Further results on the existence of generalized Steiner triple systems with group size $g \equiv 1,5(\bmod 6)$

G. $\mathrm{Ge}{ }^{*}$

Department of Mathematics
Suzhou University
Suzhou 215006, China
gnge@public1.sz.js.cn

Abstract

Generalized Steiner triple systems, GS($2,3, n, g$) are equivalent to maximum constant weight codes over an alphabet of size $g+1$ with distance 3 and weight 3 in which each codeword has length n. The necessary conditions for the existence of a $\operatorname{GS}(2,3, n, g)$ are $(n-1) g \equiv 0(\bmod 2)$, $n(n-1) g^{2} \equiv 0(\bmod 6)$, and $n \geq g+2$. Recently, we proved that for any given $g, g \equiv 1,5(\bmod 6)$ and $g \geq 11$, if there exists a $\operatorname{GS}(2,3, n, g)$ for all $n, n \equiv 1,3(\bmod 6)$ and $g+2 \leq n \leq 9 g+4$, then the necessary conditions are also sufficient. In this paper, the above result is improved and two new results are obtained. First, we show that for any given g, $g \equiv 1,5(\bmod 6)$ and $g \geq 17$, if there exists a $\operatorname{GS}(2,3, n, g)$ for all n, $n \equiv 1,3(\bmod 6)$ and $g+2 \leq n \leq 7 g+6$, then the necessary conditions are also sufficient. Second, we prove that the necessary conditions for the existence of a $\operatorname{GS}(2,3, n, g)$ are also sufficient for $g=13$.

1 Introduction

A $(g+1)$-ary constant weight code (n, w, d) is a code $C \subseteq\left(Z_{g+1}\right)^{n}$ of length n and minimum distance d, such that every $c \in C$ has Hamming weight w. To construct a constant weight code (n, w, d) with $w=3$, a group divisible design (GDD) will be used. A K-GDD is an ordered triple $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ where \mathcal{V} is a set of n elements, \mathcal{G} is a collection of subsets of \mathcal{V} called groups which partition \mathcal{V}, and \mathcal{B} is a set of some subsets of \mathcal{V} called blocks, such that each block intersects each group in

[^0]at most one element and that each pair of elements from distinct groups occurs together in exactly one block in \mathcal{B}, where $|B| \in K$ for any $B \in \mathcal{B}$. The group type is the multiset $\{|G|: G \in \mathcal{G}\}$. A $k-\operatorname{GDD}\left(g^{n}\right)$ denotes a K-GDD with n groups of size g and $K=\{k\}$. If all blocks of a GDD can be partitioned into parallel classes, then the GDD is called a resolvable GDD and denoted by RGDD, where a parallel class is a set of blocks partitioning the element set \mathcal{V}. In a $3-\operatorname{GDD}\left(g^{n}\right)$, let $\mathcal{V}=\left(Z_{g+1} \backslash\{0\}\right) \times\left(Z_{n+1} \backslash\{0\}\right)$ with n groups $G_{i} \in \mathcal{G}, G_{i}=\left(Z_{g+1} \backslash\{0\}\right) \times\{i\}$, $1 \leq i \leq n$ and blocks $\{(a, i),(b, j),(c, k)\} \in \mathcal{B}$. One can construct a constant weight code $(n, 3, d)$ as stated in [5], [8]. From each block we form a codeword of length n by putting an a, b and c in positions i, j and k respectively and zeros elsewhere. This gives a constant weight code over Z_{g+1} with minimum distance 2 or 3 . If the minimum distance is 3 , then the code is a $(g+1)$-ary maximum constant weight code (MCWC) $(n, 3,3)$ and the $3-\mathrm{GDD}\left(g^{n}\right)$ is called a generalized Steiner triple system, denoted by $\operatorname{GS}(2,3, n, g)$. It is easy to see that a $3-\operatorname{GDD}\left(g^{n}\right)$ is a $\operatorname{GS}(2,3, n, g)$ if and only if any two intersecting blocks meet at most two common groups of the GDD. The following result is known.

Lemma 1.1 ([5], [8]) The following are the necessary conditions for the existence of a $G S(2,3, n, g)$:
(1) $(n-1) g \equiv 0(\bmod 2)$;
(2) $n(n-1) g^{2} \equiv 0(\bmod 6)$;
(3) $n \geq g+2$.

The necessary conditions are shown to be sufficient by several authors with one exception for $2 \leq g \leq 11$ ([5], [8], [9], [3], [4], [11], [6]). Hence, we have the following lemma.

Lemma 1.2 The necessary conditions for the existence of a $G S(2,3, n, g)$ are also sufficient for $2 \leq g \leq 11$ with one exception of $(g, n)=(2,6)$.

Blake-Wilson and Phelps [2] proved that the necessary conditions for the existence of a GS $(2,3, n, g)$ are also asymptotically sufficient for any g. Recently, in [6] we proved that for any given $g, g \equiv 1,5(\bmod 6)$ and $g \geq 11$, if there exists a $\operatorname{GS}(2,3, n, g)$ for all $n, n \equiv 1,3(\bmod 6)$ and $g+2 \leq n \leq 9 g+4$, then the necessary conditions are also sufficient.

Since the existence of a $\operatorname{GS}(2,3, n, g)$ has been solved for $g \leq 11$, we need only consider $g \geq 13$ for the case $g \equiv 1,5(\bmod 6)$. Let $T_{g}=\{n$: there exists a $\operatorname{GS}(2,3, n, g)\}$, $B_{g}=\{n: n$ satisfying the necessary conditions listed in Lemma 1.1 $\}, M_{g}=\{n$: $\left.n \in B_{g}, n \leq 7 g+6\right\}$. In this paper, the results of [6] will be improved for $g \geq 17$ and the following results are obtained.

Theorem 1.3 For any $g \equiv 1,5(\bmod 6)$ and $g \geq 17$, if $M_{g} \subset T_{g}$, then $B_{g}=T_{g}$. That is the necessary conditions for the existence of a $G S(2,3, n, g)$ are also sufficient.

Theorem 1.4 $B_{13}=T_{13}$, that is the necessary conditions for the existence of a $G S(2,3, n, g)$ are also sufficient for $g=13$.

2 Constructions

In this paper, we will use two types of constructions. One is product constructions, the other is direct construction. To show product constructions, we need the concept of both holey generalized Steiner triple systems and disjoint incomplete Latin squares.

A holey group divisible design, $K-H G D D$, is a four-tuple $(\mathcal{V}, \mathcal{G}, \mathcal{H}, \mathcal{B})$, where \mathcal{V} is a set of points, \mathcal{G} is a partition of \mathcal{V} into subsets called groups, $\mathcal{H} \subset \mathcal{G}, \mathcal{B}$ is a set of blocks such that a group and a block contain at most one common point and every pair of points from distinct groups, not both in \mathcal{H}, occurs in a unique block in \mathcal{B}, where $|B| \in K$ for any $B \in \mathcal{B}$. A $k-\operatorname{HGDD}\left(g^{(n, u)}\right)$ denotes a K-HGDD with n groups of size g in \mathcal{G}, u groups in \mathcal{H} and $K=\{k\}$. A holey generalized Steiner triple system, $\operatorname{HGS}(2,3,(n, u), g)$, is a $3-\operatorname{HGDD}\left(g^{(n, u)}\right)$ with the property that any two intersecting blocks meet at most two common groups.

It is easy to see that if $u=0$ or $u=1$, then a $\operatorname{HGS}(2,3,(n+u, u), g)$ is just a $\mathrm{GS}(2,3, n, g)$ or a $\mathrm{GS}(2,3, n+1, g)$ respectively.

A Latin square of side $n, \mathrm{LS}(n)$, is an $n \times n$ array based on some set S of n symbols with the property that every row and every column contains every symbol exactly once. An incomplete Latin square, $\operatorname{ILS}(n+a, a)$, denotes a $\operatorname{LS}(n+a)$ "missing" a sub $\operatorname{LS}(a)$. Without loss of generality, we may assume that the missing subsquare, or hole, is at the lower right corner. We say $(i, j, s) \in \operatorname{ILS}(n+a, a)$ if the entry in the cell (i, j) is s. Let A_{1}, A_{2} be two $\operatorname{ILS}(n+a, a)$ on the same symbol set. If $\left(i, j, s_{1}\right) \neq\left(i, j, s_{2}\right)$ for any $\left(i, j, s_{1}\right) \in A_{1},\left(i, j, s_{2}\right) \in A_{2}$, then we say that A_{1} and A_{2} are disjoint. We use $r \operatorname{DILS}(n+a, a)$ to denote r pairwise disjoint $\operatorname{ILS}(n+a, a)$.

For the existence of $r \operatorname{DILS}(n+a, a)$, we have the following two lemmas.
Lemma 2.1 ([3]) There exist $\delta(a) \operatorname{DILS}(n+a, a)$, where $\delta(0)=n$ and $\delta(a)=a$ for $1 \leq a \leq n$.

Lemma $2.2([7,10,11])$ There exist $n \operatorname{DILS}(n+a, a)$ for any positive integer n and for any integer $a, 0 \leq a \leq n$ except for $(n, a)=(2,1),(6,5)$.

The following singular indirect product construction for $\mathrm{GS}(2,3, n, g)$ is first stated in [3].

Lemma 2.3 (Singular Indirect Product (SIP)) Let m, n, t, u and a be integers such that $0 \leq a \leq u<n$. Suppose the following designs exist:
(1) $t \operatorname{DILS}(n+a, a)$;
(2) a $3-G D D\left(g^{m}\right)$ with the property that all blocks of the design can be partitioned into t sets $S_{0}, S_{1}, \cdots, S_{t-1}$, such that the minimum distance in $S_{r}, 0 \leq r \leq t-1$, is 3; (3) $a \operatorname{HGS}(2,3,(n+u, u), g)$.

Then there exists a $\operatorname{HGS}(2,3,(c, d), g)$, where $c=m(n+a)+u-a, d=m a+u-a$. Further, if there exists
(4) $a G S(2,3, m a+u-a, g)$,
then there exists a $G S(2,3, m(n+a)+u-a, g)$.
Taking $a=0$ in Lemma 2.3, we get the singular direct product construction, which first appeared in [9].

Lemma 2.4 (Singular Direct Product (SDP)) Let m, n, t, and u be integers such that $0 \leq u<n$. Suppose $t \leq n$ and the following designs exist:
(1) a $3-G D D\left(g^{m}\right)$ with the propery that all blocks of the design can be partitioned into t sets $S_{0}, S_{1}, \cdots, S_{t-1}$, such that the minimum distance in $S_{r}, 0 \leq r \leq t-1$, is 3; (2) $a \operatorname{HGS}(2,3,(n+u, u), g)$.

Then there exists a $\operatorname{HGS}(2,3,(m n+u, u), g)$. Further, if there exists a $G S(2,3, u, g)$, then there exists a $G S(2,3, m n+u, g)$.

Taking $u=0$ or 1 in Lemma 2.4, we get the Construction C or D of Etzion in [5] respectively.

Lemma 2.5 (Direct Product (DP)) Let $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ be a 3- $G D D\left(g^{m}\right)$, and suppose there exists a $G S(2,3, n, g)$. Then there exists a $G S(2,3, m n, g)$ if \mathcal{B} can be partitioned into t sets S_{0}, \cdots, S_{t-1}, such that the minimum distance in $S_{r}, 0 \leq r \leq t-1$, is 3 and $t \leq n$.

Lemma 2.6 ([5]) Let $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ be a $3-G D D\left(g^{m}\right)$, and suppose there exists a $G S(2,3, n, g)$. Then there exists a $G S(2,3, m(n-1)+1, g)$ if \mathcal{B} can be partitioned into t sets S_{0}, \cdots, S_{t-1}, such that the minimum distance in $S_{r}, 0 \leq r \leq t-1$, is 3 and $t \leq n-1$.

It is easy to notice that the derived generalized Steiner triple system in Lemma 2.5 and Lemma 2.6 has a sub $\operatorname{GS}(2,3, n, g)$. Hence, we have the following.

Lemma 2.7 Let $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ be a $3-G D D\left(g^{m}\right)$. Suppose there exists a $G S(2,3, n, g)$. Then there exists a $\operatorname{HGS}(2,3,(m n, n), g)$ or a $\operatorname{HGS}(2,3,(m(n-1)+1, n), g)$ if \mathcal{B} can be partitioned into t sets S_{0}, \cdots, S_{t-1}, such that the minimum distance in $S_{r}, 0 \leq r \leq$ $t-1$, is 3 and $t \leq n$ or $t \leq n-1$ respectively.

If one uses a $3-\operatorname{RGDD}\left(g^{m}\right)$ in the constructions, then each parallel class becomes an S_{r} and there are $t=\frac{g(m-1)}{2}$ such classes. The following is stated in [3].

Lemma 2.8 If there exists a $G S(2,3, n, g)$ and a $3-R G D D\left(g^{m}\right)$ with $t=\frac{g(m-1)}{2} \leq n$ or $n-1$, then there exists a $G S(2,3, m n, g)$ or a $G S(2,3, m(n-1)+1, g)$ respectively.

For the existence of a $3-\operatorname{RGDD}\left(g^{m}\right)$, we have the following.
Lemma $2.9([1])$ A $3-R G D D\left(g^{m}\right)$ exists if and only if $(m-1) g \equiv 0(\bmod 2), m g \equiv$ $0(\bmod 3)$ and $g^{m} \neq 2^{3}, 2^{6}$ and 6^{3}.

Combining Lemmas 2.7-2.9, we have the following.
Lemma 2.10 For any $g \geq 13$, if there exists a $G S(2,3, n, g)$, then there exists a $G S(2,3,3 n, g)$ and a $G S(2,3,3(n-1)+1, g)$. Consequently, there exists a $\operatorname{HGS}(2,3$, $(3 n, n), g)$ and a $\operatorname{HGS}(2,3,(3(n-1)+1, n), g)$.

3 Proof of Theorem 1.3

In this section, we will show the proof of Theorem 1.3. First, we need the following lemmas.

Lemma 3.1 For $g \equiv 1(\bmod 6)$ and $g \geq 19$, suppose $v=42 p+6 j+12+k$, where $0 \leq j \leq 6$ and $k=3$ or 7 . If $6 p+3 \in T_{g}, 6 p+6 j+k \in T_{g}$, and $p \geq\left\lceil\frac{j}{2}\right\rceil$, then $v \in T_{g}$.
Proof. Apply Lemma 2.3 with $m=3, n=12 p+4, t=g, u=6 p+3$ and $a=3 j+\frac{k-3}{2}$. Since $p \geq\left\lceil\frac{2}{2}\right\rceil$, it is easy to check that $0 \leq a \leq u<n$. From Lemma 2.2, there exist $n \operatorname{DILS}(n+a, a)$ for $0 \leq a \leq n$. We further have $t \operatorname{DILS}(n+a, a)$ since $t \leq u-2<n$. Thus the condition (1) of Lemma 2.3 is satisfied. For $g \geq 19$, a $3-\operatorname{RGDD}\left(g^{3}\right)$ always exists by Lemma 2.9, which has g parallel classes. So, condition (2) is also satisfied. From $u \in T_{g}$, we apply Lemma 2.10 to obtain a $\operatorname{HGS}(2,3,(n+u, u), g)$, providing the design in condition (3). Finally, we have $m a+u-a=6 p+6 j+k \in T_{g}$, the condition (4) is satisfied. Therefore, we have $v \in T_{g}$. This completes the proof. $\quad \square$

Lemma 3.2 For $g \equiv 5(\bmod 6)$ and $g \geq 17$, suppose $v=42 p+6 j+k$, where $0 \leq j \leq 6$ and $k=1$ or 3 . If $6 p+1 \in T_{g}, 6 p+6 j+k \in T_{g}$, and $p \geq\left\lceil\frac{j}{2}\right\rceil$, then $v \in T_{g}$.
Proof. Apply Lemma 2.3 with $m=3, n=12 p, t=g, u=6 p+1$ and $a=3 j+\frac{k-1}{2}$. Then the proof is completed analogously to that of Lemma 3.1.

Now, we are in a position to prove Theorem 1.3.
Proof of Theorem 1.3. We need to show that $M_{g} \subset T_{g}$ implies that $B_{g} \subset T_{g}$. The proof is by induction on n. Suppose $n \in B_{g}$. If $n \in M_{g}$, then $n \in T_{g}$. Otherwise, we have $n \geq 7 g+8$ and distinguish between the following cases:
Case 1: $g \equiv 1(\bmod 6)$ and $g \geq 19$. Write $n=42 p+6 j+12+k \geq 7 g+8$, where $0 \leq j \leq 6$ and $k=3$ or 7 . We first claim that $p \geq\left\lceil\frac{j}{2}\right\rceil$. If not, then $p \leq\left\lceil\frac{j}{2}\right\rceil-1 \leq 2$. Thus $n \leq 84+6 j+12+k$. Since $g \geq 19,0 \leq j \leq 6$ and $k=3$ or 7 , we have $n \leq 139<141 \leq 7 g+8$, a contradiction.

Next, it is noticed that $7 g+8 \equiv 42 p+15(\bmod 42)$ and it is easy to see that $n \geq 7 g+8$ implies $n=42 p+15+6 j+k-3 \geq 7 g+8+6 j+k-3$. Then, it is easily checked that $\alpha=6 p+3 \geq g+2$ and $\beta=6 p+6 j+k \geq g+2$. Since $\beta \equiv 1$ or $3(\bmod 6)$, we see that $\alpha \in B_{g}$ and $\beta \in B_{g}$. If we have both $\alpha \in M_{g}$ and $\beta \in M_{g}$, then Lemma 3.1 guarantees that $n \in T_{g}$ and the proof is completed. If at least one of α and β is not in M_{g}, then we can repeat the induction process taking the number α, β not in M_{g} as n^{\prime}.
Case 2: $g \equiv 5(\bmod 6)$ and $g \geq 17$. Write $n=42 p+6 j+k \geq 7 g+8$, where $0 \leq j \leq 6$ and $k=1$ or 3 . Apply Lemma 3.2; the proof of this case is similar to that of Case 1 . We need only to check that $p \geq\left\lceil\frac{j}{2}\right\rceil$ and $6 p+1 \geq g+2$. We first claim that $p \geq\left\lceil\frac{j}{2}\right\rceil$. If not, then $p \leq\left\lceil\frac{j}{2}\right\rceil-1 \leq 2$. Thus $n<84+6 j+k$. Since $g \geq 17$, $0 \leq j \leq 6$ and $k=1$ or 3 , we have $n \leq 123<127 \leq 7 g+8$, a contradiction.

Next, it is noticed that $7 g+8 \equiv 42 p+1(\bmod 42)$ and it is easy to see that $n \geq 7 g+8$ implies $n=42 p+6 j+k \geq 7 g+7+6 j+k$. Hence, we have $6 p+1 \geq g+2$.

After certain steps of induction on n, n^{\prime} will be small enough so that n^{\prime} is in M_{g}, consequently, $n \in T_{g}$. This completes the proof.

4 Proof of Theorem 1.4

In this section, we will show that the necessary conditions for the existence of a GS($2,3, n, 13$) are also sufficient. From Theorem 1.3 of [6], we need only to consider the case $n \in E=\{n: n \equiv 1,3(\bmod 6)$ and $15 \leq n \leq 121\}$.

For $n \equiv 3(\bmod 6)$, to construct a $\operatorname{GS}(2,3, n, 13)$ in $Z_{13 n}$, it suffices to find a set of generalized base blocks, $\mathcal{A}=\left\{B_{1}, \cdots, B_{s}\right\}$, $s=\frac{13(n-1)}{2}$, such that $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ forms a GS(2, 3, n, 13), where $\mathcal{V}=Z_{13 n}, G=\left\{G_{1}, G_{2}, \cdots, G_{n}\right\}, G_{i}=\{i+n j: 0 \leq j \leq$ $12\}, 1 \leq i \leq n$, and $\mathcal{B}=\left\{B+3 j: B \in \mathcal{A}, 0 \leq j \leq \frac{13 n}{3}-1\right\}$. For convenience, we write $\mathcal{A}=\bigcup_{i=1}^{3}\left\{\{i, x, y\}:\{x, y\} \in S_{i}\right\}$. So, for each \mathcal{A} we need only display the corresponding $S_{i}, 1 \leq i \leq 3$.

Lemma 4.1 There exists a $G S(2,3, n, 13)$ for all $n \in F_{1}$, where $F_{1}=\{15,21,27,33$, $39,51,69,87\}$.

Proof. For the values $n \in F_{1}$, with the aid of a computer, we have found a set of generalized base blocks of a $\operatorname{GS}(2,3, n, 13)$. Here, we only list the $S_{i}, 1 \leq i \leq 3$ for $n=15$. For the remaining values n, the corresponding $S_{i}, 1 \leq i \leq 3$ are listed in the Appendix. (In order to save space, we omit the Appendix; the interested reader may contact the author for a copy.)

$n=15, \mathcal{A}=\bigcup_{i=1}^{3}\left\{\{i, x, y\}:\{x, y\} \in S_{i}\right\}$,	
$S_{1}=$	$\{\{147,191\},\{41,83\},\{23,87\},\{74,129\},\{34,35\},\{75,188\},\{148,187\},\{43,70\}$,
	$\{72,95\},\{36,64\},\{8,125\},\{146,178\},\{90,101\},\{173,182\},\{120,177\},\{39,116\}$,
	$\{17,57\},\{54,96\},\{132,193\},\{18,69\},\{11,119\},\{26,186\},\{30,142\},\{20,22\}$,
	$\{14,103\},\{104,143\},\{100,128\},\{109,176\},\{53,184\},\{162,189\},\{153,155\}$,
	$\{56,80\},\{71,138\},\{12,67\}\} ;$
$S_{2}=$	$\{\{50,76\},\{48,185\},\{3,19\},\{105,159\},\{33,126\},\{144,166\},\{5,141\},\{6,154\}$,
	$\{81,106\},\{111,131\},\{132,150\},\{31,179\},\{29,101\},\{58,146\},\{61,63\},\{147,193\}$,
	$\{100,180\},\{40,46\},\{112,148\},\{37,121\},\{99,113\},\{64,114\},\{67,128\},\{143,176\}$,
	$\{21,27\},\{88,96\},\{15,151\}\} ;$
$S_{3}=$	$\{\{29,110\},\{97,162\},\{107,113\},\{102,182\},\{66,136\},\{12,193\},\{85,157\}$,
	$\{120,188\},\{8,65\},\{7,129\},\{82,106\},\{165,166\},\{100,178\},\{44,176\},\{77,88\}$,
	$\{27,146\},\{91,128\},\{40,121\},\{51,132\},\{11,170\},\{15,161\},\{24,55\},\{16,154\}$,
	$\{98,191\},\{42,164\},\{35,172\},\{92,175\},\{32,75\},\{87,90\},\{43,94\}\}$.

For $n \equiv 1(\bmod 6)$, to construct a $\operatorname{GS}(2,3, n, 13)$ in $Z_{13 n}$, it suffices to find a set of base blocks, $\mathcal{A}=\left\{B_{1}, \cdots, B_{s}\right\}, s=13(n-1) / 6$, such that $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ forms a $\operatorname{GS}(2,3, n, 13)$, where $\mathcal{V}=Z_{13 n}, G=\left\{G_{0}, G_{1}, \cdots, G_{n-1}\right\}, G_{i}=\{i+n j: 0 \leq j \leq$ $12\}, 0 \leq i \leq n-1$, and $\mathcal{B}=\{B+j: B \in \mathcal{A}, 0 \leq j \leq 13 n-1\}$. For convenience, we write $\mathcal{A}=\bigcup\{\{0, x, y\}:\{x, y\} \in S\}$. So, for each \mathcal{A} we need only to display the corresponding S.

If the set of base blocks has some structure, say some base block is a multiple of the other, then we may present the set in a shortened way. Suppose we have two sets of blocks P_{0} and R, a suitable multiplier $m \in Z_{13 n} \backslash\{0, n, \cdots, 12 n\}$ and a suitable
integer t, such that $\mathcal{A}=P \cup R$ forms a set of base blocks of a $\operatorname{GS}(2,3, n, 13)$, where $P=\bigcup_{i=0}^{t-1} P_{i}$ and $P_{i}=m^{i} P_{0}, 1 \leq i \leq t-1$. We call such a set P_{0} partial set and R remainder.

Lemma 4.2 There exists a $G S(2,3, n, 13)$ for all $n \in F_{2}=\{19,25,31,37,49,85\}$.
Proof. With the aid of a computer, we have found a set of base blocks \mathcal{A} of a $\mathrm{GS}(2,3, n, 13)$ for all $n \in F_{2}$. As mentioned above, for a GS(2, 3, $\left.n, 13\right)$, we need only to list the corresponding multiplier m, integer t, partial set P_{0} and remainder R as follows.

```
    n=19,m=2,t=9, P}={{1,6},{7,25}},R={{43,136},{88, 226},{104, 203},
    {181, 210}, {106, 195}, {121, 179}, {178, 212}, {33,123}, {79, 196}, {74,149}, {17,186},
    {15,176},{77, 116}, {31, 194},{122, 187}, {62, 177}, {49, 205}, {13,120}, {150, 217},
    {26,134}, {3, 105}}.
n=25,m=7,t=4, P}={{1,3},{4,9},{6,16},{8,19},{12,27},{22,51},{24,58}
    {30,148}},R={{53,185},{13,86}, {59, 211}, {47,231}, {45,142},{229,305},
    {39, 82}, {167, 259}, {79,273}, {106, 232}, {89, 226}, {40, 230}, {143, 208}, {159, 247},
    {138, 251}, {123, 169}, {119, 265}, {26, 130}, {172, 292}, {48, 234}}.
n=31,m=5,t=3, P}={{4,12},{6,13},{9,26},{11,29},{14,38},{19, 42},{21,49}
    {27,61},{36, 88},{39, 108}, {41, 92}, {43,110}, {46,102},{54,196}, {74,199}, {1,117},
    {80,267}}, R={{32,146},{157,232},{194,321}, {10, 86}, {153, 254}, {151,330},
    {2,166},{168,265},{89,249},{50,291},{111, 220}, {163,355},{83, 202}, {84, 251}}.
n=37,m=2,t=18, P}={{1,6},{7,18},{13,34}},R={{50,196},{268,432}
    {329,367}, {344,371}, {19, 157},{100, 428}, {76,127}, {98,392}, {102,175}, {69,200},
    {204, 424}, {43, 319}, {373, 414}, {103, 174}, {125, 231}, {219, 274}, {197,374},
    {216,303},{54, 266}, {189, 275}, {133, 267}, {253, 400}, {172, 254}, {25, 167}}.
n=49,m=8,t=7, P}={{{1,3},{4,9},{6,29},{11,26},{13,31},{22,69},{27,130}
    {33, 87},{45,174}},R={{258,309},{199, 427},{486,528},{272,399},{276,346},
    {80, 252}, {139,398}, {179, 623}, {306, 469}, {58, 476}, {154, 571}, {146, 167},
    {408, 556},{182, 425}, {162, 477}, {84, 546}, {35,266}, {173,270}, {426,497}, {30,284},
    {126,413}, {352, 414}, {329, 532}, {102,627}, {340, 423}, {372, 531}, {119, 354},
    {400, 558}, {290, 609}, {471, 547}, {348, 484}, {116, 249}, {357,630},{341, 574},
    {44, 100}, {401, 587}, {428, 617}, {369, 560}, {110, 496}, {215, 336}, {180, 397}}.
n=85,m=12,t=16, P}={{1,3},{4,10},{5,13},{7,21},{11,26},{19, 44},{20,49}
    {22,57}},R={{714,867},{260,402},{381,483},{792,1040},{544,883},{531,873},
    {717,1049}, {408, 951}, {119, 1028}, {352, 439}, {257,651}, {106, 1054}, {357, 891},
    {472, 908},{139, 202}, {66, 374}, {743, 947},{167, 899}, {17, 366}, {43, 221}, {53, 649},
    {383,776}, {262, 847}, {231, 390}, {38, 809}, {442, 516}, {389, 796}, {98, 412},
    {171,358}, {664, 816}, {181, 833},{386, 522}, {263, 701},{779, 868},{477, 672},
    {71,542},{302,428},{79,687},{599, 1068}, {1044,1077}, {836,1037},{253, 524},
    {519,646},{306, 782}, {76, 888}, {193,686}, {396, 527}, {769, 981}, {316,641},
    {34,233},{114, 558},{508,975},{826,929},{219,455}}.
```

The following lemma is a combination of Theorem 2 and Lemma 7 in [2]. Here, we need a new concept. A maximum packing with triangles, $\operatorname{MPT}(n)$, is an ordered triple $(\mathcal{P}, \mathcal{T}, \mathcal{L})$, where \mathcal{P} is the vertex set of K_{n}, \mathcal{T} is a collection of edge disjoint triangles from the edge set of K_{n} with $|\mathcal{T}|$ as large as possible, and \mathcal{L} is the collection of edges in K_{n} not belonging to any of the triangles of \mathcal{T}. The collection of edges \mathcal{L} is called the leave.

Lemma 4.3 There exists a $G S(2,3, n, 13)$ for any prime power $n \equiv 1(\bmod 6)$ and $n \geq 61$.

Proof. Apply Theorem 2 and Lemma 7 in [2]; it suffices to show that there exists a $\operatorname{MPT}(13)=(\mathcal{P}, \mathcal{T}, \mathcal{L})$ with r partial parallel classes such that $r \leq 10$, which is listed below.

$$
\begin{aligned}
& \mathcal{P}=\{1,2, \cdots, 13\}, \mathcal{T}=\bigcup_{i=1}^{9} P_{i}, \mathcal{L}=\emptyset \text { is an empty set. } \\
& P_{1}=\{\{1,2,5\},\{3,4,7\},\{8,9,12\}\} ; P_{2}=\{\{1,3,8\},\{2,4,9\},\{5,7,12\}\} ; \\
& P_{3}=\{\{2,3,6\},\{4,5,8\},\{9,10,13\}\} ; P_{4}=\{\{3,5,10\},\{4,6,11\},\{7,9,1\}\} ; \\
& P_{5}=\{\{5,6,9\},\{7,8,11\},\{12,13,3\}\} ; P_{6}=\{\{6,8,13\},\{9,11,3\},\{10,12,4\}\} ; \\
& P_{7}=\{\{6,7,10\},\{11,12,2\},\{13,1,4\}\} ; P_{8}=\{\{8,10,2\},\{11,13,5\},\{12,1,6\}\} ; \\
& P_{9}=\{\{10,11,1\},\{13,2,7\}\} .
\end{aligned}
$$

Lemma 4.4 There exists a $G S(2,3, v, 13)$ for all $v \in F_{3}=\{v: 43 \leq v \leq 117$ and $v \equiv 1,3,7,9(\bmod 18)\}$.

Proof. From Lemmas 4.1 and 4.2, we have a GS(2,3, $n, 13$) for all $n \in G=\{n$: $15 \leq n \leq 39$ and $n \equiv 1,3(\bmod 6)\}$. Apply Lemma 2.10 with $n \in G$; we get a $\mathrm{GS}(2,3, v, 13)$ for all $v \in F_{3}$. This completes the proof.

Lemma 4.5 There exists a $G S(2,3, v, 13)$ for $v \in F_{4}=\{105\}$.
Proof. From Lemma 4.1, we have a $\operatorname{GS}(2,3,15,13)$. From Lemma 5 of [2], we have a $3-\operatorname{GDD}\left(13^{7}\right)$ with the property that all blocks of the design can be partitioned into t sets $S_{0}, S_{1}, \cdots, S_{t-1}$ such that $t \leq 13$ and the minimum distance in $S_{r}, 0 \leq r \leq t-1$, is 3 . Apply Lemma 2.5 with $m=7$ and $n=15$; we get a $\operatorname{GS}(2,3,105,13)$.

Now, we are in a position to prove Theorem 1.4.
Proof of Theorem 1.4: From Theorem 1.3 of [6], we need only to consider the values v, such that $v \in E$. Lemma 4.3 provides a $\operatorname{GS}(2,3, v, 13)$ for all $v \in F_{5}=$ $\{67,103,121\}$. It is readily checked that the union of F_{i}, for $1 \leq i \leq 5$, is the same as E. The conclusion then follows from the above lemmas of this section.

References

[1] F.E. Bennett, R. Wei and L. Zhu, Resolvable Mendelsohn triple systems with equal sized holes, J. Combin. Designs 5 (1997), 329-340.
[2] S. Blake-Wilson and K. Phelps, Constant weight codes and group divisible design, Designs, Codes and Cryptography 16 (1999), 11-27.
[3] K. Chen, G. Ge and L. Zhu, Generalized Steiner triple systems with group size five, J. Combin. Designs 7 (1999), 441-452.
[4] K. Chen, G. Ge and L. Zhu, Starters and related codes, J. Statist. Plan. Infer. 86 (2000), 379-395.
[5] T. Etzion, Optimal constant weight codes over Z_{k} and generalized designs, Discrete Math. 169 (1997), 55-82.
[6] G. Ge, Generalized Steiner triple systems with group size $g \equiv 1,5(\bmod 6)$, Australas. J. Combin. 21 (2000), 37-47.
[7] J. Lei, Q. Kang and Y. Chang, The spectrum for large set of disjoint incomplete Latin squares, Discrete Math., to appear.
[8] K. Phelps and C. Yin, Generalized Steiner systems with block three and group size $g \equiv 3(\bmod 6)$, J. Combin. Designs 5 (1997), 417-432.
[9] K. Phelps and C. Yin, Generalized Steiner systems with block three and group size four, Ars Combin. 53 (1999), 133-146.
[10] D. Wu and L. Zhu, Large set of disjoint incomplete Latin squares, Bull. ICA 29 (2000), 49-60.
[11] D. Wu, G. Ge and L. Zhu, Generalized Steiner triple systems with group size $g=7,8$, Ars Combin. 57 (2000), 175-191.

[^0]: * Research supported in part by YNSFC Grant 10001026.

