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Abstract

It follows from our results that as n → ∞ the average distance between
the root and the (nearer) centroid node of a recursive tree Tn tends to
1; and the average value of the label of the (nearer) centroid node tends
to 5/2.

1. Introduction

For any node v of a tree T the branches of T joined to v are the maximal subtrees
of T not containing v. Let κ(v) denote the number of nodes in the largest branch
joined to v. A node v of a tree T with n nodes is a centroid node if κ(v) ≤ n/2.
Jordan [3] showed that either (i) T has a single centroid node v and κ(v) < n/2
or (ii) T has two (adjacent) centroid nodes v1 and v2, in which case n is even and
κ(v1) = κ(v2) = n/2.

A tree Tn with n labelled nodes, rooted at node 1, is a recursive tree if n = 1 or if
Tn can be constructed by joining node n to one of the n−1 nodes of some recursive
tree Tn−1; this is equivalent to requiring that the labels of the nodes encountered
along any path leading away from the root node 1 form an increasing sequence. It
is easy to see that there are (n − 1)! recessive trees Tn. For additional material on
recursive trees, see, e.g., [2, 4, 5, 6, 7, 9, 10].

Our object here is to obtain some results pertaining to the centroid of recursive
trees. (When we refer to the centroid node of a tree henceforth it is to be understood
that if the tree has two centroid nodes we are referring to the centroid node that
is nearer to the root.) In particular, it will follow from our results in Sections
2 and 3 that as n → ∞ the average distance between the root and the (nearer)
centroid node of a recursive tree Tn tends to 1; and the average value of the label
of the (nearer) centroid node tends to 5/2. These results may be contrasted with
the fact that for other familiar families of rooted trees Tn — such as the labelled
trees, plane trees, or binary trees, for example — it can be shown that the average
distance between the root and the centroid is of the order of n1/2 (cf. [8] and [1]).
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2. The distance from the root to the centroid node

For any recursive tree Tn let δ(Tn) denote the distance between the root and the
centroid node (that is nearer to the root if there are two centroid nodes). We now
derive a formula for D(n), the average value of δ(Tn) over the (n − 1)! recursive
trees Tn.

Theorem 2.1. If n ≥ 1, then

(2.1) D(Tn) =
{

(n − 1)/(n + 1), n odd,

(n − 2)/(n + 2), n even.

Proof. The result certainly holds when n = 1 or 2 so we may suppose that n ≥ 3.
If 1 ≤ i ≤ n − 1, let s(i, n − i) denote the number of recursive trees Tn with a
distinguished edge pq that partitions the nodes of Tn into two subsets A and B
such that |A| = i, |B| = n − i, the root node 1 and node p belong to A, and node
q belongs to B. (Note that this implies that p < q where, here and elsewhere, we
use the same symbol for a node and for its label.)

Let A� denote one of the
(

n
i−1

)
subsets of [n] : = (1, 2, · · · , n) of size i − 1; and

let A = A� ∪ {p} where p denotes the smallest element of [n] not in A�. (Note that
element 1 is necessarily in the set A.) Let B = [n]\A and let q denote the smallest
element of B. Now let Ti be one of the (i − 1)! recursive trees with node-set A,
rooted at node 1; and let Tn−i be one of the (n−i−1)! recursive trees with node-set
B, rooted at node q. Finally, let Tn be the tree obtained by joining node p of the
tree Ti to the node q of the tree Tn−i. It is not difficult to see, bearing in mind the
definitions of p and q and A and B, that the resulting tree Tn is a recursive tree
with node-set [n] in which the distinguished edge pq has the required properties.
Moreover, when this construction is carried out in all possible ways, each tree Tn

is counted separately for each such distinguished edge pq it contains.
Consequently,

(2.2) s(i, n − i) =
(

n
i − 1

)
(i − 1)!(n − i − 1)! = n!

(
(n − 1)(n − i + 1)

)−1
.

(We remark that relation (2.2) is equivalent to Lemma 1 in [8]; but the derivation
given here is more direct.)

Consider one of the s(i, n − i) recursive trees Tn with a distinguished edge pq
that partitions the nodes of T into subsets A and B such that |A| = i, |B| = n− i,
nodes 1 and p belong to A, and node q belongs to B. If u and v are any nodes of
A and B, respectively, then κ(u) ≥ n− i and κ(v) ≥ i. So if i > n/2, then no node
of B can be a centroid node and, hence, the centroid node(s) must belong to A.
Similarly, if i < n/2, the centroid node(s) must belong to B. And if i = n/2, then
p and q are each centroid nodes. It follows, therefore, that the distinguished edge
pq is on the path from the root of Tn to the (nearer) centroid node of Tn if and
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only if 1 ≤ i < n/2. Consequently, if we sum s(i, n − i) over i, for 1 ≤ i < n/2,
each tree Tn is counted δ(Tn) times. This implies that

(2.3)
M∑

i=1

s(i, n − i) = D(n) · (n − 1)!

where M = [(n − 1)/2]. (We remark that the basic idea underlying identity (2.3)
is a slight refinement of an observation given by Wiener [11; p. 17, para. 4]; he
pointed out that the sum over all edges of a tree of the product of the number of
pairs of nodes separated by the edge is equal to the sum of the distances between
all pairs of nodes of the tree.)

When we combine relations (2.2) and (2.3) and simplify, we find that

D(n) = n
M∑
i=1

(
(n − i)(n − i + 1)

)−1

= n{(n − M)−1 − n−1} = M/(n − M),

and this implies conclusion (2.1). �
Let D2(n) denote the second factorial moment of δ(Tn) over the (n−1)! recursive

trees Tn. The argument used in Theorem 2.1 can be extended to show that if n ≥ 3,
then

D2(n) = (2n/N) ·
n∑

h=N+2

h−1 − 2n/(N + 1) + 2

where N = [n/2]+1. Consequently, D2(n) → 4 log 2−2 as n → ∞. Furthermore, it
can be shown (by an extension of the argument that will be used to prove Lemma
3.1 in the next section) that if 0 ≤ k ≤ (n − 1)/2, then

Pr{δ(Tn) ≥ k} =
∑ ′

(h1 · · · hk)−1,

when the sum is over all k-tuples of integers h1, · · · , hk such that

n/2 < h1 < · · · < hk ≤ n − 1

and where an empty sum equals one. Consequently,

Pr{δ(Tn) ≥ k} → (log 2)k/k!

for each fixed non-negative integer k as n → ∞.

3. The label of the centroid node

For any recursive tree Tn let α(Tn) denote the label of the centroid node (that
is nearer to the root if there are two centroid nodes). Our main object in this
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section is to derive a formula for A(n), the average value of α(Tn) over the (n− 1)!
recursive trees. First, however, we introduce some more definitions and prove two
lemmas.

Suppose α(Tn) = a > 1. Then the root branch of Tn is the branch joined to the
centroid node a that contains the root of Tn. Let β(Tn) denote the number of nodes
in the root branch of Tn. If a = 1 then the root of Tn is the centroid node and we
say that Tn has an empty root branch and we let β(Tn) = 0. It follows readily from
these definitions and Jordan’s theorem that β(Tn) < n/2.

Consider the subtree of Tn rooted at the centroid node a, i.e., the subtree deter-
mined by node a and all nodes u such that the path from the root node to u contains
node a. This subtree has n − β(Tn) nodes and all these nodes — apart from node
a — have labels larger than a. Hence, n− β(Tn)− 1 ≤ n− a or α(Tn) ≤ β(Tn) + 1.

Let F (n;a, b) denote the number of recursive trees Tn such that α(Tn) = a and
β(Tn) = b. We now derive a preliminary result that we shall use in obtaining a
formula for F (n;a, b).

Lemma 3.1. Let m and h be integers such that m/2 ≤ h ≤ m−1, and let N(m,h)
denote the number of recursive trees Tm with a (unique) branch of size h joined to
the root. Then

N(m,h) = (m − 1)! · h−1

Proof. If m/2 ≤ h ≤ m − 1, then the branch of size h joined to the root is clearly
unique. The nodes in the branch of size h can be selected in

(
m−1

h

)
ways, since the

node labelled 1 cannot be one of the selected nodes. There are (h − 1)! ways of
forming a recursive tree Th on these h nodes and (m − h − 1)! ways of forming a
recursive tree Tm−h on the remaining m − h nodes. When we join the root-node
of the tree Th to the root-node of the tree Tm−h, we obtain a recursive tree Tn in
which the root is joined to a branch of size h. It follows, therefore, that

N(m,h) =
(

m − 1
n

)
(h − 1)!(m − h − 1)! = (m − 1)! · h−1,

as required. �

We now derive a formula for F (n;a, b).

Lemma 3.2. If a = 1 and b = 0, then

(3.1) F (n; 1, 0) = (n − 1)!
{
1 −

∑
n/2<h≤n−1

h−1
}

.

If 2 ≤ a ≤ b + 1 and 1 ≤ b < n/2, then

(3.2) F (n;a, b) = (a−1)
(

n − a
n − b − 1

)
(b−1)!(n−b−1)!·

{
1 −

∑
n/2<h≤n−b−1

h−1
}

.
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Proof. If α(Tn) = 1 and β(Tn) = 0, then the root-node of Tn is a centroid node
and, hence, is not incident with any branches of size h, for n/2 < h ≤ n − 1.
Therefore, by Lemma 3.1,

F (n; 1, 0) = (n − 1)! −
∑ ′

N(n, h)

= (n − 1)!
{

1 −
∑ ′

h−1
}

,

where, here and elsewhere, the sums
∑ ′ are over h such that n/2 < h ≤ n − 1.

This proves (3.1).

If α(Tn) = a and β(Tn) = b where 2 ≤ a ≤ b + 1 and 1 ≤ b < n/2, then the
root-node of Tn is not a centroid node. The n − b − 1 nodes of the subtree of Tn

rooted at the centroid node a — other than the node a itself — can be selected
in

(
n−a

n−b−1

)
ways; this follows from the earlier observation that the labels of these

nodes must exceed a. The number of ways of forming a recursive tree Tn−b on these
selected nodes plus node a in which the root-node a is not joined to any branches
of size h, where n/2 < h ≤ n − b − 1, is equal to

(n − b − 1)!
{

1 −
∑

n/2<h≤n−b−1

h−1
}
,

in view of Lemma 3.1. The number of ways of forming a recursive tree Tb on the
remaining b nodes is (b− 1)!. Finally, there are a− 1 ways of joining the root-node
a of Tn−b to a node with a smaller label in the tree Tb to form a recursive tree Tn

such that α(Tn) = a and β(Tn) = b. Combining these observations, we find that

F (n;a, b) = (a − 1)
(

n − a
n − b − 1

)
(b − 1)!(n − b − 1)! ·

{
1 −

∑
n/2<h≤n−b−1

h−1
}

,

as required. �
We now derive a formula for A(n), the average value of α(Tn) over the (n − 1)!

recursive trees Tn.

Theorem 3.1. If n ≥ 1, then

(3.3) A(n) =
{

(5n + 3)/(2n + 6), n odd,

(5n2 + 10n + 8)/2(n + 2)(n + 4), n even.

Proof. The result certainly holds when n = 1 or 2 so we may assume that n ≥ 3.
It follows from the definitions of F (n;a, b) and A(n) that

(3.4) A(n) =

{
F (n; 1, 0) +

M∑
b=1

b+1∑
a=2

aF (n;a, b)

}
÷ (n − 1)!,
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where M := [(n − 1)/2].

We observe that

b+1∑
a=2

a(a − 1)
(

n − a
n − b − 1

)

=
(n + 1)!

(b − 1)!(n − b − 1)!
·
{

1
n − b

− 2
n − b + 1

+
1

n − b + 2

}
.(3.5)

This follows, after simplification, upon writing

a(a − 1) = n(n + 1) − 2(n + 1)(n − a + 1) + (n − a + 2)(n − a + 1)

and then using the identity

b+1∑
a=2

(
Q − a

Q − 1 − b

)
=

(
Q − 1
Q − b

)

with Q = n, n + 1, and n + 2. Relations (3.2) and (3.5) imply that

b+1∑
a=2

aF (n;a, b)

= (n + 1)!
{

1
n − b

− 2
n − b + 1

+
1

n − b + 2

}
·
{
1 −

∑
n/2<h≤n−b−1

h−1
}(3.6)

for 1 ≤ b ≤ M.

We now sum relation (3.6) over the relevant values of b. This yields the relation

(3.7)
M∑

b=1

b+1∑
a=2

aF (n;a, b) = (n + 1)! {S1 − S2 + 2S3 − S4}
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where S1, S2, S3, and S4 are as follows:

S1 : =
M∑

b=1

{
1

n − b
− 2

n − b + 1
+

1
n − b + 2

}

=
1

n − M
− 1

n − M + 1
− 1

n
+

1
n + 1

;

S2 : =
∑

1≤b<n/2

1
n − b

·
∑

n/2<h≤n−b−1

1
h

=
∑

n/2<h1<h2≤n−1

(h1h2)−1;

S3 : =
∑

1≤b<n/2

1
n − b + 1

·
∑

n/2<h≤n−b−1

1
h

= S2 + n−1
∑ ′

h−1 −
∑ ′ (

h(h + 1)
)−1;

and, finally,

S4 =
∑

1≤b<n/2

1
n − b + 2

·
∑

n/2<h≤n−b−1

1
h

= S2 + (n+1)−1
∑ ′

h−1 + n−1
∑ ′

h−1 −
∑ ′(

h(h+1)
)−1−

∑ ′(
h(h+2)

)−1
.

When we substitute these expressions for S1, S2, S3, and S4 into relation (3.7),
combine the telescoping sums, and simplify, we find that

(3.8)
M∑

b=1

b+1∑
a=2

aF (n;a, b) = (n − 1)!
{∑ ′

h−1 − 1
2

+
n(n + 1)

2(n − M)(n + 1 − M)

}
.

It now follows from (3.4), (3.1), and (3.8) that

A(n) =
1
2

+
n(n + 1)

2(n − M)(n + 1 − M)

where M = [(n − 1)/2]; and it is easy to see, considering odd and even values of n
separately, that this implies conclusion (3.3). �

We remark that when n is even there are 4(n + 2)−1 · (n− 1)! recursive trees Tn

with two centroid nodes. If we restrict our attention to these trees, then it can be
shown that the average value of the label of the centroid node closer to the root is
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2(n + 1)/(n + 4) and the expected value of the label of the further centroid node is
4(n + 1)/(n + 4).

We conclude by stating without proof some other results that can be deduced
from Lemma 3.2. It follows from (3.1) that

Pr{α(Tn) = 1} = 1 −
∑

n/2<h≤n−1

h−1 → 1 − log 2,

where the probability is over all the (n − 1)! recursive trees Tn. More generally, it
can be shown that if a is any fixed positive integer, then

Pr{α(Tn) = a} → (1/2)a−1 +
a−1∑
i=1

1
i

(1/2)i − log 2

= (1/2)a−1 −
∞∑

i=a

1
i

(1/2)i

as n → ∞.
Moreover, it can be shown that if b > 0, then

Pr{β(Tn) = b} =
n

(n − b)(n− b + 1)
·
{
1 −

∑
n/2<h≤n−b−1

h−1
}
.

From this it follows that if B(n) denotes the average value of β(Tn) over the (n−1)!
recursive trees Tn, then

B(n)/n =
∑

n/2<h1<h2≤n

(h1h2)−1

→ 1
2

log2 2 = .2402 . . .

as n → ∞.
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