






































and for each integer j, 0 < j < n — 1, define the 4-cycle C;; = T9Y;Toi1Yj+1%2i,
where the subscripts for the y’s are taken modulo n. One can verify that

C={Ci0<i<p-10<j<n~—1}

is a CDC of K,,, with mn/2 cycles of length four. For each vertex = € X, the
transition multigraph Mr(z) that is induced by the cycles of C is a cycle of length
n = d(z), and for each vertex y € Y, the transition multigraph My (y) that is induced
by the cycles of € consists of d(y)/2 = p digons.

For each vertex z € X, let P(z) be an EPPDC of K, and for each y € Y,
let P(y) be a PPDC of Kj, whose associated multigraph consists of p digons; the
existence of these is guaranteed by Lemmas 7 and 8. Set

P=(J P)u(lUPw);
zeX yeY
then P is a path double cover of L(K,,,), and it follows from Lemma 3 that C and
P are compatible. We can now apply Lemma 4 to obtain a CDC, C, of L(K,,,),
with |C| < |C} + ¢h(C). However, since K, is bipartite and the cycles of C are all
of length four, it follows that ch(C) = 0, and thus |C| = |C| = mn/2 < mn — 1.
Therefore, C is an SCDC of L(K,, ).

Case 2. We may now assume that both m and n are odd, with m,n > 3; then
m=2p+1and n = 2¢+ 1 for some p,q¢ > 1. Let X = {zo,21,%2,...,20p}
and Y = {yo,¥1,Y2,-..,Yz}. Partition X into two sets, X' = {22, 2, Top—1,T2p}
and X" = X\X'; similarly, partition Y into Y’ = {yaq-2,Y2q-1, %2} and Y" =
Y\Y". Then K, is the union of four edge-disjoint bipartite graphs: (i) a K3
with bipartition (X', Y); (ii) a K3 2,-2 with bipartition (X', Y"); (iii) a Ky, o3 with
bipartition (X", Y"); (iv) a Kup_22-2 with bipartition (X",¥"). A CDC C of K,
can be constructed by taking CDC’s of each of these four graphs.

For the graph K33 with bipartition (X',Y”), the collection C; consisting of the
cycles

Lop—2Y2q-2L2p—-1Y29-1T2p-2 Top-1Y2g—1L2pY2¢T2p—1
TopYoqLop—2Y2g-2T2p Lop-2Y2q—1T2pY2g—2L2p-1Y2¢L2p—2
is a CDC with three 4-cycles and one 6-cycle.

For the Kj394-2 with bipartition (X', Y”), let Cy be the collection of cycles con-
sisting of, for j =0,1,...,9— 2,

Y25 Top—2Y25+1T2p—-1Y25
Y25 Top—1Y25+1T2pY25
Y25 LopY2j+1T2p—2Y25-
Then C, is a CDC with 3{g — 1) cycles of length four.
Similarly, for the Ky, 23 with bipartition (X”,Y”), let C3 be the collection of
cycles consisting of, for i =0,1,...,p — 2,

L2iY2q—2T2i+1Y2g—1T24
T2iY2g—1L2i4+1Y2¢T 24
T2iY2¢T2i+1Y29—2T2i-
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Then C3 is a CDC with 3(p — 1) cycles of length four.
Finally, for the Ky, 53,2 with bipartition (X", V"), let

C* = {otajTain1Yoj4r®e 0 0<1<p—2,0<j7<q—2}

Then C* is a cycle decomposition with (p — 1)(g — 1) cycles of length four, and two
copies of this, which we will call C4, constitutes a CDC with 2(p — 1)(g — 1) cycles of
length four.

The union of Cy, Cy, Cy and C4 thus gives us a CDC, C. of K n with 2pg+p+q—1 =
(mn — 3)/2 cycles of length four and one cycle of length six. Furthermore, for each
vertex u € V(K ,), the transition multigraph My (u) induced by the CDC C consists
of one triangle and (d(u) — 3)/2 digons.

For each vertex z € X, let P(z) be a PPDC of K, such that the associated
multigraph Mp(x) consists of one triangle and (n — 3)/2 digons, and for each y € Y,
let P(y) be a PPDC of K,, whose associated multigraph Mp(y) consists of one
triangle and (m — 3)/2 digons. Such PPDC’s exist by Lemma 7. Set

P=({ P)u(l Pw);

zeX yey
then P is a path double cover of L(K,,,), and it follows from Lemma 3 that C and
P are compatible. We can now apply Lemma 4 to obtain a CDC, C, of L(K ),
with |C| < |C| + ch(C). Since K,,, is bipartite, the only chords of C occur in the
single cycle of length six, which has three chords, and thus

-1
}C|§[6’|+3:mn2 +3:mn2+5§mn~1

whenever mn > 7. Since m,n > 3, this condition is satisfied, and therefore C is an
SCDC of L(K ).

5 Line Graphs of Planar Graphs

One of the keys to constructing SCDCs for the line graphs of complete graphs and
line graphs of complete bipartite graphs is the existence of CDC’s of complete graphs
and complete bipartite graphs for which we can exactly describe the transition multi-
graphs. Planar graphs provide another class of graphs with CDC’s for which we can
exactly describe the transition multigraphs.

Theorem 11 If G is a 2-bridge-free planar graph, then L(G) has a small cycle
double cover.

The basic technique that we will use is the same as that used for line graphs of
complete graphs and complete bipartite graphs, but requires some modification to
allow for bridges and cut vertices in the graph. (An important part of our previous
constructions was a CDC of a graph G, which exists only if G is bridgeless.)

One preliminary observation is that it suffices to prove Theorem 11 for connected
graphs; the next lemma allows us to further restrict the graphs we must consider.
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Lemma 12 Suppose G is a connected 2-bridge-free graph, and suppose that zy €
E(G) is a nontrivial bridge in G. Let Hy and Hy, be the two components of G — {zy};
without loss of generality, « € V(H,) andy € V(H,). Define G; = H U {y} U {zy}
and Gy = HyU {z} U{zy}. If L(G;1) and L(G>) both have small cycle double covers,
then L(G) has a small cycle double cover.

Proof: The definitions of G, and Gy ensure that L(G) = L(G;) U L(G,), with
L(G1) N L(G) consisting of the single vertex in L(G) that corresponds to the bridge
xy of G.

Let m denote the number of edges in G. Suppose that L(G;) has m; vertices,
j = 1,2; then m; +my = m + 1, where m is the number of vertices in L(G) (since
G has m edges). Since L(G;) has an SCDC, there is a CDC, Cj, of L(G;) with
1G] < (mj—1),5=1,2.

The structure of L(G) guarantees that C = €, UCy is a CDC of L(G), and

ICl = ICi] + IC2]
< (= 1)+ (ma = 1)
=m - 1.

Therefore, C is an SCDC of L(G).

As a consequence of this lemma and our previous comment, it suffices to prove
Theorem 11 for connected graphs whose only bridges are pendants. Notice that such
a graph is either a tree (in particular, a star), or it is a graph in which any vertex
of degree greater than one has at least two non-pendant incident edges. Since we
have already proved this result for trees (see Theorem 2), we need only consider the
second case. Finally, observe that we need only prove the theorem for plane graphs
(i.e., planar graphs embedded in the plane).

Let G be a connected plane graph with blocks G1,Gy, ... Gy, For 1 <4 < p, if
[V(G;)| > 3, then we define F; to be the set of facial cycles of Gj; if |V(Gy)| < 3,
then F; = 0. The facial cycle double cover (FCDC) of G is defined as

Observe that F is a collection of cycles such that every edge of GG that is not a bridge
lies in two of the cycles, and any edge of G that is a bridge lies in none of the cycles.
Also, observe that if G is 2-connected, then the number of cycles in F is simply the
number of faces of G.

Let G be a connected, 2-bridge-free plane graph with no non-trivial bridges, and
let F denote the FCDC of G. As is the case for a CDC of a bridgeless graph, the
FCDC F of G induces, at each vertex z of G, a system of transitions, T'(x). If =
is incident to k pendants, then T(z) consists of d(x) — k transitions, no transition
containing a pendant incident with x, and containing every other edge incident to z
in two of the transitions. The transition multigraph, Mr(x) is defined as before.
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To construct a SCDC of L(G), we require, for each vertex z € V(G) with d(x) >
2, a double cover of the edges of the vertex clique K (z) with paths and cycles, such
that the paths are compatible with the FCDC, F, and such that the total number
of cycles is not “too large”.

For each z € V(G) with d(z) > 2, let Z(z) be a path and cycle double cover
(PCDC) of K(z): a collection of paths and cycles of K(z) such that every edge
of K(x) lies in two elements of Z(z). Note that if d(z) = 1, then K(z) has no
edges, and hence no PCDC of K (z) is required. The associated multigraph of Z(x),
denoted Mz(x), is defined as before. Define

Z= U Z(x).

V(G d(z)>2

Then Z is a path and cycle double cover of L(G). The FCDC F and the PCDC Z
are compatible if and only if for each vertex z of G there is a bijection

fo: T(x) = Z(x)

such that for every transition {ax,zb} € T(z), fz({az,xb}) is a path in Z(z) with
endpoints az and xzb. This is analogous to our earlier definition of compatibility for
CDC’s and PPDC’s, and the following lemma is analogous to Lemma 3, providing
an easy tool for checking compatibility.

Lemma 13 Let G be a connected plane graph with no non-trivial bridges, F the
facial cycle double cover of G, and

2= Uz,

zeV(G),d(x)>2

where Z(x) is o PCDC of the vertex clique K(z) for each x € V(G). Then F and
Z are compatible if and only if, for each vertez x € V(G), the transition multigraph
My (x) is isomorphic to the associated multigraph Mg (z) of Z(z).

]

The next lemma is analogous to Lemma 4, and details how a FCDC F of G that
is compatible with a PCDC Z of L(G) can be used to construct a CDC of L(G). For
Z a PCDC of L(G), let C(Z) denote the cycles of Z.

Lemma 14 Let G be a 2-bridge-free plane graph with no nontrivial bridges, F the
FCDC of G, and Z a PCDC of L(G), such that F and Z are compatible. For each
u € V(G), fix a compatibility function f, from T(u) to Z(u). Let ¢ = vgvivy ... v4_17p
be a cycle in F, and for each i, 0 < i < g —1, let f; = f,,. By the definition of
a compatibility function, fi({vioyvi, vvip1}) = P, where P, is a path in Z(v;) with
endpoints vi_1v; and v;vi (where subscripts are taken modulo q). Then




is an eulerian subgraph of L(G) with mazimum degree at most four. Furthermore, if
for each c € F, D(c) is the set of cycles in a cycle decomposition of E,, then

C= (U D(c)) ue(z)
ceF
is a cycle double cover of L(G), and |C| < |F|+ ch(F) + |C(Z)].

For a vertex z € V(G), the transition multigraph, Mp(z), has one of the following
three forms, depending on whether or not z is a cut vertex, and on whether or not
z has any incident pendants.

(1) If z is not a cut vertex of G, then Mr(z) is a single cycle of length d(x).

(2) If x is a cut vertex so that G — {z} has one nontrivial component and & > 0
trivial components, then My (z) consists of a single cycle of length d(z) — &,
and k isolated vertices

(3) If = is a cut vertex such that G — {z} has ¢ > 2 nontrivial components
X1, Xy ..y Xy, with k; > 2 edges from z to X;, 1 < 1 < ¢, and d(z) —
(ky + kg + - -+ + k,) trivial components, then Mrp(z) consists of ¢ cycles with
lengths ki, ko, .. ., kg, and d(z) — (k) + ko + - - - + k) isolated vertices.

In each of these cases, we must construct a PCDC, Z(z), of the complete graph
on d(z) vertices so that Mz(z) is isomorphic to My(z). This motivates the following
definition.

For g > 1, let ky, kg, ..., k, be integers with k; > 2,1 < i <q. A (ki, ko, ..., kq)-
path-and-cycle double cover ((ky, ko, ..., ky)-PCDC), Z, of the complete graph on m
vertices, Ky, is a collection of ki +ko+ - -+k, paths and m— (ky +ka+ - -+ kg)+(g—1)
cycles such that

(a) every edge of K, lies in exactly two elements of Z;

(b) for 1 < i < g, there exists X; C V(Ky,) with |X;| = k; such that the X; are
pairwise disjoint, and there exists Z; C Z, with |Z;| = | X,], such that every
vertex of X; is the endpoint of precisely two paths of Z;.

If ¢ = 1, then we write k;-PCDC instead of (k1)-PCDC. Notice that if ¢ = 1 and
ki = m, then Z is simply a PPDC of K,; i.e., an m-PCDC of K, is a PPDC of K,,.

Lemma 15 Let m > 2, and let ki, ko, ..., kg, ¢ > 1, be integers with k; > 2,
1<i<gq, andky + ko + - kg <m. Then K,, has a (k1, ko, ..., k,)-PCDC.

Proof: Let V(K,;) = {vo,v1,02,...,Um-2,VUs}. Foreach j, 0 < j <m — 2, define
the cycle Cj as follows:

C = V05410 4m-2V542V51m—3 - - - Uj+(m—2)/2Vj+m/2Vo0V; if m is even;
J ViV 41V 4m—2Vj42V54m—3 « - - Vjt (m+1)/2Vj+(m—1)/2VeoVj if m is odd,
where the subscripts are taken modulo m — 1. One can verify that the collection of
cycles C={C;: 0<j <m—2}isa CDC of Ky, with m — 1 Hamilton cycles.
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Let r="Fky +ky+---+ky Define by = 0; forall j, 1 < j < ¢, let

and then set
)(]- = {'Ua(j), Ua(j)+1)7"a(j)+2a ceey Un(j)+kj~l.}7

with one exception: in case r = m, set

Xq = {1)0((1)7 Va(g)+1s Valg)+25 - - -5 Ver(g)+ky—25 Uoo}-

Notice that |X}| = k;, and that the X are pairwise disjoint.
We modify the cycles of C to obtain a (ki ks, ..., k,)-PCDC, Z, as follows: for
each 7, 1 < j < ¢, and for each i, 0 <4 < k; — 2,
o let Pogysi = Caggyri — {Va()+iVa)+it1
e in the case where r = m, then for 7 = ¢ and ¢ = kg — 2, let Pygyrk,—2 =
Cotay+kg—2 = {Valg) 4k, 2000 15
o let Pogiyrk;—1 = Va()Va()+1%()42 - - - Va(i)+;-2Va()+k; 13
e in the case where r = m, then for j = ¢ and ¢ = k, — 2, let Pogy+hy—1 =
7,)(,,(,’)T1a(q)+1’va(q)+2 N 'Ua(q)+lcq~2voo~
Then Z; = {Pag), Pagiy+1, Pag)+2, - - Pagj)+k; -1} is a collection of paths that covers
the same edges, with the same multiplicities, as the cycles {Caiiys Cotiy+1> Cayez, - -
Cagy+k; -2} Also, |25 = | Xj| = kj, and every vertex of X is the endpoint of exactly
two paths of Z;. It is a straightforward exercise to verify that Z does consist of r
paths and m —r + (¢ — 1) cycles, and is thus a (k, ks, ..., k,)-PCDC, Z, as required.
»

The next result follows immediately from the construction described in Lemma 15.

Corollary 16 Let m > 2, and let ky, kg, ..., kq, ¢ > 1, be integers with k; > 2,
V<4 <q, and ky+ky+ kg <m. Then Ky, has a (ky, ks, ..., k,)-PCDC, Z, such
that the associated multigraph, Mz(K,,), consists of q cycles of lengths ki, ko, . . ., ky,
and m — (ky + ko -+ ... + k) isolated vertices.

"

This corollary ensures that we can find a PCDC Z of L(G) that is compatible
with the FCDC F of G. The next result guarantees that the CDC of L(G) that we
construct using Lemma 14 has the required number of cycles.

Lemma 17 If G is a connected bridgeless plane graph with m > 0 edges and b blocks,
then the facial cycle double cover of G, F, is a cycle double cover with the property
that

[Fl+ ch(F)+b<m.
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Proof: Let G be a connected bridgeless plane graph with n vertices, m edges, and
b blocks. It follows immediately from the definition of the FCDC that F is a CDC
of G.

The proof of the rest of the result is by induction on the number of vertices, n.
When n = 3, G is a cycle of length three (so m = 3), and two copies of this cycle
constitute the FCDC F of (7. In this case, the cycles of F are chordless, and b = 1,
80 |F|+ ch(F)+b=2+0+1=3=m, and hence the result holds.

Suppose now that G is a connected bridgeless plane graph with n > 4 vertices,
b blocks, and m edges, and that the result holds for all connected bridgeless planar
graphs on less than n vertices. There are three of cases to consider.

Case 1. Suppose that G has a cut vertex, x. Then there exist connected subgraphs
G, and Gy of G such that GUG, = G and G1NGy = {z}. Let m; and b;, respectively,
denote the number of edges and blocks in G, i = 1,2; then m; +my = m and
by + by = b. Since |V(G;)| < n, ¢+ = 1,2, we may apply the induction hypothesis, and
so the FCDC F; of G, has the property that |F;| -+ ch(F;) +b; < m,;. We see that the
FCDC F of G is simply the union of F| and F», and that ch(F) = ch(F) + ch(F).
Therefore,

|F| + ch(F) +b = |Fi| + | Fa| + ch(F) + ch(Fa) + by + b
= (|7 + ch(F1) + b)) + (IF2] + ch(F2) +ba)

my +mey = 1m.

IN

Case 2. Suppose that G is 2-connected, but that no 2-vertex-cut of G is an edge.
In this case, the FCDC F of G is simply the CDC of G by facial cycles; since no
2-vertex-cut of G is an edge, the facial cycles are chordless, and thus ch(F) = 0;
also, b = 1. Therefore,

|[FIl+ch{F)+b=f(G)+1
=m — n+ 3, by Euler’s formula,
<m, since n > 3.

Case 3. Finally, suppose that G is 2-connected, but that G has a vertex cut {z,y}
such that zy is an edge of G. In this case, b = 1 and there exist 2-connected subgraphs
G and G5 of G such that G, U Gy = G, and G| N G4 consists of the vertices x, vy,
and the edge zy. Without loss of generality, we may assume that G is embedded so
that zy is an edge of the outer (infinite) face of Gy and of Gy. Let m; denote the
number of edges of G;, i = 1, 2; then my + my = m + 1. Also, if b; is the number of
blocks of G;, then b; = 1,4 = 1,2. Let F; denote the FCDC of GG, i = 1,2, and let
C; € F; be the cycle corresponding to the outer face of G;.
The FCDC F of G can be described as follows:

F=(F ~{CHU (Fo — {Ca}) U{C1AC,},

where C;AC, denotes the symmetric difference of Cy and C,. Thus we have |F| =
[Fi] + |Fol = 1. Also, zy is now a chord of the cycle CYAC, of F, and hence
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ch(F) = ch(Fy) + ch(F2) + 1. Since |V(G;)| < n, i = 1,2, we apply the induction
hypothesis to obtain |F;| + ch(F;) < m; — 1. Therefore,

[Fl+ch(F)+b=([Fi|+|Fa| = 1) + (ch(FL) + ch(Fp) + 1) + 1
(IFs +ch(F1)) + (1] + eh(F2)) + 1
<(mp—1)+(my—1)+1

1.

il

Il

This completes the proof of the Lemma.

The next corollary follows immediately from this result.

Corollary 18 If GG is a connected plane graph with no non-trivial bridges, having
m > 0 edges and b blocks, then the facial cycle double cover of G, F, has the property
that

[Fl+ch(F)+b<m.

Proof of Theorem 11: It suffices to prove this result for connected plane graphs.
In addition, Lemma 12 ensures that we need only prove the theorem for graphs with
no nontrivial bridges; i.e., graphs whose only bridges are pendants. Thus, let G be
a connected 2-bridge-free plane graph with no nontrivial bridges.

Let m denote the number of edges of G, and let F denote the FCDC of G. Let
v € V(G), d(z) > 2; as remarked earlier, the associated multigraph My(z) of the
transitions T'(z) induced by F is one of the following.

(i) Mr(z) is a single cycle of length d(z), provided that z is not a cut vertex of G.

(ii) My(x) consists of a single cycle of length d(z) — k, and k isolated vertices,
provided z is a cut vertex so that G — {z} has one nontrivial component and
k > 0 trivial components.

(iii) Mgz (z) consists of ¢ cycles with lengths ky, ko, ..., k,, and d(z) — (k; + ks +
-+ + ky) isolated vertices, provided that z is a cut vertex such that G — {z}
has ¢ > 2 nontrivial components Xy, Xy, ..., X,, with k; > 2 edges from z to
Xi, 1 <i<q, and d(x) — (k1 + ko + - - - + k,) trivial components.

In the first case, (i), let Z(z) be an EPPDC of K(z); this exists by Lemma 8, and
also by Corollary 16, and thus ensures that Mz(z) is isomorphic to Mz(z). In the
second case, (ii), let Z(x) be a k-PCDC of K(z) with the property that Mz(z) is
isomorphic to My (x); the existence of such a PCDC is guaranteed by Corollary 16.
Finally, in the third case, (iii), let Z(x) be a (ki ks,...,k,)-PCDC of K(z) with
the property that Mz(z) and Mz (z) be isomorphic; again, such a PCDC exists by
Corollary 16.
We now define

Z = U Z(z).

T€V(G),d(z)>2
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Since each Z(z) is a PCDC of K (z), it follows that Z is a PCDC of L(G). By
Lemma 13, F and Z are compatible, and thus, we can apply Lemma 14 to construct
a CDC, C, of L(G). It also follows from Lemma 14 that

|C| < |F| + ch(F) +[C(Z)},

where ch(F) is the number of chords of the cycles of F, and |C(Z)| is the number of
cycles in Z.

To show that C is, in fact, an SCDC of L(G), we must first evaluate |C(Z)[. Let
z € V(G), d(z) > 2, and denote by 7, the number of non-pendant edges incident to
z and by ¢, the number of nontrivial components of G — {x}. It follows from the
definition of a (ki ky, . .., k,)-PCDC that Z(x) consists of 7, paths and d(z) — 1 —
75 + ¢, cycles. Therefore, the number of cycles in Z is simply

lc@)l= >  (dx)=re+(e-1)

zeV(G),d(z)>2

= Y @) -+ Y (-1

2eV(G) d(z)22 reViO =

Since d(z) — r; is the number of pendants incident to z, it follows that

> (d(z) ~ ry)
zeV(G),d(z)>2
is simply the total number of pendant edges in the graph G.
To evaluate
(e — 1),
TeV(G)d(z) 22

first observe that g, does not change if the pendants incident with z are deleted.
Therefore, first delete all pendant edges, along with the degree one vertices incident
with those pendants from the graph G. What remains is a bridgeless graph, G’ with
b blocks, each block corresponding to a block of G that is not a pendant. The blocks
of G form a tree, T, with b’ edges corresponding to the blocks of G" and b’ +1 vertices
corresponding to the cut vertices of G'. If z is not a cut vertex of G (and hence of
G"), or a cut vertex so that G — {z} has just one nontrivial components, then g, = 1,
and z contributes nothing to the sum. However, if x is a cut vertex of G such that
G — {z} has at least two nontrivial components (and hence is a cut vertex of G,
then ¢, is equal to the degree of  in the tree T. This implies that

Z ((Iw"‘]-): z (g — 1),

2€V(G),d(z)>2 zeV(T)

Z g = 2V

zeV(T)

and,

Therefore, since T is a tree,

S (-1 =26~ (¥ +1)

zeV(T)

=V -1
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It now follows that

> (. — 1) =1V ~1.

z€V(G),d(x)>2

But b is just the number of blocks of G that are not pendants (single edges), and
thus
Z (d(m)—'rz‘f'((h—l»:b_la

zeV(G),d(z)>2

where b is the number of blocks in G. Therefore, |C(Z)] = b — 1.
It now follows from Lemma 14 that the CDC C of L(G) has at most | F|+ch(F)+
(b — 1) cycles. However, by Corollary 18, |F| + ch(F) + b < m, and thus

ICl=|F|+ch(F)+(b-1)<m-1.

Therefore, C is an SCDC of L(G).
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