
The properties of self-complementary graphs and
new lower bounds for diagonal Ramsey numbers∗

Luo Haipeng

Guangxi Academy of Sciences
Nanning 530022
P.R. of China

Su Wenlong

Guangxi University Wuzhou Branch
Wuzhou 543002
P.R. of China

Li Zhenchong

Guangxi Academy of Sciences
Nanning 530022
P.R. of China

Abstract

Some properties of self-complementary graphs have been studied and
3 new lower bounds for diagonal Ramsey numbers have been obtained.
They are: R(17, 17) ≥ 8917, R(18, 18) ≥ 11005, R(19, 19) ≥ 17885.

1 Introduction

In 1955 Greenwood and Gleason ([2]) utilized quadratic residues modulo prime num-
bers p = 5 and p = 17 to construct self-complementary graphs G5 and G17. Af-
terwards, Kalbfleisch([3]), Burling & Reyner ([1]), Mathon([5]) and Shearer([7]) ex-
tended the discussion of the clique numbers c(Gp) of self-complementary graphs Gp

to the range p < 3000 and proved the following result:

Lemma 1 ([5, 7]) c(Gp) = k implies R(k + 2, k + 2) > 2p + 2.
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The survey [6] summarizes their work and keeps a record of the best lower bounds
for diagonal Ramsey numbers up to date. They are:

R(6, 6) ≥ 102, R(7, 7) ≥ 205, R(8, 8) ≥ 282, R(9, 9) ≥ 565,
R(10, 10) ≥ 798, R(11, 11) ≥ 1597, R(13, 13) ≥ 2557, R(14, 14) ≥ 2989,
R(15, 15) ≥ 5485, R(16, 16) ≥ 5605 and R(12, 12) ≥ 1597 + 11.

As far as we know, there has been no significant progress in the study of c(Gp)
and R(k, k) in the last ten years. In [4, 8, 9, 10, 11, 12] we studied some properties of
cyclic graphs of prime order and obtained some new lower bounds for Ramsey num-
bers. This paper investigates further properties of self-complementary graphs and
introduces a new algorithm to estimate lower bounds for diagonal Ramsey numbers
from which three new results have been obtained:

R(17, 17) ≥ 8917, R(18, 18) ≥ 11005, R(19, 19) ≥ 17885.

2 Basic properties of self-complementary graphs

Let p = 4m+1 ≥ 5 be a prime number and let A denote the set of quadratic residues
modulo p. Let Zp denote {−2m, . . . ,−1, 0, 1, . . . , 2m}. Then Zp is a complete system
of residues of integers modulo p. An integer n shall be understood to be an element
n ∈ Zp such that p|n − n if the context makes it clear. When two integers a and b
have the same residue modulo p we often write a = b instead of a ≡ b (mod p).

Definition 1 For a prime p = 4m + 1 ≥ 5 the graph Gp is defined as follows:

1. The vertex set V of Gp is Zp.

2. The edge set is E = {{x, y}|x − y ∈ A}.
The clique number of Gp is denoted by c(Gp).

Since p ≡ 1 (mod 4), we have (−1
p

) = 1, where (−1
p

) is the Legendre symbol of
−1. This means that −1 ∈ A. So x − y ∈ A if and only if y − x ∈ A, which implies
that the edge set in Definition 1 is well-defined.

If a ∈ A, then x − y ∈ A if and only if a(x − y) ∈ A. This implies the following
result:

Lemma 2 Let a ∈ A, b ∈ Zp. Then the affine transform f : x �→ ax + b is an
automorphism of Gp.

Definition 2 Let B = {x ∈ A|x − 1 ∈ A}. Let G[B] be the subgraph of Gp defined
as follows:

1. The vertex set of G[B] is B.

2. The edge set of G[B] is {{x, y}|x, y ∈ B, x − y ∈ A}.

104



The clique number of B is denoted by [B]. We make a convention that [B] = 0 if
B = ∅.
Lemma 3

c(Gp) = [B] + 2.

Proof. First note that a ∈ A if and only if a−1 ∈ A for any a �= 0, because
(a

p
)(a−1

p
) = (1

p
) = 1.

Next we show an important property of the graph Gp. That is: Gp is edge-
transitive. Let {x1, x2} be an edge of Gp, i.e., x2 −x1 ∈ A. Then (x2 −x1)

−1 ∈ A. By
Lemma 2 f(x) = (x2 − x1)

−1(x− x1) is an automorphism of Gp. Obviously f carries
the edge {x1, x2} into {0, 1}.

Therefore c(Gp) is equal to the number of vertices of a maximal clique of Gp that
contains both 0 and 1. This implies that c(Gp) = [B] + 2. �

This lemma tells us that the computation of the clique number of Gp can be
reduced to that of its subgraph G[B], which is much simpler.

3 Basic properties of G[B]

Let |B| denote the number of elements in B.

Lemma 4
|B| = (p − 5)/4.

Proof. It follows from the definition of B that x ∈ B if and only if x, x − 1 ∈ A.
Thus

|B| =
1

4

p−1∑
x=2

(1 + (
x

p
))(1 + (

x − 1

p
))

=
1

4

p−1∑
x=2

(1 + (
x

p
) + (

x − 1

p
) + (

x(x − 1)

p
)).

Note that (1
p
) = (p−1

p
) = 1 and

∑p−1
x=1(

x
p
) = 0. Let x′ be an element in Zp such

that x′x ≡ 1 (mod p), Then we have

4|B| =

p−1∑
x=2

1 + (

p−1∑
x=1

(
x

p
) − (

1

p
)) + (

p−1∑
x=1

(
x

p
) − (

p − 1

p
))

+

p−2∑
x=1

(
x′2x(x + 1)

p
)

= (p − 2) − 1 − 1 +

p−2∑
x′=1

(
x′ + 1

p
)

= p − 4 +

p−1∑
x′=1

(
x′

p
) − (

1

p
).
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Hence 4|B| = p − 5. �

Now we study the structure of B. We assume that B �= ∅ in the following discus-
sion.

Definition 3 Assume that x1, x2 ∈ B. If there is an affine transform f : x �→ ax+ b
with a ∈ A, b ∈ Zp carrying the set {0, 1, x1} into {0, 1, x2} then x1 and x2 are defined
to be linearly related and we denote this by x1 ∼ x2.

Lemma 5 The relation of being linearly related in B is an equivalence relation.
Moreover, every equivalence class is a subset of six elements in the form

{a, a−1, 1 − a−1, a(a − 1)−1, (1 − a)−1, 1 − a} (1)

with the following two exceptions:
1) When 2 ∈ B, there is a unique class {2, 2−1,−1} with three elements.
2) When a(1 − a) = 1, there is a unique class {a, 1 − a} with two elements.

Proof. It is easy to verify that ∼ is an equivalence relation. Note that for any
a ∈ B, there are only 6 affine transformations that carry the set {0, 1, a} to {0, 1, b}
for some b ∈ B. They are

f0(x) = x, f1(x) = a−1x, f2(x) = 1 − a−1x,

f3(x) = (1 − a)−1(x − a), f4(x) = (a − 1)−1(x − 1), f5(x) = 1 − x.

For fixed a let {fj(0), fj(1), fj(a)} = {0, 1, bj}, 0 ≤ j ≤ 5. If b0, . . . , b5 are mutually
distinct then the set {b0, . . . , b5} of six elements is in the form of (1), otherwise one
of the 15 equalities

a = a−1, a = 1 − a−1, . . . , (1 − a)−1 = 1 − a

must hold. This implies that either a ∈ {2, 2−1,−1} or a(1 − a) = 1. The proof of
the lemma is concluded. �

Let b ≡ |B| (mod 6) with 0 ≤ b ≤ 5. Lemma 5 implies that

1. If b = 0 then every equivalence class in B has 6 elements.

2. If b = 2 or b = 5 then there is an equivalence class with 2 elements in B.

3. If b = 3 or b = 5 then there is an equivalence class with 3 elements in B.

The following lemma follows from Lemma 4 and Lemma 5 immediately.

Lemma 6 If p = 24k + 5 then B has k equivalence classes. If p = 24k + 1, 24k + 13
or 24k + 17 then B has k + 1 classes.
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4 Method for computing [B]

If B = ∅ then [B] = 0 by our convention. Hence we may assume that B �= ∅
throughout this section. It is easy to see from Lemma 5 that every equivalence class
in B contains a positive integer.

Definition 4 The minimal positive integer a in an equivalence class in B is called
the representative of that class and that class is denoted by 〈a〉. Let N denote the set
of all representatives in B.

Lemma 7 For every a ∈ B, let D(a) = {x ∈ B|x − a ∈ A} and let d(a) = |D(a)|.
Then the condition

max{d(a)|a ∈ N} = 0

implies that [B] = 1.

Proof. First we point out a property of equivalent elements in B. Assume that
a ∈ B and x ∈ D(a). By the definitions of B and D(a) we know that x ∈ B and
x−a ∈ A. Moreover, {0, 1, a, x} is a 4-clique in Gp. If a ∼ b then there exists an affine
transformation f carrying {0, 1, a} to {0, 1, b} for some b. Apply f to Gp then Lemma
2 implies that {0, 1, b, f(x)} is still a 4-clique of Gp. By the definition of D(b) we have
f(x) ∈ D(b). Thus x ∈ D(a) if and only if f(x) ∈ D(b). Therefore d(a) = d(b) if
a ∼ b. It follows that max{d(a)|a ∈ B} = 0 whenever max{d(a)|a ∈ N} = 0, which
amounts to saying that D(a) = ∅ for every a ∈ B. Hence x−a /∈ A for any a, x ∈ B.
The clique {0, 1, a} is the largest clique of Gp and c(Gp) = 3. It follows from Lemma
3 that [B] = 1. �

Next we consider the case [B] ≥ 2. Let us introduce a total order ≺ in B as
follows.

Definition 5 (i) The order inside an equivalence class in B is defined as:

1. If 〈a〉 contains 6 elements, then

a ≺ a−1 ≺ 1 − a−1 ≺ a(a − 1)−1 ≺ (1 − a)−1 ≺ 1 − a;

2. If 〈a〉 contains 2 elements, then

a ≺ 1 − a;

3. If 〈a〉 contains 3 elements, which means a = 2, then

2 ≺ 2−1 ≺ −1.

(ii) If x, y ∈ B belong to different classes,say x ∈ 〈a〉 and y ∈ 〈b〉, then x ≺ y if
and only if either d(a) < d(b) or d(a) = d(b) and a < b.
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Obviously this makes (B,≺) a totally-ordered set.

Definition 6 A chain x0 ≺ x1 ≺ · · · ≺ xk of length k in (B,≺) is called an A-chain
if xi − xj ∈ A for all i, j satisfying 0 ≤ i < j ≤ k. Let l(x0) denote the maximal
length of all A-chains starting with x0.

Theorem 1
[B] = 1 + max{l(a)|a ∈ N}. (2)

Proof. It is immediate by the definition that the k + 1 elements in an A-chain
a ≺ x1 ≺ · · · ≺ xk form a clique in G[B]. Hence [B] ≥ k + 1. It remains to show that
[B] ≤ k + 1.

Suppose that [B] = k+1 ≥ 2. Then there exists a k+1 clique D = {b, x1, . . . , xk}
in G[B]. Arrange these vertices in ascending order to obtain an A-chain of length k
in (B,≺). We may assume that b is the starting point of this chain. If b ∈ N then
the right hand side of (2) is greater than or equal to k +1 = [B], as desired. If b /∈ B
assume that b ∈ 〈a〉. Then by Definition 3 there exists an affine transformation f
carrying {0, 1, b} into {0, 1, a}. Lemma 2 implies that f is an automorphism of Gp.
It is easy to see that f is also an automorphism of G[B]. Hence f maps the clique D
onto a k + 1 clique D∗ = {a, f(x1), . . . , f(xk)} in G[B]. Thus we get an A-chain of
length k in (B,≺). From the rule of ordering the start point of this chain must be
a. Since a ∈ N, the right hand side of (2) is greater than or equal to k + 1 = [B] and
this concludes the proof of the theorem. �

5 A method to obtain lower bounds for diagonal

Ramsey numbers

Based on the analysis of the previous sections we obtain a new method to compute
c(Gp) and thus to obtain lower bounds for diagonal Ramsey numbers.

The algorithm is described as follows:

Step 1:
Choose a prime number p = 4m + 1 ≥ 5. Let Zp = {−2m, . . . ,−1, 0, 1, . . . , 2m}

and choose a generator g of the multiplicative group Z
∗
p. Find |B| = (p − 5)/4. If

|B| = 0,(which means p = 5) then let [B] = 0 and go to Step 7.

Step 2:
Set A = {g2i ∈ Zp|0 ≤ i ≤ 2m − 1}, B = {x ∈ A|x − 1 ∈ A}.
Step 3:
Determine all equivalence classes in B by virtue of Lemma 5 and find the set N

of the representatives of all classes.

Step 4:
Find the number of elements d(a) of the set {x ∈ B|x − a ∈ A} for every a ∈ N.

If max{d(a)|a ∈ N} = 0 then [B] = 1 and go to Step 7.
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Step 5:
Construct the totally ordered set (B,≺) in terms of Definition 5.

Step 6:
Find l(a) for every a ∈ N in terms of Definition 6 and determine [B] = 1 +

max{l(a)|a ∈ N}.
Step 7:
Set k = c(Gp) = [B] + 2. Conclude that R(k + 1, k + 1) ≥ p+ 1, R(k + 2, k + 2) ≥

2p + 3 and the algorithm terminates.

To explain the algorithm more explicitly we apply it to obtain some known results.
The calculations can be easily carried out manually when p = 5, 13, 17, 29. Figure
1 illustrates these examples, among which the ones with p = 5, 17 are particularly
nice.
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Figure 1. Some best simple self-complementary graphs
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Example 1 R(3, 3) ≥ 6 ([2]).
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Proof. Set p = 5. By Step 1 and Step 7 of the algorithm we obtain |B| = 0, [B] =
0, c(Gp) = 2 and R(3, 3) ≥ 6. �

Example 2 R(4, 4) ≥ 18 ([2]).

Proof. Set p = 17. From Step 1 we obtain |B| = 3. Thus B has only one
equivalence class {2,−8,−1} by Lemma 5. Since none of 2 − (−8), 2 − (−1) is a
quadratic residue modulo 17, we have d(2) = 0, [B] = 1, c(Gp) = 3 and R(4, 4) ≥ 18.
�

Example 3 R(6, 6) ≥ 102 ([3]), R(7, 7) ≥ 205 ([5], [7]).

Proof. Set p = 101 and g = 2. Then |B| = 24. The set B is divided into 4
equivalence classes, each of which contains 6 elements:

〈5〉 = {5,−20, 21,−24, 25,−4},
〈14〉 = {14,−36, 37,−30, 31,−13},
〈22〉 = {22, 23,−22,−23, 24,−21},
〈6〉 = {6, 17,−16,−19, 20,−5}.

Then d(5) = 10, d(14) = 10, d(22) = 10, d(6) = 12. The totally-ordered set (B,≺)
is 〈5〉, 〈14〉, 〈22〉, 〈6〉. To find l(5) we first set

D(5) = {x ∈ B|x − 5 ∈ A, 5 ≺ x}
= {−20, 21, 25,−4, 14, 22, 24, 6,−16,−19}.

Then |D(5)| = 10. By backtracking we obtain l(5) = 2 and the first A-chain of length
2 starting with 5 is 5 ≺ −20 ≺ 25. Set

D(14) = {x ∈ B|x − 14 ∈ A, 14 ≺ x}
= {37, 31, 23,−22,−23,−16,−19, 20,−5}.

Then |D(14)| = 9. By backtracking we obtain l(14) = 2 and the first A-chain of
length 2 starting with 14 is 14 ≺ 37 ≺ 31. Similarly with

D(22) = {x ∈ B|x − 22 ∈ A, 22 ≺ x}
= {23,−23,−21, 6, 17}

and

D(6) = {x ∈ B|x − 6 ∈ A, 6 ≺ x}
= {−16,−19, 20}

we obtain l(22) = l(6) = 2 and the corresponding A-chains 22 ≺ 23 ≺ 6 and
6 ≺ −16 ≺ 20. Hence max{l(a)|a ∈ N} = 2, [B] = 3, c(Gp) = 5, and we conclude
that R(6, 6) ≥ 102 and R(7, 7) ≥ 205. �
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Example 4 R(8, 8) ≥ 282 ([1]), R(9, 9) ≥ 565 ([5], [7]).

Proof. Set p = 281 and g = 3. Then |B| = 69. The set B is divided into 12
equivalence classes:

〈9〉 = {9, 125,−124,−34, 35,−8},
〈59〉 = {59,−100, 101, 64,−63,−58},

〈2〉 = {2,−140,−1},
〈5〉 = {5,−56, 57,−69, 70,−4},

〈10〉 = {10,−28, 29, 126,−125,−9},
〈50〉 = {50,−118, 119,−85, 86,−49},

〈8〉 = {8,−35, 36,−39, 40,−7},
〈17〉 = {17,−33, 34, 124,−123,−16},
〈32〉 = {32,−79, 80, 137,−136,−31},
〈81〉 = {81,−111, 112, 138,−137,−80},
〈18〉 = {18,−78, 79,−32, 33,−17},
〈58〉 = {58, 63,−62,−68, 69,−57}.

Then

d(9) = 30, d(59) = 30, d(2) = 32, d(5) = 32, d(10) = 32, d(50) = 32,

d(8) = 34, d(17) = 34, d(32) = 34, d(81) = 34, d(18) = 36, d(58) = 36.

The totally-ordered set (B,≺) is 〈9〉, 〈59〉, . . . , 〈58〉.
To find l(9) we set

D(9) = {x ∈ B|x − 9 ∈ A, 9 ≺ x}
= {125,−34,−8, 59,−100,−63, 2,−140,−1, 5,−69, 10, 29,−9,−49, 8,

40,−7, 17, 34,−123,−16, 137,−136,−31, 81, 18, 79, 58,−57}.
Then |D(5)| = 30. By backtracking we obtain l(9) = 4 and the first A-chain of length
4 starting with 9 is 9 ≺ 125 ≺ 59 ≺ 2 ≺ −7. Similarly with

D(59) = {x ∈ B|x − 59 ∈ A, 59 ≺ x}
= {64, 2, 57,−69,−4, 10,−9, 50,−85,−39,−7, 34,−79, 137,

−136,−31,−111, 112, 138,−137,−78, 79, 58, 63,−62, 69,−57},

D(2) = {x ∈ B|x − 2 ∈ A, 2 ≺ x}
= {−56, 70, 10, 126, 36,−7,−33, 34,−123,−16,−79, 80,

−136,−31, 81, 138, 18,−78,−32, 33, 58,−62,−68,−57},
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D(81) = {x ∈ B|x − 81 ∈ A, 81 ≺ x}
= {112, 138,−137, 18, 79,−17, 63,−62,−68,−57},

D(18) = {x ∈ B|x − 18 ∈ A, 18 ≺ x}
= {−32,−17, 58, 63,−62,−68}

and

D(58) = {x ∈ B|x − 58 ∈ A, 58 ≺ x}
= {63,−68}

we obtain l(59) = 4, l(2) = 4, l(81) = 4, l(18) = 3, l(58) = 1 and the corresponding
A-chains

59 ≺ 64 ≺ 2 ≺ −79 ≺ −136,

2 ≺ −56 ≺ 70 ≺ 34 ≺ −16,

81 ≺ 138 ≺ 79 ≺ −62 ≺ −57,

18 ≺ −32 ≺ 58 ≺ −68

and 58 ≺ 63. Hence max{l(a)|a ∈ N} = 4, [B] = 5, c(Gp) = 7, and we conclude that
R(8, 8) ≥ 282, R(9, 9) ≥ 565. �

6 Three new lower bounds for diagonal Ramsey

numbers

Generally speaking, the amount of computation increases exponentially when one
uses backtracking methods to compute the clique numbers of Gp. Many algorithms
become impractical when p is relatively large (for example p = 4457 or p = 8941).
Our algorithm improves this situation drastically so that we can handle fairly large
prime numbers. The efficiency of our algorithm is based on the following two con-
siderations:

A) To compute [B] we only need to handle the A-chains starting with a repre-
sentative of the equivalence classes in B.

B) The ordering of the totally-ordered set (B,≺) enables us to give higher priority
to the equivalence classes with minimum value of |D(a)| when we compute l(a), so
many unnecessary branches are pruned preliminarily during the process of backtrack-
ing. The redundant calculation for isomorphic cyclic graphs are avoided. Moreover,
the values |D〈ai〉| of the equivalence classes 〈ai〉 become smaller and smaller, which
reduces the amount of computation significantly and increases the speed of the com-
putation of l(ai).

By taking these measures we were able to compute the clique numbers c(Gp)
with p < 15, 000 with the aid of a single computer in a reasonably short period of
time. In most cases, the CPU time spent for the computation of c(Gp) is less than 1
second when p < 1500 on a Pentium III 800 machine. In our computation of c(Gp)
for p = 4457, 5501, 8941 (as in Theorem 2) the CPU time is 10 minutes, 30 minutes
and 80 hours respectively.
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Theorem 2

R(17, 17) ≥ 8917, R(18, 18) ≥ 11005, R(19, 19) ≥ 17885.

Proof. We omit details since they are more or less the same as the last two
examples in the previous section.

(1) Set p = 4457 and g = 3. Then |B| = 1113. The set B is divided into 186
equivalence classes:

〈101〉 = {101, 1368,−1367, 313,−312,−100},
〈443〉 = {443, 825,−824, 2169,−2168,−442},

〈1145〉 = {1145, 1993,−1992, 1649,−1648,−1144},
〈1202〉 = {1202, 1346,−1345,−2144, 2145,−1201},
〈141〉 = {141,−1296, 1297, 2134,−2133,−140},
〈152〉 = {152, 909,−908, 1772,−1771,−151},
〈206〉 = {206, 238,−237,−1260, 1261,−205},
〈431〉 = {431, 1334,−1333,−652, 653,−430},
〈560〉 = {560,−581, 582,−1187, 1188,−559},
〈594〉 = {594,−1118, 1119,−2111, 2112,−593},
〈602〉 = {602, 807,−806,−1764, 1765,−601},
〈734〉 = {734,−1682, 1683, 1965,−1964,−733},

· · ·
〈1067〉 = {1067,−1863, 1864, 1987,−1986,−1066},
〈1124〉 = {1124,−1257, 1258,−1527, 1528,−1123}

with

d(101) = 540, d(443) = 540, d(1145) = 540, d(1202) = 540, d(141) = 542,

d(152) = 542, d(206) = 542, d(431) = 542, d(560) = 542, d(594) = 542,

d(602) = 542, d(734) = 542,

· · ·
d(1067) = 570, d(1124) = 570.

The totally-ordered set (B,≺) is 〈101〉, 〈443〉, . . . , 〈1124〉. By computation we have

l(101) = 12

and
l(a) ≤ 12
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for all other a ∈ N. The first A-chain of length 12 is

101 ≺ 1368 ≺ −2168 ≺ −442 ≺ 122 ≺ 548 ≺ −1592

≺ 1481 ≺ 2173 ≺ −1044 ≺ −1 ≺ 922 ≺ 1107.

Hence [B] = 13, c(Gp) = 15, and we conclude that R(17, 17) ≥ 8917.
(2) Set p = 5501 and g = 2. Then |B| = 1374. The set B is divided into 229

equivalence classes:

〈601〉 = {601,−897, 898,−925, 926,−600},

〈677〉 = {677, 1812,−1811,−1537, 1538,−676},
〈54〉 = {54,−2343, 2344,−2490, 2491,−53},

〈105〉 = {105,−2148, 2149, 1006,−1005,−104},
〈196〉 = {196, 421,−420, 537,−536,−195},
〈213〉 = {213,−594, 595,−1997, 1998,−212},
〈384〉 = {384, 616,−615,−1780, 1781,−383},
〈487〉 = {487, 2101,−2100,−2093, 2094,−486},
〈518〉 = {518, 754,−753, 1746,−1745,−517},
〈526〉 = {526,−2625, 2626,−2629, 2630,−525},
〈850〉 = {850,−1948, 1949,−1256, 1257,−849},
〈860〉 = {860,−2565, 2566,−2266, 2267,−859},

· · ·
〈2314〉 = {2314,−2489, 2490,−2344, 2345,−2313},
〈225〉 = {225, 1198,−1197, 1057,−1056,−224}

with

d(601) = 668, d(677) = 668, d(54) = 670, d(105) = 670, d(196) = 670, d(213) = 670,

d(384) = 670, d(487) = 670, d(518) = 670, d(526) = 670, d(850) = 670, d(860) = 670,

· · ·
d(2314) = 702, d(225) = 704.

The totally-ordered set (B,≺) is 〈601〉, 〈677〉, . . . , 〈225〉. By computation we have

l(601) = 13

and
l(a) ≤ 13
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for all other a ∈ N. The first A-chain of length 13 is

601 ≺ 518 ≺ −124 ≺ −877 ≺ 271 ≺ 789 ≺ −743 ≺
−607 ≺ 1906 ≺ −1163 ≺ 1195 ≺ 156 ≺ −1434 ≺ −888.

Hence [B] = 14, c(Gp) = 16, and we conclude that R(18, 18) ≥ 11005.
(3) Set p = 8941 and g = 6. Then |B| = 2234. The set B is divided into 373

equivalence classes:

〈5〉 = {5,−1788, 1789,−2234, 2235,−4},
〈261〉 = {261, 2535,−2534,−4160, 4161,−260},
〈627〉 = {627, 713,−712, 2072,−2071,−626},

〈1415〉 = {1415,−1586, 1587,−1662, 1663,−1414},
〈1508〉 = {1508, 2674,−2673, 3365,−3364,−1507},
〈1627〉 = {1627, 2385,−2384, 2239,−2238,−1626},
〈3258〉 = {3258, 4229,−4228,−3263, 3264,−3257},
〈3316〉 = {3316, 4031,−4030,−3481, 3482,−3315},

〈20〉 = {20,−447, 448,−3293, 3294,−19},
〈132〉 = {132,−3319, 3320,−272, 273,−131},
〈222〉 = {222,−3665, 3666, 1417,−1416,−221},
〈397〉 = {397, 3153,−3152, 1875,−1874,−396},

· · ·
〈2245〉 = {2245,−3668, 3669,−2298, 2299,−2244},
〈2393〉 = {2393,−4095, 4096, 2853,−2852,−2392}

with

d(5) = 1094, d(261) = 1094, d(627) = 1094, d(1415) = 1094, d(1508) = 1094,

d(1627) = 1094, d(3258) = 1094, d(3316) = 1094, d(20) = 1096, d(132) = 1096,

d(222) = 1096, d(397) = 1096,

· · ·
d(2245) = 1138, d(2393) = 1138.

The totally-ordered set (B,≺) is 〈5〉, 〈261〉, . . . , 〈2393〉. By computation we have

l(5) = 14

and
l(a) ≤ 14
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for all other a ∈ N. The first A-chain of length 14 is

5 ≺ 1789 ≺ −2234 ≺ 2535 ≺ −3714 ≺ −2372 ≺ 320 ≺
−1516 ≺ 1534 ≺ 3505 ≺ −571 ≺ 2554 ≺ −3836 ≺ −689 ≺ −4435.

Hence [B] = 15, c(Gp) = 17, and we conclude that R(19, 19) ≥ 17885. �
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