G-designs, G-packings and G-coverings of λK_{v} with a bipartite graph G of six vertices

Zhihe Liang*
Department of Mathematics
Hebei Normal University
Shijiazhuang 050016
P.R. China

Abstract

Let λK_{v} be the complete multigraph with v vertices, where any two distinct vertices x and y are joined by λ edges (x, y). Let G be a finite simple graph. A G-design (G-packing, G-covering) of λK_{v}, is denoted by $(v, G, \lambda)-G D((v, G, \lambda)-P D,(v, G, \lambda)-C D)$. In this paper, we determine the existence spectrum for the G-designs of $\lambda K_{v}, \lambda>1$, and construct the maximum packings and the minimum coverings of λK_{v} with G for any positive integer λ, where the bipartite graph G has six vertices and $e(G) \leq 6$.

1 Introduction

Throughout this paper, graphs are finite, undirected and have no isolated vertices. A complete multigraph of order v and index λ, denoted by λK_{v}, is a graph with v vertices, where any two distinct vertices x and y are joined by λ edges (x, y). Let G be a finite simple graph. $A G$-design (G-packing, G-covering) of λK_{v}, denoted by $(v, G, \lambda)-G D((v, G, \lambda)-P D,(v, G, \lambda)-C D)$, is a pair (X, \mathcal{B}) where X is the vertex set of K_{v} and \mathcal{B} is a collection of subgraphs of K_{v}, called blocks, such that each block is isomorphic to G and any two distinct vertices in K_{v} are joined in exactly (at most, at least) λ blocks of \mathcal{B}. A G-packing (G-covering) is said to be maximum (minimum), denoted by $(v, G, \lambda)-M P D(M C D)$, if no other such G-packing (G-covering) has more (fewer) blocks. The number of blocks in a maximum G-packing (minimum G covering), denoted by $p(v, G, \lambda)(c(v, G, \lambda))$, is called the packing (covering) number. It is well known that

$$
p(v, G, \lambda) \leq\left\lfloor\frac{\lambda v(v-1)}{2 e(G)}\right\rfloor \leq\left\lceil\frac{\lambda v(v-1)}{2 e(G)}\right\rceil \leq c(v, G, \lambda)
$$

[^0]where $e(G)$ denotes the number of edges in $G,\lfloor x\rfloor$ denotes the greatest integer y such that $y \leq x$ and $\lceil x\rceil$ denotes the least integer y such that $y \geq x$. A $(v, G, \lambda)-P D$ $((v, G, \lambda)-C D)$ is said to be optimal and denoted by $(v, G, \lambda)-O P D((v, G, \lambda)-O C D)$ if the left (right) equality holds. Obviously, there exists a $(v, G, \lambda)-G D$ if and only if $p(v, G, \lambda)=c(v, G, \lambda)$ and a $(v, G, \lambda)-G D$ can be regarded as $(v, G, \lambda)-O P D$ or $(v, G, \lambda)-O C D$.

By a $L_{\lambda}(\mathcal{D})$ of a packing \mathcal{D}, called the leave edge graph, we mean a subgraph of λK_{v} whose edges are the complement of \mathcal{D} in λK_{v}. The number of edges in $L_{\lambda}(\mathcal{D})$ is denoted by $\left|L_{\lambda}(\mathcal{D})\right|$. In particular, when \mathcal{D} is maximum, $\left|L_{\lambda}(\mathcal{D})\right|$ is called the leave edge number and is denoted by $l_{\lambda}(v)$. Similarly, the repeat edge graph $R_{\lambda}(\mathcal{D})$ of a covering \mathcal{D} is a subgraph of λK_{v} and its edges are the complement of λK_{v} in \mathcal{D}. When \mathcal{D} is minimum, $\left|R_{\lambda}(\mathcal{D})\right|$ is called the repeat edge number and is denoted by $r_{\lambda}(v)$. Generally, the symbols $L_{\lambda}(\mathcal{D}), l_{\lambda}(v), R_{\lambda}(\mathcal{D})$ and $r_{\lambda}(v)$ can be denoted more briefly by $L_{\lambda}, l_{\lambda}, R_{\lambda}$ and r_{λ}. It is not difficult to show the following result:
If there exists a $(v, G, \lambda)-G D$, then $p(v, G, \lambda)=c(v, G, \lambda)=\frac{\lambda v(v-1)}{e(G)}$, i.e., $l_{\lambda}=r_{\lambda}=0$. Else,

$$
\begin{aligned}
& l_{\lambda}=\lambda v(v-1) / 2-e(G) \cdot p(v, G, \lambda)>0 \text { and } \\
& r_{\lambda}=e(G) \cdot c(v, G, \lambda)-\lambda v(v-1) / 2>0 .
\end{aligned}
$$

Many researchers have been involved in graph design, graph packing and graph covering of λK_{v} with five vertices or less(see [1-10]). Yin [11] listed the spectrum of graph designs of K_{v} with six vertices and $e(G) \leq 6$. (See Table A.)

For the cycle C_{6}, there exists a $\left(v, C_{6}, 1\right)-G D$ if and only if $v \equiv 1,9(\bmod 12)$. Furthermore, J.A. Kennedy [12] obtained following theorem:

Theorem For any positive integer λ, the packing number $p\left(v, C_{6}, \lambda\right)$ and covering number $c\left(v, C_{6}, \lambda\right)$ are determined.

When the six-vertex graph G contains an odd cycle and $e(G) \leq 6$, Z.Liang [13] gave the G-design, maximum G-packing and minimum G-covering of λK_{v}.

Let the bipartite graph G have six vertices and its edge number be not greater than 6 ; for such G, the G-design, maximum G-packing and minimum G-covering of λK_{v} is solved in this paper.

Subsequently, the following notations $(a, b \in Z)$ are used frequently: $[a, b]=\{x \in Z \mid a \leq x \leq b\},[a, b]_{k}=\{x \in Z \mid a \leq x \leq b, x \equiv a(\bmod k)\}$ for $a, b \in Z,[a, b, \cdots, c]+i=[a+i, b+i, \cdots, c+i]$ and $\left(Z_{n}\right)_{m}=\left\{i_{m} \mid i \in Z_{n}\right\}$.
The edge set $\left\{\left(a_{1}, a_{2}\right),\left(a_{2}, a_{3}\right), \cdots,\left(a_{n-1}, a_{n}\right)\right\}$ is denoted by $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$; the graph G is denoted by $[a, b, c, d, e, f]$.

note	G_{1}	G_{2}	G_{3}
graph	$\stackrel{\mathrm{a}}{\stackrel{\mathrm{a}}{\mathrm{~b}} \mathrm{~b}} \stackrel{c}{\mathrm{c}} \mathrm{~d}$	$\stackrel{a}{a}$	$\stackrel{a}{a}=$
spectrum	$v \equiv 0,1(\bmod 3) v \geq 6$	$v \equiv 0,1(\bmod 8) v \geq 8$	$v \equiv 0,1(\bmod 8) v \geq 8$
note	G_{4}	G_{5}	G_{6}
graph	$\stackrel{\mathrm{a}}{\mathrm{~b}} \stackrel{\mathrm{f}}{ }_{\mathrm{e}}$		$\frac{\mathrm{b} a \mathrm{f}}{0 . d_{0}}$
spectrum	$v \equiv 0,1(\bmod 8) v \geq 8$	$v \equiv 0,1(\bmod 5) v \geq 6$	$v \equiv 0,1(\bmod 5) v>6$
note	G_{7}	G_{8}	G_{9}
graph			
spectrum	$v \equiv 0,1(\bmod 5) v>6$	$v \equiv 0,1(\bmod 5) v \geq 6$	$v \equiv 0,1(\bmod 5) v \geq 6$
note	G_{10}	G_{11}	G_{12}
graph			
spectrum	$v \equiv 0,1(\bmod 5) v \geq 6$	$v \equiv 0,1(\bmod 5) v>6$	$v \equiv 0,1,4,9(\bmod 12)$
note	G_{13}	G_{14}	G_{15}
graph			
spectrum	$v \equiv 0,1,4,9(\bmod 12)$	$v \equiv 0,1,4,9(\bmod 12)$	$v \equiv 0,1,4,9(\bmod 12)$

Table A

2 Recursion

By $K_{n_{1}, n_{2}, \cdots, n_{h}}$ we mean the complete multipartite graph with h parts of sizes $n_{1}, n_{2}, \cdots, n_{h}$. Let $X=\bigcup_{1 \leq i \leq h} X_{i}$ be the vertex set of $K_{n_{1}, n_{2}, \cdots, n_{h}}$ where $X_{i}(1 \leq$ $i \leq h)$ are disjoint sets with $\left|\bar{X}_{i}\right|=n_{i}$ and $v=\sum_{1 \leq i \leq h} n_{i}$. For any fixed graph G, if $K_{n_{1}, n_{2}, \cdots, n_{h}}$ can be decomposed into edge-disjoint subgraphs isomorphic to G, then we call $(X, \mathcal{G}, \mathcal{A})$ a holey G-design, where $\mathcal{G}=\left\{X_{1}, X_{2}, \cdots, X_{h}\right\}$, and \mathcal{A} is the collection of all subgraphs called G-blocks (or simply blocks). Each set $X_{i}(1 \leq i \leq h)$ is said to be a hole and the multiset $\left\{n_{1}, n_{2}, \cdots, n_{h}\right\}$ is a type of the holey G-design. We denote the design by $G-H G D\left(n_{1}^{1} n_{2}^{1} \cdots n_{h}^{1}\right)$ (or $\left.K_{n_{1}, n_{2}, \cdots, n_{h}} / G\right)$ and use an "exponential" notation to describe its type in general: a type $1^{i} 2^{j} 3^{k} \cdots$, denotes i occurrences of $1, j$ occurrences of 2 , etc. A $G-H G D\left(1^{v-w} w^{1}\right)$ is called an incomplete G-design,
denoted by $(v, w, G, 1)-I G D$. Obviously, a $(v, G, 1)-G D$ is a $G-H G D\left(1^{v}\right)$, which can be thought of as a $(v, w, G, 1)-I G D$ with $w=0$ or 1 .
Theorem 2.1 If there exist $\left(n_{i}, G, 1\right)-G D$ for $i \in[1, h]$ and $G-H G D\left(n_{i}^{1} n_{j}^{1}\right)$ for $i \neq j$ and $i, j \in[1, h]$, then there exists a $(n, G, 1)-G D$ for $n=\sum_{1 \leq i \leq h} n_{i}$.
Corollary 2.2 Suppose that there exist $(n, G, 1)-G D$ and $G-H G D\left(n^{2}\right)$; then there exists a $(s n, G, 1)-G D$ for any positive integer s.
Corollary 2.3 Suppose that there exists a $G-H G D\left(n^{2}\right)$; then there exist $G-H G D\left(n^{s}\right)$ for any positive integer s.
Theorem 2.4 If there exist $\left(n+n^{\prime}, n^{\prime}, G, 1\right)-I G D,\left(n+n^{\prime}, G, 1\right)-G D$ (or $\left.C D, P D\right)$ and $G-H G D\left(n^{2}\right)$, then there exists a $\left(m n+n^{\prime}, G, 1\right)-G D($ or $C D, P D)$ for any positive integer m and integer $n^{\prime} \geq 0$.
Theorem 2.5 If there exist ($n, G, 1$)-GD, $G-H G D\left(n^{2}\right), G-H G D\left(n^{1} m^{1}\right)$ and $(n+$ $m, G, 1)-G D$ (or $P D, C D)$, then there exists a $(t n+m, G, 1)-G D$ (or $P D, C D)$ for any positive integer t.
Theorem 2.6 If there exist $(u, w, G, 1)-I G D, G-H G D\left(n_{1}^{1} n_{2}^{1} \cdots n_{t}^{1} u^{1}\right)$ and $\left(n_{i}, G, 1\right)$ $G D$ for $i \in[1, t]$, then there exists a $\left(u+\sum_{1 \leq i \leq t} n_{i}, w, G, 1\right)$-IGD.
Theorem 2.7 If there exist G - $H G D\left(n_{1}^{1} n_{2}^{1} \cdots n_{t}^{1}\right)$ and $\left(n_{i}+w, w, G, 1\right)$-IGD for $i \in$ $[1, t]$, then there exists a $\left(w+\sum_{1 \leq i \leq t} n_{i}, w, G, 1\right)-I G D$.
Theorem 2.8 If there exist $(n, w, G, 1)-I G D$ and $(w, G, 1)-G D(P D, C D)$, then there exists a $(n, G, 1)-G D(P D, C D)$.
Theorem 2.9 [6] If there exist G - $H G D\left(n^{1} m_{i}^{1}\right)$ for $i=1,2$, then there exist G $H G D\left((a n)^{1}\left(b m_{1}+c m_{2}\right)^{1}\right)$ for integers $a \geq 1$ and b or $c \geq 1$.
Theorem 2.10 If there exist G - $H G D\left(n^{2}\right), G-H G D\left((n+r)^{1} n^{1}\right),(n, G, 1)-G D$ and $(n+r, G, 1)-G D(P D, C D)$ for $1 \leq r \leq n-1$, then there exist $(v, G, 1)-G D(P D, C D)$ for any integer $v \geq n$.
Theorem 2.11 Let l be the leave edge number of the $(n, G, 1)-O P D$ and $\bar{\lambda}=e(G) / \operatorname{gcd}(e(G), l)$. If there exist $(n, G, \lambda)-O P D$ and $(n, G, \lambda)-O C D$ for $1 \leq \lambda \leq \bar{\lambda}$, then there exist $(n, G, \lambda)-O P D$ and $(n, G, \lambda)-O C D$ for any positive integer λ.

The following theorem is a modified version of Theorem 4 in Section 3 of [14].
Theorem 2.12 Given positive integers v, λ and μ. Let X be a v-set.
(1) Suppose that there exists a $(v, G, \lambda)-M P D=(X, \mathcal{D})$ with leave edge graph $L_{\lambda}(\mathcal{D})$ and a $(v, G, \mu)-M P D=(X, \mathcal{E})$ with leave edge graph $L_{\mu}(\mathcal{E})$. If $\left|L_{\lambda}(\mathcal{D})\right|+$ $\left|L_{\mu}(\mathcal{E})\right|=l_{\lambda+\mu}(v)<e(G)$, then there exists a $(v, G, \lambda+\mu)-M P D$ with leave edge graph $L_{\lambda}(\mathcal{D}) \cup L_{\mu}(\mathcal{E})$.
(2) Suppose that there exists a $(v, G, \lambda)-M C D=(X, \mathcal{D})$ with repeat edge graph $R_{\lambda}(\mathcal{D})$ and a $(v, G, \mu)-M C D=(X, \mathcal{E})$ with repeat edge graph $R_{\mu}(\mathcal{E})$. If $\left|R_{\lambda}(\mathcal{D})\right|+$ $\left|R_{\mu}(\mathcal{E})\right|=r_{\lambda+\mu}(v)<e(G)$, then there exists a $(v, G, \lambda+\mu)-M C D$ with repeat edge graph $R_{\lambda}(\mathcal{D}) \cup R_{\mu}(\mathcal{E})$.
(3) Suppose that there exists a $(v, G, \lambda)-M P D=(X, \mathcal{D})$ with leave edge graph $L_{\lambda}(\mathcal{D})$ and a $(v, G, \mu)-M C D=(X, \mathcal{E})$ with repeat edge graph $R_{\mu}(\mathcal{E})$. If $R_{\mu}(\mathcal{E}) \subset$ $L_{\lambda}(\mathcal{D})$ and $\left|L_{\lambda}(\mathcal{D})\right|-\left|R_{\mu}(\mathcal{E})\right|=l_{\lambda+\mu}(v)<e(G)$, then there exists a $(v, G, \lambda+\mu)-M P D$ with leave edge graph $L_{\lambda}(\mathcal{D}) \backslash R_{\mu}(\mathcal{E})$.
(4) Suppose that there exists a $(v, G, \lambda)-M C D=(X, \mathcal{D})$ with repeat edge graph $R_{\lambda}(\mathcal{D})$ and a $(v, G, \mu)-M P D=(X, \mathcal{E})$ with leave edge graph $L_{\mu}(\mathcal{E})$. If $L_{\mu}(\mathcal{E}) \subset$ $R_{\lambda}(\mathcal{D})$ and $\left|R_{\lambda}(\mathcal{D})\right|-\left|L_{\mu}(\mathcal{E})\right|=r_{\lambda+\mu}(v)<e(G)$, then there exists a $(v, G, \lambda+\mu)$ $M C D$ with repeat edge graph $R_{\lambda}(\mathcal{D}) \backslash L_{\mu}(\mathcal{E})$.
If we replace $M P D$ and $M C D$ by $O P D$ and $O C D$ respectively, then the theorem is also true.
Corollary 2.13 If there exist $\left(v, G, \lambda_{1}\right)-G D$ and $\left(v, G, \lambda_{2}\right)-G D$, then there exists $\left(v, G, \lambda_{1}+\lambda_{2}\right)-G D$.

3 Holey graph designs and incomplete graph designs

Theorem 3.1 There exist $\left(8+w, w, G_{i}, 1\right)$-IGD for $i \in[2,4], w \in[2,7]$.
Proof Let $\left(8+w, w, G_{i}, 1\right)-I G D=(X, \mathcal{A})$, for $i \in[2,4], w \in[2,7]$; we construct \mathcal{A} as follows:
$\underline{w=2}$ On the set $X=Z_{8} \cup\{a, b\}:$
For G_{2} :
$[0,2, a, 1,4, b]+i, i \in Z_{8}^{*},[3,7,4,0,1,2],[7,0,6,2,3,4],[b, 4,1,5,6,7],[0,2, a, 1,4,5]$. For G_{3} :
$[a, 6,4, b, 0,3]+i, i \in Z_{8}^{*},[1,2,6,4,0,7],[2,3,7,4,5,6],[0,1,5, a, 6,7],[6,4,3, b, 0,3]$. For G_{4} :
$[a, 3,2,4,5, b]+i, i \in Z_{8}^{*},[2,6,4,0,3,5],[2,5,7,0,3,6],[a, 3,1,0,2,5],[5,6,2,4,3, b]$.
$\underline{w=3}$ On the set $X=Z_{8} \cup\{a, b, c\}$: For $G_{2}:[a, 2, b, 0,1,3]+i, i \in Z_{8},[0,4, c, 3,6,1]+$ $i, i \in\{0,1\},[0,3,7, c, 6,2],[2,5,0, c, 1,4],[3,7,2, c, 5,0]$.
For $G_{3}: \quad[a, 0,2, b, 3,4]+i, \quad i \in Z_{8},[0,4,7, c, 2,5]+i, i \in[0,1],[7,2,6,4, c, 5]$, $[0,3,7,1, c, 6],[6,1,4,0, c, 7]$.
For $G_{4}: \quad[a, 3,0,1,2, b]+i, i \in Z_{8},[2,5,0,3,4, c],[3,7,1,4,5, c], \quad[5,0, c, 2,3,7]$, [2, 7, c, 4, 5, 6], [4, 7, 6, 1, 2, 3].
$\underline{w=4}$ On the set $X=Z_{8} \cup\{a, b, c, d\}:$ For $G_{2}:[a, 2, b, 0,1, c]+i, i \in Z_{8}^{*},[3,7, d, 0,2,5]+$ $i, i \in[0,3],[d, 4, b, 0,1, c],[4,6, d, 5,7,2],[a, 2, d, 7,1,6],[1,4, d, 6,0,3]$.
For $G_{3}:[a, 2, b, 0,1, d]+i, i \in Z_{8},[c, 1,5,2,4,7]+i, i \in[0,3],[7, c, 5,6,0,3]$, $[0, c, 6,7,1,4],[0,2,5,1,3,6]$.
For $G_{4}:[a, 3,1, b, c, d]+i, \quad i \in Z_{8}^{*},[1,5,0,7,2,3]+i, i \in[0,3],[a, 3,5,4,7,0]$, $[4,7,6,5,0,1],[4,3,7,6,1,2],[4,6,1, b, c, d]$.
$\underline{w=5}$ On the set $X=Z_{8} \cup\{a, b, c, d, e\}:$ For $G_{2}:[a, 2, b, 0,1, c]+i, i \in Z_{8}$, $[0,4, d, 1,3, e]+i, i \in[0,3],[0,3, d, 5,7, e],[7,4, d, 6,0, e],[3,6, d, 7,1, e],[6,1, d, 0,2, e]$, [1, 4, 7, 2, 5, 0].
For $G_{3}:[a, 2, b, c, 0,1]+i, \quad i \in Z_{8}, \quad[0,4,6, d, 1, e]+i, i \in[0,3],[3,0,2, d, 5, e]$, [7, 2, 4, d, 6,e], $[6,1,3, d, 7, e],[6,3,5, d, 0, e],[1,4,7,2,5,0]$.
For $G_{4}: \quad[a, 3,1, b, c, d]+i, \quad i \in Z_{8}, \quad[1,5,0,7,2, e]+i, i \in[0,3],[7,2,4,3,6, e]$, $[3,6,5,4,7, e],[4,7,6,5,1, e],[2,5,7,6,1, e],[1,4,0,3,5,6]$.
$\underline{w=6}$ On $X=Z_{8} \cup\{a, b, c, d, e, f\}:$ For $G_{2}:[a, 2, b, 0,1,3]+i, i \in Z_{8}^{*},[d, 2, e, 0,3, f]+$ $i, i \in Z_{8},[3,7, b, 0, c, 4],[2,6,0,1, c, 5],[1,5, a, 2, c, 6],[0,4,1,3, c, 7]$.
For $G_{3}:[a, 0,1, b, 3,6]+i, i \in Z_{8}^{*},[d, 3, e, 0,2, f]+i, i \in Z_{8},[b, 3,7,0, c, 4]$,
$[2,6,3,1, c, 5],[0,1,5,2, c, 6],[a, 0,4,3, c, 7]$.
For $G_{4}:[a, 7,0,1,3, b]+i, i \in Z_{8}^{*},[0,2,1, d, e, f]+i, i \in Z_{8},[c, 6,0,1,3, b]$,
$[0,4, c, 1,2,5],[1,5, c, 0,3,4],[2,6,7,3, a, c]$.
$\underline{w=7}$ On the set $X=Z_{8} \cup\{a, b, c, d, e, f, g\}:$ For $G_{2}:[a, 2, b, 0,1, c]+i, i \in Z_{8}$, $[d, 1, e, 0,2, f]+i, i \in Z_{8},[3,6,7, g, 0,4],[4,7,6, g, 1,5],[0,3,5, g, 2,6],[6,1,4, g, 3,7]$, [1, 4, 7, 2, 5, 0].
For $G_{3}: \quad[a, 2, b, 0,1, c]+i, \quad i \in Z_{8}, \quad[d, 1, e, 0,2, f]+i, i \in Z_{8}, \quad[3,6,2,7, g, 0]$, $[0,4,7,6, g, 1],[0,3,7,5, g, 2],[6,1,4,7,2,5],[1,5,0,3, g, 4]$.
For $G_{4}: \quad[a, 2,0,1, b, c]+i, i \in Z_{8},[d, 1,0,2, e, f]+i, i \in Z_{8}, \quad[g, 1,0,3,4,5]$, $[g, 0,2,5,6,7],[3,7,1,4,5,6],[4,7, g, 2,3,6],[3,6, g, 4,5,7]$.
Theorem 3.2 There exist $G_{i}-H G D\left(8^{m}\right)$ for $i \in[2,4], m>1$.
Proof On the set $\left(Z_{4}\right)_{1} \cup\left(Z_{4}\right)_{2}$, we construct
$K_{4,4} / G_{2}$:
$\left[1_{1}, 2_{2}, 1_{2}, 2_{1}, 3_{2}, 4_{1}\right],\left[3_{1}, 4_{2}, 1_{1}, 1_{2}, 4_{1}, 2_{2}\right],\left[1_{2}, 3_{1}, 3_{2}, 1_{1}, 4_{2}, 2_{1}\right],\left[4_{1}, 4_{2}, 2_{1}, 2_{2}, 3_{1}, 3_{2}\right]$.
$K_{4,4} / G_{3}$:
$\left[1_{2}, 2_{1}, 4_{2}, 1_{1}, 2_{2}, 3_{1}\right],\left[2_{1}, 2_{2}, 4_{1}, 1_{2}, 1_{1}, 4_{2}\right],\left[1_{2}, 3_{1}, 4_{2}, 4_{1}, 3_{2}, 1_{1}\right],\left[3_{1}, 3_{2}, 2_{1}, 1_{2}, 4_{1}, 4_{2}\right]$. $K_{4,4} / G_{4}$:
$\left[1_{1}, 2_{2}, 1_{2}, 2_{1}, 3_{1}, 4_{1}\right],\left[1_{1}, 1_{2}, 2_{2}, 2_{1}, 3_{1}, 4_{1}\right],\left[4_{1}, 4_{2}, 3_{2}, 1_{1}, 2_{1}, 3_{1}\right],\left[3_{2}, 4_{1}, 4_{2}, 1_{1}, 2_{1}, 3_{1}\right]$.
It follows from Theorem 2.9 that there exist $G_{i}-H G D\left(8^{m}\right)$ for $i \in[2,4], m>1$.
Theorem 3.3 If there exist $\left(8+n^{\prime}, G_{i}, 1\right)-O P D(O C D)$, then there exist $(8 m+$ $\left.n^{\prime}, G_{i}, 1\right)-O P D(O C D)$ for $i \in[2,4], n^{\prime} \in[2,7]$ and $m>0$.
Proof By Theorem 2.4, 3.1 and 3.2, we obtain the theorem.
Theorem 3.4 There exist $\left(10+w, w, G_{i}, 1\right)$-IGD for $i \in[5,11], w=4,7,8,9,12,13$.
Proof $K_{1,5} / G_{6}$ is trivial. By Theorem 2.9, we have $K_{10, w} / G_{6}$ for $w=4,7$, $8,9,10,12,13$. On the set $Z_{5} \cup\{a, b\}, K_{5,2} / G_{7}:[1, a, 3, b, 4,0],[1, b, 2, a, 4,0]$.
$K_{5,2} / G_{11}:[a, 2, b, 1,3,4],[b, 0, a, 1,3,4]$.
On the set $\left(Z_{4}\right)_{1} \cup\left(Z_{5}\right)_{2}, K_{4,5} / G_{5}:\left[0_{2}, 0_{1}, 1_{2}, 3_{1}, 3_{2}, 2_{1}\right]+i, i \in[0,1],\left[0_{2}, 3_{1}, 2_{2}, 2_{1}, 4_{2}\right.$, 1_{1}], $\left[1_{2}, 2_{1}, 0_{2}, 1_{1}, 3_{2}, 0_{1}\right]$.
$K_{4,5} / G_{8}$:
$\left[0_{2}, 0_{1}, 1_{2}, 3_{1}, 3_{2}, 2_{1}\right],\left[1_{2}, 1_{1}, 2_{2}, 0_{1}, 4_{2}, 2_{1}\right],\left[2_{1}, 0_{2}, 3_{1}, 4_{2}, 1_{1}, 2_{2}\right],\left[0_{2}, 1_{1}, 3_{2}, 2_{1}, 4_{2}, 0_{1}\right]$.
$K_{4,5} / G_{10}$:
$\left[0_{1}, 1_{2}, 2_{1}, 0_{2}, 1_{1}, 3_{2}\right],\left[1_{1}, 1_{2}, 3_{1}, 4_{2}, 2_{1}, 2_{2}\right],\left[2_{1}, 1_{2}, 0_{1}, 3_{2}, 3_{1}, 0_{2}\right],\left[3_{1}, 1_{2}, 1_{1}, 2_{2}, 0_{1}, 4_{2}\right]$.
On the set $Z_{5} \cup\{a, b, c, d, e\}, K_{5,5} / G_{5}:[4, a, 1, b, 2, c],[1, c, 3, d, 4, e]$,
$[0, b, 3, e, 2, a],[2, d, 0, c, 4, b],[d, 1, e, 0, a, 3]$.
$K_{5,5} / G_{8}:[0, a, 2, b, 3, c],[2, e, 4, b, 0, c],[b, 1, a, 4, d, 3],[c, 0, d, 1, e, 2],[1, c, 3, e, 0, d]$.
$K_{5,5} / G_{10}:[4, e, 3, b, 2, d],[c, 0, a, 3, e, 4],[3, c, 1, d, 4, a],[2, b, 0, a, 1, e],[1, d, 2, c, 0, b]$.
On the set $\left(Z_{5}\right)_{1} \cup\left(Z_{5}\right)_{2}, K_{5,5} / G_{9}:\left[3_{1}, 4_{2}, 0_{1}, 0_{2}, 1_{1}, 3_{2}\right](\bmod 5)$.
On the set $\left\{\left(Z_{4}\right)_{1} \cup\{\infty\}\right\} \cup\left(Z_{4}\right)_{2}, K_{5,4} / G_{9}:\left[3_{2}, \infty, 0_{1}, 0_{2}, 1_{1}, 2_{2}\right](\bmod 4)$.
From $K_{5,4} / G_{i}, i=5,8,9,10$, we can obtain $K_{10,4} / G_{i}, K_{10,8} / G_{i}, K_{5,8} / G_{i}$ and $K_{10,12} / G_{i}$ for $i=5,8,9,10$. From $K_{5,5} / G_{i}, i=5,8,9,10$, we can obtain $K_{10,5} / G_{i}$
and $K_{10,10} / G_{i}$ for $i=5,8,9,10$. By $K_{5,2} / G_{i}, i=7,11$, we can obtain $K_{10,5} / G_{i}$ and $K_{10, j} / G_{i}$ for $j=2,4,8,10,12, i=7,11$. By $K_{10,4} / G_{i}$ and $K_{10,5} / G_{i}, i \in[5,11]$, we can obtain $K_{10,9} / G_{i}$ for $i \in[5,11]$. By $K_{10,8} / G_{i}$ and $K_{10,5} / G_{i}, i \in[5,11]$, we can obtain $K_{10,13} / G_{i}$ for $i \in[5,11]$.
On the set $X=Z_{5} \cup\{a, b\}$:
$\left(7,2, G_{5}, 1\right)-I G D=(X, \mathcal{A}), \mathcal{A}:[0,1,2, a, 4, b],[a, 1, b, 2,3,0],[a, 0,2,4,3, b],[a, 3,1,4,0, b]$.
$\left(7,2, G_{8}, 1\right)-I G D=(X, \mathcal{A}), \mathcal{A}:[3,0,4,1, b, 2],[0,2,3,4, b, a],[2,1,0, b, 3, a],[b, 2, a, 1,3,4]$.
$\left(7,2, G_{10}, 1\right)-I G D=(X, \mathcal{A}), \mathcal{A}:[1, b, 3,4,0,2],[b, a, 0,1,2,3],[a, 0,2, b, 3,1],[2,3, b, 4, a, 0]$.
When $i=5,8,10$, by $K_{5,5} / G_{i}$ and $\left(7,2, G_{i}, 1\right)-I G D$, we obtain $\left(12,2, G_{i}, 1\right)-I G D$.
When $i=6,7,11$, by $K_{10,2} / G_{i}$ and $\left(10, G_{i}, 1\right)$-GD, we obtain $\left(12,2, G_{i}, 1\right)-I G D$.
On the set $X=Z_{10} \cup\{a, b\},\left(12,2, G_{9}, 1\right)-I G D=(X, \mathcal{A}), \mathcal{A}: \quad[a, 2,0,1,3,6]+i$, $[b, 2,5,6,8,1]+i, \quad i \in[1,4]$ and $[0,5, a, 7, b, 8], \quad[1,6, a, 9, b, 0], \quad[3,8, a, 1, b, 2]$, $[2,7,0,1,3,6],[4,9,5,6,8,1]$. By $\left(12,2, G_{i}, 1\right)-I G D$ and $K_{10,5} / G_{i}$, we have $(10+$ $\left.7,7, G_{i}, 1\right)-I G D$. Again since there exist $\left(10, G_{i}, 1\right)-G D$ and $G_{i}-H G D\left(10^{1} w^{1}\right)$ for $w=4,8,9,12,13$, there exist $\left(10+w, w, G_{i}, 1\right)-I G D$ for $w=4,7,8,9,12,13$ and $i \in[5,11]$.
Theorem 3.5 If there exist $\left(10+n^{\prime}, G_{i}, 1\right)-O P D(O C D)$, then there exist $(10 m+$ $\left.n^{\prime}, G_{i}, 1\right)-O P D(O C D)$ for $i \in[5,11], n^{\prime}=2,3,4,7,8,9$ and $m>0$.
Proof By Theorem 2.4 and 3.4, we can obtain the theorem.
Theorem 3.6 When $m \not \equiv 1,4,9(\bmod 12)$ and $6 \leq m \leq 17$, there exist $G_{i^{-}}$ $H G D\left((12)^{n} m^{1}\right)$ for $i \in[12,15]$.
Proof On the set $X=\{1,2,3,4,5,6\} \cup\{a, b\}$:
$K_{6,2} / G_{12}:[1, a, 3, b, 4,5],[2, b, 6, a, 4,5] . K_{6,2} / G_{13}:[1, a, 3, b, 4,5],[2, b, 6, a, 4,5]$.
By Theorem 2.9, there exist $G_{i}-H G D\left((12)^{1} m^{1}\right)$ for $i=12,13$ and $m=6,8,10$, 12, 14 .

On the set $X=\{1,2,3,4\} \cup\{a, b, c\}$:
$K_{3,4} / G_{14}:[b, 1, a, 2, c, 3],[a, 3, b, 4, c, 1] . K_{3,4} / G_{15}:[1, c, 3, a, 4, b],[c, 2, a, 1, b, 3]$.
By Theorem 2.9, there exist $G_{i}-H G D\left((12)^{1} m^{1}\right)$ for $i=14,15$ and $m=6,8,12,15$.
On the set $X=\left(Z_{6}\right)_{0} \cup\left(Z_{7}\right)_{1}$
$K_{6,7} / G_{12}:\left[0_{0}, 0_{1}, 1_{0}, 3_{1}, 2_{0}, 5_{0}\right]+i, i \in[0,3],\left[4_{0}, 4_{1}, 5_{0}, 0_{1}, 2_{0}, 3_{0}\right]+i, i \in[0,2]$.
$K_{6,7} / G_{13}:\left[4_{1}, 1_{0}, 1_{1}, 2_{0}, 5_{1}, 0_{1}\right]+i, i=0,1,3,4,\left[6_{1}, 3_{0}, 3_{1}, 4_{0}, 4_{1}, 5_{1}\right]$,
$\left[0_{0}, 0_{1}, 1_{0}, 2_{1}, 3_{0}, 4_{0}\right],\left[0_{0}, 6_{1}, 1_{0}, 3_{1}, 5_{0}, 2_{0}\right]$.
$K_{6,7} / G_{14}:\left[0_{1}, 1_{0}, 3_{1}, 0_{0}, 4_{1}, 3_{0}\right]+i, i=0,2,\left[3_{1}, 4_{0}, 6_{1}, 3_{0}, 0_{1}, 2_{0}\right]+i, i \in[0,2]$,
$\left[2_{1}, 0_{0}, 6_{1}, 1_{0}, 5_{1}, 4_{0}\right],\left[4_{1}, 1_{0}, 1_{1}, 2_{0}, 3_{1}, 5_{0}\right]$.
$K_{6,7} / G_{15}:\left[5_{1}, 1_{0}, 0_{1}, 0_{0}, 3_{1}, 2_{0}\right]+i, i \in[0,3],\left[3_{1}, 5_{0}, 4_{1}, 4_{0}, 0_{1}, 2_{0}\right],\left[2_{1}, 5_{0}, 5_{1}, 0_{0}, 1_{1}, 3_{0}\right]$, $\left[4_{1}, 0_{0}, 6_{1}, 1_{0}, 2_{1}, 4_{0}\right]$.
By $K_{6,7} / G_{i}, i \in[12,15]$, we obtain $K_{12,7} / G_{i}, i \in[12,15]$. By $K_{6,2} / G_{i}, i=12,13$ and $K_{3,4} / G_{i}, i=14,15$, we obtain $K_{12,4} / G_{i}, i \in[12,15]$. Therefore, $K_{12,11} / G_{i}, i \in$ $[12,15]$ can be obtained. By $K_{3,4} / G_{i}$ and $K_{6,7} / G_{i}, i=14,15$, we obtain $K_{12,10} / G_{i}, i=$ 14,15 and $K_{12,14} / G_{i}, i=14,15$. By $K_{6,2} / G_{i}, i=12,13$ and $K_{3,4} / G_{i}, i=14,15$, we obtain $K_{12,8} / G_{i}, i \in[12,15]$. Furthermore, by $K_{12,7} / G_{i}, i \in[12,15]$, we can obtain $K_{12,15} / G_{i}, i \in[12,15]$. By $K_{12,7} / G_{i}, i \in[12,15]$ and $K_{12,10} / G_{i}, i \in[12,15]$, there are $K_{12,17} / G_{i}$ for $i \in[12,15]$.
It follows from Theorem 2.1 that the theorem is true.

Theorem 3.7 When $i \in[12,15]$, if there exist $\left(m, G_{i}, 1\right)-O P D(O C D)$ for $m=$ $6,7,8,10,11$ and $\left(12+m, G_{i}, 1\right)-O P D(O C D)$ for $m=2,3,5$, then there exist $(12 k+$ $\left.m, G_{i}, 1\right)-O P D(O C D)$ for $k \geq 1, m=2,3,5,6,7,8,10,11$.
Proof Since there exist $\left(12, G_{i}, 1\right)-G D$, it follows from Theorem 3.6, Theorem 2.5 and Theorem 2.10 that the theorem is true.

4 Packings and coverings for $\lambda=1$

Let P be the necessary and sufficient condition for the existence of $(v, G, 1)-G D$. When v does not satisfy P , we discuss $(v, G, \lambda)-P D$ and $(v, G, \lambda)-C D$. We easily obtain the following lemma:
Lemma 4.1 If there exists $(v, G, 1)-O P D$ with leave-edge number $l_{1}=1$, then there exists $(v, G, 1)-O C D$.
Lemma 4.2 For any positive integer n, there exists a $G_{1}-H G D\left(6^{n}\right)$.
Proof Since $K_{3,3}$ is 1-factorable, the lemma is true.
Theorem 4.3 There exist $\left(v, G_{1}, 1\right)-O P D($ or $O C D)$ for $v \equiv 2(\bmod 3)$.
Proof 1) Both ($\left.8,2, G_{1}, 1\right)-I G D$ and $\left(8, G_{1}, 1\right)-O P D$ are the same. On the vertex set $X=Z_{6} \cup\{a, b\}$, let $\left(8, G_{1}, 1\right)-O P D=(X, \mathcal{B})$.
$\mathcal{B}:[a, 3, b, 1,2,4](\bmod 6),[1,4,2,3,0,5],[2,5,3,4,0,1],[0,3,1,2,4,5] . \quad\left(8, G_{1}, 1\right)-$ $O C D=(X, \mathcal{A})$, where $\mathcal{A}=\mathcal{B} \cup\{[\dashv,\llcorner, \infty, \in, \ni, \triangle]\}$.
By Lemma 4.2, there exists a $G_{1}-H G D\left(6^{2}\right)$. Therefore, there exist $\left(6 m+2, G_{1}, 1\right)$ $O P D$ (or $O C D$) for all $m \geq 1$.
2) On the vertex set $X=Z_{6} \cup\{a, b, c, d, e\}$, we construct
$A:[a, 0, b, 1, c, 2]$ and $[d, 0, e, 1,2,4](\bmod 6)$;
$B:[1,4,2,3,0,5],[2,5,3,4,0,1],[0,3,1,2,4,5]$;
$C:[a, c, b, d, 1,4],[a, d, e, c, 2,3],[a, e, c, d, 0,5],[b, c, e, d, 2,5],[b, e, 3,4,0,1]$,
$[0,3,1,2,4,5] ; \quad D:[a, b, 1,2,3,4]$.
It is easy to verify that $(X, A \cup B)$ is a $\left(11,5, G_{1}, 1\right)$-IGD, $(X, A \cup C)$ is a $\left(11, G_{1}, 1\right)$ $O P D$ and $(X, A \cup C \cup D)$ is a $\left(11, G_{1}, 1\right)-O C D$. Therefore, there exist $\left(6 m+5, G_{1}, 1\right)-$ $O P D($ or $O C D)$ for all $m \geq 1$. It follows from 1) and 2) that the theorem is true.

Lemma 4.4 There is no $\left(6, G_{i}, 1\right)-O C D$ for $i=3,4$.
Proof If there exists a $\left(6, G_{3}, 1\right)-O C D$, then $c\left(6, G_{3}, 1\right)=4$ and there is one edge repeated; let the edge be $(0,1)$. The 0 and 1 must appear as a 2 -degree vertex of two blocks, but 0 and 1 cannot appear as two 2 -degree vertices of the same block. Four other vertices occupy one 2-degree vertex of four blocks, respectively. In this case, each edge of K_{6} cannot appear only once in four blocks, except the edge $(0,1)$. This is a contradiction.

If there exists a $\left(6, G_{4}, 1\right)-O C D$, then $c\left(6, G_{4}, 1\right)=4$ and four 3-degree vertices in four blocks are distinctly labelled. Suppose a and b do not appear in any 3-degree vertex of the four blocks. Then the degree of vertex a is 1 in every block. In the five edges incident with vertex a in K_{6}, one edge is not contained in any block: this is contrary to the definition of covering.

Theorem 4.5 There exist $\left(v, G_{i}, 1\right)-O P D$ (or $\left.O C D\right)$ for $i=2,3,4$ and $v \not \equiv 0$ or 1 $(\bmod 8)$, except for $\left(6, G_{i}, 1\right)-O C D$ for $i=3$ and 4 .
Proof $\underline{v=6}$: On the set $X=Z_{6},\left(6, G_{2}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[1,4,0,2,3,5]+i, i \in$ [0, 2]. Leave edges: $(5,0,1,2)$.
$\left(6, G_{2}, 1\right)-O C D=(X, \mathcal{A} \cup\{[3,4,5,0,1,2]\})$.
$\left(6, G_{3}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[0,1,4,3,5,2],[0,3,1,2,4,5],[1,2,3,5,0,4]$.
Leave edges: $02,15,34$.
$(X, \mathcal{A} \cup\{[0,2,3,1,4,5],[0,1,5,2,3,4]\})$ is a $\left(6, G_{3}, 1\right)-C D$. By Lemma 4.4, we have $c\left(6, G_{3}, 1\right)=5$.
$\left(6, G_{4}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}: \quad[4,5,0,1,2,3]+i=0,1,[1,5,4,0,2,3]$ Leave edges: $(5,3,2,5)$.
$(X, \mathcal{A} \cup\{[2,3,0,1,4,5],[0,1,5,2,3,4]\})$ is a $\left(6, G_{4}, 1\right)-C D$. By Lemma 4.4, we have $c\left(6, G_{4}, 1\right)=5$.
$\underline{v=7}:$ On the set $X=Z_{7},\left(7, G_{2}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[1,4,0,2,3,5]+i, i \in[0,2]$, $[2,6,5,1,0,3],[1,2,5,6,0,4]$.
$\left(7, G_{3}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[2,3,6,4,5,0],[2,4,0,5,6,1],[3,0,6,1,2,5]$,
$[0,1,5,3,4,6],[1,3,5,0,2,6]$.
$\left(7, G_{4}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[4,5,0,1,2,3]+i, i \in[0,2],[1,5,4,0,3,6],[0,5,6,1,2,3]$.
In this case $l_{1}=1$. Apply Lemma 4.1; there exist ($7, G_{4}, 1$)-OCD for $i \in[2,4]$.
$v=10$: Both $\left(10,2, G_{i}, 1\right)-I G D$ and $\left(10, G_{i}, 1\right)-O P D$ are the same for $i=2,3$ and 4. Since $l_{1}=1$, there exist $\left(10, G_{4}, 1\right)-O C D$ for $i \in[2,4]$.
$\underline{v=11}:$ On the set $X=Z_{11},\left(11, G_{2}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[0,2,1,4,8,3]+i, i \in Z_{11}$, $[7,8,3,4,5,6]$, $[2,3,8,9,10,0]$. Leave edges: $(0,1,2)$ and 67 .
$\left(11, G_{2}, 1\right)-O C D=(X, \mathcal{A} \cup\{[6,7,0,1,2,4]\})$. Repeat edge: 24 .
$\left(11, G_{3}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[5,0,2,1,4,8]+i, i \in Z_{11}$,
[2, 3, 4, 7, 8, 9], $[4,5,6,9,10,0]$. Leave edges: 01,12 and 67.
$\left(11, G_{3}, 1\right)-O C D=(X, \mathcal{A} \cup\{[5,6,7,0,1,2]\})$. Repeat edge: 56 .
$\left(11, G_{4}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[3,8,4,7,0,6]+i, i \in Z_{11}^{*} \backslash\{1\},[0,10,4,3,5,9]$,
$[5,6,8,3,7,9],[2,3,4,7,0,6],[9,10,5,8,1,7]$. Leave edges: 01,12 and 67.
$\left(11, G_{4}, 1\right)-O C D=(X, \mathcal{A} \cup\{[6,7,1,0,2,3]\})$. Repeat edge: 13 .
$v=12$: On the set $Z_{8} \cup\{a, b, c, d\}$
$\left(12, G_{2}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}: \quad[a, 2, b, 0,1, c]+i, i \in Z_{8}^{*},[3,7, d, 0,2,5]+i, i \in$ $[0,3],[a, d, b, 0,1, c],[a, b, d, 4,6,1],[a, c, d, 5,7,2],[a, 2, d, 7,1,4],[b, c, d, 6,0,3]$. Leave edges: (b, d, c).
$\left(12, G_{2}, 1\right)-O C D=(X, \mathcal{A} \cup\{[a, 1, b, d, c, 2]\})$. Repeat edges: $a 1, c 2$.
$\left(12, G_{3}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[a, 2, b, 0,1, d]+i, i \in Z_{8},[c, 1,5,2,4,7]+i, i \in[0,3]$, $[a, c, 5,6,0,3],[b, c, 6,7,1,4],[b, a, d, 0,2,5],[7, c, 0,1,3,6]$. Leave edges: $b d$ and $c d$.
$\left(12, G_{3}, 1\right)-O C D=(X, \mathcal{A} \cup\{[b, d, c, 0,1,2]\})$. Repeat edges: $(0,1,2)$.
$\left(12, G_{4}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[a, 0,1, b, c, d]+i, i \in Z_{8},[1,5,0,7,2,3]+i, i \in[0,3]$, $[a, b, 4,3,6,7],[a, c, 5,4,7,0],[a, d, 6,5,0,1],[b, c, 7,6,1,2]$. Leave edges: $b d$ and $c d$. $\left(12, G_{4}, 1\right)-O C D=(X, \mathcal{A} \cup\{[0,1, d, b, c, 2]\})$. Repeat edges: $(0,1),(d, 2)$.
$\underline{v=13}$: On the set $Z_{9} \cup\{a, b, c, d\}$
$\left(13, G_{2}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[a, 2, b, 0,1,5]+i, i \in Z_{9},[c, 4, d, 0,2,5]+i, i \in Z_{9}^{*}$, $[0,2, a, b, c, 4],[2,5, a, c, d, 0]$. Leave edges: (a, d, b).
$\left(13, G_{2}, 1\right)-O C D=(X, \mathcal{A} \cup\{[0,1,2, a, d, b]\})$. Repeat edges: $(0,1),(a, 2)$.
$\left(13, G_{3}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[a, 1,3, c, 2,6]+i, i \in Z_{9},[b, 2,3, d, 1,4]+i, i \in Z_{9}^{*}$, $[a, b, c, d, 1,4],[b, 2,3, a, c, d]$. Leave edges: (a, d, b).
$\left(13, G_{3}, 1\right)-O C D=(X, \mathcal{A} \cup\{[0,1,2, a, d, b]\})$. Repeat edges: $(0,1,2)$.
$\left(13, G_{4}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[a, 3,1, b, c, d]+i, i \in Z_{9},[1,5,0,8,2,3]+i, i \in Z_{9}^{*}$, $[1,5, c, a, b, d],[a, b, 0,8,2,3]$. Leave edges: (a, d, b).
$\left(13, G_{4}, 1\right)-O C D=(X, \mathcal{A} \cup\{[0,1, d, b, a, 2]\})$. Repeat edges: $(0,1),(d, 2)$.
$v=14$: On the $X=Z_{11} \cup\{a, b, c\}$,
$\left(14, G_{2}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}: \quad[a, 2, b, 0,4, c]+i, i \in Z_{11},[2,5,0,1,6,8]+i, i \in Z_{11}^{*}$, [$a, c, 0,1,6,8]$. Leave edges: (a, b, c) and 25 .
$\left(14, G_{2}, 1\right)-O C D=(X, \mathcal{A} \cup\{[2,5, a, b, c, 0]\})$. Repeat edge: $0 c$.
$\left(14, G_{3}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[c, 3,5,0,1,6]+i, i \in Z_{11},[a, 2,5, b, 0,4]+i, i \in Z_{11}^{*}$, [$c, a, 2, b, 0,4]$. Leave edges: (a, b, c) and 25 .
$\left(14, G_{3}, 1\right)-O C D=(X, \mathcal{A} \cup\{[2,5,0, a, b, c]\})$. Repeat edge: 05 .
$\left(14, G_{4}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}: \quad[1,3,0, a, 5, c]+i, i \in Z_{11},[2,5,0,1, b, 4]+i, i \in Z_{11}^{*}$, [$a, c, 0,1, b, 4]$. Leave edges: (a, b, c) and 25 .
$\left(14, G_{4}, 1\right)-O C D=(X, \mathcal{A} \cup\{[2,5, b, a, c, 0]\})$. Repeat edge: $0 b$.
Since there exist $\left(15,7, G_{i}, 1\right)-I G D$ and $\left(7, G_{i}, 1\right)-O P D(O C D)$, there exist ($15, G_{i}, 1$)$O P D(O C D)$ for $i \in[2,4]$. It follows from Theorem 3.3 that there exist $\left(v, G_{i}, 1\right)$ $O P D(O C D)$ for $i \in[2,4], v \not \equiv 0,1(\bmod 8)$ and $v>6$.
Lemma $4.6 c\left(8, G_{6}, 1\right)=7, c\left(7, G_{6}, 1\right)=6, p\left(7, G_{6}, 1\right)=3, c\left(7, G_{9}, 1\right)=5$ and $p\left(7, G_{9}, 1\right)=3$.
Proof If there exists a $\left(8, G_{6}, 1\right)-O C D$, then it contains 6 blocks. In eight vertices on K_{8}, there are two vertices that cannot occur on the center of the 6 blocks. Let the two vertices be a and b. The edge $a b$ cannot occur on any block. This is a contradiction.

On $X=Z_{5} \cup\{a, b, c\}$, set $A:[0,1,2, a, b, c]+i, i \in Z_{5},[a, b, c, 1,2,3],[c, b, 0,1$, $2,3]$. Then (X, A) is a $\left(8, G_{6}, 1\right)-C D$, repeat edges: $(1, a, 2),(a, 3),(0, c, 1),(2, c, 3)$. Similarly, we can show there is no $\left(7, G_{6}, 1\right)-O C D$.

If there exists a $\left(7, G_{6}, 1\right)-O P D$, then $p\left(7, G_{6}, 1\right)=4$ and $l_{1}=1$. Let the other 3 vertices except the center of the 4 blocks be a, b and c; then edges $a b, a c$ and $b c$ cannot appear in the 4 blocks. This is a contradiction.

Let $X=Z_{5} \cup\{a, b\}$, construction $A:[0,1,2,3, a, b],[4,0,1,2, a, b],[3,1,2,4, a, b]$; $B:[a, 1,2,3,4,0],[b, 1,2,3,4, a],[1,2,3,4,0, a]$. Then (X, A) is a $\left(7, G_{6}, 1\right)-P D$, leave edges: $(b, 1, a, 2, b, a),(1,2) . \quad(X, A \cup B)$ is a $\left(7, G_{6}, 1\right)-C D$, repeat edges: $(4, b, 3, a, 4,1,0, a, 1,3)$.

The degree of every vertex on K_{7} is 6 . Since $G_{9}=P_{2} \cup C_{4}$, an $O P D$ contains 4 cycles C_{4}. Using enumeration, we know that at least an edge on K_{7} cannot match with the 4 cycles C_{4}. Therefore, there does not exist ($7, G_{9}, 1$)-OPD. On the set $X=Z_{7}$, let $A:[0,5,1,2,3,6],[0,3,2,4,1,5],[2,6,0,1,3,4] ; B:[1,3,0,5,4,6],[0,2,3,4,6,5]$. Then (X, A) is a $\left(7, G_{9}, 1\right)-P D$ and leave edges are $(5,4,6,0),(0,2),(6,5,3)$. And $(X, A \cup B)$ is a $\left(7, G_{9}, 1\right)-O C D$ and repeat edges are $(1,3,4,6),(0,5)$.
Theorem 4.7 There exist $\left(v, G_{i}, 1\right)-O P D$ (or $O C D$) for $i \in[5,11]$ and $v \not \equiv 0,1$ $(\bmod 5)$, for packing except for $v=7, i=6$ and 9 ; for covering except for $(i, v)=$
$(6,7),(6,8)$ and $(9,7)$.
Proof $v=7$: The $\left(7, G_{i}, 1\right)-O P D$ with $\left(7,2, G_{i}, 1\right)-I G D$ are the same when $i=$ $5,8,10$ (see the proof of Theorem 3.4).

On the set $X=Z_{5} \cup\{a, b\},\left(7, G_{7}, 1\right)-O P D=(X, \mathcal{A})$,
$\mathcal{A}:[a, 3,4, b, 0,2],[4,2,1,0,3, a],[b, 3,2, a, 1,4],[2,0,4,1,3, b]$.
$\left(7, G_{9}, 1\right)-P D(C D)$; see Lemma 4.6.
$\left(7, G_{11}, 1\right)-O P D=(X, \mathcal{A})$,
$\mathcal{A}:[4, b, 2,1,3, a],[1, a, 3,0,4, b],[b, 1,4,0,2, a],[3,1,0,2, a, b]$.
There exist ($7, G_{i}, 1$)-OCD for $i=5,7,8,10,11$ by Lemma 4.1.
$v=8$: On the set $X=Z_{5} \cup\{a, b, c\}$,
$A:[3,0, b, 1, c, 2],[a, 2, b, 3, c, 4],[0,1,2,3,4, a],[c, 0,2,4,1, a] ; B:[b, 4,0, a, 3,1] ; C$: $[c, b, 4,0, a, 3],[c, a, b, 0,3,1]$.
$\left(8, G_{5}, 1\right)-O P D=(X, A \cup B)$, leave edges: $(a, b, c, a) .\left(8, G_{5}, 1\right)-O C D=(X, A \cup C)$, repeat edges: $(b, 0,3)$.
$A:[0,1,2, a, b, c]+i, i \in Z_{5} .\left(8, G_{6}, 1\right)-O P D=(X, A)$, leave edges: (a, b, c, a).
$A:[a, 0,1,3, b, c]+i, i \in[0,2] ; B:[a, 0,1,3, b, c]+i, i \in[3,4] ; C:[3,4,1, b, c, 2]$, [2, 0, 4, a, b, c], $[a, 3,0, c, 1,2]$.
$\left(8, G_{7}, 1\right)-O P D=(X, A \cup B)$, leave edges: $(a, b, c, a) .\left(8, G_{7}, 1\right)-O C D=(X, A \cup C)$, repeat edges: $(c, 0,3)$.
$A:[a, 0,1,3, b, c]+i, i \in[0,3] ; B:[a, 4,0,2, b, c] ; C:[2, b, a, c, 0,4],[4,0,2, b, c, 1]$.
$\left(8, G_{8}, 1\right)-O P D=(X, A \cup B)$, leave edges: $(a, b, c, a) .\left(8, G_{8}, 1\right)-O C D=(X, A \cup C)$, repeat edges: $(1,2, b)$.
A: $\quad[b, c, a, 0,1,2], \quad[c, 0, b, 2,3,4], \quad[a, b, c, 3,0,4], \quad[0, b, c, 2,4,1], \quad[0,2, a, 1, b, 3] ;$ $B:[1,3, c, a, 4,0] .\left(8, G_{9}, 1\right)-O P D=(X, A)$, leave edges: $(1,3),(c, a, 4) .\left(8, G_{9}, 1\right)-$ $O C D=(X, A \cup B)$, repeat edges: $(c, 0,4)$.
$A:[a, b, c, 0,1,3]+i, i=0,2,3 ; B:[a, b, c, 0,1,3]+i, i=1,4 ; C: \quad[1, a, b, c, 4,0]$, [1, 2, c, a, b, 0], [3, 0, a, 1, 2, 4].
$\left(8, G_{10}, 1\right)-O P D=(X, A \cup B)$, leave edges: $(a, b, c, a) .\left(8, G_{10}, 1\right)-O C D=(X, A \cup C)$, repeat edges: $(a, 1,3)$.
$A:[a, 0,1,3, b, c]+i, i=1,2,4 ; B:[a, 0,1,3, b, c]+i, i=0,3 ; C:[4,3, a, b, c, 0]$, [$c, b, 1,0,3,4],[1, c, 4, b, 2,3]$.
$\left(8, G_{11}, 1\right)-O P D=(X, A \cup B)$, leave edges: $(a, b, c, a) .\left(8, G_{11}, 1\right)-O C D=(X, A \cup C)$, repeat edges: $(2,4,3)$.
$\underline{v=9}:$ On $X=Z_{7} \cup\{a, b\},\left(9, G_{5}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[a, 0,1,3,6, b](\bmod 7)$.
$\left(9, G_{6}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[0,1,2,3, a, b](\bmod 7) .\left(9, G_{7}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}$:
$[0,1,3,6, a, b](\bmod 7)$.
$\left(9, G_{8}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[0,1,3,6, a, b](\bmod 7)$.
$\left(9, G_{9}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}: \quad[2,5, a, 0,6,1], \quad[1,4, a, 2, b, 3], \quad[0,1, b, 4,6,5]$,
$[0,2, a, 4,3,5],[4,5,6,3,1,2],[a, 6, b, 0,5,1],[6, b, 2,4,0,3]$.
$\left(9, G_{10}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[a, b, 0,1,3,6](\bmod 7) \cdot\left(9, G_{11}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:$ $[0,1,3,6, a, b](\bmod 7)$.
There exist $\left(9, G_{i}, 1\right)-O C D$ for $i \in[5,11]$ by Lemma 4.1.
$\underline{v=12}$: By the proof of Theorem 3.4, there exist $\left(12, G_{i}, 1\right)-O P D$ for $i \in[5,11]$. By
Lemma 4.1, there exist $\left(12, G_{i}, 1\right)-O C D$ for $i \in[5,11]$.
$\underline{v=13}$: For $G_{i}, i=5,8,9,10$, since the $\left(8, G_{i}, 1\right)-O P D$ is a $\left(8,3, G_{i}, 1\right)-I G D$ (see $v=8$), by Theorem 2.4 and $K_{5,5} / G_{i}$ we obtain ($13, G_{i}, 1$)-OPD. By Theorem 2.9, $K_{5,1} / G_{6} \Rightarrow K_{5,3} / G_{6} \Rightarrow K_{10,3} / G_{6}$. From $K_{10,3} / G_{6}$ and $\left(10, G_{6}, 1\right)$-GD, we can obtain $\left(13, G_{6}, 1\right)-O P D$.
On the set $Z_{5} \cup\{a, b, c\}, K_{5,3} / G_{7}:[0, b, 1, a, 2,3],[0, c, 3, b, 2,4]$, $[0, a, 4, c, 1,2]$.
$K_{5,3} / G_{11}:[c, 3, a, 0,2,4],[a, 1, b, 2,3,4],[b, 0, c, 1,2,4]$.
By Theorem 2.9, $K_{5,3} / G_{i} \Rightarrow K_{10,3} / G_{i}$. From $K_{10,3} / G_{i}$ and (10, $G_{i}, 1$)-GD, we obtain (13, $\left.G_{i}, 1\right)-O P D$ for $i=7,11$. Leave edges: (a, b, c, a)

In the same way, we can obtain $\left(13, G_{i}, 1\right)-O C D$ for $i \in[5,11]$.
$\underline{v=14}$: On the set $X=Z_{12} \cup\{a, b\},\left(14, G_{5}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[b, 0,1,3,6,10]+$ $i, i \in Z_{12},[7,1,6,11, a, 5]+i, i \in[0,3],[6,0,5,10, a, 9],[10,3, a, 4,11,5]$.
$\left(14, G_{6}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[6,7,8,9,1,2]+i, i \in[0,3],[6, a, b, 0,10,11]+i, i \in$ $[0,3],[2,3,4,5, a, b]+i, i \in[0,2],[0,1,2,3,4,10],[1,2,3,4,10,11],[5,0,1,6,7,8]$, [10, 2, 3, 4, 5, 11], [11, 0, 2, 3, 4, 5], [a, 0, 1, 5, 10, 11], [b, 0, 1, 5, 10, 11].
$\left(14, G_{7}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[0,6,9,1, a, b]+i, i \in[0,5],[2,0,3,7, a, b]+i, i \in[0,5]$, $[1,0,5,6,8,11]+i, i \in[0,3],[11,4,9,10,0,3],[4,5,10,11,0,1]$.
$\left(14, G_{8}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[0,6,9,1, a, b]+i,[2,0,3,7, a, b]+i, i \in[0,5]$,
$[11,0,5,6,8,10]+i, i \in[0,4], \quad[3,10,11,4,5,1]$.
$\left(14, G_{9}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[3,9,0,1,6, a]+i, i \in[0,5],[2,4,0,1,6, b]+i, i \in$ [6,10],
$[8,0,1,4,7,10], \quad[0,4,2,5,8,11], \quad[6,8,11,0,5, b], \quad[5,9,2,4,6,10], \quad[2,6,3,5,7,11]$, [4, 8, 1, 3, 7, 9], [1, 5, 0, 3, 6, 9].
$\left(14, G_{10}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[a, b, 0,2,5,9]+i, i \in Z_{12}$,
$[7,11,0,1,6,5]+i, i \in[0,4], \quad[4,5,10,11,0,6]$.
$\left(14, G_{11}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[0,6,9,1, a, b]+i,[2,0,3,7, a, b]+i, i \in[0,5]$,
$[0,1,6,7,8,11]+i, i \in[1,4],[0,1,6,7,8,5],[5,0,11,1,4,6]$.
By Lemma 4.1, we can obtain $\left(14, G_{i}, 1\right)-O C D$ for $i \in[5,11]$.
$\underline{v=17}$: On the set $X=Z_{15} \cup\{a, b\},\left(17, G_{6}, 1\right)-O P D=(X, \mathcal{A})$,
$\mathcal{A}:[0,3,4,5,6,7](\bmod 15),[0,2,13,14, a, b]+3 i, i \in[0,4],[1,0,2,14, a, b]+3 i, i \in$ $[0,4],[a, 2,5,8,11,14],[b, 2,5,8,11,14]$. By Lemma 4.1, there exist $\left(17, G_{6}, 1\right)-O C D$. $\underline{v=18}$: On the set $X=Z_{15} \cup\{a, b, c\}$, let $A:[0,1,2,3,4,5](\bmod 15)$;
$B:[0,6,7, a, b, c]+i, i \in Z_{15} ; C:[0,6,7, a, b, c]+i, i \in Z_{15} \backslash\{0,1,6,7,8\},[a, b, c, 0,1,6]$, $[b, c, 0,1,2,7],[c, 0,1,2,7,8],[6,12,13,0, b, c],[7,13,14,0,1, a],[8,14,0,1, a, b]$. It is easy to verify that $(X, A \cup B)$ is a $\left(18, G_{6}, 1\right)-O P D$ and $(X, A \cup C)$ is a $\left(18, G_{6}, 1\right)$ $O C D$.

It follows from Theorem 3.5 and Lemma 4.6 that the theorem is true.
Lemma $4.8 p\left(6, G_{12}, 1\right)=1, c\left(6, G_{12}, 1\right)=4$ and $c\left(6, G_{13}, 1\right)=4$.
Proof Since $v\left(K_{6}\right)=v\left(G_{12}\right)=6, V\left(K_{6}\right)=V\left(G_{12}\right)$ and $d(v)=5$ for every $v \in$ $V\left(K_{6}\right)$. If $p\left(6, G_{12}, 1\right)=2$, then there are two C_{4} and two vertices whose degree is four on two G_{12}. In eight vertices of the two C_{4}, there are two vertices on the K_{6} which are used twice, and the degree of these two vertices is not four. Let x_{1} and x_{2} be the two 4 -degree vertices; then $x_{1}\left(x_{2}\right)$ only appears in the pendant vertices of the other G_{12}, and the edge $x_{1} x_{2}$ is repeated once. This is contrary to the definition of packing.

Let Z_{6} be the vertex set of K_{6}. Since $\left(Z_{6},\{[0,1,2,3,4,5]\}\right)$ is a $\left(6, G_{12}, 1\right)-P D$, the packing number $p\left(6, G_{12}, 1\right)=1$, leave edges: $(0,2,4,5,2),(1,4,0,5,1,3)$.
If there exists a $\left(6, G_{12}, 1\right)-O C D$, then it contains three blocks and $r_{1}=3$. The three 4-degree vertices in the 3 blocks are different. Since $V\left(G_{12}\right)=V\left(K_{6}\right)$, the degree set of the three 4 -degree vertices all are $\{4,1,1\}$ in the three blocks. In this case, there is a edge on K_{6} that cannot appear in any block. This is a contradiction. Similarly, we can obtain $c\left(6, G_{13}, 1\right)=4$.
Theorem 4.9 There exist $\left(v, G_{i}, 1\right)-O P D$ (or $O C D$) for $i \in[12,15] v \equiv 2,3,5,6,7$, $8,10,11(\bmod 12)$, for packing except for $v=6, i=12$, for covering except for $v=6, i=12$ and 13 .
Proof $\underline{v=6}$: By the above lemma, $\left(6, G_{12}, 1\right)-O P D$ does not exist. On $X=Z_{6}$,
$\left(6, G_{13}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[0,3,1,2,4,5],[0,5,1,4,3,2]$. Leave edges: $01,23,45$.
$\left(6, G_{14}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[0,3,1,2,4,5],[0,5,1,4,3,2]$. Leave edges: $01,25,35$.
$\left(6, G_{14}, 1\right)-O C D=(X, \mathcal{A} \cup\{[2,5,3,0,1,4]\})$. Repeat edges: 20, 03, 14.
$\left(6, G_{15}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[4,1,0,3,2,5],[2,0,4,3,5,1]$. Leave edges: $13,24,45$.
$\left(6, G_{15}, 1\right)-O C D=(X, \mathcal{A} \cup\{[2,4,5,1,3,0]\})$. Repeat edges: 51, 43, 30.
$\underline{v=7}$: On $X=Z_{7}$. $\left(7, G_{12}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}$:
$[3,0,1,2,5,6],[0,5,3,4,2,6],[1,4,5,6,0,3]$. Leave edges: $02,15,13$.
$\left(7, G_{12}, 1\right)-O C D=(X, \mathcal{A} \cup\{[0,2,3,1,5,4]\})$. Repeat edges: 01, 14, 23.
$\left(7, G_{13}, 1\right)-O P D=(X, \mathcal{A}), \quad \mathcal{A}: \quad[1,2,3,0,4,6], \quad[3,4,0,5,6,1], \quad[6,1,4,5,3,2]$.
Leave edges: $(0,2,6,3)$.
$\left(7, G_{13}, 1\right)-O C D=(X, \mathcal{A} \cup\{[1,2,6,3,0,5]\})$ Repeat edges: $(2,1,3,5)$.
$\left(7, G_{14}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[0,1,2,3,6,4],[3,4,0,5,2,6],[1,4,5,6,0,2]$.
Leave edges: 24, 15, 13.
$\left(7, G_{14}, 1\right)-O C D=(X, \mathcal{A} \cup\{[5,0,3,1,2,4]\})$. Repeat edges: 50, 03, 12.
$\left(7, G_{15}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[5,1,0,3,2,6],[2,4,0,5,3,1],[0,6,1,4,5,2]$.
Leave edges: $02,46,63$.
$\left(7, G_{15}, 1\right)-O C D=(X, \mathcal{A} \cup\{[4,6,0,2,3,5]\})$. Repeat edges: 60, 23, 35 .
$\underline{v=8}$: On the set $X=Z_{8},\left(8, G_{12}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}$:
$[0,2,4,6,3,5],[2,3,0,1,4,6],[5,1,3,4,7,0],[2,6,7,5,0,3]$. Leave edges:
72, 17, 70, 37.
$\left(8, G_{12}, 1\right)-O C D=(X, \mathcal{A} \cup\{[1,4,0,7,2,3]\})$. Repeat edges: 14,40 .
$\left(8, G_{13}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[0,1,2,3,6,5],[6,0,2,4,7,1],[1,3,4,5,7,6]$,
$[2,6,7,5,3,0]$. Leave edges: $04,47,71,27$.
$\left(8, G_{13}, 1\right)-O C D=(X, \mathcal{A} \cup\{[4,7,2,0,1,3]\})$. Repeat edges: 20, 03.
$\left(8, G_{14}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[0,1,2,3,5,6],[0,2,4,6,1,7],[5,1,3,4,0,7]$,
$[5,2,6,7,4,1]$. Leave edges: $27,73,36,05$.
$\left(8, G_{14}, 1\right)-O C D=(X, \mathcal{A} \cup\{[6,5,0,3,7,2]\})$. Repeat edges: 65, 30 .
$\left(8, G_{15}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}: \quad[5,3,0,1,2,7], \quad[7,0,2,4,6,1], \quad[6,5,1,3,4,0]$, $[0,5,2,6,7,4]$. Leave edges: $63,37,71,14$.
$\left(8, G_{15}, 1\right)-O C D=(X, \mathcal{A} \cup\{[6,3,7,1,4,0]\})$. Repeat edges: 34, 40 .
$\underline{v=10}$: On the $X=Z_{8} \cup\{a, b\},\left(10, G_{12}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}$:
$[0,2,1,4, a, b]+i, i \in[0,3],[5,0,7,6,1,4],[b, 3, a, 1,0,7],[b, 2, a, 0,3,6]$. Leave edges: 72, 57, ab.
$\left(10, G_{12}, 1\right)-O C D=(X, \mathcal{A} \cup\{[a, b, 5,7,2,0]\})$. Repeat edges: $b 5, a 7,70$.
$\left(10, G_{13}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:$
$[0,2,1,4, a, b]+i, i \in[0,3],[1, b, 2,7,0,5],[0,6,7, a, 4,1],[5,0,1,6,3, a]$. Leave edges: 07, $a b, b 3$.
$\left(10, G_{13}, 1\right)-O C D=(X, \mathcal{A} \cup\{[3,7,0, b, 5, a]\})$. Repeat edges: b0, 57, 73.
$\left(10, G_{14}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}$:
$[0,2,1,4,6, a]+i, i \in[0,3],[7,6,5,0, b, 4],[b, 1,0,3, a, 4],[2, a, 5, b, 6,1]$. Leave edges: 27, $7 b, b a$.
$\left(10, G_{14}, 1\right)-O C D=(X, \mathcal{A} \cup\{[a, 4,3, b, 7,2]\})$. Repeat edges: b3, 34, $4 a$.
$\left(10, G_{15}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:$
$[a, 0,2,1,4, b]+i, i \in[0,3],[0,5, a, 4,6,7],[5,7, a, b, 1,6],[3, b, 2,7,0,1]$. Leave edges: ($a, 6,0,3$).
$\left(10, G_{15}, 1\right)-O C D=(X, \mathcal{A} \cup\{[1, a, 6,0,3,2]\})$. Repeat edges: $(1, a, 3,2)$.
$\underline{v=11}:$ On the set $X=Z_{9} \cup\{a, b\},\left(11, G_{12}, 1\right)-O P D=(X, \mathcal{A})$,
$\mathcal{A}:[0,2,1,4, a, b](\bmod 9)$.
$\left(11, G_{13}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[0,2,1,4, a, b](\bmod 9)$.
$\left(11, G_{14}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[a, 0,1,4,8,6]+i, i \in[0,3],[b, 4,5,8,3,1]+i,[0,1]$, $[1, b, 6,7,3,0],[5,3, b, 7,8,0],[b, a, 8,2,6,4]$.
$\left(11, G_{15}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[a, 0,2,1,4, b](\bmod 9)$.
Since $l_{1}=1$, there exist $\left(11, G_{i}, 1\right)-O C D$ for $i \in[12,15]$.
$v=14$: On the set $X=Z_{14}$,
$\left(14, G_{12}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[5,1,3,0,6,7]+i, i \in[1,6],[12,8,10,7,13,6]+i, i \in$ $[0,6],[1,3,4,5,6,0],[1,2,3,0,6,7] .\left(14, G_{12}, 1\right)-O C D=(X, \mathcal{A} \cup\{[13,0,1,2,3,4]\})$.
$\left(14, G_{13}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[5,1,3,0,9,7]+i, i \in\{1,3,4,5,6\},[12,8,10,7,2,6]+$ $i, i \in[0,6],[1,2,3,0,9,13],[1,3,4,5,11,0],[2,7,3,5,0,6] . \quad\left(14, G_{13}, 1\right)-O C D=$ $(X, \mathcal{A} \cup\{[1,9,2,3,4,5]\})$.
$\left(14, G_{14}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[5,1,3,0,7,13]+i, i \in[1,6],[12,8,10,7,6,0]+i, i \in$ $[0,6],[1,2,3,0,7,13],[1,3,4,5,0,13] .\left(14, G_{14}, 1\right)-O C D=(X, \mathcal{A} \cup\{[1,2,3,4,5,6]\})$. $\left(14, G_{15}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[9,3,1,5,0,7]+i, i \in[1,6],[2,10,8,12,7,6]+i, i \in$ $\{0,1,3,4,5,6\},[9,3,2,1,0,7],[12,4,3,1,5,0],[13,0,10,12,9,8] .\left(14, G_{15}, 1\right)-O C D=$ $(X, \mathcal{A} \cup\{[1,2,3,4,5,6]\})$.
$\underline{v=15}:$ On the set $X=Z_{15},\left(15, G_{12}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[7,1,5,0,2,3]+i, i \in$ $Z_{15} \backslash\{0,4,7\}, \quad[7,6,5,0,2,14], \quad[11,5,9,4,3,6], \quad[14,13,12,7,4,9], \quad[2,3,0,1,5,7]$, $[9,10,7,8,12,14]$. Leave edges: $(4,5),(10,11,12)$.
$\left(15, G_{12}, 1\right)-O C D=(X, \mathcal{A} \cup\{[5,4,10,11,12,13]\})$. Repeat edges: $(4,10),(5,11,13)$.
$\left(15, G_{13}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}: \quad[7,1,5,0,4,2]+i, i \in Z_{15} \backslash\{0,1,7\},[0,7,1,5,6,2]$, [7, 14, 8, 12, 0, 13], [1, 8, 2, 6, 7, 5], [1, 2, 3, 4, 0, 5], [8, 9, 10, 11, 7, 12].
Leave edges: $(13,14),(0,1,3)$.
$\left(15, G_{13}, 1\right)-O C D=(X, \mathcal{A} \cup\{[3,1,14,13,0,2]\})$. Repeat edges: $(14,1),(3,13,2)$.
$\left(15, G_{14}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}: \quad[5,0,7,1,3,6]+i, i \in Z_{15} \backslash\{0,7\}, \quad[5,0,7,1,3,2]$,
$[12,7,14,8,10,9],[3,4,5,6,7,8],[10,11,12,13,14,0]$. Leave edges: $(8,9),(0,1,2)$.
$\left(15, G_{14}, 1\right)-O C D=(X, \mathcal{A} \cup\{[0,3,2,1,8,9]\})$. Repeat edges: $(8,1),(0,3,2)$.
$\left(15, G_{15}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}: \quad[10,7,0,5,1,3]+i, i \in Z_{15} \backslash\{0,7\}, \quad[3,1,7,0,5,6]$,
$[10,8,14,7,12,13],[6,7,8,9,10,11],[13,14,0,1,2,3]$. Leave edges: $(3,4,5),(11,12)$.
$\left(15, G_{15}, 1\right)-O C D=(X, \mathcal{A} \cup\{[3,4,11,12,5,1]\})$. Repeat edges: $(4,11),(12,5,1)$.
$v=17:$ On the $X=Z_{17},\left(17, G_{12}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[2,6,12,0,7,8]+i, i \in$ $Z_{17},[2,3,0,1,15,4]+6 i, i \in[0,2],[6,3,4,5,2,8]+6 i, i \in[0,1]$. Leave edges: $(2,16),(15,16,0,14)$.
$\left(17, G_{12}, 1\right)-O C D=(X, \mathcal{A} \cup\{[5,14,0,16,15,2]\})$. Repeat edges: $(14,5,16)$.
$\left(17, G_{13}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}: \quad[2,6,12,0,14,7]+i, i \in Z_{17}^{*}, \quad[0,2,6,12,16,9]$, $[1,2,3,0,5,7],[5,6,7,4,9,1],[7,8,9,10,5,11],[12,13,14,11,10,8]$,
$[15,16,0,14,13,6]$. Leave edges: $(6,3,4),(12,15,1)$.
$\left(17, G_{13}, 1\right)-O C D=(X, \mathcal{A} \cup\{[6,15,1,3,12,4]\})$. Repeat edges: $(15,6),(1,3)$.
$\left(17, G_{14}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[2,6,12,0,7,15]+i, i \in Z_{17},[2,3,0,1,4,7]+6 i, i \in$ $[0,2],[6,3,4,5,8,11]+6 i, i \in[0,1]$. Leave edges: $(2,5),(1,15,16,0)$.
$\left(17, G_{14}, 1\right)-O C D=(X, \mathcal{A} \cup\{[1,2,5,15,16,0]\})$. Repeat edges: $(5,15),(1,2)$.
$\left(17, G_{15}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[10,2,6,12,0,7]+i, i \in Z_{17},[5,2,3,0,1,4]+3 i, i \in$ $[0,4]$. Leave edges: $(2,16),(1,15,16,0)$.
$\left(17, G_{15}, 1\right)-O C D=(X, \mathcal{A} \cup\{[3,2,1,15,16,0]\})$. Repeat edges: $(3,2,1)$.
$v=18$: On the $X=Z_{17} \cup\{a\},\left(18, G_{12}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[9,6,11,5,14, a]+i, i \in$ $Z_{17}^{*},[15,0,1,8,9,6]+i, i \in[0,6],[9,6,11,5,7, a],[14,5,15,16,0,6]$. Leave edges: $(13,15),(0,7,8)$.
$\left(18, G_{12}, 1\right)-O C D=(X, \mathcal{A} \cup\{[13,15,0,7,8,9]\})$. Repeat edges: $(13,7,9),(15,0)$.
$\left(18, G_{13}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}:[6,0,4,1,8, a]+i, i \in Z_{17},[1,8,10,0,9,2]+i, i \in[0,6]$, $[0,7,9,16,8,15]$. Leave edges: $(16,1),(8,15,0)$.
$\left(18, G_{13}, 1\right)-O C D=(X, \mathcal{A} \cup\{[8,16,1,15,2,0]\})$. Repeat edges: $(2,16,8),(1,15)$.
By $K_{12,6} / G_{i}, K_{12} / G_{i}$ and $\left(6, G_{i}, 1\right)-O P D(O C D)$ for $\mathrm{i}=14,15$, we can obtain $\left(18, G_{12}, 1\right)-O P D(O C D)$. By $K_{12, j} / G_{i}, K_{12} / G_{i}$ and $\left(j, G_{i}, 1\right)-O P D(O C D)$ for $j=$ $7,8,10,11, i \in[12,15]$, we have $\left(12+j, G_{i}, 1\right)-O P D(O C D)$ for $j=7,8,10,11$, $i \in[12,15]$.

From Theorem 2.5, Theorem 2.10 and Lemma 4.8, it follows that the theorem is true.

5 Coverings and packings for $\lambda>1$

Theorem 5.1 If there exist $(v, G, 1)-O P D$ and $(v, G, 1)-O C D$, then when $r_{1}=1$ (or $l_{1}=1$), there exist (v, G, λ)-OPD $(O C D)$ for any $\lambda \geq 1$.
Proof If $r_{1}=1$, then $l_{1}=e(G)-1$. For $1 \leq \lambda \leq e(G)$, we have $l_{\lambda}=e(G)-\lambda$ and $r_{\lambda}=\lambda$. When $\lambda=1$, from the assumptions of the theorem, there exist $(v, G, 1)$ $O P D$ and $(v, G, 1)-O C D$. We proceed by induction on λ for $1 \leq \lambda<e(G)$. Suppose that there is $(v, G, \lambda)-O P D=\left(X, D^{\prime}\right)$ and its leave edge graph is $L_{\lambda}\left(D^{\prime}\right)$. We can construct an isomorphic mapping f of the $(v, G, 1)-O C D$, such that the isomorphic image of the mapping f is (X, D) and its repeat edge graph $R_{1}(D)$ is a subgraph of $L_{\lambda}\left(D^{\prime}\right)$. It is easy to see that $\left(X, D \cup D^{\prime}\right)$ is a $(v, G, \lambda+1)-O P D$ and its leave edge graph is $L_{\lambda}\left(D^{\prime}\right) \backslash R_{1}(D)$. It follows from Theorem 2.11 that there exist (v, G, λ)-OPD for any positive integer λ.
When $1 \leq \lambda \leq e(G)$, we take the $(v, G, 1)-O C D=(X, D)$, and construct $\lambda-1$ isomorphic mappings of the $(v, G, 1)-O C D, f_{i}, i=1,2, \cdots, \lambda-1$, such that the repeat
edge graph of every f_{i} 's image is a subgraph of G, and these subgraphs are different. Let f_{i} 's isomorphic image be $\left(X, D_{i}\right), i=1,2, \cdots, \lambda-1$; then $\left(X, D \cup\left(\cup_{1 \leq i \leq \lambda-1} D_{i}\right)\right)$ is a $(v, G, \lambda)-O C D$. It follows from Theorem 2.11 that there exist $(v, G, \lambda)-O C D$ for any positive integer λ.

When $l_{1}=1$, the theorem is true also.
Theorem 5.2 Let $l_{1}=e(G) / 2$ be an integer. If there exist $(v, G, 1)-O P D=$ (X, \mathcal{A}) and $(v, G, 1)-O C D=(X, \mathcal{B})$, and $L_{1}(\mathcal{A}) \cong R_{1}(\mathcal{B})$, then there exist (v, G, λ) $O P D(O C D)$ for any positive integer λ.
Proof When $\lambda=1$, this is well-known. When $\lambda=2$, we can construct an isomorphic mapping, which transforms \mathcal{B} to \mathcal{B}^{\prime}, and $R_{1}(\mathcal{B}) \cong R_{1}\left(\mathcal{B}^{\prime}\right)$ and $L_{1}(\mathcal{A})=R_{1}\left(\mathcal{B}^{\prime}\right)$ are satisfied. We take (X, \mathcal{A}) and $\left(X, \mathcal{B}^{\prime}\right)$; then $\left(X, \mathcal{A} \cup \mathcal{B}^{\prime}\right)$ is a $(v, G, 2)-G D$. It follows from Theorem 2.11 that there exist $(v, G, \lambda)-O P D(O C D)$ for any positive integer λ.

Example Let $X=Z_{7},\left(7, G_{15}, 1\right)-O P D=(X, \mathcal{A}), \mathcal{A}$:
$[5,1,0,3,2,6],[2,4,0,5,3,1],[0,6,1,4,5,2]$, leave edges: $02,46,63$.
$\left(7, G_{15}, 1\right)-O C D=(X, \mathcal{B}), \mathcal{B}=\mathcal{A} \cup\{[4,6,0,2,3,5]\}$, repeat edges: 60, 23, 35 .
Transforming \mathcal{B} to \mathcal{B}^{\prime} under the mapping $2 \rightarrow 4,4 \rightarrow 5,5 \rightarrow 3,3 \rightarrow 6,6 \rightarrow 2$ and $x \rightarrow x$ for other x. Then $\left(X, \mathcal{A} \cup \mathcal{B}^{\prime}\right)$ is a $(v, G, 2)-G D$.
Theorem 5.3 There exists a $\left(v, G_{1}, \lambda\right)-O P D(\operatorname{or} O C D)$ for $v \equiv 2(\bmod 3)$ and integer $\lambda \geq 1$.
Proof It immediately follows from Theorem 2.11 and Theorem 2.12.
Theorem 5.4 There exist $\left(v, G_{i}, \lambda\right)-O P D($ or $O C D)$ for $i \in[2,4], v \not \equiv 0,1(\bmod 8)$ and $\lambda \geq 1$, for covering except $(v, i, \lambda)=(6,3,1)$ and $(6,4,1)$.
Proof Since $l_{1}=1$ when $v \equiv 2,7(\bmod 8)$ and $r_{1}=1$ when $v \equiv 3,6(\bmod 8)$, there exist $\left(v, G_{i}, \lambda\right)-O P D$ (or $\left.O C D\right)$ for $i \in[2,4]$ and $\lambda \geq 1$. When $v \equiv 4,5(\bmod 8)$, $l_{1}=2 r_{1}=2$ and $\bar{\lambda}=2$. By Theorem 2.12, we can list the following table to get $\left(v, G_{i}, \lambda\right)-O P D$ and $\left(v, G_{i}, \lambda\right)-O C D$ for $1 \leq \lambda, i \in[2,4]$.

for	G_{2}	for	G_{3}	for	G_{4}
L_{1}	\ddots	L_{1}	\ddots	L_{1}	\ddots
R_{1}	$\bullet \bullet$	R_{1}	\ldots	R_{1}	$\ddots \bullet$

Lemma $5.5[15]$ There exists $\left(v, K_{1,5}, \lambda\right)-G D$ if and only if $\lambda v(v-1) \equiv 0(\bmod 10)$, when $\lambda=1, v \geq 10$; when λ is an even number, $v \geq 6$; when $\lambda>1$ and λ is an odd number, $v \geq 6+5 / \lambda$.
Lemma 5.6 (1). When $\lambda \geq 2$, there exist $\left(n, G_{6}, \lambda\right)-O P D(O C D)$ for $n=7,8$, except for $n=7$ and $\lambda=3$. (2). When $\lambda \geq 2$, there exist ($\left.7, G_{9}, \lambda\right)-O P D(O C D)$.
Proof (1). $n=8$ On the set $X=Z_{5} \cup\{a, b, c\}$, let $A=\{[3,4, a, b, c, 0],[a, b, c, 0,1,2]$, $[b, c, 0,1,2,3],[1,2,3,4, a, c],[2,1,3,4, a, c],[4,1,2, a, b, c],[0,1,2,4, b, c],[3,1,2,4$, $a, c],[b, 1,2,4, a, c]\}, B=\{[4, a, b, c, 0,1]\}, C=\{[0,1,2,3,4, a],[c, a, 0,1,2,4]\}$, $D=\left\{[0,1,2, a, b, c]+i \mid i \in Z_{5}\right\} \cup\{[0,1,2,3,4, c],[a, b, c, 4,0,1],[c, a, b, 1,2,4]\}$; then
$(X, A \cup C)$ is a $\left(8, G_{6}, 2\right)-O P D$. Leave edge: $4 a .(X, A \cup B \cup C)$ is a $\left(8, G_{6}, 2\right)-O C D$. Repeat edges: $4 b, 4 c, 40,41$. $(X, A \cup D)$ is a $\left(8, G_{6}, 3\right)-O C D$. Repeat edge: $a 1$. When $\lambda \geq 2$, from the following table and Theorem 2.12, we find that the theorem is true.

λ	1	2	3	4
L_{λ}	Ω	\ddots	$\ddots \Omega$	\ddots
R_{λ}	$K_{1,4} \cup K_{1,3}$	$K_{1,4}$	\multimap	$K_{1,3}$ $L_{1}+L_{2}$
$L_{2}+L_{2}$				

$\underline{n=7}$ On the set $X=Z_{7}$, let $A=\{[4,0,1,2,5,6]+i \mid i=0,1,2,3\} \cup\{[1,0,2,3,4,5]$, $[2,0,1,3,4,5],[3,0,1,2,4,5],[6,0,1,2,3,5]\}, B=\{[4,0,1,2,3,5]\}$; then (X, A) is a $\left(7, G_{6}, 2\right)-O P D$, leave edges: $34,45 .(X, A \cup B)$ is a $\left(7, G_{6}, 2\right)-O C D$, repeat edges: 42, 40, 41.

In a $\left(7, G_{6}, 3\right)-C D$, for every vertex on K_{7}, sum of its degree number is not less than 18. Suppose that there exists $\left(7, G_{6}, 3\right)-O C D$ which contains 13 blocks. There is a vertex on the K_{7} which appears in the center of the 13 blocks at most once, and the sum of its degree number is at most $5+12=17$. This is a contradiction. We easily get $c\left(7, G_{6}, 3\right)=14$.

When $\lambda \geq 2$, from the following table, we find that the theorem is true.

λ	1	2	3	4	5	6	7	8	9
L_{λ}	$K_{1,3} \cup K_{3}$	P_{3}	K_{3}	$K_{1,4}$	$G D$	P_{2}	P_{3}	$K_{1,3}$	$K_{1,4}$
			$L_{1}-R_{2}$	$L_{2}+L_{2}$		$L_{2}-R_{4}$	$L_{3}-R_{4}$	$L_{4}-R_{4}$	$L_{2}+L_{7}$
R_{λ}	$K_{1,4} \cup$	$K_{1,3}$	$K_{1,4} \cup K_{1,3}$	P_{2}	$G D$	$K_{1,4}$	$K_{1,3}$	P_{3}	P_{2}
	$K_{1,3} \cup P_{3}$			$R_{2}-L_{2}$		$R_{2}+R_{4}$	$R_{3}-L_{4}$	$R_{4}+R_{4}$	$R_{7}-L_{2}$

(2). On the set $X=Z_{7}, A: \quad[2,4,0,1,3,6]+i, i=0,1,2,5, \quad[1,5,2,3,4,6]$, $[1,6,4,5,2,0],[1,3,6,0,5,2],[1,4,5,6,3,0] ; B:[2,4,0,1,3,6]+i, i=0,3,4,5,6$, $[3,6,1,2,4,0],[0,4,2,3,5,1],[1,4,0,2,5,3],[1,5,3,2,6,4]$. The (X, A) is a $\left(7, G_{9}, 2\right)$ $O P D$ and leave edges are $(0,3,4)$. The (X, B) is a $\left(7, G_{9}, 2\right)-O C D$ and repeat edges are $(4,3,2,0)$. From the following table, we find that the theorem is true.

λ	1	2	3	4
L_{λ}	$\cup_{2 \leq i \leq 4} P_{i}$	P_{3}	$P_{\cup} P_{3}$	P_{4}
			$L_{1}-R_{2}$	$L_{2}+L_{2}$
R_{λ}	$P_{2} \cup P_{4}$	P_{4}	$P_{2} \cup P_{2}$	P_{2}
			$R_{1}-L_{2}$	$R_{2}-L_{2}$

Theorem 5.7 There exist $\left(v, G_{i}, \lambda\right)-O P D($ or $O C D)$ for $i \in[5,11], v \not \equiv 0,1(\bmod$ 5) and $\lambda \geq 1$, for covering except $(i, v, \lambda)=(6,8,1),(6,7,1)$ and $(6,7,3)$, for packing except $(i, v, \lambda)=(6,7,1)$ and $(9,7,1)$.
Proof When $v \equiv 2,4,7,9(\bmod 10)$, by Theorem 5.1 and Lemma 5.6, we find that the theorem is true. When $v \equiv 3,8(\bmod 10), \bar{\lambda}=5$. By Theorem 2.12 , we can list the following table to get $\left(v, G_{i}, \lambda\right)-O P D$ and $\left(v, G_{i}, \lambda\right)-O C D$ for $\lambda>1, i \in[5,11]$.

$G_{i}, i \in$	λ	1	2	3	4
$[5,8] \cup[10,11]$	L_{λ}	Ω	$L_{1}-R_{1}$		$L_{2}+L_{2}$
\{9\}	L_{λ}	\because	$L_{1}-R_{1}$		$\begin{gathered} \bullet \\ L_{2}+L_{2} \\ \hline \end{gathered}$
[5,11$]$	R_{λ}	\cdots		$R_{1}-L_{2}$	$\begin{aligned} & \bullet \bullet \bullet \\ & R_{2}-L_{2} \end{aligned}$

Lemma 5.8 When $\lambda \geq 2$, there exist $\left(6, G_{i}, \lambda\right)-O P D(O C D)$ for $i=12,13$.
Proof On the set $X=Z_{6}$, let $A=\{[0,3,2,1,4,5]$, $[0,5,3,1,4,2]$, $[0,4,5,2,1,3]$, $[0,5,1,4,3,2]\}, B=\{[0,3,4,2,1,5]\}$; then $(X, A \cup B)$ is a $\left(6, G_{13}, 2\right)-G D$. It is also $\left(6, G_{13}, 2\right)-O C D(O P D)$. Let $C=\{[0,3,1,2,4,5]$, $[0,5,1,4,3,2],[0,2,3,1,5,4]$, $[2,4,3,0,5,1]\}$; then $(X, A \cup C)$ is a $\left(6, G_{13}, 3\right)-O C D$. The union of a $\left(6, G_{13}, 1\right)-O P D$ and a $\left(6, G_{13}, 2\right)-O P D$ is a $\left(6, G_{13}, 3\right)-O P D$. Since there exists $\left(6, G_{13}, 2\right)-G D$, there exist $\left(6, G_{13}, 2 n\right)-G D$ for $n \geq 1$. Again by $\left(6, G_{13}, 3\right)-O P D(O C D)$, we find that there exist $\left(6, G_{13}, \lambda\right)-O C D$ for $\lambda \geq 2$.

On the set $X=Z_{6}$, let $A=\{[0,2,3,1,4,5],[0,3,4,2,1,5],[0,4,5,3,1,2]$,
$[0,5,1,4,3,2]\}, \quad B=\{[0,1,2,5,3,4]\}$; then $(X, A \cup B)$ is a $\left(6, G_{12}, 2\right)-G D$. It is also a $\left(6, G_{12}, 2\right)-O C D$ or $(O P D)$.

Let $C=\{[0,1,2,3,4,5],[2,0,4,5,1,3],[0,5,2,1,3,4]\}, D=\{[4,5,0,2,1,3]\}$; then $(X, A \cup C)$ is a $\left(6, G_{12}, 3\right)$-OPD, and $(X, A \cup C \cup D)$ is a $\left(6, G_{12}, 3\right)$-OCD. Using the same as proof as G_{13}, we find that $\left(6, G_{12}, \lambda\right)-O P D(O C D)$ exists for $\lambda \geq 2$.
Theorem 5.9 There exist $\left(v, G_{i}, \lambda\right)-O P D($ or $O C D)$ for $i \in[12,15]$, $v \equiv 2,3,5,6,7$, $8,10,11(\bmod 12)$ and $\lambda \geq 1$, for covering except $(v, i, \lambda)=(6,12,1)$ and $(6,13,1)$, for packing except $(v, i, \lambda)=(6,12,1)$.
Proof When $v \not \equiv 0,1,4,9(\bmod 12)$, it is easy to see that l_{1} takes three values 1 , 3,4 , and $r_{1}=6-l_{1}$. When $v \equiv 2,11(\bmod 12), l_{1}=1$, it follows from Theorem 5.1 that the theorem is true. When $v \equiv 3,6,7,10(\bmod 12), l_{1}=3$, it follows from Theorem 5.2 that the theorem is true.

When $v \equiv 5,8(\bmod 12), l_{1}=4$ and $\bar{\lambda}=3$. Let (X, \mathcal{A}) and (X, \mathcal{B}) be $\left(v, G_{i}, 1\right)$ $O P D$ and $\left(v, G_{i}, 1\right)-O C D, i \in[12,15]$ in Theorem 4.9, and L_{1} and R_{1} be leave edge graph of the \mathcal{A} and repeat edge graph of \mathcal{B}, respectively.

By the proof of Theorem 4.9, L_{1} and R_{1} is the special graph listed in under table. By Theorem 2.12, we can list the following table to get $\left(v, G_{i}, \lambda\right)-O P D$ and $\left(v, G_{i}, \lambda\right)-O C D$ for $\lambda \geq 1, i \in[12,15]$.
$\underline{\text { For } G_{12}}$

λ	1	2	or	λ	1	2
L_{λ}	\cdots	\cdots	or	L_{λ}	.	$!$
R_{λ}	\ldots	C	or	R_{λ}	¢	\cdots

$\underline{\text { For } G_{13}}$

λ	1	2	or	λ	1	2
L_{λ}	\ddots	\ddots	or	L_{λ}	\ddots	\ddots
R_{λ}	$\ddots!$	\ddots	or	R_{λ}	\ddots	\ddots

$\underline{\text { For } G_{14}}$

λ	1	2
L_{λ}		! !
R_{λ}	! !	\cdots

For G_{15}

λ	1	2	or	λ	1	2
L_{λ}		\cdots	or	L_{λ}	\square	\cdots
R_{λ}	\cdots	\square	or	R_{λ}	Γ	\square

6 Graph designs for $\lambda \geq 1$

Lemma 6.1 The necessary conditions for $(v, G, \lambda)-G D$ to exist are (1) $\lambda v(v-1) \equiv 0$ $(\bmod 2 e(G)) ;(2) \lambda(v-1) \equiv 0(\bmod n)$, where $n=\operatorname{gcd}(\{d(u) \mid u \in V(G)\})$.
By Corollary 2.13, Section 5 and Table A, we easily obtain the following theorem:
Theorem 6.2 If v satisfies the conditions in Lemma 6.1 and $v>6$, then there exist $\left(v, G_{i}, \lambda\right)-G D$ for $i \in[1,15]$ and $\lambda \geq 1$.

Acknowledgments

The author is grateful to Professor Q. Kang for his support of this research.

References

[1] A.M. Assaf, On covering designs with block size 5 and index 5, Designs, Codes and Cryptography 5 (1995), 91-107.
[2] A.M. Assaf, -it On packing designs with block size 5 and index $7 \leq \lambda \leq 21$, JCMCC 26 (1998), 3-71.
[3] A.M. Assaf, N. Shalaby and L.P.S. Singh, On packing designs with block size 5 and index 3 and 6, Ars Combinatoria 45 (1997), 143-156.
[4] A.M. Assaf, N. Shalaby and J. Yin, Directed packings with block size 5, Australasian Journal of Combinatorics 17 (1998), 235-256.
[5] F.E. Bennett, J. Yin, H. Zhang and R.J.R. Abel, Perfect Mendelsohn packing designs with block size 5, Designs, Codes and Cryptography 14 (1998), 5-22.
[6] J.C. Bermond, C. Huang, A. Rosa and D. Sotteau, Decomposition of complete graphs into isomorphic subgraphs with five vertices, Ars Combinatoria 10 (1980), 211-254.
[7] Y. Caro and R. Yuster, Covering graphs: the covering problem solved, Journal of Combinatorial Theory, series A 83 (1988), 273-282.
[8] H.L. Fu and C.C. Lindner, -it The Doyen-Wilson theorem for maximum packing of K_{n} with 4-cycles, Discrete Mathematics 183 (1998), 103-117.
[9] D.G. Hoffman, Kimberly S. Kirkpatrick, G-designs of order n and index λ where G has 5 vertices or less, Australasian Journal of Combinatorics 18 (1998), 1337.
[10] N. Shalaby and J. Yin, Nested optimal λ-packings and λ-coverings of pairs with triples, Designs, Codes and Cryptography 15 (1998), 271-278.
[11] J.X. Yin and B.S. Gong, Existence of G-designs with $|V(G)|=6$, in Combinatorial designs and applications, Volume 126 (1988), 201-218.
[12] J.A. Kennedy, Minimum coverings of K_{n} with hexagons, Australasian Journal of Combinatorics 16 (1997), 295-303.
[13] Z. Liang, On G-designs (packing, covering) of λK_{v} with six vertices, nonbipartite G, manuscript.
[14] Q. Kang and Z. Liang, Optimal packings and coverings of $\lambda D K_{v}$ with k-circuits, JCMCC, to appear.
[15] C.J. Colbourn and J.H. Dinitz, The CRC handbook of combinatorial designs, CRC Press, 1996.

[^0]: * This research was supported by HBUT.

