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Abstract

Let λKv be the complete multigraph with v vertices, where any two
distinct vertices x and y are joined by λ edges (x, y). Let G be a finite
simple graph. A G-design (G-packing, G-covering) of λKv, is denoted by
(v, G, λ)-GD ((v, G, λ)-PD, (v, G, λ)-CD). In this paper, we determine
the existence spectrum for the G-designs of λKv, λ > 1, and construct
the maximum packings and the minimum coverings of λKv with G for
any positive integer λ, where the bipartite graph G has six vertices and
e(G) ≤ 6.

1 Introduction

Throughout this paper, graphs are finite, undirected and have no isolated vertices.
A complete multigraph of order v and index λ, denoted by λKv, is a graph with v
vertices, where any two distinct vertices x and y are joined by λ edges (x, y). Let
G be a finite simple graph. A G-design (G-packing, G-covering) of λKv, denoted by
(v, G, λ)-GD ((v, G, λ)-PD, (v, G, λ)-CD), is a pair (X,B) where X is the vertex set
of Kv and B is a collection of subgraphs of Kv, called blocks, such that each block is
isomorphic to G and any two distinct vertices in Kv are joined in exactly (at most, at
least) λ blocks of B. A G-packing (G-covering) is said to be maximum (minimum),
denoted by (v, G, λ)-MPD(MCD), if no other such G-packing (G-covering) has
more (fewer) blocks. The number of blocks in a maximum G-packing (minimum G-
covering), denoted by p(v, G, λ) (c(v, G, λ)), is called the packing (covering) number.
It is well known that

p(v, G, λ) ≤ �λv(v − 1)

2e(G)
� ≤ �λv(v − 1)

2e(G)
� ≤ c(v, G, λ)

∗ This research was supported by HBUT.

Australasian Journal of Combinatorics 25(2002), pp.221–240



where e(G) denotes the number of edges in G, �x� denotes the greatest integer y
such that y ≤ x and �x� denotes the least integer y such that y ≥ x. A (v, G, λ)-PD
((v, G, λ)-CD) is said to be optimal and denoted by (v, G, λ)-OPD ((v, G, λ)-OCD)
if the left (right) equality holds. Obviously, there exists a (v, G, λ)-GD if and only
if p(v, G, λ) = c(v, G, λ) and a (v, G, λ)-GD can be regarded as (v, G, λ)-OPD or
(v, G, λ)-OCD.

By a Lλ(D) of a packing D, called the leave edge graph, we mean a subgraph of
λKv whose edges are the complement of D in λKv. The number of edges in Lλ(D) is
denoted by |Lλ(D)|. In particular, when D is maximum, |Lλ(D)| is called the leave
edge number and is denoted by lλ(v). Similarly, the repeat edge graph Rλ(D) of a
covering D is a subgraph of λKv and its edges are the complement of λKv in D.
When D is minimum, |Rλ(D)| is called the repeat edge number and is denoted by
rλ(v). Generally, the symbols Lλ(D), lλ(v), Rλ(D) and rλ(v) can be denoted more
briefly by Lλ, lλ, Rλ and rλ. It is not difficult to show the following result:

If there exists a (v, G, λ)-GD, then p(v, G, λ) = c(v, G, λ) = λv(v−1)
e(G)

, i.e., lλ = rλ = 0.
Else,

lλ = λv(v − 1)/2 − e(G) · p(v, G, λ) > 0 and
rλ = e(G) · c(v, G, λ) − λv(v − 1)/2 > 0.

Many researchers have been involved in graph design, graph packing and graph
covering of λKv with five vertices or less(see [1–10]). Yin [11] listed the spectrum of
graph designs of Kv with six vertices and e(G) ≤ 6. (See Table A.)

For the cycle C6, there exists a (v, C6, 1)-GD if and only if v ≡ 1, 9 (mod 12).
Furthermore, J.A. Kennedy [12] obtained following theorem:

Theorem For any positive integer λ, the packing number p(v, C6, λ) and covering
number c(v, C6, λ) are determined.

When the six-vertex graph G contains an odd cycle and e(G) ≤ 6, Z.Liang [13]
gave the G-design, maximum G-packing and minimum G-covering of λKv.

Let the bipartite graph G have six vertices and its edge number be not greater
than 6; for such G, the G-design, maximum G-packing and minimum G-covering of
λKv is solved in this paper.

Subsequently, the following notations (a, b ∈ Z) are used frequently:
[a, b] = {x ∈ Z | a ≤ x ≤ b}, [a, b]k = {x ∈ Z | a ≤ x ≤ b, x ≡ a(mod k)} for
a, b ∈ Z, [a, b, · · · , c] + i = [a + i, b + i, · · · , c + i] and (Zn)m = {im| i ∈ Zn}.
The edge set {(a1, a2), (a2, a3), · · · , (an−1, an)} is denoted by (a1, a2, · · · , an); the
graph G is denoted by [a, b, c, d, e, f ].
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note G1 G2 G3

graph � � � �

� �

a b c d

e f
� �

� � � �

a b

c d e f

� � �

�� �

a b c

d e f
spectrum v ≡ 0, 1 (mod 3) v ≥ 6 v ≡ 0, 1 (mod 8) v ≥ 8 v ≡ 0, 1 (mod 8) v ≥ 8

note G4 G5 G6

graph � � � �

�

�

a bc d

e

f

� � �

�� �

a b c
def � � �

������ �

b a f
dc e

spectrum v ≡ 0, 1 (mod 8) v ≥ 8 v ≡ 0, 1 (mod 5) v ≥ 6 v ≡ 0, 1 (mod 5) v > 6

note G7 G8 G9

graph � � � �

�

�

a b c d
e

f
� � � �

� �

a b c d

ef
� �

�

� �

�a b c

d e

f

spectrum v ≡ 0, 1 (mod 5) v > 6 v ≡ 0, 1 (mod 5) v ≥ 6 v ≡ 0, 1 (mod 5) v ≥ 6

note G10 G11 G12

graph � � � �

� �

c d e f

a b
� � � �

�

�

a bc d
e

f

� � �

� � ���
a

b c

d e

f
spectrum v ≡ 0, 1 (mod 5) v ≥ 6 v ≡ 0, 1 (mod 5) v > 6 v ≡ 0, 1, 4, 9 (mod 12)

note G13 G14 G15

graph � � �

� ��
a

b c

d

e

f
� � �

� � �

a

b c

d e

f

� � �

�

�

�

a b

c d

e f

spectrum v ≡ 0, 1, 4, 9 (mod 12) v ≡ 0, 1, 4, 9 (mod 12) v ≡ 0, 1, 4, 9 (mod 12)

Table A

2 Recursion

By Kn1,n2,···,nh
we mean the complete multipartite graph with h parts of sizes

n1, n2, · · · , nh. Let X =
⋃

1≤i≤h Xi be the vertex set of Kn1,n2,···,nh
where Xi (1 ≤

i ≤ h) are disjoint sets with |Xi| = ni and v =
∑

1≤i≤h ni. For any fixed graph G, if
Kn1,n2,···,nh

can be decomposed into edge-disjoint subgraphs isomorphic to G, then we
call (X,G,A) a holey G-design, where G ={X1, X2, · · · , Xh}, and A is the collection
of all subgraphs called G-blocks (or simply blocks). Each set Xi(1 ≤ i ≤ h) is said
to be a hole and the multiset {n1, n2, · · · , nh} is a type of the holey G-design. We
denote the design by G-HGD(n1

1n
1
2 · · ·n1

h) (or Kn1,n2,···,nh
/G) and use an “exponen-

tial” notation to describe its type in general: a type 1i2j3k · · ·, denotes i occurrences
of 1, j occurrences of 2, etc. A G-HGD(1v−ww1) is called an incomplete G-design,

223



denoted by (v, w, G, 1)-IGD. Obviously, a (v, G, 1)-GD is a G-HGD(1v), which can
be thought of as a (v, w, G, 1)-IGD with w = 0 or 1.

Theorem 2.1 If there exist (ni, G, 1)-GD for i ∈ [1, h] and G-HGD(n1
i n

1
j) for i 
= j

and i, j ∈ [1, h], then there exists a (n, G, 1)-GD for n =
∑

1≤i≤h ni.

Corollary 2.2 Suppose that there exist (n, G, 1)-GD and G-HGD(n2); then there
exists a (sn, G, 1)-GD for any positive integer s.

Corollary 2.3 Suppose that there exists a G-HGD(n2); then there exist
G-HGD(ns) for any positive integer s.

Theorem 2.4 If there exist (n + n′, n′, G, 1)-IGD, (n + n′, G, 1)-GD (or CD, PD)
and G-HGD(n2), then there exists a (mn+n′, G, 1)-GD(or CD,PD) for any positive
integer m and integer n′ ≥ 0.

Theorem 2.5 If there exist (n, G, 1)-GD, G-HGD(n2), G-HGD(n1m1) and (n +
m, G, 1)-GD(or PD, CD), then there exists a (tn + m, G, 1)-GD (or PD, CD) for
any positive integer t.

Theorem 2.6 If there exist (u, w, G, 1)-IGD, G-HGD(n1
1n

1
2 · · · n1

tu
1) and (ni, G, 1)-

GD for i ∈ [1, t], then there exists a (u +
∑

1≤i≤t ni, w, G, 1)-IGD.

Theorem 2.7 If there exist G-HGD(n1
1n

1
2 · · ·n1

t ) and (ni + w, w, G, 1)-IGD for i ∈
[1, t], then there exists a (w +

∑
1≤i≤t ni, w, G, 1)-IGD.

Theorem 2.8 If there exist (n, w, G, 1)-IGD and (w, G, 1)-GD (PD, CD), then
there exists a (n, G, 1)-GD (PD, CD).

Theorem 2.9 [6] If there exist G-HGD(n1m1
i ) for i = 1, 2, then there exist G-

HGD((an)1(bm1 + cm2)
1) for integers a ≥ 1 and b or c ≥ 1.

Theorem 2.10 If there exist G-HGD(n2), G-HGD((n + r)1n1),(n, G, 1)-GD and
(n+r, G, 1)-GD(PD, CD) for 1 ≤ r ≤ n−1, then there exist (v, G, 1)-GD(PD, CD)
for any integer v ≥ n.

Theorem 2.11 Let l be the leave edge number of the (n, G, 1)-OPD and
λ̄=e(G)/gcd(e(G), l). If there exist (n, G, λ)-OPD and (n, G, λ)-OCD for 1 ≤ λ ≤ λ̄,
then there exist (n, G, λ)-OPD and (n, G, λ)-OCD for any positive integer λ.

The following theorem is a modified version of Theorem 4 in Section 3 of [14].

Theorem 2.12 Given positive integers v, λ and µ. Let X be a v-set.
(1) Suppose that there exists a (v, G, λ)-MPD = (X,D) with leave edge graph

Lλ(D) and a (v, G, µ)-MPD = (X, E) with leave edge graph Lµ(E). If |Lλ(D)| +
|Lµ(E)| = lλ+µ(v) < e(G), then there exists a (v, G, λ + µ)-MPD with leave edge
graph Lλ(D) ∪ Lµ(E).

(2) Suppose that there exists a (v, G, λ)-MCD = (X,D) with repeat edge graph
Rλ(D) and a (v, G, µ)-MCD = (X, E) with repeat edge graph Rµ(E). If |Rλ(D)| +
|Rµ(E)| = rλ+µ(v) < e(G), then there exists a (v, G, λ + µ)-MCD with repeat edge
graph Rλ(D)

⋃
Rµ(E).

(3) Suppose that there exists a (v, G, λ)-MPD = (X,D) with leave edge graph
Lλ(D) and a (v, G, µ)-MCD = (X, E) with repeat edge graph Rµ(E). If Rµ(E) ⊂
Lλ(D) and |Lλ(D)|−|Rµ(E)| = lλ+µ(v) < e(G), then there exists a (v, G, λ+µ)-MPD
with leave edge graph Lλ(D)\Rµ(E).
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(4) Suppose that there exists a (v, G, λ)-MCD = (X,D) with repeat edge graph
Rλ(D) and a (v, G, µ)-MPD = (X, E) with leave edge graph Lµ(E). If Lµ(E) ⊂
Rλ(D) and |Rλ(D)| − |Lµ(E)| = rλ+µ(v) < e(G), then there exists a (v, G, λ + µ)-
MCD with repeat edge graph Rλ(D)\Lµ(E).

If we replace MPD and MCD by OPD and OCD respectively, then the theorem is
also true.

Corollary 2.13 If there exist (v, G, λ1)-GD and (v, G, λ2)-GD, then there exists
(v, G, λ1 + λ2)-GD.

3 Holey graph designs and incomplete graph

designs

Theorem 3.1 There exist (8 + w, w, Gi, 1)-IGD for i ∈ [2, 4], w ∈ [2, 7].

Proof Let (8 + w, w, Gi, 1)-IGD=(X,A), for i ∈ [2, 4], w ∈ [2, 7]; we construct A
as follows:

w = 2 On the set X = Z8 ∪ {a, b}:
For G2:
[0, 2, a, 1, 4, b]+i, i ∈ Z∗

8 , [3, 7, 4, 0, 1, 2], [7, 0, 6, 2, 3, 4], [b, 4, 1, 5, 6, 7], [0, 2, a, 1, 4, 5].
For G3:
[a, 6, 4, b, 0, 3]+ i, i ∈ Z∗

8 , [1, 2, 6, 4, 0, 7], [2, 3, 7, 4, 5, 6], [0, 1, 5, a, 6, 7], [6, 4, 3, b, 0, 3].
For G4:
[a, 3, 2, 4, 5, b]+ i, i ∈ Z∗

8 , [2, 6, 4, 0, 3, 5], [2, 5, 7, 0, 3, 6], [a, 3, 1, 0, 2, 5], [5, 6, 2, 4, 3, b].

w = 3 On the set X = Z8∪{a, b, c}: For G2: [a, 2, b, 0, 1, 3]+i, i ∈ Z8, [0, 4, c, 3, 6, 1]+
i, i ∈ {0, 1}, [0, 3, 7, c, 6, 2], [2, 5, 0, c, 1, 4], [3, 7, 2, c, 5, 0].
For G3: [a, 0, 2, b, 3, 4] + i, i ∈ Z8, [0, 4, 7, c, 2, 5] + i, i ∈ [0, 1], [7, 2, 6, 4, c, 5],
[0, 3, 7, 1, c, 6], [6, 1, 4, 0, c, 7].
For G4: [a, 3, 0, 1, 2, b] + i, i ∈ Z8, [2, 5, 0, 3, 4, c], [3, 7, 1, 4, 5, c], [5, 0, c, 2, 3, 7],
[2, 7, c, 4, 5, 6], [4, 7, 6, 1, 2, 3].

w = 4 On the set X=Z8∪{a, b, c, d}:For G2: [a, 2, b, 0, 1, c]+i, i ∈ Z∗
8 , [3, 7, d, 0, 2, 5]+

i, i ∈ [0, 3], [d, 4, b, 0, 1, c], [4, 6, d, 5, 7, 2], [a, 2, d, 7, 1, 6], [1, 4, d, 6, 0, 3].
For G3: [a, 2, b, 0, 1, d] + i, i ∈ Z8, [c, 1, 5, 2, 4, 7] + i, i ∈ [0, 3], [7, c, 5, 6, 0, 3],
[0, c, 6, 7, 1, 4], [0, 2, 5, 1, 3, 6].
For G4: [a, 3, 1, b, c, d] + i, i ∈ Z∗

8 , [1, 5, 0, 7, 2, 3] + i, i ∈ [0, 3], [a, 3, 5, 4, 7, 0],
[4, 7, 6, 5, 0, 1], [4, 3, 7, 6, 1, 2], [4, 6, 1, b, c, d].

w = 5 On the set X = Z8 ∪ {a, b, c, d, e}: For G2: [a, 2, b, 0, 1, c] + i, i ∈ Z8,
[0, 4, d, 1, 3, e]+ i, i ∈ [0, 3], [0, 3, d, 5, 7, e], [7, 4, d, 6, 0, e], [3, 6, d, 7, 1, e], [6, 1, d, 0, 2, e],
[1, 4, 7, 2, 5, 0].
For G3: [a, 2, b, c, 0, 1] + i, i ∈ Z8, [0, 4, 6, d, 1, e] + i, i ∈ [0, 3], [3, 0, 2, d, 5, e],
[7, 2, 4, d, 6, e], [6, 1, 3, d, 7, e], [6, 3, 5, d, 0, e], [1, 4, 7, 2, 5, 0].
For G4: [a, 3, 1, b, c, d] + i, i ∈ Z8, [1, 5, 0, 7, 2, e] + i, i ∈ [0, 3], [7, 2, 4, 3, 6, e],
[3, 6, 5, 4, 7, e], [4, 7, 6, 5, 1, e], [2, 5, 7, 6, 1, e], [1, 4, 0, 3, 5, 6].
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w = 6 On X=Z8∪{a, b, c, d, e, f}: For G2: [a, 2, b, 0, 1, 3]+i, i ∈ Z∗
8 , [d, 2, e, 0, 3, f ]+

i, i ∈ Z8, [3, 7, b, 0, c, 4], [2, 6, 0, 1, c, 5], [1, 5, a, 2, c, 6], [0, 4, 1, 3, c, 7].
For G3: [a, 0, 1, b, 3, 6] + i, i ∈ Z∗

8 , [d, 3, e, 0, 2, f ] + i, i ∈ Z8, [b, 3, 7, 0, c, 4],
[2, 6, 3, 1, c, 5], [0, 1, 5, 2, c, 6], [a, 0, 4, 3, c, 7].
For G4: [a, 7, 0, 1, 3, b] + i, i ∈ Z∗

8 , [0, 2, 1, d, e, f ] + i, i ∈ Z8, [c, 6, 0, 1, 3, b],
[0, 4, c, 1, 2, 5], [1, 5, c, 0, 3, 4], [2, 6, 7, 3, a, c].

w = 7 On the set X = Z8 ∪ {a, b, c, d, e, f, g}: For G2: [a, 2, b, 0, 1, c] + i, i ∈ Z8,
[d, 1, e, 0, 2, f ]+ i, i ∈ Z8, [3, 6, 7, g, 0, 4], [4, 7, 6, g, 1, 5], [0, 3, 5, g, 2, 6], [6, 1, 4, g, 3, 7],
[1, 4, 7, 2, 5, 0].
For G3: [a, 2, b, 0, 1, c] + i, i ∈ Z8, [d, 1, e, 0, 2, f ] + i, i ∈ Z8, [3, 6, 2, 7, g, 0],
[0, 4, 7, 6, g, 1], [0, 3, 7, 5, g, 2], [6, 1, 4, 7, 2, 5], [1, 5, 0, 3, g, 4].
For G4: [a, 2, 0, 1, b, c] + i, i ∈ Z8, [d, 1, 0, 2, e, f ] + i, i ∈ Z8, [g, 1, 0, 3, 4, 5],
[g, 0, 2, 5, 6, 7], [3, 7, 1, 4, 5, 6], [4, 7, g, 2, 3, 6], [3, 6, g, 4, 5, 7]. �

Theorem 3.2 There exist Gi-HGD(8m) for i ∈ [2, 4], m > 1.

Proof On the set (Z4)1 ∪ (Z4)2, we construct
K4,4/G2:
[11, 22, 12, 21, 32, 41], [31, 42, 11, 12, 41, 22], [12, 31, 32, 11, 42, 21], [41, 42, 21, 22, 31, 32].
K4,4/G3:
[12, 21, 42, 11, 22, 31], [21, 22, 41, 12, 11, 42], [12, 31, 42, 41, 32, 11], [31, 32, 21, 12, 41, 42].
K4,4/G4:
[11, 22, 12, 21, 31, 41], [11, 12, 22, 21, 31, 41], [41, 42, 32, 11, 21, 31], [32, 41, 42, 11, 21, 31].
It follows from Theorem 2.9 that there exist Gi-HGD(8m) for i ∈ [2, 4], m > 1. �

Theorem 3.3 If there exist (8 + n′, Gi, 1)-OPD(OCD), then there exist (8m +
n′, Gi, 1)-OPD(OCD) for i ∈ [2, 4], n′ ∈ [2, 7] and m > 0.

Proof By Theorem 2.4, 3.1 and 3.2, we obtain the theorem. �

Theorem 3.4 There exist (10+w, w, Gi, 1)-IGD for i ∈ [5, 11], w = 4, 7, 8, 9, 12, 13.

Proof K1,5/G6 is trivial. By Theorem 2.9, we have K10,w/G6 for w = 4, 7,
8, 9, 10, 12, 13. On the set Z5 ∪ {a, b}, K5,2/G7: [1, a, 3, b, 4, 0], [1, b, 2, a, 4, 0].
K5,2/G11: [a, 2, b, 1, 3, 4], [b, 0, a, 1, 3, 4].
On the set (Z4)1 ∪ (Z5)2, K4,5/G5: [02, 01, 12, 31, 32, 21]+ i, i ∈ [0, 1], [02, 31, 22, 21, 42,
11], [12, 21, 02, 11, 32, 01].
K4,5/G8:
[02, 01, 12, 31, 32, 21], [12, 11, 22, 01, 42, 21], [21, 02, 31, 42, 11, 22], [02, 11, 32, 21, 42, 01].
K4,5/G10:
[01, 12, 21, 02, 11, 32], [11, 12, 31, 42, 21, 22], [21, 12, 01, 32, 31, 02], [31, 12, 11, 22, 01, 42].
On the set Z5 ∪ {a, b, c, d, e}, K5,5/G5: [4, a, 1, b, 2, c], [1, c, 3, d, 4, e],
[0, b, 3, e, 2, a], [2, d, 0, c, 4, b], [d, 1, e, 0, a, 3].
K5,5/G8: [0, a, 2, b, 3, c], [2, e, 4, b, 0, c], [b, 1, a, 4, d, 3], [c, 0, d, 1, e, 2], [1, c, 3, e, 0, d].
K5,5/G10: [4, e, 3, b, 2, d], [c, 0, a, 3, e, 4], [3, c, 1, d, 4, a], [2, b, 0, a, 1, e], [1, d, 2, c, 0, b].
On the set (Z5)1 ∪ (Z5)2, K5,5/G9: [31, 42, 01, 02, 11, 32] (mod 5).
On the set {(Z4)1 ∪ {∞}} ∪ (Z4)2, K5,4/G9: [32,∞, 01, 02, 11, 22] (mod 4).
From K5,4/Gi, i = 5, 8, 9, 10, we can obtain K10,4/Gi, K10,8/Gi, K5,8/Gi and
K10,12/Gi for i = 5, 8, 9, 10. From K5,5/Gi, i = 5, 8, 9, 10, we can obtain K10,5/Gi
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and K10,10/Gi for i = 5, 8, 9, 10. By K5,2/Gi, i = 7, 11, we can obtain K10,5/Gi and
K10,j/Gi for j = 2, 4, 8, 10, 12,i = 7, 11. By K10,4/Gi and K10,5/Gi, i ∈ [5, 11], we
can obtain K10,9/Gi for i ∈ [5, 11]. By K10,8/Gi and K10,5/Gi, i ∈ [5, 11], we can
obtain K10,13/Gi for i ∈ [5, 11].
On the set X = Z5 ∪ {a, b}:
(7, 2, G5, 1)-IGD=(X,A), A: [0, 1, 2, a, 4, b], [a, 1, b, 2, 3, 0], [a, 0, 2, 4, 3, b], [a, 3, 1, 4, 0, b].
(7, 2, G8, 1)-IGD=(X,A), A: [3, 0, 4, 1, b, 2], [0, 2, 3, 4, b, a], [2, 1, 0, b, 3, a], [b, 2, a, 1, 3, 4].
(7, 2, G10, 1)-IGD=(X,A), A: [1, b, 3, 4, 0, 2], [b, a, 0, 1, 2, 3], [a, 0, 2, b, 3, 1], [2, 3, b, 4, a, 0].
When i = 5, 8, 10, by K5,5/Gi and (7, 2, Gi, 1)-IGD, we obtain (12, 2, Gi, 1)-IGD.
When i = 6, 7, 11, by K10,2/Gi and (10, Gi, 1)-GD, we obtain (12, 2, Gi, 1)-IGD.
On the set X = Z10 ∪ {a, b}, (12, 2, G9, 1)-IGD=(X,A), A: [a, 2, 0, 1, 3, 6] + i,
[b, 2, 5, 6, 8, 1] + i, i ∈ [1, 4] and [0, 5, a, 7, b, 8], [1, 6, a, 9, b, 0], [3, 8, a, 1, b, 2],
[2, 7, 0, 1, 3, 6], [4, 9, 5, 6, 8, 1]. By (12, 2, Gi, 1)-IGD and K10,5/Gi, we have (10 +
7, 7, Gi, 1)-IGD. Again since there exist (10, Gi, 1)-GD and Gi-HGD(101w1) for
w = 4, 8, 9, 12, 13, there exist (10 + w, w, Gi, 1)-IGD for w = 4, 7, 8, 9, 12, 13 and
i ∈ [5, 11]. �

Theorem 3.5 If there exist (10 + n′, Gi, 1)-OPD(OCD), then there exist (10m +
n′, Gi, 1)-OPD(OCD) for i ∈ [5, 11], n′ = 2, 3, 4, 7, 8, 9 and m > 0.

Proof By Theorem 2.4 and 3.4, we can obtain the theorem. �

Theorem 3.6 When m 
≡ 1, 4, 9 (mod 12) and 6 ≤ m ≤ 17, there exist Gi-
HGD((12)nm1) for i ∈ [12, 15].

Proof On the set X={1, 2, 3, 4, 5, 6} ∪ {a, b}:
K6,2/G12: [1, a, 3, b, 4, 5], [2, b, 6, a, 4, 5]. K6,2/G13: [1, a, 3, b, 4, 5], [2, b, 6, a, 4, 5].
By Theorem 2.9, there exist Gi-HGD((12)1m1) for i = 12, 13 and m = 6, 8, 10,
12, 14.

On the set X={1, 2, 3, 4} ∪ {a, b, c}:
K3,4/G14: [b, 1, a, 2, c, 3], [a, 3, b, 4, c, 1]. K3,4/G15: [1, c, 3, a, 4, b], [c, 2, a, 1, b, 3].
By Theorem 2.9, there exist Gi-HGD((12)1m1) for i = 14, 15 and m = 6, 8, 12, 15.
On the set X=(Z6)0 ∪ (Z7)1

K6,7/G12: [00, 01, 10, 31, 20, 50] + i, i ∈ [0, 3], [40, 41, 50, 01, 20, 30] + i, i ∈ [0, 2].
K6,7/G13: [41, 10, 11, 20, 51, 01] + i, i = 0, 1, 3, 4, [61, 30, 31, 40, 41, 51],
[00, 01, 10, 21, 30, 40], [00, 61, 10, 31, 50, 20].
K6,7/G14: [01, 10, 31, 00, 41, 30] + i, i = 0, 2, [31, 40, 61, 30, 01, 20] + i, i ∈ [0, 2],
[21, 00, 61, 10, 51, 40], [41, 10, 11, 20, 31, 50].
K6,7/G15: [51, 10, 01, 00, 31, 20] + i, i ∈ [0, 3], [31, 50, 41, 40, 01, 20], [21, 50, 51, 00, 11, 30],
[41, 00, 61, 10, 21, 40].
By K6,7/Gi, i ∈ [12, 15], we obtain K12,7/Gi, i ∈ [12, 15]. By K6,2/Gi, i = 12, 13
and K3,4/Gi, i = 14, 15, we obtain K12,4/Gi, i ∈ [12, 15]. Therefore, K12,11/Gi, i ∈
[12, 15] can be obtained. By K3,4/Gi and K6,7/Gi, i = 14, 15, we obtain K12,10/Gi, i =
14, 15 and K12,14/Gi, i = 14, 15. By K6,2/Gi, i = 12, 13 and K3,4/Gi, i = 14, 15, we
obtain K12,8/Gi, i ∈ [12, 15]. Furthermore, by K12,7/Gi, i ∈ [12, 15], we can obtain
K12,15/Gi, i ∈ [12, 15]. By K12,7/Gi, i ∈ [12, 15] and K12,10/Gi, i ∈ [12, 15], there
are K12,17/Gi for i ∈ [12, 15].
It follows from Theorem 2.1 that the theorem is true. �
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Theorem 3.7 When i ∈ [12, 15], if there exist (m, Gi, 1)-OPD(OCD) for m =
6, 7, 8, 10, 11 and (12+m, Gi, 1)-OPD(OCD) for m = 2, 3, 5, then there exist (12k +
m, Gi, 1)-OPD(OCD) for k ≥ 1, m = 2, 3, 5, 6, 7, 8, 10, 11.

Proof Since there exist (12, Gi, 1)-GD, it follows from Theorem 3.6, Theorem 2.5
and Theorem 2.10 that the theorem is true. �

4 Packings and coverings for λ = 1

Let P be the necessary and sufficient condition for the existence of (v, G, 1)-GD.
When v does not satisfy P, we discuss (v, G, λ)-PD and (v, G, λ)-CD. We easily
obtain the following lemma:

Lemma 4.1 If there exists (v, G, 1)-OPD with leave-edge number l1 = 1, then there
exists (v, G, 1)-OCD.

Lemma 4.2 For any positive integer n, there exists a G1-HGD(6n).
Proof Since K3,3 is 1-factorable, the lemma is true. �

Theorem 4.3 There exist (v, G1, 1)-OPD (or OCD) for v ≡ 2(mod 3).
Proof 1) Both (8, 2, G1, 1)-IGD and (8, G1, 1)-OPD are the same. On the vertex
set X = Z6 ∪ {a, b}, let (8, G1, 1)-OPD = (X,B).
B: [a, 3, b, 1, 2, 4] (mod 6),[1, 4, 2, 3, 0, 5], [2, 5, 3, 4, 0, 1], [0, 3, 1, 2, 4, 5]. (8, G1, 1)-
OCD=(X,A), where A = B ∪ {[�, �,∞,∈,�,�]}.
By Lemma 4.2, there exists a G1-HGD(62). Therefore, there exist (6m + 2, G1, 1)-
OPD (or OCD) for all m ≥ 1.
2) On the vertex set X = Z6 ∪ {a, b, c, d, e}, we construct
A: [a, 0, b, 1, c, 2] and [d, 0, e, 1, 2, 4] (mod 6);
B: [1, 4, 2, 3, 0, 5], [2, 5, 3, 4, 0, 1], [0, 3, 1, 2, 4, 5];
C: [a, c, b, d, 1, 4], [a, d, e, c, 2, 3], [a, e, c, d, 0, 5], [b, c, e, d, 2, 5], [b, e, 3, 4, 0, 1],
[0, 3, 1, 2, 4, 5]; D: [a, b, 1, 2, 3, 4].
It is easy to verify that (X, A∪B) is a (11, 5, G1, 1)-IGD, (X, A∪C) is a (11, G1, 1)-
OPD and (X, A∪C∪D) is a (11, G1, 1)-OCD. Therefore, there exist (6m+5, G1, 1)-
OPD (or OCD) for all m ≥ 1. It follows from 1) and 2) that the theorem is true.

�

Lemma 4.4 There is no (6, Gi, 1)-OCD for i = 3, 4.

Proof If there exists a (6, G3, 1)-OCD, then c(6, G3, 1) = 4 and there is one edge
repeated; let the edge be (0, 1). The 0 and 1 must appear as a 2-degree vertex of two
blocks, but 0 and 1 cannot appear as two 2-degree vertices of the same block. Four
other vertices occupy one 2-degree vertex of four blocks, respectively. In this case,
each edge of K6 cannot appear only once in four blocks, except the edge (0, 1). This
is a contradiction.

If there exists a (6, G4, 1)-OCD, then c(6, G4, 1) = 4 and four 3-degree vertices
in four blocks are distinctly labelled. Suppose a and b do not appear in any 3-degree
vertex of the four blocks. Then the degree of vertex a is 1 in every block. In the five
edges incident with vertex a in K6, one edge is not contained in any block: this is
contrary to the definition of covering. �
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Theorem 4.5 There exist (v, Gi, 1)-OPD (or OCD) for i = 2, 3, 4 and v 
≡ 0 or 1
(mod 8), except for (6, Gi, 1)-OCD for i = 3 and 4.

Proof v = 6: On the set X = Z6, (6, G2, 1)-OPD=(X,A), A: [1, 4, 0, 2, 3, 5]+ i, i ∈
[0, 2]. Leave edges: (5, 0, 1, 2).
(6, G2, 1)-OCD=(X,A∪ {[3, 4, 5, 0, 1, 2]}).
(6, G3, 1)-OPD=(X,A), A: [0, 1, 4, 3, 5, 2], [0, 3, 1, 2, 4, 5], [1, 2, 3, 5, 0, 4].
Leave edges: 02, 15, 34.
(X,A∪ {[0, 2, 3, 1, 4, 5], [0, 1, 5, 2, 3, 4]}) is a (6, G3, 1)-CD. By Lemma 4.4, we have
c(6, G3, 1) = 5.
(6, G4, 1)-OPD=(X,A), A: [4, 5, 0, 1, 2, 3] + i = 0, 1, [1, 5, 4, 0, 2, 3] Leave edges:
(5, 3, 2, 5).
(X,A∪ {[2, 3, 0, 1, 4, 5], [0, 1, 5, 2, 3, 4]}) is a (6, G4, 1)-CD. By Lemma 4.4, we have
c(6, G4, 1) = 5.

v = 7: On the set X = Z7, (7, G2, 1)-OPD=(X,A), A: [1, 4, 0, 2, 3, 5] + i, i ∈ [0, 2],
[2, 6, 5, 1, 0, 3], [1, 2, 5, 6, 0, 4].
(7, G3, 1)-OPD=(X,A), A: [2, 3, 6, 4, 5, 0], [2, 4, 0, 5, 6, 1], [3, 0, 6, 1, 2, 5],
[0, 1, 5, 3, 4, 6], [1, 3, 5, 0, 2, 6].
(7, G4, 1)-OPD=(X,A), A: [4, 5, 0, 1, 2, 3]+i, i ∈ [0, 2], [1, 5, 4, 0, 3, 6], [0, 5, 6, 1, 2, 3].
In this case l1 = 1. Apply Lemma 4.1; there exist (7, G4, 1)-OCD for i ∈ [2, 4].

v = 10: Both (10, 2, Gi, 1)-IGD and (10, Gi, 1)-OPD are the same for i = 2, 3 and
4. Since l1 = 1, there exist (10, G4, 1)-OCD for i ∈ [2, 4].

v = 11: On the set X=Z11, (11, G2, 1)-OPD=(X,A), A: [0, 2, 1, 4, 8, 3] + i, i ∈ Z11,
[7, 8, 3, 4, 5, 6], [2, 3, 8, 9, 10, 0]. Leave edges: (0, 1, 2) and 67.
(11, G2, 1)-OCD=(X,A∪ {[6, 7, 0, 1, 2, 4]}). Repeat edge: 24.
(11, G3, 1)-OPD=(X,A), A: [5, 0, 2, 1, 4, 8] + i, i ∈ Z11,
[2, 3, 4, 7, 8, 9], [4, 5, 6, 9, 10, 0]. Leave edges: 01, 12 and 67.
(11, G3, 1)-OCD=(X,A∪ {[5, 6, 7, 0, 1, 2]}). Repeat edge: 56.
(11, G4, 1)-OPD=(X,A), A: [3, 8, 4, 7, 0, 6] + i, i ∈ Z∗

11\{1}, [0, 10, 4, 3, 5, 9],
[5, 6, 8, 3, 7, 9], [2, 3, 4, 7, 0, 6], [9, 10, 5, 8, 1, 7]. Leave edges: 01, 12 and 67.
(11, G4, 1)-OCD=(X,A∪ {[6, 7, 1, 0, 2, 3]}). Repeat edge: 13.

v = 12: On the set Z8 ∪ {a, b, c, d}
(12, G2, 1)-OPD = (X,A), A: [a, 2, b, 0, 1, c] + i, i ∈ Z∗

8 , [3, 7, d, 0, 2, 5] + i, i ∈
[0, 3], [a, d, b, 0, 1, c], [a, b, d, 4, 6, 1], [a, c, d, 5, 7, 2], [a, 2, d, 7, 1, 4], [b, c, d, 6, 0, 3]. Leave
edges: (b, d, c).
(12, G2, 1)-OCD = (X,A ∪ {[a, 1, b, d, c, 2]}). Repeat edges: a1, c2.
(12, G3, 1)-OPD = (X,A), A: [a, 2, b, 0, 1, d] + i, i ∈ Z8, [c, 1, 5, 2, 4, 7] + i, i ∈ [0, 3],
[a, c, 5, 6, 0, 3], [b, c, 6, 7, 1, 4], [b, a, d, 0, 2, 5], [7, c, 0, 1, 3, 6]. Leave edges: bd and cd.
(12, G3, 1)-OCD = (X,A ∪ {[b, d, c, 0, 1, 2]}). Repeat edges: (0, 1, 2).
(12, G4, 1)-OPD = (X,A), A: [a, 0, 1, b, c, d] + i, i ∈ Z8, [1, 5, 0, 7, 2, 3] + i, i ∈ [0, 3],
[a, b, 4, 3, 6, 7], [a, c, 5, 4, 7, 0], [a, d, 6, 5, 0, 1], [b, c, 7, 6, 1, 2]. Leave edges: bd and cd.
(12, G4, 1)-OCD = (X,A ∪ {[0, 1, d, b, c, 2]}). Repeat edges: (0, 1), (d, 2).

v = 13: On the set Z9 ∪ {a, b, c, d}
(13, G2, 1)-OPD = (X,A), A: [a, 2, b, 0, 1, 5] + i, i ∈ Z9, [c, 4, d, 0, 2, 5] + i, i ∈ Z∗

9 ,
[0, 2, a, b, c, 4], [2, 5, a, c, d, 0]. Leave edges: (a, d, b).
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(13, G2, 1)-OCD = (X,A ∪ {[0, 1, 2, a, d, b]}). Repeat edges: (0, 1), (a, 2).
(13, G3, 1)-OPD = (X,A), A: [a, 1, 3, c, 2, 6] + i, i ∈ Z9, [b, 2, 3, d, 1, 4] + i, i ∈ Z∗

9 ,
[a, b, c, d, 1, 4], [b, 2, 3, a, c, d]. Leave edges: (a, d, b).
(13, G3, 1)-OCD = (X,A ∪ {[0, 1, 2, a, d, b]}). Repeat edges: (0, 1, 2).
(13, G4, 1)-OPD = (X,A), A: [a, 3, 1, b, c, d] + i, i ∈ Z9, [1, 5, 0, 8, 2, 3] + i, i ∈ Z∗

9 ,
[1, 5, c, a, b, d], [a, b, 0, 8, 2, 3]. Leave edges: (a, d, b).
(13, G4, 1)-OCD = (X,A ∪ {[0, 1, d, b, a, 2]}). Repeat edges: (0, 1), (d, 2).

v = 14: On the X = Z11 ∪ {a, b, c},
(14, G2, 1)-OPD = (X,A), A: [a, 2, b, 0, 4, c] + i, i ∈ Z11, [2, 5, 0, 1, 6, 8] + i, i ∈ Z∗

11,
[a, c, 0, 1, 6, 8]. Leave edges: (a, b, c) and 25.
(14, G2, 1)-OCD = (X,A ∪ {[2, 5, a, b, c, 0]}). Repeat edge: 0c.
(14, G3, 1)-OPD = (X,A), A: [c, 3, 5, 0, 1, 6] + i, i ∈ Z11, [a, 2, 5, b, 0, 4] + i, i ∈ Z∗

11,
[c, a, 2, b, 0, 4]. Leave edges: (a, b, c) and 25 .
(14, G3, 1)-OCD = (X,A ∪ {[2, 5, 0, a, b, c]}). Repeat edge: 05.
(14, G4, 1)-OPD = (X,A), A: [1, 3, 0, a, 5, c] + i, i ∈ Z11, [2, 5, 0, 1, b, 4] + i, i ∈ Z∗

11,
[a, c, 0, 1, b, 4]. Leave edges: (a, b, c) and 25 .
(14, G4, 1)-OCD = (X,A ∪ {[2, 5, b, a, c, 0]}).Repeat edge: 0b.
Since there exist (15, 7, Gi, 1)-IGD and (7, Gi, 1)-OPD(OCD), there exist (15, Gi, 1)-
OPD(OCD) for i ∈ [2, 4]. It follows from Theorem 3.3 that there exist (v, Gi, 1)-
OPD(OCD) for i ∈ [2, 4], v 
≡ 0, 1 (mod 8) and v > 6. �

Lemma 4.6 c(8, G6, 1) = 7, c(7, G6, 1) = 6, p(7, G6, 1) = 3, c(7, G9, 1) = 5 and
p(7, G9, 1) = 3.

Proof If there exists a (8, G6, 1)-OCD, then it contains 6 blocks. In eight vertices
on K8, there are two vertices that cannot occur on the center of the 6 blocks. Let
the two vertices be a and b. The edge ab cannot occur on any block. This is a
contradiction.

On X = Z5 ∪ {a, b, c}, set A: [0, 1, 2, a, b, c] + i, i ∈ Z5, [a, b, c, 1, 2, 3], [c, b, 0, 1,
2, 3]. Then (X, A) is a (8, G6, 1)-CD, repeat edges: (1, a, 2), (a, 3), (0, c, 1), (2, c, 3).
Similarly, we can show there is no (7, G6, 1)-OCD.

If there exists a (7, G6, 1)-OPD, then p(7, G6, 1) = 4 and l1 = 1. Let the other
3 vertices except the center of the 4 blocks be a, b and c; then edges ab, ac and bc
cannot appear in the 4 blocks. This is a contradiction.

Let X = Z5∪{a, b}, construction A: [0, 1, 2, 3, a, b], [4, 0, 1, 2, a, b], [3, 1, 2, 4, a, b];
B: [a, 1, 2, 3, 4, 0], [b, 1, 2, 3, 4, a], [1, 2, 3, 4, 0, a]. Then (X, A) is a (7, G6, 1)-PD,
leave edges: (b, 1, a, 2, b, a), (1, 2). (X, A ∪ B) is a (7, G6, 1)-CD, repeat edges:
(4, b, 3, a, 4, 1, 0, a, 1, 3).

The degree of every vertex on K7 is 6. Since G9 = P2∪C4, an OPD contains 4 cy-
cles C4. Using enumeration, we know that at least an edge on K7 cannot match with
the 4 cycles C4. Therefore, there does not exist (7, G9, 1)-OPD. On the set X = Z7,
let A: [0, 5, 1, 2, 3, 6], [0, 3, 2, 4, 1, 5], [2, 6, 0, 1, 3, 4]; B: [1, 3, 0, 5, 4, 6], [0, 2, 3, 4, 6, 5].
Then (X, A) is a (7, G9, 1)-PD and leave edges are (5, 4, 6, 0), (0, 2), (6, 5, 3). And
(X, A ∪ B) is a (7, G9, 1)-OCD and repeat edges are (1, 3, 4, 6), (0, 5). �

Theorem 4.7 There exist (v, Gi, 1)-OPD (or OCD) for i ∈ [5, 11] and v 
≡ 0, 1
(mod 5), for packing except for v = 7, i = 6 and 9; for covering except for (i, v) =
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(6, 7), (6, 8) and (9, 7).

Proof v = 7: The (7, Gi, 1)-OPD with (7, 2, Gi, 1)-IGD are the same when i =
5, 8, 10 (see the proof of Theorem 3.4).

On the set X = Z5 ∪ {a, b}, (7, G7, 1)-OPD = (X,A),
A: [a, 3, 4, b, 0, 2],[4, 2, 1, 0, 3, a], [b, 3, 2, a, 1, 4], [2, 0, 4, 1, 3, b].

(7, G9, 1)-PD(CD); see Lemma 4.6.
(7, G11, 1)-OPD = (X,A),

A: [4, b, 2, 1, 3, a], [1, a, 3, 0, 4, b], [b, 1, 4, 0, 2, a],[3, 1, 0, 2, a, b].
There exist (7, Gi, 1)-OCD for i = 5, 7, 8, 10, 11 by Lemma 4.1.

v = 8: On the set X = Z5 ∪ {a, b, c},
A: [3, 0, b, 1, c, 2], [a, 2, b, 3, c, 4], [0, 1, 2, 3, 4, a],[c, 0, 2, 4, 1, a]; B: [b, 4, 0, a, 3, 1]; C:
[c, b, 4, 0, a, 3], [c, a, b, 0, 3, 1].
(8, G5, 1)-OPD = (X, A ∪ B), leave edges: (a, b, c, a). (8, G5, 1)-OCD = (X, A ∪ C),
repeat edges: (b, 0, 3).
A: [0, 1, 2, a, b, c] + i, i ∈ Z5. (8, G6, 1)-OPD = (X, A), leave edges: (a, b, c, a).
A: [a, 0, 1, 3, b, c] + i, i ∈ [0, 2]; B: [a, 0, 1, 3, b, c] + i, i ∈ [3, 4]; C: [3, 4, 1, b, c, 2],
[2, 0, 4, a, b, c], [a, 3, 0, c, 1, 2].
(8, G7, 1)-OPD = (X, A ∪ B), leave edges: (a, b, c, a). (8, G7, 1)-OCD = (X, A ∪ C),
repeat edges: (c, 0, 3).
A: [a, 0, 1, 3, b, c] + i, i ∈ [0, 3]; B: [a, 4, 0, 2, b, c]; C: [2, b, a, c, 0, 4], [4, 0, 2, b, c, 1].
(8, G8, 1)-OPD = (X, A ∪ B), leave edges: (a, b, c, a). (8, G8, 1)-OCD = (X, A ∪ C),
repeat edges: (1, 2, b).
A: [b, c, a, 0, 1, 2], [c, 0, b, 2, 3, 4], [a, b, c, 3, 0, 4], [0, b, c, 2, 4, 1], [0, 2, a, 1, b, 3];
B: [1, 3, c, a, 4, 0]. (8, G9, 1)-OPD = (X, A), leave edges: (1, 3), (c, a, 4). (8, G9, 1)-
OCD = (X, A ∪ B), repeat edges: (c, 0, 4).
A: [a, b, c, 0, 1, 3] + i, i = 0, 2, 3; B: [a, b, c, 0, 1, 3] + i, i = 1, 4; C: [1, a, b, c, 4, 0],
[1, 2, c, a, b, 0], [3, 0, a, 1, 2, 4].
(8, G10, 1)-OPD = (X, A∪B), leave edges: (a, b, c, a). (8, G10, 1)-OCD=(X, A∪C),
repeat edges: (a, 1, 3).
A: [a, 0, 1, 3, b, c] + i, i = 1, 2, 4; B: [a, 0, 1, 3, b, c] + i, i = 0, 3; C: [4, 3, a, b, c, 0],
[c, b, 1, 0, 3, 4], [1, c, 4, b, 2, 3].
(8, G11, 1)-OPD = (X, A∪B), leave edges: (a, b, c, a). (8, G11, 1)-OCD = (X, A∪C),
repeat edges: (2, 4, 3).

v = 9: On X = Z7 ∪ {a, b}, (9, G5, 1)-OPD = (X,A), A: [a, 0, 1, 3, 6, b] (mod 7).
(9, G6, 1)-OPD=(X,A), A: [0, 1, 2, 3, a, b] (mod 7). (9, G7, 1)-OPD = (X,A), A:
[0, 1, 3, 6, a, b] (mod 7).
(9, G8, 1)-OPD = (X,A), A: [0, 1, 3, 6, a, b] (mod 7).
(9, G9, 1)-OPD = (X,A), A: [2, 5, a, 0, 6, 1], [1, 4, a, 2, b, 3], [0, 1, b, 4, 6, 5],
[0, 2, a, 4, 3, 5], [4, 5, 6, 3, 1, 2], [a, 6, b, 0, 5, 1], [6, b, 2, 4, 0, 3].
(9, G10, 1)-OPD = (X,A), A: [a, b, 0, 1, 3, 6] (mod 7). (9, G11, 1)-OPD = (X,A), A:
[0, 1, 3, 6, a, b] (mod 7).
There exist (9, Gi, 1)-OCD for i ∈ [5, 11] by Lemma 4.1.

v = 12: By the proof of Theorem 3.4, there exist (12, Gi, 1)-OPD for i ∈ [5, 11]. By
Lemma 4.1, there exist (12, Gi, 1)-OCD for i ∈ [5, 11].
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v = 13: For Gi, i = 5, 8, 9, 10, since the (8, Gi, 1)-OPD is a (8, 3, Gi, 1)-IGD (see
v = 8), by Theorem 2.4 and K5,5/Gi we obtain (13, Gi, 1)-OPD. By Theorem 2.9,
K5,1/G6 ⇒ K5,3/G6 ⇒ K10,3/G6. From K10,3/G6 and (10, G6, 1)-GD, we can obtain
(13, G6, 1)-OPD.
On the set Z5 ∪ {a, b, c}, K5,3/G7: [0, b, 1, a, 2, 3], [0, c, 3, b, 2, 4], [0, a, 4, c, 1, 2].
K5,3/G11: [c, 3, a, 0, 2, 4], [a, 1, b, 2, 3, 4], [b, 0, c, 1, 2, 4].
By Theorem 2.9, K5,3/Gi ⇒ K10,3/Gi. From K10,3/Gi and (10, Gi, 1)-GD, we obtain
(13, Gi, 1)-OPD for i = 7, 11. Leave edges: (a, b, c, a)

In the same way, we can obtain (13, Gi, 1)-OCD for i ∈ [5, 11].

v = 14: On the set X = Z12 ∪{a, b}, (14, G5, 1)-OPD = (X,A), A: [b, 0, 1, 3, 6, 10]+
i, i ∈ Z12, [7, 1, 6, 11, a, 5] + i, i ∈ [0, 3], [6, 0, 5, 10, a, 9], [10, 3, a, 4, 11, 5].
(14, G6, 1)-OPD = (X,A), A: [6, 7, 8, 9, 1, 2] + i, i ∈ [0, 3], [6, a, b, 0, 10, 11] + i, i ∈
[0, 3], [2, 3, 4, 5, a, b] + i, i ∈ [0, 2], [0, 1, 2, 3, 4, 10], [1, 2, 3, 4, 10, 11], [5, 0, 1, 6, 7, 8],
[10, 2, 3, 4, 5, 11], [11, 0, 2, 3, 4, 5], [a, 0, 1, 5, 10, 11], [b, 0, 1, 5, 10, 11].
(14, G7, 1)-OPD = (X,A), A: [0, 6, 9, 1, a, b]+i, i ∈ [0, 5], [2, 0, 3, 7, a, b]+i, i ∈ [0, 5],
[1, 0, 5, 6, 8, 11] + i, i ∈ [0, 3], [11, 4, 9, 10, 0, 3], [4, 5, 10, 11, 0, 1].
(14, G8, 1)-OPD = (X,A), A: [0, 6, 9, 1, a, b] + i, [2, 0, 3, 7, a, b] + i, i ∈ [0, 5],
[11, 0, 5, 6, 8, 10] + i, i ∈ [0, 4], [3, 10, 11, 4, 5, 1].
(14, G9, 1)-OPD = (X,A), A: [3, 9, 0, 1, 6, a] + i, i ∈ [0, 5], [2, 4, 0, 1, 6, b] + i, i ∈
[6, 10],
[8, 0, 1, 4, 7, 10], [0, 4, 2, 5, 8, 11], [6, 8, 11, 0, 5, b], [5, 9, 2, 4, 6, 10], [2, 6, 3, 5, 7, 11],
[4, 8, 1, 3, 7, 9], [1, 5, 0, 3, 6, 9].
(14, G10, 1)-OPD = (X,A), A: [a, b, 0, 2, 5, 9] + i, i ∈ Z12,
[7, 11, 0, 1, 6, 5] + i, i ∈ [0, 4], [4, 5, 10, 11, 0, 6].
(14, G11, 1)-OPD = (X,A), A: [0, 6, 9, 1, a, b] + i, [2, 0, 3, 7, a, b] + i, i ∈ [0, 5],
[0, 1, 6, 7, 8, 11] + i, i ∈ [1, 4], [0, 1, 6, 7, 8, 5], [5, 0, 11, 1, 4, 6].
By Lemma 4.1, we can obtain (14, Gi, 1)-OCD for i ∈ [5, 11].

v = 17: On the set X = Z15 ∪ {a, b}, (17, G6, 1)-OPD = (X,A),
A: [0, 3, 4, 5, 6, 7] (mod 15), [0, 2, 13, 14, a, b] + 3i, i ∈ [0, 4], [1, 0, 2, 14, a, b] + 3i, i ∈
[0, 4], [a, 2, 5, 8, 11, 14], [b, 2, 5, 8, 11, 14]. By Lemma 4.1, there exist (17, G6, 1)-OCD.

v = 18: On the set X = Z15 ∪ {a, b, c}, let A: [0, 1, 2, 3, 4, 5] (mod 15);
B: [0, 6, 7, a, b, c]+i, i ∈ Z15; C: [0, 6, 7, a, b, c]+i, i ∈ Z15\{0, 1, 6, 7, 8}, [a, b, c, 0, 1, 6],
[b, c, 0, 1, 2, 7], [c, 0, 1, 2, 7, 8], [6, 12, 13, 0, b, c], [7, 13, 14, 0, 1, a], [8, 14, 0, 1, a, b]. It is
easy to verify that (X, A ∪ B) is a (18, G6, 1)-OPD and (X, A ∪ C) is a (18, G6, 1)-
OCD.

It follows from Theorem 3.5 and Lemma 4.6 that the theorem is true. �

Lemma 4.8 p(6, G12, 1) = 1, c(6, G12, 1) = 4 and c(6, G13, 1) = 4.

Proof Since v(K6) = v(G12) = 6, V (K6) = V (G12) and d(v) = 5 for every v ∈
V (K6). If p(6, G12, 1) = 2, then there are two C4 and two vertices whose degree is
four on two G12. In eight vertices of the two C4, there are two vertices on the K6

which are used twice, and the degree of these two vertices is not four. Let x1 and x2

be the two 4-degree vertices; then x1(x2) only appears in the pendant vertices of the
other G12, and the edge x1x2 is repeated once. This is contrary to the definition of
packing.
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Let Z6 be the vertex set of K6. Since (Z6, {[0, 1, 2, 3, 4, 5]}) is a (6, G12, 1)-PD,
the packing number p(6, G12, 1) = 1, leave edges: (0, 2, 4, 5, 2), (1, 4, 0, 5, 1, 3).
If there exists a (6, G12, 1)-OCD, then it contains three blocks and r1 = 3. The three
4-degree vertices in the 3 blocks are different. Since V (G12) = V (K6), the degree set
of the three 4-degree vertices all are {4, 1, 1} in the three blocks. In this case, there
is a edge on K6 that cannot appear in any block. This is a contradiction. Similarly,
we can obtain c(6, G13, 1) = 4. �

Theorem 4.9 There exist (v, Gi, 1)-OPD (or OCD) for i ∈ [12, 15] v ≡ 2, 3, 5, 6, 7,
8, 10, 11 (mod 12), for packing except for v = 6, i = 12, for covering except for
v = 6, i = 12 and 13.

Proof v = 6: By the above lemma, (6, G12, 1)-OPDdoes not exist. On X = Z6,
(6, G13, 1)-OPD=(X,A), A: [0, 3, 1, 2, 4, 5], [0, 5, 1, 4, 3, 2]. Leave edges: 01, 23, 45.
(6, G14, 1)-OPD=(X,A), A: [0, 3, 1, 2, 4, 5], [0, 5, 1, 4, 3, 2]. Leave edges: 01, 25, 35.
(6, G14, 1)-OCD=(X,A∪ {[2, 5, 3, 0, 1, 4]}). Repeat edges: 20, 03, 14.
(6, G15, 1)-OPD=(X,A), A: [4, 1, 0, 3, 2, 5], [2, 0, 4, 3, 5, 1]. Leave edges: 13, 24, 45.
(6, G15, 1)-OCD=(X,A∪ {[2, 4, 5, 1, 3, 0]}). Repeat edges: 51, 43, 30.

v = 7: On X = Z7. (7, G12, 1)-OPD=(X,A), A:
[3, 0, 1, 2, 5, 6], [0, 5, 3, 4, 2, 6], [1, 4, 5, 6, 0, 3]. Leave edges: 02, 15, 13.
(7, G12, 1)-OCD=(X,A∪ {[0, 2, 3, 1, 5, 4]}). Repeat edges: 01, 14, 23.
(7, G13, 1)-OPD=(X,A), A: [1, 2, 3, 0, 4, 6], [3, 4, 0, 5, 6, 1], [6, 1, 4, 5, 3, 2].
Leave edges: (0, 2, 6, 3).
(7, G13, 1)-OCD=(X,A∪ {[1, 2, 6, 3, 0, 5]}) Repeat edges: (2, 1, 3, 5).
(7, G14, 1)-OPD=(X,A), A: [0, 1, 2, 3, 6, 4], [3, 4, 0, 5, 2, 6], [1, 4, 5, 6, 0, 2].
Leave edges: 24, 15, 13.
(7, G14, 1)-OCD=(X,A∪ {[5, 0, 3, 1, 2, 4]}). Repeat edges: 50, 03, 12.
(7, G15, 1)-OPD=(X,A), A: [5, 1, 0, 3, 2, 6], [2, 4, 0, 5, 3, 1], [0, 6, 1, 4, 5, 2].
Leave edges: 02, 46, 63.
(7, G15, 1)-OCD=(X,A∪ {[4, 6, 0, 2, 3, 5]}). Repeat edges: 60, 23, 35.

v = 8: On the set X = Z8, (8, G12, 1)-OPD=(X,A), A:
[0, 2, 4, 6, 3, 5], [2, 3, 0, 1, 4, 6], [5, 1, 3, 4, 7, 0], [2, 6, 7, 5, 0, 3]. Leave edges:
72, 17, 70, 37.
(8, G12, 1)-OCD = (X,A ∪ {[1, 4, 0, 7, 2, 3]}). Repeat edges: 14, 40.
(8, G13, 1)-OPD = (X,A), A: [0, 1, 2, 3, 6, 5], [6, 0, 2, 4, 7, 1], [1, 3, 4, 5, 7, 6],
[2, 6, 7, 5, 3, 0]. Leave edges: 04, 47, 71, 27.
(8, G13, 1)-OCD = (X,A ∪ {[4, 7, 2, 0, 1, 3]}). Repeat edges: 20, 03.
(8, G14, 1)-OPD = (X,A), A: [0, 1, 2, 3, 5, 6], [0, 2, 4, 6, 1, 7], [5, 1, 3, 4, 0, 7],
[5, 2, 6, 7, 4, 1]. Leave edges: 27, 73, 36, 05.
(8, G14, 1)-OCD = (X,A ∪ {[6, 5, 0, 3, 7, 2]}). Repeat edges: 65, 30.
(8, G15, 1)-OPD = (X,A), A: [5, 3, 0, 1, 2, 7], [7, 0, 2, 4, 6, 1], [6, 5, 1, 3, 4, 0],
[0, 5, 2, 6, 7, 4]. Leave edges: 63, 37, 71, 14.
(8, G15, 1)-OCD = (X,A ∪ {[6, 3, 7, 1, 4, 0]}). Repeat edges: 34, 40.
v = 10: On the X = Z8 ∪ {a, b}, (10, G12, 1)-OPD = (X,A), A:
[0, 2, 1, 4, a, b]+i, i ∈ [0, 3], [5, 0, 7, 6, 1, 4], [b, 3, a, 1, 0, 7], [b, 2, a, 0, 3, 6]. Leave edges:
72, 57, ab.
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(10, G12, 1)-OCD = (X,A∪ {[a, b, 5, 7, 2, 0]}). Repeat edges: b5, a7, 70.
(10, G13, 1)-OPD = (X,A), A:
[0, 2, 1, 4, a, b]+i, i ∈ [0, 3], [1, b, 2, 7, 0, 5], [0, 6, 7, a, 4, 1], [5, 0, 1, 6, 3, a]. Leave edges:
07, ab, b3.
(10, G13, 1)-OCD = (X,A∪ {[3, 7, 0, b, 5, a]}). Repeat edges: b0, 57, 73.
(10, G14, 1)-OPD = (X,A), A:
[0, 2, 1, 4, 6, a]+i, i ∈ [0, 3], [7, 6, 5, 0, b, 4], [b, 1, 0, 3, a, 4], [2, a, 5, b, 6, 1]. Leave edges:
27, 7b, ba.
(10, G14, 1)-OCD = (X,A∪ {[a, 4, 3, b, 7, 2]}). Repeat edges: b3, 34, 4a.
(10, G15, 1)-OPD = (X,A), A:
[a, 0, 2, 1, 4, b]+i, i ∈ [0, 3], [0, 5, a, 4, 6, 7], [5, 7, a, b, 1, 6], [3, b, 2, 7, 0, 1]. Leave edges:
(a, 6, 0, 3).
(10, G15, 1)-OCD = (X,A∪ {[1, a, 6, 0, 3, 2]}). Repeat edges: (1, a, 3, 2).

v = 11: On the set X = Z9 ∪ {a, b}, (11, G12, 1)-OPD = (X,A),
A: [0, 2, 1, 4, a, b] (mod 9).
(11, G13, 1)-OPD = (X,A), A: [0, 2, 1, 4, a, b] (mod 9).
(11, G14, 1)-OPD = (X,A), A: [a, 0, 1, 4, 8, 6] + i, i ∈ [0, 3], [b, 4, 5, 8, 3, 1] + i, [0, 1],
[1, b, 6, 7, 3, 0], [5, 3, b, 7, 8, 0], [b, a, 8, 2, 6, 4].
(11, G15, 1)-OPD=(X,A), A: [a, 0, 2, 1, 4, b] (mod 9).
Since l1 = 1, there exist (11, Gi, 1)-OCD for i ∈ [12, 15].

v = 14: On the set X = Z14,
(14, G12, 1)-OPD = (X,A), A: [5, 1, 3, 0, 6, 7]+ i, i ∈ [1, 6], [12, 8, 10, 7, 13, 6]+ i, i ∈
[0, 6], [1, 3, 4, 5, 6, 0], [1, 2, 3, 0, 6, 7]. (14, G12, 1)-OCD = (X,A ∪ {[13, 0, 1, 2, 3, 4]}).
(14, G13, 1)-OPD = (X,A), A: [5, 1, 3, 0, 9, 7]+i, i ∈ {1, 3, 4, 5, 6}, [12, 8, 10, 7, 2, 6]+
i, i ∈ [0, 6], [1, 2, 3, 0, 9, 13], [1, 3, 4, 5, 11, 0], [2, 7, 3, 5, 0, 6]. (14, G13, 1)-OCD =
(X,A ∪ {[1, 9, 2, 3, 4, 5]}).
(14, G14, 1)-OPD = (X,A), A: [5, 1, 3, 0, 7, 13]+ i, i ∈ [1, 6], [12, 8, 10, 7, 6, 0]+ i, i ∈
[0, 6], [1, 2, 3, 0, 7, 13], [1, 3, 4, 5, 0, 13]. (14, G14, 1)-OCD = (X,A ∪ {[1, 2, 3, 4, 5, 6]}).
(14, G15, 1)-OPD = (X,A), A: [9, 3, 1, 5, 0, 7] + i, i ∈ [1, 6], [2, 10, 8, 12, 7, 6] + i, i ∈
{0, 1, 3, 4, 5, 6}, [9, 3, 2, 1, 0, 7], [12, 4, 3, 1, 5, 0], [13, 0, 10, 12, 9, 8]. (14, G15, 1)-OCD =
(X,A ∪ {[1, 2, 3, 4, 5, 6]}).
v = 15: On the set X = Z15, (15, G12, 1)-OPD=(X,A), A: [7, 1, 5, 0, 2, 3] + i, i ∈
Z15\{0, 4, 7}, [7, 6, 5, 0, 2, 14], [11, 5, 9, 4, 3, 6], [14, 13, 12, 7, 4, 9], [2, 3, 0, 1, 5, 7],
[9, 10, 7, 8, 12, 14]. Leave edges: (4, 5), (10, 11, 12).
(15, G12, 1)-OCD=(X,A∪ {[5, 4, 10, 11, 12, 13]}). Repeat edges: (4, 10), (5, 11, 13).
(15, G13, 1)-OPD=(X,A), A: [7, 1, 5, 0, 4, 2] + i, i ∈ Z15\{0, 1, 7}, [0, 7, 1, 5, 6, 2],
[7, 14, 8, 12, 0, 13], [1, 8, 2, 6, 7, 5], [1, 2, 3, 4, 0, 5], [8, 9, 10, 11, 7, 12].
Leave edges: (13, 14), (0, 1, 3).
(15, G13, 1)-OCD=(X,A∪ {[3, 1, 14, 13, 0, 2]}). Repeat edges: (14, 1), (3, 13, 2).
(15, G14, 1)-OPD=(X,A), A: [5, 0, 7, 1, 3, 6] + i, i ∈ Z15\{0, 7}, [5, 0, 7, 1, 3, 2],
[12, 7, 14, 8, 10, 9], [3, 4, 5, 6, 7, 8], [10, 11, 12, 13, 14, 0]. Leave edges: (8, 9), (0, 1, 2).
(15, G14, 1)-OCD=(X,A∪ {[0, 3, 2, 1, 8, 9]}). Repeat edges: (8, 1), (0, 3, 2).
(15, G15, 1)-OPD=(X,A), A: [10, 7, 0, 5, 1, 3] + i, i ∈ Z15\{0, 7}, [3, 1, 7, 0, 5, 6],
[10, 8, 14, 7, 12, 13], [6, 7, 8, 9, 10, 11], [13, 14, 0, 1, 2, 3]. Leave edges: (3, 4, 5), (11, 12).

234



(15, G15, 1)-OCD=(X,A∪ {[3, 4, 11, 12, 5, 1]}). Repeat edges: (4, 11), (12, 5, 1).

v = 17: On the X = Z17, (17, G12, 1)-OPD=(X,A), A: [2, 6, 12, 0, 7, 8] + i, i ∈
Z17, [2, 3, 0, 1, 15, 4] + 6i, i ∈ [0, 2], [6, 3, 4, 5, 2, 8] + 6i, i ∈ [0, 1]. Leave edges:
(2, 16), (15, 16, 0, 14).
(17, G12, 1)-OCD=(X,A∪ {[5, 14, 0, 16, 15, 2]}). Repeat edges: (14, 5, 16).
(17, G13, 1)-OPD=(X,A), A: [2, 6, 12, 0, 14, 7] + i, i ∈ Z∗

17, [0, 2, 6, 12, 16, 9],
[1, 2, 3, 0, 5, 7], [5, 6, 7, 4, 9, 1], [7, 8, 9, 10, 5, 11], [12, 13, 14, 11, 10, 8],
[15, 16, 0, 14, 13, 6]. Leave edges: (6, 3, 4),(12, 15, 1).
(17, G13, 1)-OCD=(X,A∪ {[6, 15, 1, 3, 12, 4]}). Repeat edges: (15, 6), (1, 3).
(17, G14, 1)-OPD=(X,A), A: [2, 6, 12, 0, 7, 15] + i, i ∈ Z17, [2, 3, 0, 1, 4, 7] + 6i, i ∈
[0, 2], [6, 3, 4, 5, 8, 11] + 6i, i ∈ [0, 1]. Leave edges: (2, 5), (1, 15, 16, 0).
(17, G14, 1)-OCD=(X,A∪ {[1, 2, 5, 15, 16, 0]}). Repeat edges: (5, 15), (1, 2).
(17, G15, 1)-OPD=(X,A), A: [10, 2, 6, 12, 0, 7] + i, i ∈ Z17, [5, 2, 3, 0, 1, 4] + 3i, i ∈
[0, 4]. Leave edges: (2, 16), (1, 15, 16, 0).
(17, G15, 1)-OCD=(X,A∪ {[3, 2, 1, 15, 16, 0]}). Repeat edges: (3, 2, 1).

v = 18: On the X = Z17∪{a}, (18, G12, 1)-OPD=(X,A), A: [9, 6, 11, 5, 14, a]+i, i ∈
Z∗

17, [15, 0, 1, 8, 9, 6] + i, i ∈ [0, 6], [9, 6, 11, 5, 7, a], [14, 5, 15, 16, 0, 6]. Leave edges:
(13, 15), (0, 7, 8).
(18, G12, 1)-OCD=(X,A∪ {[13, 15, 0, 7, 8, 9]}). Repeat edges: (13, 7, 9), (15, 0).
(18, G13, 1)-OPD=(X,A), A: [6, 0, 4, 1, 8, a]+i, i ∈ Z17, [1, 8, 10, 0, 9, 2]+i, i ∈ [0, 6],
[0, 7, 9, 16, 8, 15]. Leave edges: (16, 1), (8, 15, 0).
(18, G13, 1)-OCD=(X,A∪ {[8, 16, 1, 15, 2, 0]}). Repeat edges: (2, 16, 8), (1, 15).
By K12,6/Gi, K12/Gi and (6, Gi, 1)-OPD(OCD) for i=14,15, we can obtain
(18, G12, 1)-OPD(OCD). By K12,j/Gi, K12/Gi and (j, Gi, 1)-OPD(OCD) for j =
7, 8, 10, 11, i ∈ [12, 15], we have (12 + j, Gi, 1)-OPD(OCD) for j = 7, 8, 10, 11,
i ∈ [12, 15].

From Theorem 2.5, Theorem 2.10 and Lemma 4.8, it follows that the theorem is
true. �

5 Coverings and packings for λ > 1

Theorem 5.1 If there exist (v, G, 1)-OPD and (v, G, 1)-OCD, then when r1 = 1
(or l1 = 1), there exist (v, G, λ)-OPD(OCD) for any λ ≥ 1.

Proof If r1 = 1, then l1 = e(G) − 1. For 1 ≤ λ ≤ e(G), we have lλ = e(G) − λ
and rλ = λ. When λ = 1, from the assumptions of the theorem, there exist (v, G, 1)-
OPD and (v, G, 1)-OCD. We proceed by induction on λ for 1 ≤ λ < e(G). Suppose
that there is (v, G, λ)-OPD = (X, D′) and its leave edge graph is Lλ(D

′). We can
construct an isomorphic mapping f of the (v, G, 1)-OCD, such that the isomorphic
image of the mapping f is (X, D) and its repeat edge graph R1(D) is a subgraph of
Lλ(D′). It is easy to see that (X, D ∪ D′) is a (v, G, λ + 1)-OPD and its leave edge
graph is Lλ(D

′)\R1(D). It follows from Theorem 2.11 that there exist (v, G, λ)-OPD
for any positive integer λ.
When 1 ≤ λ ≤ e(G), we take the (v, G, 1)-OCD = (X, D), and construct λ − 1
isomorphic mappings of the (v, G, 1)-OCD, fi, i = 1, 2, · · · , λ−1, such that the repeat
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edge graph of every fi’s image is a subgraph of G, and these subgraphs are different.
Let fi’s isomorphic image be (X, Di), i = 1, 2, · · · , λ−1; then (X, D∪(

⋃
1≤i≤λ−1 Di))

is a (v, G, λ)-OCD. It follows from Theorem 2.11 that there exist (v, G, λ)-OCD for
any positive integer λ.

When l1 = 1, the theorem is true also. �

Theorem 5.2 Let l1 = e(G)/2 be an integer. If there exist (v, G, 1)-OPD =
(X,A) and (v, G, 1)-OCD = (X,B), and L1(A) ∼= R1(B), then there exist(v, G, λ)-
OPD(OCD) for any positive integer λ.

Proof When λ = 1, this is well-known. When λ = 2, we can construct an isomorphic
mapping, which transforms B to B′, and R1(B) ∼= R1(B′) and L1(A) = R1(B′) are
satisfied. We take (X,A) and (X,B′); then (X,A ∪ B′) is a (v, G, 2)-GD. It follows
from Theorem 2.11 that there exist (v, G, λ)-OPD(OCD) for any positive integer λ.
�

Example Let X = Z7, (7, G15, 1)-OPD = (X,A), A:
[5, 1, 0, 3, 2, 6], [2, 4, 0, 5, 3, 1], [0, 6, 1, 4, 5, 2], leave edges: 02, 46, 63.
(7, G15, 1)-OCD = (X,B), B = A∪ {[4, 6, 0, 2, 3, 5]}, repeat edges: 60, 23, 35.
Transforming B to B′ under the mapping 2 → 4, 4 → 5, 5 → 3, 3 → 6, 6 → 2 and
x → x for other x. Then (X,A ∪ B′) is a (v, G, 2)-GD.

Theorem 5.3 There exists a (v, G1, λ)-OPD (or OCD) for v ≡ 2(mod 3) and integer
λ ≥ 1.

Proof It immediately follows from Theorem 2.11 and Theorem 2.12. �

Theorem 5.4 There exist (v, Gi, λ)-OPD (or OCD) for i ∈ [2, 4], v 
≡ 0, 1 (mod 8)
and λ ≥ 1, for covering except (v, i, λ) = (6, 3, 1) and (6, 4, 1).

Proof Since l1 = 1 when v ≡ 2, 7 (mod 8) and r1 = 1 when v ≡ 3, 6 (mod 8), there
exist (v, Gi, λ)-OPD (or OCD) for i ∈ [2, 4] and λ ≥ 1. When v ≡ 4, 5 (mod 8),
l1 = 2 r1 = 2 and λ̄ = 2. By Theorem 2.12, we can list the following table to get
(v, Gi, λ)-OPD and (v, Gi, λ)-OCD for 1 ≤ λ, i ∈ [2, 4].

for G2 for G3 for G4

L1
� � �

L1
� � �

L1
� � �

R1
� � � �

R1
� � �

R1
� � � �

Lemma 5.5 [15] There exists (v, K1,5, λ)-GD if and only if λv(v−1) ≡ 0 (mod 10),
when λ = 1, v ≥ 10; when λ is an even number, v ≥ 6; when λ > 1 and λ is an odd
number, v ≥ 6 + 5/λ.

Lemma 5.6 (1). When λ ≥ 2, there exist (n, G6, λ)-OPD(OCD) for n = 7, 8,
except for n = 7 and λ = 3. (2). When λ ≥ 2, there exist (7, G9, λ)-OPD(OCD).

Proof (1). n = 8 On the set X = Z5∪{a, b, c}, let A = {[3, 4, a, b, c, 0], [a, b, c, 0, 1, 2],
[b, c, 0, 1, 2, 3], [1, 2, 3, 4, a, c], [2, 1, 3, 4, a, c], [4, 1, 2, a, b, c], [0, 1, 2, 4, b, c], [3, 1, 2, 4,
a, c], [b, 1, 2, 4, a, c]}, B = {[4, a, b, c, 0, 1]}, C = {[0, 1, 2, 3, 4, a], [c, a, 0, 1, 2, 4]},
D = {[0, 1, 2, a, b, c] + i|i ∈ Z5} ∪ {[0, 1, 2, 3, 4, c], [a, b, c, 4, 0, 1], [c, a, b, 1, 2, 4]}; then
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(X, A∪C) is a (8, G6, 2)-OPD. Leave edge: 4a. (X, A∪B ∪C) is a (8, G6, 2)-OCD.
Repeat edges: 4b, 4c, 40, 41. (X, A∪D) is a (8, G6, 3)-OCD. Repeat edge: a1. When
λ ≥ 2, from the following table and Theorem 2.12, we find that the theorem is true.

λ 1 2 3 4

Lλ
� �

�

���� � �

� �

�

����� � � � �

L1 + L2 L2 + L2

Rλ K1,4 ∪ K1,3 K1,4 � � K1,3

R2 − L2

n = 7 On the set X = Z7, let A={[4, 0, 1, 2, 5, 6] + i| i = 0, 1, 2, 3} ∪ {[1, 0, 2, 3, 4, 5],
[2, 0, 1, 3, 4, 5], [3, 0, 1, 2, 4, 5], [6, 0, 1, 2, 3, 5]}, B={[4, 0, 1, 2, 3, 5]}; then (X, A) is a
(7, G6, 2)-OPD, leave edges: 34, 45. (X, A ∪ B) is a (7, G6, 2)-OCD, repeat edges:
42, 40, 41.

In a (7, G6, 3)-CD, for every vertex on K7, sum of its degree number is not less
than 18. Suppose that there exists (7, G6, 3)-OCD which contains 13 blocks. There
is a vertex on the K7 which appears in the center of the 13 blocks at most once, and
the sum of its degree number is at most 5 + 12 = 17. This is a contradiction. We
easily get c(7, G6, 3) = 14.

When λ ≥ 2, from the following table, we find that the theorem is true.

λ 1 2 3 4 5 6 7 8 9
Lλ K1,3 ∪ K3 P3 K3 K1,4 GD P2 P3 K1,3 K1,4

L1 − R2 L2 + L2 L2 − R4 L3 − R4 L4 − R4 L2 + L7

Rλ K1,4∪ K1,3 K1,4 ∪ K1,3 P2 GD K1,4 K1,3 P3 P2

K1,3 ∪ P3 R2 − L2 R2 + R4 R3 − L4 R4 + R4 R7 − L2

(2). On the set X = Z7, A: [2, 4, 0, 1, 3, 6] + i, i = 0, 1, 2, 5, [1, 5, 2, 3, 4, 6],
[1, 6, 4, 5, 2, 0], [1, 3, 6, 0, 5, 2], [1, 4, 5, 6, 3, 0]; B: [2, 4, 0, 1, 3, 6] + i, i = 0, 3, 4, 5, 6,
[3, 6, 1, 2, 4, 0], [0, 4, 2, 3, 5, 1], [1, 4, 0, 2, 5, 3], [1, 5, 3, 2, 6, 4]. The (X, A) is a (7, G9, 2)-
OPD and leave edges are (0, 3, 4). The (X, B) is a (7, G9, 2)-OCD and repeat edges
are (4, 3, 2, 0). From the following table, we find that the theorem is true.

λ 1 2 3 4
Lλ

⋃
2≤i≤4 Pi P3 P∪P3 P4

L1 − R2 L2 + L2

Rλ P2 ∪ P4 P4 P2 ∪ P2 P2

R1 − L2 R2 − L2

Theorem 5.7 There exist (v, Gi, λ)-OPD (or OCD) for i ∈ [5, 11], v 
≡ 0, 1 (mod
5) and λ ≥ 1, for covering except (i, v, λ) = (6, 8, 1), (6, 7, 1) and (6, 7, 3), for packing
except (i, v, λ) = (6, 7, 1) and (9, 7, 1).

Proof When v ≡ 2, 4, 7, 9 (mod 10), by Theorem 5.1 and Lemma 5.6, we find that
the theorem is true. When v ≡ 3, 8 (mod 10), λ̄ = 5. By Theorem 2.12, we can list
the following table to get (v, Gi, λ)-OPD and (v, Gi, λ)-OCD for λ > 1, i ∈ [5, 11].
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Gi, i ∈ λ 1 2 3 4

[5, 8] ∪ [10, 11] Lλ
� �

�

���� � �

� �

�

����� � � � �

L1 − R1 L2 + L1 L2 + L2

{9} Lλ
� �

� �

�

� �

� � �

��

� � �

L1 − R1 L2 + L1 L2 + L2

[5, 11] Rλ � � �

� � �

��

�� � � � �

R1 + R1 R1 − L2 R2 − L2

Lemma 5.8 When λ ≥ 2, there exist (6, Gi, λ)-OPD(OCD) for i = 12, 13.

Proof On the set X = Z6, let A = {[0, 3, 2, 1, 4, 5], [0, 5, 3, 1, 4, 2], [0, 4, 5, 2, 1, 3],
[0, 5, 1, 4, 3, 2]}, B = {[0, 3, 4, 2, 1, 5]}; then (X, A ∪ B) is a (6, G13, 2)-GD. It is
also (6, G13, 2)-OCD(OPD). Let C = {[0, 3, 1, 2, 4, 5], [0, 5, 1, 4, 3, 2], [0, 2, 3, 1, 5, 4],
[2, 4, 3, 0, 5, 1]}; then (X, A∪C) is a (6, G13, 3)-OCD. The union of a (6, G13, 1)-OPD
and a (6, G13, 2)-OPD is a (6, G13, 3)-OPD. Since there exists (6, G13, 2)-GD, there
exist (6, G13, 2n)-GD for n ≥ 1. Again by (6, G13, 3)-OPD(OCD), we find that there
exist (6, G13, λ)-OCD for λ ≥ 2.

On the set X = Z6, let A = {[0, 2, 3, 1, 4, 5], [0, 3, 4, 2, 1, 5], [0, 4, 5, 3, 1, 2],
[0, 5, 1, 4, 3, 2]}, B = {[0, 1, 2, 5, 3, 4]}; then (X, A∪B) is a (6, G12, 2)-GD. It is also
a (6, G12, 2)-OCD or (OPD).

Let C = {[0, 1, 2, 3, 4, 5], [2, 0, 4, 5, 1, 3], [0, 5, 2, 1, 3, 4]}, D = {[4, 5, 0, 2, 1, 3]};
then (X, A∪C) is a (6, G12, 3)-OPD, and (X, A∪C∪D) is a (6, G12, 3)-OCD. Using
the same as proof as G13, we find that (6, G12, λ)-OPD(OCD) exists for λ ≥ 2. �

Theorem 5.9 There exist (v, Gi, λ)-OPD (or OCD) for i ∈ [12, 15], v ≡ 2, 3, 5, 6, 7,
8, 10, 11 (mod 12) and λ ≥ 1, for covering except (v, i, λ) = (6, 12, 1) and (6, 13, 1),
for packing except (v, i, λ) = (6, 12, 1).

Proof When v 
≡ 0, 1, 4, 9 (mod 12), it is easy to see that l1 takes three values 1,
3, 4, and r1 = 6 − l1. When v ≡ 2, 11 (mod 12), l1 = 1, it follows from Theorem
5.1 that the theorem is true. When v ≡ 3, 6, 7, 10 (mod 12), l1 = 3, it follows from
Theorem 5.2 that the theorem is true.

When v ≡ 5, 8 (mod 12), l1 = 4 and λ̄ = 3. Let (X,A) and (X,B) be (v, Gi, 1)-
OPD and (v, Gi, 1)-OCD,i ∈ [12, 15] in Theorem 4.9, and L1 and R1 be leave edge
graph of the A and repeat edge graph of B, respectively.

By the proof of Theorem 4.9, L1 and R1 is the special graph listed in under
table. By Theorem 2.12, we can list the following table to get (v, Gi, λ)-OPD and
(v, Gi, λ)-OCD for λ ≥ 1, i ∈ [12, 15].
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For G12

λ 1 2 or λ 1 2

Lλ
� � �

����

� �

�

or Lλ
� �

� �

���
� �

�

Rλ
� �

� � � �

����

or Rλ
� �

� � �

� �

���

For G13

λ 1 2 or λ 1 2

Lλ
� � �

� � �

� �

� �

or Lλ
� � �

� � � ��

Rλ
�

� �

� � � �

� � �

or Rλ
� �

� � � �

� �

For G14

λ 1 2

Lλ
� � � �

� �

�

� �

�

Rλ
�

� �

� � � � �

� �

For G15

λ 1 2 or λ 1 2

Lλ
� �

� �

� � �� or Lλ
� � �

� � � ��

Rλ
� �� � �

� �

� or Rλ
� �

� � � �

� �

6 Graph designs for λ ≥ 1

Lemma 6.1 The necessary conditions for (v, G, λ)-GD to exist are (1) λv(v−1) ≡ 0
(mod 2e(G)); (2) λ(v − 1) ≡ 0 (mod n), where n = gcd({d(u)|u ∈ V (G)}).
By Corollary 2.13, Section 5 and Table A, we easily obtain the following theorem:

Theorem 6.2 If v satisfies the conditions in Lemma 6.1 and v > 6, then there exist
(v, Gi, λ)-GD for i ∈ [1, 15] and λ ≥ 1.
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