The properties of self-complementary graphs and new lower bounds for diagonal Ramsey numbers*

Luo Haipeng
Guangxi Academy of Sciences
Nanning 530022
P.R. of China
Su Wenlong
Guangxi University Wuzhou Branch
Wuzhou 543002
P.R. of China
Li Zhenchong
Guangxi Academy of Sciences
Nanning 530022
P.R. of China

Abstract

Some properties of self-complementary graphs have been studied and 3 new lower bounds for diagonal Ramsey numbers have been obtained. They are: $R(17,17) \geq 8917, R(18,18) \geq 11005, R(19,19) \geq 17885$.

1 Introduction

In 1955 Greenwood and Gleason ([2]) utilized quadratic residues modulo prime numbers $p=5$ and $p=17$ to construct self-complementary graphs G_{5} and G_{17}. Afterwards, Kalbfleisch([3]), Burling \& Reyner ([1]), Mathon([5]) and Shearer([7]) extended the discussion of the clique numbers $c\left(G_{p}\right)$ of self-complementary graphs G_{p} to the range $p<3000$ and proved the following result:

Lemma $1([5,7]) c\left(G_{p}\right)=k$ implies $R(k+2, k+2)>2 p+2$.

[^0]The survey [6] summarizes their work and keeps a record of the best lower bounds for diagonal Ramsey numbers up to date. They are:

$$
\begin{aligned}
& R(6,6) \geq 102, R(7,7) \geq 205, R(8,8) \geq 282, R(9,9) \geq 565 \\
& R(10,10) \geq 798, R(11,11) \geq 1597, R(13,13) \geq 2557, R(14,14) \geq 2989 \\
& R(15,15) \geq 5485, R(16,16) \geq 5605 \text { and } R(12,12) \geq 1597+11 .
\end{aligned}
$$

As far as we know, there has been no significant progress in the study of $c\left(G_{p}\right)$ and $R(k, k)$ in the last ten years. In $[4,8,9,10,11,12]$ we studied some properties of cyclic graphs of prime order and obtained some new lower bounds for Ramsey numbers. This paper investigates further properties of self-complementary graphs and introduces a new algorithm to estimate lower bounds for diagonal Ramsey numbers from which three new results have been obtained:

$$
R(17,17) \geq 8917, R(18,18) \geq 11005, R(19,19) \geq 17885
$$

2 Basic properties of self-complementary graphs

Let $p=4 m+1 \geq 5$ be a prime number and let A denote the set of quadratic residues modulo p. Let \mathbb{Z}_{p} denote $\{-2 m, \ldots,-1,0,1, \ldots, 2 m\}$. Then \mathbb{Z}_{p} is a complete system of residues of integers modulo p. An integer n shall be understood to be an element $\bar{n} \in \mathbb{Z}_{p}$ such that $p \mid n-\bar{n}$ if the context makes it clear. When two integers a and b have the same residue modulo p we often write $a=b$ instead of $a \equiv b(\bmod p)$.

Definition 1 For a prime $p=4 m+1 \geq 5$ the graph G_{p} is defined as follows:

1. The vertex set V of G_{p} is \mathbb{Z}_{p}.
2. The edge set is $E=\{\{x, y\} \mid x-y \in A\}$.

The clique number of G_{p} is denoted by $c\left(G_{p}\right)$.
Since $p \equiv 1 \quad(\bmod 4)$, we have $\left(\frac{-1}{p}\right)=1$, where $\left(\frac{-1}{p}\right)$ is the Legendre symbol of -1 . This means that $-1 \in A$. So $x-y \in A$ if and only if $y-x \in A$, which implies that the edge set in Definition 1 is well-defined.

If $a \in A$, then $x-y \in A$ if and only if $a(x-y) \in A$. This implies the following result:

Lemma 2 Let $a \in A, b \in \mathbb{Z}_{p}$. Then the affine transform $f: x \mapsto a x+b$ is an automorphism of G_{p}.

Definition 2 Let $B=\{x \in A \mid x-1 \in A\}$. Let $G[B]$ be the subgraph of G_{p} defined as follows:

1. The vertex set of $G[B]$ is B.
2. The edge set of $G[B]$ is $\{\{x, y\} \mid x, y \in B, x-y \in A\}$.

The clique number of B is denoted by $[B]$. We make a convention that $[B]=0$ if $B=\emptyset$.

Lemma 3

$$
c\left(G_{p}\right)=[B]+2 .
$$

Proof. First note that $a \in A$ if and only if $a^{-1} \in A$ for any $a \neq 0$, because $\left(\frac{a}{p}\right)\left(\frac{a^{-1}}{p}\right)=\left(\frac{1}{p}\right)=1$.

Next we show an important property of the graph G_{p}. That is: G_{p} is edgetransitive. Let $\left\{x_{1}, x_{2}\right\}$ be an edge of G_{p}, i.e., $x_{2}-x_{1} \in A$. Then $\left(x_{2}-x_{1}\right)^{-1} \in A$. By Lemma $2 f(x)=\left(x_{2}-x_{1}\right)^{-1}\left(x-x_{1}\right)$ is an automorphism of G_{p}. Obviously f carries the edge $\left\{x_{1}, x_{2}\right\}$ into $\{0,1\}$.

Therefore $c\left(G_{p}\right)$ is equal to the number of vertices of a maximal clique of G_{p} that contains both 0 and 1 . This implies that $c\left(G_{p}\right)=[B]+2$.

This lemma tells us that the computation of the clique number of G_{p} can be reduced to that of its subgraph $G[B]$, which is much simpler.

3 Basic properties of $G[B]$

Let $|B|$ denote the number of elements in B.

Lemma 4

$$
|B|=(p-5) / 4
$$

Proof. It follows from the definition of B that $x \in B$ if and only if $x, x-1 \in A$. Thus

$$
\begin{aligned}
|B| & =\frac{1}{4} \sum_{x=2}^{p-1}\left(1+\left(\frac{x}{p}\right)\right)\left(1+\left(\frac{x-1}{p}\right)\right) \\
& =\frac{1}{4} \sum_{x=2}^{p-1}\left(1+\left(\frac{x}{p}\right)+\left(\frac{x-1}{p}\right)+\left(\frac{x(x-1)}{p}\right)\right) .
\end{aligned}
$$

Note that $\left(\frac{1}{p}\right)=\left(\frac{p-1}{p}\right)=1$ and $\sum_{x=1}^{p-1}\left(\frac{x}{p}\right)=0$. Let x^{\prime} be an element in \mathbb{Z}_{p} such that $x^{\prime} x \equiv 1 \quad(\bmod p)$, Then we have

$$
\begin{aligned}
4|B|= & \sum_{x=2}^{p-1} 1+\left(\sum_{x=1}^{p-1}\left(\frac{x}{p}\right)-\left(\frac{1}{p}\right)\right)+\left(\sum_{x=1}^{p-1}\left(\frac{x}{p}\right)-\left(\frac{p-1}{p}\right)\right) \\
& +\sum_{x=1}^{p-2}\left(\frac{x^{\prime 2} x(x+1)}{p}\right) \\
= & (p-2)-1-1+\sum_{x^{\prime}=1}^{p-2}\left(\frac{x^{\prime}+1}{p}\right) \\
= & p-4+\sum_{x^{\prime}=1}^{p-1}\left(\frac{x^{\prime}}{p}\right)-\left(\frac{1}{p}\right) .
\end{aligned}
$$

Hence $4|B|=p-5$.
Now we study the structure of B. We assume that $B \neq \emptyset$ in the following discussion.

Definition 3 Assume that $x_{1}, x_{2} \in B$. If there is an affine transform $f: x \mapsto a x+b$ with $a \in A, b \in \mathbb{Z}_{p}$ carrying the set $\left\{0,1, x_{1}\right\}$ into $\left\{0,1, x_{2}\right\}$ then x_{1} and x_{2} are defined to be linearly related and we denote this by $x_{1} \sim x_{2}$.

Lemma 5 The relation of being linearly related in B is an equivalence relation. Moreover, every equivalence class is a subset of six elements in the form

$$
\begin{equation*}
\left\{a, a^{-1}, 1-a^{-1}, a(a-1)^{-1},(1-a)^{-1}, 1-a\right\} \tag{1}
\end{equation*}
$$

with the following two exceptions:

1) When $2 \in B$, there is a unique class $\left\{2,2^{-1},-1\right\}$ with three elements.
2) When $a(1-a)=1$, there is a unique class $\{a, 1-a\}$ with two elements.

Proof. It is easy to verify that \sim is an equivalence relation. Note that for any $a \in B$, there are only 6 affine transformations that carry the set $\{0,1, a\}$ to $\{0,1, b\}$ for some $b \in B$. They are

$$
\begin{gathered}
f_{0}(x)=x, f_{1}(x)=a^{-1} x, f_{2}(x)=1-a^{-1} x \\
f_{3}(x)=(1-a)^{-1}(x-a), f_{4}(x)=(a-1)^{-1}(x-1), f_{5}(x)=1-x .
\end{gathered}
$$

For fixed a let $\left\{f_{j}(0), f_{j}(1), f_{j}(a)\right\}=\left\{0,1, b_{j}\right\}, 0 \leq j \leq 5$. If b_{0}, \ldots, b_{5} are mutually distinct then the set $\left\{b_{0}, \ldots, b_{5}\right\}$ of six elements is in the form of (1), otherwise one of the 15 equalities

$$
a=a^{-1}, a=1-a^{-1}, \ldots,(1-a)^{-1}=1-a
$$

must hold. This implies that either $a \in\left\{2,2^{-1},-1\right\}$ or $a(1-a)=1$. The proof of the lemma is concluded.

Let $b \equiv|B| \quad(\bmod 6)$ with $0 \leq b \leq 5$. Lemma 5 implies that

1. If $b=0$ then every equivalence class in B has 6 elements.
2. If $b=2$ or $b=5$ then there is an equivalence class with 2 elements in B.
3. If $b=3$ or $b=5$ then there is an equivalence class with 3 elements in B.

The following lemma follows from Lemma 4 and Lemma 5 immediately.
Lemma 6 If $p=24 k+5$ then B has k equivalence classes. If $p=24 k+1,24 k+13$ or $24 k+17$ then B has $k+1$ classes.

4 Method for computing [B]

If $B=\emptyset$ then $[B]=0$ by our convention. Hence we may assume that $B \neq \emptyset$ throughout this section. It is easy to see from Lemma 5 that every equivalence class in B contains a positive integer.

Definition 4 The minimal positive integer a in an equivalence class in B is called the representative of that class and that class is denoted by $\langle a\rangle$. Let N denote the set of all representatives in B.

Lemma 7 For every $a \in B$, let $D(a)=\{x \in B \mid x-a \in A\}$ and let $d(a)=|D(a)|$. Then the condition

$$
\max \{d(a) \mid a \in N\}=0
$$

implies that $[B]=1$.
Proof. First we point out a property of equivalent elements in B. Assume that $a \in B$ and $x \in D(a)$. By the definitions of B and $D(a)$ we know that $x \in B$ and $x-a \in A$. Moreover, $\{0,1, a, x\}$ is a 4 -clique in G_{p}. If $a \sim b$ then there exists an affine transformation f carrying $\{0,1, a\}$ to $\{0,1, b\}$ for some b. Apply f to G_{p} then Lemma 2 implies that $\{0,1, b, f(x)\}$ is still a 4 -clique of G_{p}. By the definition of $D(b)$ we have $f(x) \in D(b)$. Thus $x \in D(a)$ if and only if $f(x) \in D(b)$. Therefore $d(a)=d(b)$ if $a \sim b$. It follows that $\max \{d(a) \mid a \in B\}=0$ whenever $\max \{d(a) \mid a \in N\}=0$, which amounts to saying that $D(a)=\emptyset$ for every $a \in B$. Hence $x-a \notin A$ for any $a, x \in B$. The clique $\{0,1, a\}$ is the largest clique of G_{p} and $c\left(G_{p}\right)=3$. It follows from Lemma 3 that $[B]=1$.

Next we consider the case $[B] \geq 2$. Let us introduce a total order \prec in B as follows.

Definition 5 (i) The order inside an equivalence class in B is defined as:

1. If $\langle a\rangle$ contains 6 elements, then

$$
a \prec a^{-1} \prec 1-a^{-1} \prec a(a-1)^{-1} \prec(1-a)^{-1} \prec 1-a ;
$$

2. If $\langle a\rangle$ contains 2 elements, then

$$
a \prec 1-a ;
$$

3. If $\langle a\rangle$ contains 3 elements, which means $a=2$, then

$$
2 \prec 2^{-1} \prec-1 .
$$

(ii) If $x, y \in B$ belong to different classes,say $x \in\langle a\rangle$ and $y \in\langle b\rangle$, then $x \prec y$ if and only if either $d(a)<d(b)$ or $d(a)=d(b)$ and $a<b$.

Obviously this makes (B, \prec) a totally-ordered set.
Definition 6 A chain $x_{0} \prec x_{1} \prec \cdots \prec x_{k}$ of length k in (B, \prec) is called an A-chain if $x_{i}-x_{j} \in A$ for all i, j satisfying $0 \leq i<j \leq k$. Let $l\left(x_{0}\right)$ denote the maximal length of all A-chains starting with x_{0}.

Theorem 1

$$
\begin{equation*}
[B]=1+\max \{l(a) \mid a \in N\} . \tag{2}
\end{equation*}
$$

Proof. It is immediate by the definition that the $k+1$ elements in an A-chain $a \prec x_{1} \prec \cdots \prec x_{k}$ form a clique in $G[B]$. Hence $[B] \geq k+1$. It remains to show that $[B] \leq k+1$.

Suppose that $[B]=k+1 \geq 2$. Then there exists a $k+1$ clique $D=\left\{b, x_{1}, \ldots, x_{k}\right\}$ in $G[B]$. Arrange these vertices in ascending order to obtain an A-chain of length k in (B, \prec). We may assume that b is the starting point of this chain. If $b \in N$ then the right hand side of (2) is greater than or equal to $k+1=[B]$, as desired. If $b \notin B$ assume that $b \in\langle a\rangle$. Then by Definition 3 there exists an affine transformation f carrying $\{0,1, b\}$ into $\{0,1, a\}$. Lemma 2 implies that f is an automorphism of G_{p}. It is easy to see that f is also an automorphism of $G[B]$. Hence f maps the clique D onto a $k+1$ clique $D^{*}=\left\{a, f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right\}$ in $G[B]$. Thus we get an A-chain of length k in (B, \prec). From the rule of ordering the start point of this chain must be a. Since $a \in N$, the right hand side of (2) is greater than or equal to $k+1=[B]$ and this concludes the proof of the theorem.

5 A method to obtain lower bounds for diagonal Ramsey numbers

Based on the analysis of the previous sections we obtain a new method to compute $c\left(G_{p}\right)$ and thus to obtain lower bounds for diagonal Ramsey numbers.

The algorithm is described as follows:
Step 1:
Choose a prime number $p=4 m+1 \geq 5$. Let $\mathbb{Z}_{p}=\{-2 m, \ldots,-1,0,1, \ldots, 2 m\}$ and choose a generator g of the multiplicative group \mathbb{Z}_{p}^{*}. Find $|B|=(p-5) / 4$. If $|B|=0,($ which means $p=5)$ then let $[B]=0$ and go to Step 7 .

Step 2:
Set $A=\left\{g^{2 i} \in \mathbb{Z}_{p} \mid 0 \leq i \leq 2 m-1\right\}, B=\{x \in A \mid x-1 \in A\}$.
Step 3:
Determine all equivalence classes in B by virtue of Lemma 5 and find the set N of the representatives of all classes.

Step 4:
Find the number of elements $d(a)$ of the set $\{x \in B \mid x-a \in A\}$ for every $a \in N$. If $\max \{d(a) \mid a \in N\}=0$ then $[B]=1$ and go to Step 7 .

Step 5:
Construct the totally ordered set (B, \prec) in terms of Definition 5 .
Step 6:
Find $l(a)$ for every $a \in N$ in terms of Definition 6 and determine $[B]=1+$ $\max \{l(a) \mid a \in N\}$.

Step 7:
Set $k=c\left(G_{p}\right)=[B]+2$. Conclude that $R(k+1, k+1) \geq p+1, R(k+2, k+2) \geq$ $2 p+3$ and the algorithm terminates.

To explain the algorithm more explicitly we apply it to obtain some known results. The calculations can be easily carried out manually when $p=5,13,17,29$. Figure 1 illustrates these examples, among which the ones with $p=5,17$ are particularly nice.

(a) $m=1, p=5, A=\{1,-1\}, B=0, G(B)=0,(B)=0 \& c\left(G_{5}\right)=2$.

(c) $m=4, p=17, A=\{1,2,4,8,-8,-4,-2,-1\}$,
$B=\{2,-8,-1\}=<2>, G(B) \quad 3 K_{1},(B)=1 \&$ $c\left(G_{17}\right)=3$.

(b) $m=3, p=13, A=\{1,3,4,-4,-3,-1\}, B=\{4,-3\}$ $=<4>, G(B) \quad 2 K_{1},(B)=1 \& c\left(G_{13}\right)=3$.

(d) $m=7, p=29, A=\{1,4,5,6,7,9,13,-13,-9,-7$,
$-6,-5,-4,-1\}, B=\{5,6,7,-6,-5,-4\}=<5>, G(B)$
$C_{6},(B)=2 \& c\left(G_{29}\right)=4$.

Figure 1. Some best simple self-complementary graphs
Example $1 R(3,3) \geq 6$ ([2]).

Proof. Set $p=5$. By Step 1 and Step 7 of the algorithm we obtain $|B|=0,[B]=$ $0, c\left(G_{p}\right)=2$ and $R(3,3) \geq 6$.

Example $2 R(4,4) \geq 18$ ([2]).
Proof. Set $p=17$. From Step 1 we obtain $|B|=3$. Thus B has only one equivalence class $\{2,-8,-1\}$ by Lemma 5 . Since none of $2-(-8), 2-(-1)$ is a quadratic residue modulo 17 , we have $d(2)=0,[B]=1, c\left(G_{p}\right)=3$ and $R(4,4) \geq 18$.

Example $3 R(6,6) \geq 102([3]), R(7,7) \geq 205$ ([5], [7]).
Proof. Set $p=101$ and $g=2$. Then $|B|=24$. The set B is divided into 4 equivalence classes, each of which contains 6 elements:

$$
\begin{aligned}
\langle 5\rangle & =\{5,-20,21,-24,25,-4\}, \\
\langle 14\rangle & =\{14,-36,37,-30,31,-13\}, \\
\langle 22\rangle & =\{22,23,-22,-23,24,-21\}, \\
\langle 6\rangle & =\{6,17,-16,-19,20,-5\} .
\end{aligned}
$$

Then $d(5)=10, d(14)=10, d(22)=10, d(6)=12$. The totally-ordered set (B, \prec) is $\langle 5\rangle,\langle 14\rangle,\langle 22\rangle,\langle 6\rangle$. To find $l(5)$ we first set

$$
\begin{aligned}
D(5) & =\{x \in B \mid x-5 \in A, 5 \prec x\} \\
& =\{-20,21,25,-4,14,22,24,6,-16,-19\} .
\end{aligned}
$$

Then $|D(5)|=10$. By backtracking we obtain $l(5)=2$ and the first A-chain of length 2 starting with 5 is $5 \prec-20 \prec 25$. Set

$$
\begin{aligned}
D(14) & =\{x \in B \mid x-14 \in A, 14 \prec x\} \\
& =\{37,31,23,-22,-23,-16,-19,20,-5\} .
\end{aligned}
$$

Then $|D(14)|=9$. By backtracking we obtain $l(14)=2$ and the first A-chain of length 2 starting with 14 is $14 \prec 37 \prec 31$. Similarly with

$$
\begin{aligned}
D(22) & =\{x \in B \mid x-22 \in A, 22 \prec x\} \\
& =\{23,-23,-21,6,17\}
\end{aligned}
$$

and

$$
\begin{aligned}
D(6) & =\{x \in B \mid x-6 \in A, 6 \prec x\} \\
& =\{-16,-19,20\}
\end{aligned}
$$

we obtain $l(22)=l(6)=2$ and the corresponding A-chains $22 \prec 23 \prec 6$ and $6 \prec-16 \prec 20$. Hence $\max \{l(a) \mid a \in N\}=2,[B]=3, c\left(G_{p}\right)=5$, and we conclude that $R(6,6) \geq 102$ and $R(7,7) \geq 205$.

Example $4 R(8,8) \geq 282([1]), R(9,9) \geq 565$ ([5], [7]).
Proof. Set $p=281$ and $g=3$. Then $|B|=69$. The set B is divided into 12 equivalence classes:

$$
\begin{gathered}
\langle 9\rangle=\{9,125,-124,-34,35,-8\}, \\
\langle 59\rangle=\{59,-100,101,64,-63,-58\}, \\
\langle 2\rangle=\{2,-140,-1\}, \\
\langle 5\rangle=\{5,-56,57,-69,70,-4\}, \\
\langle 10\rangle=\{10,-28,29,126,-125,-9\}, \\
\langle 50\rangle=\{50,-118,119,-85,86,-49\}, \\
\langle 8\rangle=\{8,-35,36,-39,40,-7\}, \\
\langle 17\rangle=\{17,-33,34,124,-123,-16\}, \\
\langle 32\rangle=\{32,-79,80,137,-136,-31\}, \\
\langle 81\rangle=\{81,-111,112,138,-137,-80\}, \\
\langle 18\rangle=\{18,-78,79,-32,33,-17\}, \\
\langle 58\rangle=\{58,63,-62,-68,69,-57\} .
\end{gathered}
$$

Then

$$
\begin{gathered}
d(9)=30, d(59)=30, d(2)=32, d(5)=32, d(10)=32, d(50)=32 \\
d(8)=34, d(17)=34, d(32)=34, d(81)=34, d(18)=36, d(58)=36
\end{gathered}
$$

The totally-ordered set (B, \prec) is $\langle 9\rangle,\langle 59\rangle, \ldots,\langle 58\rangle$.
To find $l(9)$ we set

$$
\begin{aligned}
D(9)= & \{x \in B \mid x-9 \in A, 9 \prec x\} \\
= & \{125,-34,-8,59,-100,-63,2,-140,-1,5,-69,10,29,-9,-49,8, \\
& 40,-7,17,34,-123,-16,137,-136,-31,81,18,79,58,-57\} .
\end{aligned}
$$

Then $|D(5)|=30$. By backtracking we obtain $l(9)=4$ and the first A-chain of length 4 starting with 9 is $9 \prec 125 \prec 59 \prec 2 \prec-7$. Similarly with

$$
\begin{aligned}
D(59)= & \{x \in B \mid x-59 \in A, 59 \prec x\} \\
= & \{64,2,57,-69,-4,10,-9,50,-85,-39,-7,34,-79,137, \\
& -136,-31,-111,112,138,-137,-78,79,58,63,-62,69,-57\}, \\
D(2)= & \{x \in B \mid x-2 \in A, 2 \prec x\} \\
= & \{-56,70,10,126,36,-7,-33,34,-123,-16,-79,80, \\
& -136,-31,81,138,18,-78,-32,33,58,-62,-68,-57\},
\end{aligned}
$$

$$
\begin{aligned}
D(81) & =\{x \in B \mid x-81 \in A, 81 \prec x\} \\
& =\{112,138,-137,18,79,-17,63,-62,-68,-57\}, \\
& \begin{aligned}
D(18) & =\{x \in B \mid x-18 \in A, 18 \prec x\} \\
& =\{-32,-17,58,63,-62,-68\}
\end{aligned}
\end{aligned}
$$

and

$$
\begin{aligned}
D(58) & =\{x \in B \mid x-58 \in A, 58 \prec x\} \\
& =\{63,-68\}
\end{aligned}
$$

we obtain $l(59)=4, l(2)=4, l(81)=4, l(18)=3, l(58)=1$ and the corresponding A-chains

$$
\begin{aligned}
59 & \prec 64 \prec 2 \prec-79 \prec-136, \\
2 & \prec-56 \\
\prec 70 & \prec 34 \prec-16, \\
81 & \prec 138 \prec 79 \prec-62 \prec-57, \\
18 & \prec-32 \prec 58 \prec-68
\end{aligned}
$$

and $58 \prec 63$. Hence $\max \{l(a) \mid a \in N\}=4,[B]=5, c\left(G_{p}\right)=7$, and we conclude that $R(8,8) \geq 282, R(9,9) \geq 565$.

6 Three new lower bounds for diagonal Ramsey numbers

Generally speaking, the amount of computation increases exponentially when one uses backtracking methods to compute the clique numbers of G_{p}. Many algorithms become impractical when p is relatively large (for example $p=4457$ or $p=8941$). Our algorithm improves this situation drastically so that we can handle fairly large prime numbers. The efficiency of our algorithm is based on the following two considerations:
A) To compute $[B]$ we only need to handle the A-chains starting with a representative of the equivalence classes in B.
B) The ordering of the totally-ordered set (B, \prec) enables us to give higher priority to the equivalence classes with minimum value of $|D(a)|$ when we compute $l(a)$, so many unnecessary branches are pruned preliminarily during the process of backtracking. The redundant calculation for isomorphic cyclic graphs are avoided. Moreover, the values $\left|D\left\langle a_{i}\right\rangle\right|$ of the equivalence classes $\left\langle a_{i}\right\rangle$ become smaller and smaller, which reduces the amount of computation significantly and increases the speed of the computation of $l\left(a_{i}\right)$.

By taking these measures we were able to compute the clique numbers $c\left(G_{p}\right)$ with $p<15,000$ with the aid of a single computer in a reasonably short period of time. In most cases, the CPU time spent for the computation of $c\left(G_{p}\right)$ is less than 1 second when $p<1500$ on a Pentium III 800 machine. In our computation of $c\left(G_{p}\right)$ for $p=4457,5501,8941$ (as in Theorem 2) the CPU time is 10 minutes, 30 minutes and 80 hours respectively.

Theorem 2

$$
R(17,17) \geq 8917, R(18,18) \geq 11005, R(19,19) \geq 17885 .
$$

Proof. We omit details since they are more or less the same as the last two examples in the previous section.
(1) Set $p=4457$ and $g=3$. Then $|B|=1113$. The set B is divided into 186 equivalence classes:

$$
\begin{gathered}
\langle 101\rangle=\{101,1368,-1367,313,-312,-100\}, \\
\langle 443\rangle=\{443,825,-824,2169,-2168,-442\}, \\
\langle 1145\rangle=\{1145,1993,-1992,1649,-1648,-1144\}, \\
\langle 1202\rangle=\{1202,1346,-1345,-2144,2145,-1201\}, \\
\langle 141\rangle=\{141,-1296,1297,2134,-2133,-140\}, \\
\langle 152\rangle=\{152,909,-908,1772,-1771,-151\}, \\
\langle 206\rangle=\{206,238,-237,-1260,1261,-205\}, \\
\langle 431\rangle=\{431,1334,-1333,-652,653,-430\}, \\
\langle 560\rangle=\{560,-581,582,-1187,1188,-559\}, \\
\langle 594\rangle=\{594,-1118,1119,-2111,2112,-593\}, \\
\langle 602\rangle=\{602,807,-806,-1764,1765,-601\}, \\
\langle 734\rangle=\{734,-1682,1683,1965,-1964,-733\}, \\
\ldots
\end{gathered} \begin{aligned}
2
\end{aligned},
$$

with

$$
\begin{gathered}
d(101)=540, d(443)=540, d(1145)=540, d(1202)=540, d(141)=542, \\
d(152)=542, d(206)=542, d(431)=542, d(560)=542, d(594)=542, \\
d(602)=542, d(734)=542, \\
\cdots \\
d(1067)=570, d(1124)=570 .
\end{gathered}
$$

The totally-ordered set (B, \prec) is $\langle 101\rangle,\langle 443\rangle, \ldots,\langle 1124\rangle$. By computation we have

$$
l(101)=12
$$

and

$$
l(a) \leq 12
$$

for all other $a \in N$. The first A-chain of length 12 is

$$
\left.\begin{array}{rl}
101 & \prec 1368 \prec-2168 \prec-442 \prec 122 \prec 548 \prec-1592 \\
& \prec 1481
\end{array}\right) 2173 \prec-1044 \prec-1 \prec 922 \prec 1107 .
$$

Hence $[B]=13, c\left(G_{p}\right)=15$, and we conclude that $R(17,17) \geq 8917$.
(2) Set $p=5501$ and $g=2$. Then $|B|=1374$. The set B is divided into 229 equivalence classes:

$$
\begin{gathered}
\langle 601\rangle=\{601,-897,898,-925,926,-600\}, \\
\langle 677\rangle=\{677,1812,-1811,-1537,1538,-676\}, \\
\langle 54\rangle=\{54,-2343,2344,-2490,2491,-53\}, \\
\langle 105\rangle=\{105,-2148,2149,1006,-1005,-104\}, \\
\langle 196\rangle=\{196,421,-420,537,-536,-195\}, \\
\langle 213\rangle=\{213,-594,595,-1997,1998,-212\}, \\
\langle 384\rangle=\{384,616,-615,-1780,1781,-383\}, \\
\langle 487\rangle=\{487,2101,-2100,-2093,2094,-486\}, \\
\langle 518\rangle=\{518,754,-753,1746,-1745,-517\}, \\
\langle 526\rangle=\{526,-2625,2626,-2629,2630,-525\}, \\
\langle 850\rangle=\{850,-1948,1949,-1256,1257,-849\}, \\
\langle 860\rangle=\{860,-2565,2566,-2266,2267,-859\}, \\
\ldots
\end{gathered} \begin{gathered}
\cdots \\
\langle 2314\rangle=\{2314,-2489,2490,-2344,2345,-2313\}, \\
\langle 225\rangle=\{225,1198,-1197,1057,-1056,-224\}
\end{gathered}
$$

with

$$
\begin{gathered}
d(601)=668, d(677)=668, d(54)=670, d(105)=670, d(196)=670, d(213)=670, \\
d(384)=670, d(487)=670, d(518)=670, d(526)=670, d(850)=670, d(860)=670, \\
\ldots \\
d(2314)=702, d(225)=704 .
\end{gathered}
$$

The totally-ordered set (B, \prec) is $\langle 601\rangle,\langle 677\rangle, \ldots,\langle 225\rangle$. By computation we have

$$
l(601)=13
$$

and

$$
l(a) \leq 13
$$

for all other $a \in N$. The first A-chain of length 13 is

$$
\begin{aligned}
601 & \prec 518 \\
\prec-124 \prec-877 & \prec 71 \prec 789 \prec-743 \prec \\
-607 & \prec 1906
\end{aligned} \text { }-1163 \prec 1195 \prec 156 \prec-1434 \prec-888 .
$$

Hence $[B]=14, c\left(G_{p}\right)=16$, and we conclude that $R(18,18) \geq 11005$.
(3) Set $p=8941$ and $g=6$. Then $|B|=2234$. The set B is divided into 373 equivalence classes:

$$
\begin{gathered}
\langle 5\rangle=\{5,-1788,1789,-2234,2235,-4\}, \\
\langle 261\rangle=\{261,2535,-2534,-4160,4161,-260\}, \\
\langle 627\rangle=\{627,713,-712,2072,-2071,-626\}, \\
\langle 1415\rangle=\{1415,-1586,1587,-1662,1663,-1414\}, \\
\langle 1508\rangle=\{1508,2674,-2673,3365,-3364,-1507\}, \\
\langle 1627\rangle=\{1627,2385,-2384,2239,-2238,-1626\}, \\
\langle 3258\rangle=\{3258,4229,-4228,-3263,3264,-3257\}, \\
\langle 3316\rangle=\{3316,4031,-4030,-3481,3482,-3315\}, \\
\langle 20\rangle=\{20,-447,448,-3293,3294,-19\}, \\
\langle 132\rangle=\{132,-3319,3320,-272,273,-131\}, \\
\langle 222\rangle=\{222,-3665,3666,1417,-1416,-221\}, \\
\langle 397\rangle=\{397,3153,-3152,1875,-1874,-396\}, \\
\ldots
\end{gathered} \begin{aligned}
2
\end{aligned},
$$

with

$$
\begin{gathered}
d(5)=1094, d(261)=1094, d(627)=1094, d(1415)=1094, d(1508)=1094 \\
d(1627)=1094, d(3258)=1094, d(3316)=1094, d(20)=1096, d(132)=1096 \\
d(222)=1096, d(397)=1096 \\
\cdots \\
d(2245)=1138, d(2393)=1138
\end{gathered}
$$

The totally-ordered set (B, \prec) is $\langle 5\rangle,\langle 261\rangle, \ldots,\langle 2393\rangle$. By computation we have

$$
l(5)=14
$$

and

$$
l(a) \leq 14
$$

for all other $a \in N$. The first A-chain of length 14 is

$$
\begin{aligned}
& 5 \prec 1789 \\
& \prec-2234 \prec 2535 \prec-3714 \prec-2372 \prec 320 \prec \\
&-1516 \prec 1534
\end{aligned} \frac{3505}{} \prec-571 \prec 2554 \prec-3836 \prec-689 \prec-4435 .
$$

Hence $[B]=15, c\left(G_{p}\right)=17$, and we conclude that $R(19,19) \geq 17885$.

Acknowledgement

We thank Prof. J.G. Yang for his valuable help. The useful comments of the referee(s) are greatly appreciated.

References

[1] J.P. Burling and S.W. Reyner, Some lower bounds of the Ramsey numbers $n(k, k)$, J. Combin. Theory Ser. B, 13 (1972), 168-169.
[2] R.E. Greenwood, A.M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math., 7 (1955), 1-7.
[3] J.G. Kalbfleisch, Construction of special edge-chromatic graphs, Canad. Math. Bull., 8 (1965), 575-584.
[4] H.P. Luo, W.L. Su and Q. Li, New lower bounds of classical Ramsey numbers $R(6,12), R(6,14)$ and $R(6,15)$, Chin. Sc. Bull., 43 (1998), 817-818.
[5] R. Mathon, Lower bounds for Ramsey numbers and association schemes, J. Combin. Theory Ser. B, 42 (1987), 122-127.
[6] S.P. Radziszowski, Small Ramsey numbers, Elec. J. Comb., $\sharp 7$ (2000), 1-36.
[7] J.B. Shearer, Lower bounds for small diagonal Ramsey numbers, J. Combin. Theory Ser. A , 42 (1986), 302-304.
[8] W.L Su, H.P. Luo and Q. Li, New lower bounds of classical Ramsey numbers $R(4,12), R(5,11)$ and $R(5,12)$, Chin. Sc. Bull., $43(1998), 528$.
[9] W.L. Su, H.P. Luo and Q. Li, Lower bounds for multicolor classical Ramsey numbers $R(\overbrace{q, q, \cdots, q}^{n})$, Sc. in China, 42 (1999), 1019-1024.
[10] W.L. Su, H.P. Luo and Q. Li, New lower bounds for seven classical Ramsey numbers $R(k, l)$, (in Chinese) J. Sys. Sc. and Math. Sc., 20 (2000), 55-57.
[11] W.L. Su, H.P. Luo and Y.-Q.Shen, New lower bounds for classical Ramsey numbers $R(5,13)$ and $R(5,14)$, Appl. Math. Let., 12 (1999), 121-122.
[12] W.L. Su, H.P. Luo, Z.Y. Zhang and G.Q. Li, New lower bounds of fifteen classical Ramsey numbers, Australas. J. Combin., 19 (1999), 91-99.

[^0]: * Partially supported by the National Natural Science Fund of China (10161003) and the Natural Science Fund of Guangxi Province of China.

