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Abstract

The joint probability between two binary strings of different lengths
has been demonstrated as a suitable basis for a correlation attack on the
shrinking generator when the decimation probability is 0.5. As an exten-
sion of this, further computer simulations have been conducted to deter-
mine whether the joint probability can be used as a basis of similar cor-
relation attacks on irregularly clocked shift registers, where the deletions
occur independently with a fixed probability different from 0.5. These
results show that as the decimation probability increases, the length of
the known keystream required for the joint probability to be a useful
measure of correlation must also be increased. Thus, the joint probabil-
ity is shown to be a suitable basis for such correlation attacks, provided
a sufficient length of the keystream is known.
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1 Introduction

The increasing use of computers and telecommunications networks has resulted in
the need for secure methods for storage and transfer of data, particularly electronic
data. Algorithms that transform a message, called the plaintext, into another form,
the ciphertext, so that the original message is disguised are called ciphers. Persons
with authorised access to the message have some secret knowledge called the key,
which allows the transformation to be reversed and the original message recovered.
The message transformations are known as encryption and decryption, respectively.
The key is usually the initial state of a pseudorandom number generator. Each secret
key used as input to the pseudorandom number generator corresponds to a longer
pseudorandom output, the keystream. If the same key is used for the keystream
generators on both the sending and receiving ends of a transmission, then the same
keystream will be produced by both.

Stream ciphers are encryption algorithms which encrypt a plaintext message one
character at a time, under a time-varying function of the key. For binary plaintext,
one of the most commonly used cipher systems is the binary additive stream cipher,
where both the plaintext and keystream are sequences of bits and the ciphertext is
formed by the bitwise modulo two addition of the two streams. A major advantage
in using a binary additive stream cipher is that encryption and decryption can be
performed by identical devices. Encryption and decryption using a binary additive
synchronous stream cipher are illustrated in Figure 1.

Let p(t), z(t) and c(t) denote the plaintext, keystream and ciphertext bits at
time t ≥ 0, respectively. Under encryption, the tth bit in the ciphertext stream
is formed as c(t) = p(t) ⊕ z(t), where ⊕ denotes addition modulo two. Similarly,
under decryption, the tth bit in the plaintext stream is formed as p(t) = c(t) ⊕ z(t).
Note that if some plaintext-ciphertext pairs are known, then some of the keystream
bits are also revealed, as z(t) = p(t) ⊕ c(t). Therefore, the keystream generator
is the critical component in the security of this type of cipher system. The level of
security provided depends on the apparent randomness of the keystream. Users need
to be confident that unauthorised persons cannot gain any knowledge of the actual
message from intercepted ciphertext. Even if an interceptor obtains a portion of
the ciphertext and the corresponding plaintext they should not be able to determine
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Figure 1: Encryption and decryption in binary additive stream ciphers.
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either the whole keystream sequence or the secret key for the keystream generator
in less time than by exhaustive search of the keyspace.

In analysing the security provided by a particular stream cipher, it is usually
assumed that, except for the secret key, the entire cipher is known to the cryptana-
lyst. The cryptanalyst attempts to find weaknesses which can be exploited to recover
the key from a known segment of keystream. Correlation attacks exploit statistical
dependencies which exist between the keystream and underlying internal sequences.
Originally, correlation attacks were performed on regularly clocked keystream gen-
erators ([4]). Irregular clocking was considered a means of avoiding susceptibility to
these correlation attacks, and generators such as the shrinking generator [1], whose
output can be considered to be the output of an irregularly clocked shift register,
were proposed.

More recently, correlation attacks on irregularly clocked keystream generators
have been proposed. These attacks are similar to the original correlation attack [4],
but necessarily require a different measure of correlation. Measures of correlation
suitable for use with irregular clocking, and attacks which use these measures are
reviewed in [2]. The measures of correlation include Levenshtein and Constrained
Levenshtein distances and probabilistic measures, and the corresponding embedding
and probabilistic correlation attacks are outlined.

One measure of correlation, proposed in [3], is termed the joint probability. In
[5], for the case of the shrinking generator, a normalised joint probability is shown
to be a suitable basis for a correlation attack on the shrinking generator. For the
attack, the keystream of the shrinking generator is viewed as a decimated version
of an underlying shift register sequence, with a bit decimation probability of 0.5.
This paper extends the application to decimation probabilities different from 0.5.
The results of this application have implications for the security provided by certain
cryptographic algorithms, particularly with respect to correlation attacks.

2 Shrinking Generator

The shrinking generator produces keystream bits from two binary linear feedback
shift registers (LFSR’s) one of which controls the clock of the other. Denote these
shift registers as LFSRA and LFSRS , as shown in Figure 2. The output from the
shrinking generator is a ”shrunken” version of the output from LFSRA, with the
elements selected being those in the positions corresponding to the 1’s in the output
sequence of LFSRS : the keystream sequence z consists of those bits of the sequence
a for which the corresponding bit of sequence s is a 1. The other bits of a, for which
the corresponding bit of s is a 0, are deleted.

More precisely, let a = {ai}∞i=1 denote the LFSRA sequence produced from a
nonzero initial state {ai}rA

i=1, and let s = {si}∞i=1 denote the LFSRS sequence produced
from a nonzero initial state {si}rS

i=1, where rA and rS are the lengths of LFSRA and
LFSRS , respectively. Let z = {zk}∞k=1 denote the output sequence of the shrinking
generator. Then zk = aik where ik is the position of the kth 1 in the sequence s. The
keystream sequence z is an irregularly decimated version of the LFSRA sequence
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a, with the decimation controlled by the LFSRS sequence s. An example of the
keystream output, z, from a shrinking generator is given in Table 1.

s: 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 0
a: 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 1
z: 0 1 0 0 1 1 1 0

Table 1: Shrinking generator output.

3 Joint Probability

For a probabilistic correlation attack on an irregularly clocked shift register, a mea-
sure of the correlation between the output string produced by irregular clocking and
the output of the LFSR when clocked regularly is required: that is, a measure of the
correlation between strings of different lengths. In [3] the measure of the correlation
between two sequences Xm, of length m, and Y n, of length n, m ≥ n, is the joint
probability.

The joint probability P (Xm, Y n) for arbitrary binary input and output strings
Xm = {xi}m

i=1 and Y n = {yi}n
i=1, respectively, is computed using a recursive algo-

rithm based on string prefixes. Let Xe+s = {xi}e+s
i=1 denote the prefix of Xm of length

e + s and Y s = {yi}s
i=1 denote the prefix of Y n of length s. Let P (e, s) denote the

partial joint probability for Xe+s and Y s, for 1 ≤ s ≤ n and 0 ≤ e ≤ m − n. Let
δ(x, y) denote the substitution probability, which equals 0.5 if x = y and 0 otherwise,
and let p denote the symbol deletion probability. The partial probability satisfies
the recursion

P (e, s) = P (e − 1, s)p + P (e, s − 1)(1 − p)δ(xe+s, ys) (1)

for 1 ≤ s ≤ n and 0 ≤ e ≤ m−n, with the initial values P (e, 0) = pe, 0 ≤ e ≤ m−n,
and P (−1, s) = 0, 1 ≤ s ≤ n. Note that P (Xm, Y n) = P (m − n, n). Thus the
computational complexity is O(n(m − n)).

For practical calculations, where n is even moderately large, the joint probability
values calculated in this manner quickly approach zero. Therefore the use of a

LFSRA
{ai} � SELECTION

{si}

�

LFSRS

{zk = aik}
�

Figure 2: The shrinking generator.
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modified version of this statistic, termed a normalised joint probability is investigated.
In calculating the normalised joint probability the partial probability is multiplied
by a constant factor in each iteration. For the case where p = 0.5, a normalising
factor of 4

1+3p
was identified through experimentation.

To make a decision on the relationship between two binary strings there are two
hypotheses to be considered:

• H0 : Xm and Y n are independent.

• H1 : Xm and Y n are correlated, that is, Y n is obtained from Xm by the deci-
mation statistical model.

In a correlation attack on an irregularly clocked shift register, H0 will correspond to
an incorrect guess of the LFSR initial state, and H1 will correspond to the correct
guess. The statistic upon which the hypothesis testing is based is the joint probability.

In the application to the shrinking generator the binary input string Xm is re-
placed by {ai}m

i=1, the output from LFSRA, and the binary output string Y n by
the keystream segment {zi}n

i=1, (obtained from the elements of LFSRA in positions
corresponding to the 1’s in the output sequence of LFSRS). Deletions of symbols
from a are assumed to occur independently with deletion probability p, so that if
a is assumed to be generated as a purely random sequence, that is, as a sequence
of independent and identically distributed random variables, then z is also purely
random.

Figure 3: Errors in testing.

As with any hypothesis testing, there are two types of errors which can occur.
These are illustrated in Figure 3. Let the error made by deciding that the two strings
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are independent when in fact they are correlated be described as “missing the event”,
and the error made by deciding that the two strings are correlated when, in fact, they
are independent be described as a “false alarm”. Denote the probabilities of these
events by Pm (accepting H0 when H1 is actually true) and Pf (accepting H1 when H0

is actually true), respectively. As for any hypothesis testing, for fixed n, decreasing
Pm will result in an increase in Pf . A relationship between these probabilities exists,
and is dependent on the lengths of the sequences, n and m.

The application of the joint probability as a measure of correlation in attacks on
the shrinking generator with deletion probability p = 0.5 has been examined in [5].
In this paper, the application of the joint probability as a measure of correlation for
sequences obtained through decimation with deletion probability values of p in the
interval 0 < p < 1 is investigated.

4 Results

Computer simulations were used to determine whether the joint probability is a
useful measure to differentiate between a pair of independent strings (H0) and a pair
of correlated strings with 0 < p < 1 (H1). Two cases were examined: firstly, the
random case (RAND) where Xm and Y n are two independent random strings, and
secondly, the correlated case (CORR) where the string Y n is a decimation of Xm for
the given values of p.

Basic simulations were performed for the string lengths n = 150, 225 and 300 bits
for the sequence Y , with the string lengths of the sequence X chosen as m(n) =
n/(1− p) + 3

√
n. The additional length of 3

√
n in m(n) is chosen to ensure that the

probability that m∗ > m(n) is very small, where m∗ is the length of the input string
that actually produced the output string of length n ([5]).

Simulations were conducted for values of p ranging from 0.1 to 0.9, in steps of
0.1. For each value of p and for each string length n, five thousand pairs of strings
were generated and the normalised joint probability calculated for each pair. The
normalised joint probability was generated by the recursion in (1) multiplied by the
normalising factor 4

1+3p
.

The simulated distributions of the normalised joint probabilities have been recorded
using percentiles in Tables 2 to 5 and illustrated by cumulative frequency graphs in
Figures 4 to 6. As the normalised joint probability values range over a wide interval,
for any combination of values of n and p, Figures 4 to 6 illustrate the cumulative
distribution of log10(normalised joint probability) for each value of n, with values of
p equal to 0.6, 0.7 and 0.9. For any given value of p, the results show a gradual
decrease in normalised joint probability values as n increases. Similarly, for a given
value of n there is a decrease in normalised joint probability values as p increases.
Additionally, the graphs clearly show changes in the distinction between the random
and correlated cases as p and n are varied.

The distributions for p ≤ 0.5 have been summarised in terms of maximum and
minimum values in Table 2. For random strings all percentiles are zero when p = 0.1
and 0.2. For p = 0.3 a few of the normalised joint probability values were non-
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Table 2: End points of normalised joint probability distributions for p ≤ 0.5.
RAND CORR

p n Minimum Maximum Minimum Maximum

150 0 0 4.7 · 106 1.6 · 1019

0.1 225 0 0 1.7 · 1014 1.4 · 1028

300 0 0 7.8 · 1021 4.4 · 1037

150 0 0 1.7 · 10−3 2.6 · 109

0.2 225 0 0 1.9 · 10−2 9.1 · 1012

300 0 0 1.7 · 10−1 4.0 · 1015

150 0 1.1 · 10−13 1.3 · 10−13 3.8 · 100

0.3 225 0 0 3.5 · 10−18 1.5 · 10−2

300 0 0 1.0 · 10−23 1.6 · 10−5

150 0 1.4 · 10−17 2.1 · 10−21 1.6 · 10−7

0.4 225 0 3.1 · 10−29 6.2 · 10−30 4.9 · 10−15

300 0 2.8 · 10−42 4.7 · 10−39 3.3 · 10−22

150 0 3.7 · 10−22 1.3 · 10−27 2.8 · 10−16

0.5 225 0 2.7 · 10−35 5.9 · 10−40 4.0 · 10−26

300 0 1.1 · 10−49 2.0 · 10−51 1.2 · 10−37

zero when n = 150. These results suggest that it is extremely unlikely, given two
independent random binary strings (one of length n and the other of length m(n))
that the random binary string of length n, could be obtained from the longer string
by deleting 30% or less of the bits, for n = 150, 225 or 300 and the corresponding
lengths m(n) = 252, 367 or 481, respectively. In the case of the correlated strings
the majority of the normalised joint probabilities were greater than 1 for p = 0.1
and 0.2. This was attributed to the normalising factor, which also caused a few of
the upper values to be greater than 1 for p = 0.3. For the case p = 0.4, while there
were a few more non-zero values for the random strings, the majority of values were
zero. In the correlated case all normalised joint probabilities were very low, yet the
distributions were clearly distinct from the random case.

The results for p = 0.5 show similar values to those obtained in [5]. In this
instance the majority of values for the random strings are non-zero. When p = 0.5
and n = 150, over 75% of the five thousand normalised joint probability values
generated in the random case were less than 1.3 · 10−27, the smallest value generated
in the correlated case (this agrees with the result obtained in [5]). As p decreases
this percentage increases markedly, whereas for p > 0.5 this percentage gradually
decreases, so that when p = 0.9 less than 2.5% of the distribution of the random
strings is less than 2.0 ·10−42, the minimum value in the distribution of the correlated
strings. The same pattern occurs for n = 225 and 300: with over 90% and 97.5%,
respectively, of normalised joint probability values generated in the random case
being less than the smallest value generated in the correlated case for p = 0.5. This
percentage gradually decreases to less than 2.5% for p = 0.9 for both values of n. It
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Table 3: Percentiles of normalised joint probability distribution for p = 0.6.
Keystream length n

% 150 225 300
RAND CORR RAND CORR RAND CORR

0 2.0 · 10−41 4.7 · 10−32 1.5 · 10−58 1.1 · 10−47 3.5 · 10−78 5.8 · 10−62

2.5 3.3 · 10−36 8.4 · 10−30 2.8 · 10−52 2.1 · 10−44 5.5 · 10−69 4.5 · 10−59

5 2.1 · 10−35 2.3 · 10−29 1.4 · 10−51 7.6 · 10−44 5.6 · 10−68 1.8 · 10−58

10 1.3 · 10−34 7.1 · 10−29 1.0 · 10−50 3.3 · 10−43 5.6 · 10−67 7.6 · 10−58

25 2.6 · 10−33 4.2 · 10−28 2.6 · 10−49 2.9 · 10−42 2.1 · 10−65 8.1 · 10−57

50 5.9 · 10−32 3.0 · 10−27 7.9 · 10−48 2.9 · 10−41 7.8 · 10−64 1.3 · 10−55

75 9.1 · 10−31 2.3 · 10−26 2.3 · 10−46 3.1 · 10−40 2.3 · 10−62 2.0 · 10−54

90 9.2 · 10−30 1.3 · 10−25 3.2 · 10−45 2.8 · 10−39 5.3 · 10−61 2.4 · 10−53

95 3.1 · 10−29 3.9 · 10−25 1.4 · 10−44 9.6 · 10−39 2.6 · 10−60 1.3 · 10−52

97.5 8.1 · 10−29 9.3 · 10−25 4.7 · 10−44 2.9 · 10−38 1.0 · 10−59 5.6 · 10−52

100 2.9 · 10−26 1.7 · 10−22 1.2 · 10−41 2.4 · 10−35 2.5 · 10−55 2.1 · 10−48

can be seen that, as p approaches 1, these percentages appear to tend to zero.
Tables 3 to 5 show the distributions for selected values of p > 0.5 (specifically

p = 0.6, 0.7 and 0.9). Table entries are the normalised joint probability percentiles:
values below which a given percentage of the sample points lie. For example, in
the case where p = 0.6 and n = 150 with the strings generated independently
at random, ten percent of the 5,000 normalised joint probability values calculated
lie below 1.3 · 10−34, and in the case of the correlated strings (Y m is obtained as a
decimation of Xm with p = 0.6), ten percent of the 5,000 normalised joint probability
values calculated lie below 7.1 · 10−29. The normalised joint probability values for
p > 0.5 were all extremely low (less than 1.7 · 10−22 when p = 0.6 and n = 150 in the
correlated case). The distributions for the correlated strings were higher than the
corresponding ones for the random strings, with the lowest maximum value in the
correlated case being 2.5 · 10−77 when p = 0.9 and n = 300.

5 Analysis of Results

The results presented in Table 2 for p ≤ 0.5 show a clear distinction between the
distributions for random and correlated strings and support the conjecture that the
joint probability is a useful measure of correlation as a basis of correlation attacks
on a “shrinking” style generator when less than half of the output of LFSRA is
decimated to yield the keystream.

The results presented in Tables 3 to 5 and Figures 4 to 6 for p > 0.5 show clear
differences in the distributions of the normalised joint probabilities between the ran-
dom and the correlated cases, consistent with the result for p = 0.5 in [5]. Figures 4
to 6 clearly illustrate that, given a fixed value of p, as n increases the distribution
of the normalised joint probability shifts to the left (that is, decreases) for both
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Table 4: Percentiles of normalised joint probability distribution for p = 0.7.
Keystream length n

% 150 225 300
RAND CORR RAND CORR RAND CORR

0 7.3 · 10−42 5.0 · 10−36 2.6 · 10−58 2.0 · 10−52 3.0 · 10−76 4.2 · 10−70

2.5 1.0 · 10−37 3.3 · 10−34 2.6 · 10−55 8.9 · 10−51 9.9 · 10−73 1.8 · 10−67

5 3.0 · 10−37 6.8 · 10−34 9.8 · 10−55 2.2 · 10−50 4.8 · 10−72 5.5 · 10−67

10 1.1 · 10−36 1.6 · 10−33 4.5 · 10−54 5.4 · 10−50 2.5 · 10−71 1.6 · 10−66

25 8.3 · 10−36 6.8 · 10−33 4.9 · 10−53 3.1 · 10−49 2.4 · 10−70 1.1 · 10−65

50 6.7 · 10−35 3.1 · 10−32 5.2 · 10−52 1.9 · 10−48 3.2 · 10−69 9.2 · 10−65

75 4.9 · 10−34 1.5 · 10−31 4.6 · 10−51 1.1 · 10−47 3.6 · 10−68 7.3 · 10−64

90 2.3 · 10−33 6.3 · 10−31 3.3 · 10−50 7.1 · 10−47 2.8 · 10−67 4.8 · 10−63

95 5.3 · 10−33 1.4 · 10−30 9.7 · 10−50 2.0 · 10−46 8.3 · 10−67 1.4 · 10−62

97.5 1.1 · 10−32 3.3 · 10−30 2.3 · 10−49 4.2 · 10−46 2.4 · 10−66 4.2 · 10−62

100 2.7 · 10−31 2.2 · 10−28 2.0 · 10−47 8.4 · 10−44 1.7 · 10−64 6.3 · 10−60

Table 5: Percentiles of normalised joint probability distribution for p = 0.9.
Keystream length n

% 150 225 300
RAND CORR RAND CORR RAND CORR

0 1.7 · 10−43 2.0 · 10−42 1.7 · 10−63 4.9 · 10−62 9.9 · 10−83 5.6 · 10−82

2.5 3.8 · 10−42 2.1 · 10−41 5.5 · 10−62 4.6 · 10−61 1.6 · 10−81 1.3 · 10−80

5 5.9 · 10−42 3.0 · 10−41 1.0 · 10−61 7.2 · 10−61 2.0 · 10−81 2.0 · 10−80

10 1.0 · 10−41 4.5 · 10−41 1.9 · 10−61 1.2 · 10−60 3.9 · 10−81 3.3 · 10−80

25 2.3 · 10−41 9.5 · 10−41 4.5 · 10−61 2.5 · 10−60 9.8 · 10−81 7.7 · 10−80

50 5.5 · 10−41 2.0 · 10−40 1.2 · 10−60 6.1 · 10−60 2.7 · 10−80 1.8 · 10−79

75 1.2 · 10−40 4.2 · 10−40 2.9 · 10−60 1.4 · 10−59 7.0 · 10−80 4.5 · 10−79

90 2.3 · 10−40 8.3 · 10−40 6.2 · 10−60 3.2 · 10−59 1.6 · 10−79 1.1 · 10−78

95 3.6 · 10−40 1.3 · 10−39 9.9 · 10−60 5.2 · 10−59 2.7 · 10−79 1.8 · 10−78

97.5 5.0 · 10−40 1.8 · 10−39 1.5 · 10−59 7.7 · 10−59 4.1 · 10−79 3.0 · 10−78

100 3.2 · 10−39 2.6 · 10−38 2.5 · 10−58 2.0 · 10−57 2.5 · 10−78 2.5 · 10−77
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Figure 4: Cumulative distribution of log10(normalised joint probability) for p = 0.6.

random and correlated strings, with the distinction between random and correlated
cases increasing. It is also clear that, given a fixed value of n, as p increases, the
distribution of the normalised joint probability shifts to the left (decreases) for both
random and correlated strings, with the distinction between random and correlated
cases decreasing.

For fixed n and p, in comparing distributions of the normalised joint probability
for both the random and correlated cases, we observe that for every percentile, the
normalised joint probability value in the random case is always less than the nor-
malised joint probability value in the correlated case. However, as noted above, the
degree of difference between the sample distributions in the random and correlated
cases also depends on the values of n and p. These differences in the distributions of
the normalised joint probability for both random and correlated sequences indicate
that the normalised joint probability is a useful measure of the correlation between
two strings of different lengths, yet decreases in effectiveness as p increases, unless n
increases also.

5.1 Statistical Distinction

The statistical distinction between the normalised joint probability distributions for
random and correlated strings obtained through the computer simulation can be
analyzed by estimating the probabilities for the two types of errors which can occur
when hypotheses are tested. These errors were described in Section 3, and termed
“missing the event” and “false alarm”. The probability of “missing the event”, Pm,
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Figure 5: Cumulative distribution of log10(normalised joint probability) for p = 0.7.

Figure 6: Cumulative distribution of log10(normalised joint probability) for p = 0.9.
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represents the probability of declaring that the strings are not correlated when they
actually are. The probability of a “false alarm”, Pf , is the probability that two
strings are declared correlated when they actually are not.

The probability of “missing the event”, Pm, may be estimated for selected values
of the probability of a “false alarm”, Pf . Estimates of Pm were obtained by deter-
mining the proportion of the distribution of the normalised joint probability for the
correlated strings that falls below a “critical value” obtained from the distribution
for the random strings. This critical value was the (1 − Pf) × 100 percentile of the
distribution for the random strings. For decimation probabilities p = 0.6 and p = 0.7,
Table 6 presents estimates of Pm for the Pf values 0.01, 0.05 and 0.1 and the string
lengths n = 150, 225 and 300. For example, in the case where a 60% decimation
was applied to yield a known keystream of 300 bits, and allowing for a 5% error
rate for false alarms, Pf = 0.05, the estimate for the probability of mistaking two
correlated strings for random strings is Pm = 0.0036. This means that, for a given
known sequence of 300 bits, if we are prepared to accept a false alarm in 5 percent
of the longer sequences tested, then the probability of failing to detect the actual
longer sequence that the given keystream sequence is a decimation of is less than 0.4
percent.

Similarly, the probability of a “false alarm”, Pf , may be estimated for given values
of the probability of “missing the event” (Pm). Estimates of Pf were obtained by
determining the proportion of the distribution of the normalised joint probability for
the random strings that lies above a “critical value” obtained from the distribution
for the correlated strings. This critical value was the Pm × 100 percentile of the
distribution for the correlated strings. These estimates are presented in Table 7 for
p = 0.6 and in Table 8 for p = 0.7, with the selected values of Pm taken as 0.01,
0.05 and 0.1. For example, again for the case where a 60% decimation has been
applied to yield a short keystream of 300 bits, allowing a 5% error for missing the
event, Pm = 0.05, the error of mistaking two random strings as being correlated is
estimated to be Pf = 0.0058. This means that, if we accept an error rate of 5 percent
for failing to detect that two streams are correlated, then we should should expect
to mistakenly decide that the known keystream is a decimation of the longer test
stream for approximately 0.6 percent of longer strings.

Further values for n have been included in Tables 7 and 8 to investigate the
exponential relationship Pf (n) = a · bn, proposed in [5]. The results show that for a
fixed value of Pm, although Pf decreases as n increases, Pf increases as p increases.
That is, for some fixed p, the greater the amount of keystream known, then the more
likely it is for an attacker to correctly guess the underlying longer sequence from the
known keystream. However, for some fixed n, the greater the decimation rate applied
to form the keystream, then the more difficult it is for an attacker to correctly guess
the underlying longer sequence from the known keystream.

This relationship may be approximated by an exponential function in n, written
as Pf(n) ≈ a · bn. When Pm = 0.1 the results of applying regression analysis to
the estimates of Pf in Tables 7 and 8 give Pf (n) ≈ 0.46 · 0.98n for p = 0.6 and
Pf (n) ≈ 0.45 · 0.99n for p = 0.7. These relationships both give a 99% correlation.
In accordance with [5] we obtained Pf(n) ≈ 0.44 · 0.97n for p = 0.5 with a 96%

196



Table 6: Pm versus n given Pf for p = 0.6 and p = 0.7.
p = 0.6 p = 0.7

n Pf Critical value Pm Critical value Pm

0.01 3.3 · 10−28 0.2138 2.5 · 10−32 0.4568
150 0.05 3.7 · 10−29 0.0590 5.5 · 10−33 0.2246

0.10 1.0 · 10−29 0.0244 2.2 · 10−33 0.1248
0.01 2.1 · 10−43 0.0832 4.4 · 10−49 0.3004

225 0.05 1.4 · 10−44 0.0154 7.2 · 10−50 0.1116
0.10 3.1 · 10−45 0.0042 2.7 · 10−50 0.0634
0.01 7.1 · 10−59 0.0298 6.5 · 10−66 0.2004

300 0.05 3.0 · 10−60 0.0036 8.9 · 10−67 0.0690
0.10 5.2 · 10−61 0.0014 2.7 · 10−66 0.0318

Table 7: Pf versus n given Pm for p = 0.6.
Pm = 0.01 Pm = 0.05 Pm = 0.10

n Critical value Pf Critical value Pf Critical value Pf

100 1.1 · 10−20 0.3086 7.3 · 10−20 0.1404 1.9 · 10−19 0.0792
125 1.8 · 10−25 0.2304 1.3 · 10−24 0.0970 3.8 · 10−24 0.0506
150 3.4 · 10−30 0.1630 2.9 · 10−29 0.0554 8.0 · 10−29 0.0314
175 4.0 · 10−35 0.1422 4.4 · 10−34 0.0442 1.3 · 10−33 0.0254
200 5.4 · 10−40 0.0982 6.8 · 10−39 0.0236 2.4 · 10−38 0.0100
225 8.4 · 10−45 0.0644 8.7 · 10−44 0.0170 3.0 · 10−43 0.0080
250 8.3 · 10−50 0.0536 1.2 · 10−48 0.0126 4.4 · 10−48 0.0052
275 1.1 · 10−54 0.0382 1.7 · 10−53 0.0084 7.6 · 10−53 0.0032
300 1.3 · 10−59 0.0262 1.9 · 10−58 0.0058 1.2 · 10−58 0.0026

Table 8: Pf versus n given Pm for p = 0.7.
Pm = 0.01 Pm = 0.05 Pm = 0.10

n Critical value Pf Critical value Pf Critical value Pf

100 1.2 · 10−23 0.5370 6.6 · 10−23 0.2814 1.4 · 10−22 0.1920
125 4.1 · 10−29 0.4848 2.4 · 10−28 0.2452 5.3 · 10−28 0.1538
150 1.1 · 10−34 0.4422 7.0 · 10−34 0.2040 1.7 · 10−33 0.1228
175 3.1 · 10−40 0.3922 2.3 · 10−39 0.1650 5.4 · 10−39 0.1020
200 1.0 · 10−45 0.3324 6.4 · 10−45 0.1492 1.7 · 10−44 0.0808
225 2.6 · 10−51 0.3110 1.9 · 10−50 0.1184 5.9 · 10−50 0.0586
250 6.9 · 10−57 0.2886 5.6 · 10−56 0.1060 1.7 · 10−55 0.0514
275 1.9 · 10−62 0.2562 1.8 · 10−61 0.0912 5.5 · 10−61 0.0442
300 5.6 · 10−68 0.2220 5.2 · 10−67 0.0698 1.6 · 10−66 0.0344
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correlation.
Tables 6 to 8 show that for a fixed length n, in order to reduce the probability

of one type of error, the probability of the other type of error must be increased.
However, if the string length is increased and the probability of one of the two types
of errors is fixed, then the probability of the other type of error will decrease.

6 Discussion

The results clearly show firstly, that the normalised joint probability is a useful mea-
sure to differentiate between correlated and independent pairs of binary strings of
different lengths and secondly, that the probabilities of errors for decisions based on
this statistic decrease as the string lengths increase. Additionally, the results show
that as the decimation probability increases, the length of the known keystream re-
quired for the normalised joint probability to be a useful measure of correlation must
also be increased. ¿From a cryptanalytic point of view, the normalised joint prob-
ability is thus shown to be a suitable basis for correlation attacks on an irregularly
clocked shift register where the deletions occur independently with probability p,
provided a sufficient length of the keystream is known.

It follows that the greater the length of known keystream available to the crypt-
analyst, the easier it becomes to discriminate between correlated and random strings.
That is, the probability that the correct secret key may be recovered in a correlation
attack increases as the amount of keystream known increases. For a fixed decima-
tion probability and for a given probability of missing the event, the probability of a
false alarm decreases as n increases, which renders the attack more likely to succeed.
The minimal keystream length required for a successful recovery of the secret-key-
controlled initial state of the underlying LFSRA depends on its length, rA. It can be
estimated by using the criterion 2rA · Pf(n) ≤ 1, in view of the fact that 2rA − 1 is
the number of incorrect guesses about the LFSRA initial state ([5]). If Pf (n) = a ·bn,
then it follows that n ≥ 1

−log2b
· rA, neglecting the small term corresponding to a.

For example, given Pm = 0.1, it turns out that the minimal keystream length is
approximately 20 · rA, 35 · rA and 70 · rA for p = 0.5, 0.6 and 0.7, respectively.

As the decimation probability increases, for a given probability of missing the
event, the probability of a false alarm increases. Therefore, from a cryptographic
point of view a keystream generator with a high decimation probability offers greater
security, as it is less likely that an attacker can discriminate between correlated and
random strings. Quite a lot of keystream is required to make the distinction with
only a small probability of error. For example, for a keystream generator like the
shrinking generator, if more of the output of LFSRA is deleted, then it is harder to
discriminate between independent and correlated strings.
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