6, G_{12}, 3)$ -OPD, and $(X, A \cup C \cup D)$ is a $(6, G_{12}, 3)$ -OCD. Using the same as proof as G_{13} , we find that $(6, G_{12}, \lambda)$ -OPD(OCD) exists for $\lambda \geq 2$. \Box

Theorem 5.9 There exist (v, G_i, λ) -*OPD* (or *OCD*) for $i \in [12, 15], v \equiv 2, 3, 5, 6, 7, 8, 10, 11 \pmod{12}$ and $\lambda \geq 1$, for covering except $(v, i, \lambda) = (6, 12, 1)$ and (6, 13, 1), for packing except $(v, i, \lambda) = (6, 12, 1)$.

Proof When $v \neq 0, 1, 4, 9 \pmod{12}$, it is easy to see that l_1 takes three values 1, 3, 4, and $r_1 = 6 - l_1$. When $v \equiv 2, 11 \pmod{12}$, $l_1 = 1$, it follows from Theorem 5.1 that the theorem is true. When $v \equiv 3, 6, 7, 10 \pmod{12}$, $l_1 = 3$, it follows from Theorem 5.2 that the theorem is true.

When $v \equiv 5, 8 \pmod{12}$, $l_1 = 4$ and $\overline{\lambda} = 3$. Let (X, \mathcal{A}) and (X, \mathcal{B}) be $(v, G_i, 1)$ -*OPD* and $(v, G_i, 1)$ -*OCD*, $i \in [12, 15]$ in Theorem 4.9, and L_1 and R_1 be leave edge graph of the \mathcal{A} and repeat edge graph of \mathcal{B} , respectively.

By the proof of Theorem 4.9, L_1 and R_1 is the special graph listed in under table. By Theorem 2.12, we can list the following table to get (v, G_i, λ) -OPD and (v, G_i, λ) -OCD for $\lambda \ge 1, i \in [12, 15]$. For G_{12}

λ	1	2	or	λ	1	2
L_{λ}	K	-	or	L_{λ}	Ľ.	Ļ
R_{λ}	L		or	R_{λ}	Γ.	7

For G_{13}

λ	1	2	or	λ	1	2
L_{λ}	••••	11	or	L_{λ}	Ļ	••••
R_{λ}	II	••••	or	R_{λ}	Ļ	Ļ

For G_{14}

λ	1	2
L_{λ}	••••	ΙI
R_{λ}	II	⊷ ⊷

For G_{15}

λ	1	2	or	λ	1	2
L_{λ}	-11	••••	or	L_{λ}	L.	••••
R_{λ}	••••	-11	or	R_{λ}	Γ.	.

6 Graph designs for $\lambda \ge 1$

Lemma 6.1 The necessary conditions for (v, G, λ) -GD to exist are (1) $\lambda v(v-1) \equiv 0 \pmod{2e(G)}$; (2) $\lambda(v-1) \equiv 0 \pmod{n}$, where $n = \gcd(\{d(u)|u \in V(G)\})$.

By Corollary 2.13, Section 5 and Table A, we easily obtain the following theorem: **Theorem 6.2** If v satisfies the conditions in Lemma 6.1 and v > 6, then there exist (v, G_i, λ) -GD for $i \in [1, 15]$ and $\lambda \ge 1$.

Acknowledgments

The author is grateful to Professor Q. Kang for his support of this research.

References

- A.M. Assaf, On covering designs with block size 5 and index 5, Designs, Codes and Cryptography 5 (1995), 91–107.
- [2] A.M. Assaf, —it On packing designs with block size 5 and index 7 ≤ λ ≤ 21, JCMCC 26 (1998), 3–71.
- [3] A.M. Assaf, N. Shalaby and L.P.S. Singh, On packing designs with block size 5 and index 3 and 6, Ars Combinatoria 45 (1997), 143–156.
- [4] A.M. Assaf, N. Shalaby and J. Yin, Directed packings with block size 5, Australasian Journal of Combinatorics 17 (1998), 235–256.
- [5] F.E. Bennett, J. Yin, H. Zhang and R.J.R. Abel, Perfect Mendelsohn packing designs with block size 5, Designs, Codes and Cryptography 14 (1998), 5–22.
- [6] J.C. Bermond, C. Huang, A. Rosa and D. Sotteau, Decomposition of complete graphs into isomorphic subgraphs with five vertices, Ars Combinatoria 10 (1980), 211–254.
- [7] Y. Caro and R. Yuster, Covering graphs: the covering problem solved, Journal of Combinatorial Theory, series A 83 (1988), 273–282.
- [8] H.L. Fu and C.C. Lindner, —it The Doyen-Wilson theorem for maximum packing of K_n with 4-cycles, Discrete Mathematics 183 (1998), 103–117.
- [9] D.G. Hoffman, Kimberly S. Kirkpatrick, G-designs of order n and index λ where G has 5 vertices or less, Australasian Journal of Combinatorics 18 (1998), 13– 37.
- [10] N. Shalaby and J. Yin, Nested optimal λ-packings and λ-coverings of pairs with triples, Designs, Codes and Cryptography 15 (1998), 271–278.
- [11] J.X. Yin and B.S. Gong, *Existence of G-designs with* |V(G)| = 6, in Combinatorial designs and applications, Volume 126 (1988), 201–218.
- [12] J.A. Kennedy, *Minimum coverings of* K_n with hexagons, Australasian Journal of Combinatorics **16** (1997), 295–303.
- [13] Z. Liang, On G-designs (packing, covering) of λK_v with six vertices, nonbipartite G, manuscript.
- [14] Q. Kang and Z. Liang, Optimal packings and coverings of λDK_v with k-circuits, JCMCC, to appear.
- [15] C.J. Colbourn and J.H. Dinitz, The CRC handbook of combinatorial designs, CRC Press, 1996.

(Received 15 Jan 2001)