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Abstract

The spectrum problem for G-decompositions of AK,, that have a nesting
was first considered in the case G = K; by C.J. Colbourn and M.J.
Colbourn (1983) and by D.R. Stinson (1985). For A = 1 and G 2 C,,, this
problem was studied in many papers (see C.C. Lindner and C.A. Rodger,
Chapter 8 in Contemporary Design Theory: a collection of surveys, Wiley
1992, and D.R. Stinson, Utilitas Math. 33 (1988) for more details and
references). In this paper we generalize the nesting definition given by
C.J. Colbourn and M.J. Colbourn [Ars Combin. 16 (1983), 27-34] and
we study the spectrum problem in the case that G has four non-isolated
vertices or less.

1 Introduction

Let AK, be the complete multigraph on n vertices, where every edge is repeated A
times. If & is a graph, the multigraph AK,, is said to be G-decomposable if it is the
union of edge-disjoint subgraphs of K, each of them isomorphic to G. This situation
is denoted by MK, — G; AI, is also said to admit a G-decomposition © = (V, B),
where V' is the vertex-set of AK, and B is the edge-disjoint decomposition of MK,
into copies of G. Usually B is called the block-set of the G-decomposition and any
B € B is said to be a block.

A G-decomposition of AK,, ¥ = (V,B), is also called a G-design of order n,
block-size |V(G)| and index A [3]. A G-design $* = (V*, B*) is said to be a subdesign
of ¥ = (V,B) if V* C V and B* C B. More generally, it is possible to define
G-decompositions of AH | instead of M\, where H is any graph.
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A path-design P(n, k, ) is a G-design of order n, block-size k, index A, where G
is a path on k vertices, i.e. a graph having for vertices x1, 22,...,7; and for edges
all the pairs {z;, z:41}, for every ¢ = 1,2,...,k — 1. Such a path will be denoted by
(J)l, Ty .-y fL‘k>

A star-system S(n,m,A) is a G-design of order n, block-size m + 1, index A,
where G is a star with m terminal vertices, i.e. G = S, graph having m + 1 vertices
x' (centre), T1,Ta, ..., T (terminal) and for edges all the pairs {z',2;}, for every
i=1,2,...,m. Such a star will be denoted by (z/; 21,22, ..., Zpm).

An m-cycle-system CS(n,m, A) is a G-design of order n, block-size m, index A,
where G 22 C,,,, the cycle with m vertices.

A Steiner triple system S\(2,3,v) is a Cs-design or also a Kj-design.

In the literature there are some definitions of nesting for G-designs, mainly, for
A=1land G=C,.

Let ¥ = (V,C) be a C,,-design having order n and index A = 1.

A nesting of the C,,-design T is a mapping f : C — V such that the set Il =
{{z, f(c)} : ¢ € C,x vertex of ¢} is a partition of the edges of K,,. Observe that any
nesting of a C,,-design produces an edge-disjoint decomposition of K, into m-stars.
It is clear that a nesting of an m-cycle-design of order n is equivalent to an edge-
disjoint decomposition of 2K, into wheels W, having the additional property that
for each pair of vertices z,y, one of the edges joining x to vy is on the rim of a wheel
and the other is the spoke of a wheel.

The spectrum problem for m-cycle-systems that have a nesting was first con-
sidered in the case where m = 3, i.e. for 5(2,3,v). This case was studied by C.J.
Colbourn and M.J. Colbourn [1] and by C.C. Lindner and C.A. Rodger [4] who left
15 possible exceptions; Stinson {13] completed the spectrum. Nested 4-cycle-systems
were studied by Stinson [14], while nested 5-cycle-systems were studied by Lindner
and Rodger [4]. Further, general results have been obtained by Lindner, Rodger and
Stinson [5].

The same definition of nesting can be given for G-designs, in which G = (V(G),
E(G)) is not necessarily a cycle. A necessary condition is that

V(@) = |E(G)].

Recently, Milici and Quattrocchi [10] have given the following definition.

Let G = (V(G), E(G)) be a graph and let £ = (V, B) be a G-decomposition
of AK,,. A nesting of ¥ is a triple N = {,11, F}, where IT = (V(K,),5) is a
decomposition of AK,, into m-stars Sy, and F' : B — S is a 1-1 mapping such that:

(i) for every B € B, the centre of the m-star F(B) does not belong to V/(B); all
the terminal vertices of F(B) belong to V(B);

(ii) for every pair By, B; € B, the graphs B, U F(B;), By U F/(B,) are isomorphic.

A necessary condition is that |V(G) > |E(G)|. I |[V(G)| = |E(G)], this definition
is equivalent to the previous.
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In this paper we give the following definition of nesting of a G-design and we
study the spectrum for all G-designs in which G is a graph having four non-isolated
vertices, or less.

Let G = (V(G),E(G)), H= (V(H), E(H)) be two graphs and let & = (V, B) be
a G-design of index Ay, briefly MH — G. A nesting N(G, H; Ay, \y) of ¥ is a triple
(3,11, F), where Il = (V(H), S) is an m-star-design of index s, briefly \yH — S,,,,
and F': B — S is a bijection such that for every B € B:

(i) the centre of the m-star F/(B) does not belong to V(B);
(ii) z is a terminal vertex of F'(B) if and only if z is a vertex of V(B).

In what follows, when H 2'I{,, such a nesting will be denoted by N = N(G,n;

A1, Ag). Observe that N ig a G*-design of order n, block-size |V(G)| + 1 and index
= A + Ay, where G* = G U Sy (¢

If Ay = Ay = A, this definition is the same as given in [1], 7], [10].

Further:
= (x1, %2, ..., T,) will be a cycle C;
- Axy,Z9,...,2,) will be a path Py;
- {y;1,%2,...,2,) will be a star S, with centre v,
- lysmi, 2, ..., 2] will be P, U S, where P, = (z,1,,...,7,) and

Sn=(y; 21,29, ..., Tn);

- (y; (x1,®2,...,2,)) will be a wheel with centre y.

Example A nesting N(FP3,7;2,3) is given by

— the Ps3-design ¥ = (V, B), having index A\; = 2 and order v = 7, so defined:
V=2Zyand B = {(i,i+1,i+2), (1,5 +2,1+4), (4,0 + 3,1 +6) | i € Z;};

~  the Ss-design IT = (V, S), having index Ay = 3 and order v = 7, so defined:
V=Zrand S = {(i+5;4,i+1,i+2), (i+ 35,0 +2,0+4), (i+ 1340 +3,i+6) |
1€ Z’;},

- P14+ 1,1+ 2))
F((i,i+ 2,0+ 4))

F((i,i+3,i+6))

{454,014+ 1,1+2),
(i+ 34,0+ 2,1+ 4),
(¢4 154,%+ 3,1+ 6).

I

Il

Result 1: Observe that in the case G = K, this new definiton of nesting is the same
as given by Kageyama and Miao [7], [8], [9].

Result 2: Note that if there exists an N(G,n; A, Ay), then there exists also an
N(G,n;hAL, hAg). 1t is sufficient to repeat all the blocks h times.

Result 3: In what follows, when a G-design is defined on Z,, = {0,1,2,...,n — 1},
it is understood that all the sums in Z,, must be reduced mod n.

2 Preliminary results

In this section we give some definitions and theorems useful to construct nestings
of a G-design, i.e. nested G-designs. In some of them we will use pairwise balanced
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designs and group divisible designs.

Let X be a finite set of points, C a family of distinct subsets of X called groups
which partition X, A a collection of subsets of X called blocks. Let v and A be
positive integers and K, M sets of positive integers. The triple (X,C, A) is a group
divisible design, briefly a GDD, GD[K, A, M;v] if:

(c1) |X]=v;

(c2) {ICI[CeC}C M,

(c3) {|IB|| Be B} C K;

(c1) [CNB] <1, forevery C €C, B € B;
(

¢s) every pair {z,y} C X, such that z,y belong to distinct groups, is contained in
exactly A blocks of A.

If C contains t; groups of size m;, for 1 = 1,2,...,s, the GDD is said to have
group type mi'my ... mb. When K = {k}, we will write GD[k, A, M;v] instead of
GD[{k}, A, M;v].

A GDIK, ), {1};v] having group type 17 is called a pairwise balanced design and
is denoted by (X, A) or by (v, K,A)-PBD. A (v,k, A\)-PBD is simply a Kj-design.
For A=1, a (v,k,1)-PBD is a (v, k)-PBD.

A GD[k, 1, {m}; km] is called a transversal design, denoted by TD[k, m]; it is also
called a k-GDD.

A (v, k, \)-BIBD (balanced incomplete block-design) or an Sx(2,k,v) (Steiner sys-
tem of index \) is a pair (V, B), where V is a finite v-set and B is a collection of
k-subsets of V, called blocks, such that every 2-subset of V' is contained in exactly A
blocks of B.

A parallel class of a (v, k, A\)-BIBD (V, B) is a set, of blocks of B that partition
V. A (v,k, ))-BIBD is said to be resolvable and is denoted by (v, k, A)-RBIBD if B
can be partitioned into parallel classes.

A near resolvable (v, k, k —1)-BIBD, briefly a (v, k, k —1)-NRB, is a (v, k, k& — 1)-
BIBD with the property that B can be partitioned into partial parallel classes missing
a single z € V and every z € V' is absent from exactly one class.

Theorem 2.1 [3]: Let G = (V(G), E(G)) be a graph and let & = (V, B) be a G-
design of index \;. A necessary condition for the existence of a N(G,n; A1, Ag) is
that M|V (G)] = M|E(G)|.

The following two theorems are special cases of the Wilson fundamental construc-
tion for group divisible designs and other well-known theorems. So we will omit the
proofs.

Theorem 2.2: Let ¥ = (X, A) be a (n, K)-PBD, where K = {hy, hy, ..., I}, and

let G be a graph. If, for every h; € K, there exists a nesting N(G, hi; A, M), then
there exists a nesting N(G,n; Ay, Ag).
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Theorem 2.3: Let A = (X, P, A) be a k-GDD of order n, where P = {P,, P,,..., P}
and | By| = n;, and let G be a groph. If, for every n;, there exists a nesting N(G, mn;+
w; A1, Ag) containing o sub-design N(G,w; A, As) (where w = 0,1) and there ezists
a nesting N(G, K, my,...my; M, A2) (where my = my = ... = my), then there exists
a nesting N(G, mn + w; A, Aa).

We prove the following
Theorem 2.4: Let G = P3, Py, S5, Ky — e and suppose that there exist a nesting
design N(G,v; A1, Aa), a nesting design N (G, w; A1, Ay, two orthogonal quasi-groups
of order w — q, where ¢ =0 or 1. Then there erist nesting designs N(G,v(w — q) +
q; A1, Aa).
Proof: At first, consider two orthogonal quasigroups of order w — ¢ (they exist for
every w — q # 2,6); let (Zy,_q,0), (Zy—q, *).

Let G = Pg

If (Z,, B) is a nesting design N(Py,v; A\, Ao), T = {oo} for g =1 and T = 0 for

= 0, then it is possible to define the design N(Pg, (w—q) + q; A, A2) (V, D) as
follows:

i) for every [z;a,b,¢] € B put in D the blocks [(z,4 o j); (a, 1), (b,7), (c, i), 4,7 €
Zw-q;

ii) for every x € Z,, put in D the blockq of a design N(Pj, w; Ay, \y) defined on
{2} x Zy-qUT.

The same technique can be used in the cases G = P, Ss.
Let G = K4 — €.

Using the same symbolism of the case above, it is possible to define the nesting
design (V, D) of order v(w — g) + ¢ as follows:

i) for every {z;a,b,(c,d)} € B (c,d are the non-adjacent vertices) put in D the
blocks: {(‘Tvl o ])7 (0,7]'), (bv i * j): ((Cv L)? (d1 Z))}) Z7] € anq;

ii) for every » € Z,, put in D the blocks of a design N(Ky — e,w; A\, \y) defined
on {z} X Z,,UT.

Theorem 2.5 [3]: If there ezists a nesting N(Cy,,n;1,1), then there exists a nesting
N(Py,n; k= 1,k), for every integer k such that 3 < k < m.

Theorem 2.6: For every k > 3 and for every n > 2k + 1, n odd, there exists a
nesting N(Pe,nyk — 1, k).

The statement follows from Theorem 2.5 and from the existence of a nesting-
design N(Cy,,n;1,1) for all n = 2m + 1 and m > 3 [4].

Theorem 2.7: If there exists a (v, k, k—1)-NRB, then there ezists a nesting (v, k, k—
1)-BIBD.
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Proof: Let X = (V,B) be a (v,k, k — 1)-NRB. Further, for every block B € B, if
Il is the almost-parallel class containing B, f(B) is the element of V' which does
not belong to its blocks. It is immediate to see that it is possible to obtain a nesting
(v, k, k—1)-BIBD to associate each block B of B with the star having f(B) as centre
and the elements of B as terminal vertices.

3 N(G,n;A;, Az) where G has n < 3 non-isolated
vertices

If G has 2 non-isolated vertices, then G = Ky = P,.

It is known that the spectrum of the nesting designs N(Py,n; A1, A2) was com-
pletely determined by Kageyama and Miao [7].

Now, we study the spectrum of a nesting N(G,n; A1, Ay}, where G has 3 non-
isolated vertices. Two cases are possible: 1) G = Kj, 2) G = Ps.

31 GYK,

It is well-known that the spectrum of the nesting designs N(K3,n;1,1) was com-
pletely determined by Stinson [13] and the results can be extended to designs
N(Kj3,n;h, h), where Ay = Ay = h € N, by a repetition of blocks.

32 G=Ps

From Theorem 2.1, necessary conditions for the existence of a nesting design
N(P3,n; Ay, Ag) are: n > 4, 3\ = 2)g, le. Ay =2h, \y =3h, he N.

Theorem 3.2.1: If there exists a nesting N(P;,4;2h,3h), then h is even.

Proof: Suppose that (X,11, F) is a nesting N(Ps,4;2h,3h). If z is a point of I, T,
the number of blocks of Il containing x as a terminal vertex and C, is the number
of blocks of II containing z as a centre, then

3C, + T, =9h
C,+ T, =6h

From which C; = 3h/2 and this implies h is even.
Theorem 3.2.2: For every n prime, n > 5, there exists a nesting N{(Ps,n;2,3).

Further, there exist N(P3,6;2,3), N(Fs,8;2,3), N(Ps,10;2,3).
Proof: Consider the following design, defined on Z,, and having the blocks:
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for every j € Zs.

17+ (= 1)/2,5+n 1]

[n‘{“j - 27J7]+17]+2]
n+j—47,7+2,5+4

In+j—2i4,5+1,7 + 2i]
Further, the following design, defined on Zs and having the blocks:

It is possible to verify that it is an N(Ps,n;2, 3).
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{zp, 21} are the three stable sets which partition V. The following

le; Zg, Yo, 551],
[ZO; Z1, Y1, xﬂ]a
[yo; 2y, Ty, Zo]

XUYUZ, where X

[yo; 20, Ty, Z}L
[Zl; 371:'!/1; :1;0}7

[3/13 21,21, Zo],
65

(%03 yo, 20, 1],
[Zh; Zp, Lo, 21]7
[57/‘0; Y1, 21, 3/0]7

751,.710]’

[z0; %0, Yo, «Tl]:
[171 s Yo, 20, yl]a
[z1; 9,

{?Jm?h}: A

blocks:

Theorem 3.2.3: There exists a nesting N(Ps, Ko49;2,3).
Proof: Let K, 4, be a 3-partite graph defined on V

is a nesting N(P3,10;2, 3).
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define a N(P;, K329;2,3).

Theorem 3.2.4: For every n > 5 there exists a N(Ps,n;2,3), except possibly for
n = 12,14, 16, 20, 22, 28, 68, 98, 124.

Proof: Since there exists a PBD(n) having blocks of size 5,6,7 ([2], p. 208), from Theo-
rem 2.2 and Theorem 3.2.2 it follows that there exists a nesting N (P, n; 2, 3) of order
n > 5, with possible exceptions for n = 8,9,10,11,12,13, 14, 15,16, 17,18, 19, 20, 22,
23,24,27,28,29,32, 33, 34,68, 69,93, 94,98, 99, 104, 108, 109, 114, 124.

From Theorem 2.6 and Theorem 3.2.2, the list of possible exceptions can be
reduced to: 12,14, 16, 18, 20, 22, 24, 28, 32, 34, 68, 94, 98, 104, 108, 114, 124.

Since there exist 3-GDD of type 3%, 43, 4 5% and 3%, 3" and 5, 9% and 3 ([2],
p. 189), from Theorem 2.3 and Theorem 3.2.3 it follows that the list of possible
exceptions becomes: 12,14, 16, 20,22, 28,68, 98, 104, 108, 124.

From Theorem 2.4, for (v, w) = (8,13), (6,18), there exist N(Ps,n;2,3) for n =

v.aw = 104, 108.

Now, we examine the spectrum of nesting N(P3,n; A, Ay} for Ay =4, Ay = 6.

Theorem 3.2.5: There exist N(Ps,4;4,6), N(P;,12;4,6), N(P3,14;4,6).

Proof: Consider the following design, defined on Z3 and having the blocks:
[0;1,2,3], [0;1,3,2], {0;2,1,3], [1;0,2,3]), [1;0,3,2], [1;
[2;0,1,3}, [2;0,3,1], [2;1,0,3], [3;0,1,2], [3;0,2,1], [3;

It is a nesting N(P3,4;4,6).

Further, since there exists a 3-GDD of type 2* ([2], p. 189), the existence of a
nesting N(Ps, 12;4,6) follows from Theorem 2.3.

Finally, consider the following design, defined on Z3U{oco} and having the blocks:

2,0, 3],
1,0,2].

[Gig+Li+3,5+2], [5;5+7,7+47+8, [i+144+5j+11],
[j +7;500,5,7 + 5], [j + 8500, 4,5 + 6], [j + 6;5,00,7 +1],
[0c; 4,7 + 5,7 +11] for every j € Zy3.

It is a nesting N(P;, 14;4,6).

Theorem 3.2.6: For every n > 4 there exists a N(P3,n;4,6).

Proof: From Theorem 3.2.4, by a repetition of blocks, and from Theorem 3.2.5, it
follows that there exists a nesting N(Fj,n; 4,6) for every n > 4, except possibly for
n = 16,20, 22, 28, 68, 98, 124. Since there exists a PBD(n) having blocks of size 4,5, 6
([2], p. 206), from Theorem 2.2 the existence of N{P3,n;4, 6) follows in all the other
cases.

Collecting together the results obtained, we can formulate the following.
Corollary 3.2 The necessary conditions for the eristence of a nesting design
N(P3,n; Ay, Ag) are: 3A = 2Xy, n > 4. These conditions are also sufficient except
in the following cases:
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i) n=4and \, =2 mod 4, Ay = 3 mod 6 (effective exceptions);

M) n= 12,14, 16,20, 22, 28,68,98,124, when X\, = 2 mod 4, s = 3 mod 6 (possible
ezceptions).

REMARK: Note that if it is possible to delete some exception in Corollary 3.2.11),
for a pair A}, A}, giving a solution for it, then the same case can be considered solved
for any Ay = kA, Ay = kXS, k € N. So, the number of exceptions in Corollary 3.2 is
exactly 9 and not infinite.

This remark is valid also in all the following sections.

4 N(G,n;A1,A2) where G has 4 non-isolated
vertices

In this section we study the spectrum of a nesting G-design N(G,n; A1, \y), where

G is a graph with 4 non-isolated vertices. The possible cases are:

1)6”3[{47 2)G§R’4“6, 3)G%I<3+€, 4)G%C47 5)Ggp4, 6)G§S'g,
7) G = 2P,

Observe that n > 5, necessarily, and that the cases 3), 4) have already been
studied.

4.1 G= K,

For the necessary conditions we have the following theorem.

Theorem 4.1.1: If there ezists a nesting design N(Ky,n; Ay, \2), then the parame-
ters n, Ay, Ay must satisfy one of the following conditions:

1) My =3h, Ay =2h, n=1 mod 4, n > 5, for any positive odd integer h;
2) M =3h, Ay =2h, n =1 mod 2, n > 5, for any positive integer h = 2 mod 4;
3) A =3h, Ay =2k, n > 5, for any positive integer h = 0 mod 4.

Proof: From Theorem 2.1, it follows that 2)\; = 3X,, n > 5. Let N = (X1, F) be
a nesting N(Ky,n;3h,2h). If 1 is a point of N, denote by M, the number of blocks
of ¥ containing z and by C, the number of blocks of I containing z as centre. It
follows that:

M, = h(n-1),
4C, + M, = 2h(n - 1),

hence C, = h(n — 1)/4. From this,

1) if 1 is an odd number, necessarily n = 1 mod 4;

’
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2) if b is an even number and h = 2 mod 4, necessarily n =1 mod 2;
3) if h = 0 mod 4, n can be any integer, n > 5.

Theorem 4.1.2: There exists a nesting N(Ky,n;3,2) if and only if n =1 mod 4.
Proof: = Immediate from Theorem 4.1.1, 1).

<= Since a (n, k, k — 1)-NRB exists if and only if n = 1 mod k ([2], p. 88,91),
the statement follows from Theorem 2.7.
Theorem 4.1.3: For every n € N, n prime, n > 5, there exists a nesting
N(K4,n;6,4).
Proof: Let n be a prime number, n > 5. Let & = (Z,, B) be the K,-design having
the following blocks:

Biwj et {Z’i,j,l = j, fﬁi,j;z = ] -+ i, mi,j,3 = ] -+ 2‘5‘7 {I;i’jA — 7 - 31}7
forevery j€ Z,, 1=1,2,...,(n—1)/2.

We can verify that ¥ has index A\; = 6. Observe that the differences between
two vertices of Bj; are: 1,4,4,24,2i,3¢. Further, for ¢ = 1,2,..,(n ~ 1)/2, 2i and 3¢
cover all the possible differences, respectively. So, if z, y are two vertices of &, < v,
y—x =1, {z,y} is contained in exactly six blocks of E.

Now, consider the Sy-design Il = (Z,,, S) having the following blocks:

Sij= Wi =n=20+J;Tij1 =5, Tije = J +6,Tija=J+ 20,354 =J+ 31),
forevery j€ Z,, 1=1,2,...,(n—1)/2.
Since n is prime, then n —2i +j ¢ {j,7 + 4,7 + 21,7 + 3i}.

We can verify that Il has index Ay = 4. The differences between the centre and
the other vertices of S;; are: n — 2i,n — 3i,n — 4i,n — 54, which are equivalent to:
2%, 31,41, 5i.

Since n is prime, for 1 = 1,2,...,(n — 1)/2 each of them describes the set of all
the possible differences. So, if z,y are two vertices of I, x <y, y —z =1, {z,y} is
contained in exactly four blocks of T1.

If F: B — Sis a mapping such that F(B,;) = S;;, then N = (£,II, F) is a
nesting N (K4, n;6,4).

Theorem 4.1.4: There exists a nesting N(K4,n;6,4) if and only if n = 1 mod 2,
except possibly for n = 15,27,39,75,87,135,183,195.
Proof: = From Theorem 4.1.1. 2), for h = 1, directly.

<= Observe that if for any n there exists a nesting N (K, n; 3,2), then for this
n there exists also a nesting N(Ky,n; 6,4). Further, for every admissible n = 1 mod
2, there exists a PBD(n) having blocks of size 5,7,9 ([2], p. 208), with some possible
exceptions.

Collecting together Theorem 4.1.2, Theorem 4.1.3, Theorem 2.2, and also the
possible exceptions, the existence of a nesting N (K4, n;6,4) is proven for n = 1 mod
2, n#15,27,39,51,75,87,95,99,111, 115,119, 135, 143, 183,195, 243, 411.
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From Theorem 2.4, since there exist pairs of N(Ky,n;6,4) of order ny,ny such
that (n1,n2) = (5,19),(9,11),(5,23),(7,17), (11, 13),(9, 27), existence follows for
no= nyny = 95,99,115,119, 143, 243; further, since there exist pairs of N(Ky,n
6,4) of order ni,ny such that (ny,ny) = (5,11), (11,11), (41, 11), existence follows
for n = mny.(ny — 1) + 1 = 51,111,411. This part of the statement is now proved.
Theorem 4.1.5: There exists a nesting N(Ky, 6;12,8) and a nesting N(Ky, 8;12,8).

Proof: Consider the following design, defined on Zg and having the blocks:

{0;1,2,3,4}, {0;1,2,4,5}, {0;1,3,4,5}, {1;2,3,4,5}, {1;0,3,4,5},
{1,0,2,3,4}, {1;0,2,3,5}, {2;0,1,3,4}, {20,1,4,5}, {3;0,1,2,5},
{3;0,2,4,5}, {40,1,2,3}, {40,1,3,5}, {4;,1,2,3,5}, {5;0,1,2,4},
{5:0,1,2,3}, {3;0,1,2,4}, {4;,0,1,2,5}, {50,1,3,4}, {2;0,1,3,5},
{3,0,1,4,5}, {4,0,2,3,5}, {50,2,3,4}, {1;0,2,4,5}, {2;0,3,4,5},
{5:1,2,3,4}, {31,2,4,5}, {0;1,2,3,5}, {2;1,3,4,5}, {0;2,3,4,5).

It is possible to verify that this is a nesting N(K4, 6;12,8).
Consider the following design, defined on Z; U {co} and having the blocks:

{F00 0+ 1,5 +2,7+3},  {j;00,5+1,5+3,5+5},

{00, +1,7+4,5+5}, {Ji00, 0 + 1,5 +2,5 + 4},

{o0s) i+ 1,7 +2,5+4},  {j;7+1,j+2,5+3,5+5},

{53 +2,5+3,7+4,7+6}, {j;i+4,7+57+6,5+1},
for every j € Z;.

It is possible to verify that this is a nesting N(Kj, 8;12, 8).
Theorem 4.1.6: There exists a nesting N(I(4,n;12,8) for every n > 5, except
possibly for n = 10,12,14, 15,16, 18,20, 22, 24, 27, 28,32, 34.
Proof: Observe that for every admissible n € N there exists a PBD(n) having blocks
of size 5,6,7,8,9 ([2], p. 209), with possible exceptions for n = 10,11,12,13, 14, 15,
16,17,18,19, 20, 22,23, 24, 27, 28, 29, 32, 33, 34.

From Theorem 2.2, Theorem 4.1.4, Theorem 4.1.5, there exists a nesting
N(K4,n;12,8) of order n > 5, except possibly for n. = 10,12,14, 15, 16,18, 20,22, 24,
27,28,32,34.

Collecting together the results obtained, we can formulate the following.

Corollary 4.1 The necessary conditions for the emistence of a nesting design
N(K4,m; M1, Aa) [Theorem 4.1.1] are also sufficient with the possible exceptions of
n = 10,12, 14,15,16, 18,20, 22,24, 27,28,32,34, when Ay = 0 mod 12 and Ny = 0
mod 8.

4.2 GgK4—€

From Theorem 2.1, necessary conditions for the existence of a nesting design N (K, —
e,n; Ay, Ag) are: n > 5, 4\ = 5]y, i.e. Ay = bh, Ay = 4h, h € N.
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Many results can be obtained from 4.1), by deleting an edge in the blocks of .
Recall that we indicate the graph Ky — e by {a,b, (c,d)} where ¢,d are the non-
adjacent vertices, and Sy U (K4 — e) by {z;a,b, (¢,d)}, where z is the centre of the
star.
Theorem 4.2.1: There exists a nesting N(Ky; — e,n;5,4) for every prime integer
ne N, n>b.
Proof: Let &' = (Z,,, B') be the (K, — e)-design obtained from £ = (Z,, B), the K-
design of index A, = 6 defined in Theorem 4.1.3, by deleting in every block B; ; € B
the edge {21, %:;4}. So, £ has the following blocks:

1] p N
Bl ;= Bij— {zij1, %4}, Bij € B.

Since the difference between the endpoints of the deleted edge is 3¢ (see Theorem
4.1.3) and n is prime, then for ¢ = 1,2,...,(n — 1)/2 the value 3i covers all the
possible differences 1,2,...,(n — 1)/2 between two vertices of Z,. So, ¥’ has index
A = 5.

If I = (Z,, S) is the same Sy-design defined in Theorem 4.1.3 and F(B;] ;) = S,
then N = (¥, I, F) is a nesting N(K4 — e,n;5,4).

Theorem 4.2.2: There exists a nesting N(Ky — ¢,9;5,4) of order 9.
Proof: Consider the design, defined on Zy and having the following blocks:

for every j=0,1,2,...,n— 1.

It is possible to verify that this is a nesting N(Ky — €,9;5, 4).

Theorem 4.2.3: There ezists a nesting N(K, — e,n;5,4) for every n = 1 mod 2,
n > 5, with possible exceptions for n = 15,27, 33,39,75,87,93, 183, 195.

Proof: Observe that for every admissible n = 1 mod 2 there exist PBD(n) hav-
ing blocks of size 5,7,9 ([2], p. 208), with the following possible exceptions for n =
11,13,15,17,19,23,27,29, 31, 33, 39, 43, 51, 59, 71, 75, 83, 87, 93, 95,99, 107, 111, 1 13,
115,119,131,135,139,143,167,173,179, 183, 191, 195, 243, 283, 411, 563.

From Theorem 2.2, Theorem 4.2.1 and Theorem 4.2.2) there exists a nesting
N(K, —e,n;5,4) for the same values of n, deleting all prime numbers.

So, the possible exceptions are:

n = 15,27,33,39,51,75,87,93,95,99,111,115,119,143, 183,195, 243, 411.

From Theorem 2.4, since there exist pairs of N (K4 — e,n;5,4) of order ny, ny
such that (ny,ne) = (5,19),(9,11), (5,23), (7,17), (11,13), existence follows for n =
ny.ng = 95,99,115,119, 143; further, since there exist pairs of N(Ky — e, n;5,4) of
order nq, ng such that (n,ng) = (5,11), (5, 23), (11, 23), (41, 11), existence follows for
n=ni.(no — 1) +1= 51,111,243, 411.
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REMARK: Note that, in this case, the sufficiency for the existence of a nesting
design N(Ky — e,n; A1, Az) is proved (apart from a few cases) only for odd orders n.
For even order n, we are able to solve the problem of the existence only forn =6 in
the next Theorem 4.2.4.

We remark that the problem is open for any even n, n > 8.

Theorem 4.2.4: Nesting designs N(K, — ¢,6;5,4) of order 6 do not erist,

Proof: Suppose that there exists a nesting N(K, — e,6;5,4) of order 6. If, for a
point x:

M indicates the number of blocks of the (/4 — e)-design in which z is adjacent
to all the other vertices of the block;

T indicates the number of blocks in which z is adjacent to two vertices of the
block;

H

C indicates the number of the blocks of the Sy-design in which x is the centre;

then necessarily

3M +2T =25
4WC+M+T=20

from which

M +15
O =
8
25 - 3M
= 2

and this implies M =1 and C =2, T = 11.
But this is not possible for a nesting-design with 15 blocks.

43 G=ZK;+e

From Theorem 2.1, it follows that A; = \,.

The spectrum of N(K3 + e,n;1,1) was studied by S. Milici and G. Quattrocchi
in [11].

44 G=Cy

From Theorem 2.1, it follows that A\, = \,.

The spectrum of N(Cy, n; 1,1) was studied by C.C. Lindner and D.R. Stinson [6]
and by 5. Milici and G. Quattrocchi [11] and the results can be extended to designs
N(Cq,n; h, h), where Ay = Ay = h € N, by a repetition of blocks.
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45 G= Py

From Theorem 2.1, necessary conditions for the existence of a nesting design
N(P4,Tl; A1, Az) are: n > 5, 4A1 = 3Xhy, 1. Ay =3h, Ao =4h, he N.

At first, we prove the existence in some particular cases.
Theorem 4.5.1: There exist nesting designs N(Py,5;3,4), N(Py,6;3,4), N(Py,8;
3,4), N(P4,9,3,4)

Proof: Consider the following design, defined on Z; and having the blocks:
g+ 1,5+2,7+3,5+4], J;7+2,5+4,7+1,7+3] forevery =0,1,2,3,4.

We can verify that this is a nesting N(Fy, 5; 3,4).
The following design is defined on Zs and its blocks are:

6:1,3,2,4], [4,2,1,3,5], [5:6,1,2,3], [3:1,4,5,2], [6;1,5,4,3],
(1;2,4,5,3), [5:1,4,6,2], [21,6,4,3], [1;2,4,6,3], [3:1,56,2],
2:1,6,5,3], [4:2,5,6,3], [5;1,4,3,2], [41,2,6,3], [6;2,5,1,3].

We can verify that it is a nesting N(Fy, 6; 3,4).
The following design is defined on Zg and its blocks are:

(4;0,2,3,1], [3;1,2,0,6], [3:0,2,1,6], [5:4,0,1,3], [2:6,0,1,5],
6;0,3,4,1], [7;0,3,4,1], [4;0,3,2,7), [2;1,0,7,5], [5;0,4,6,1],
(1;4,0,7,3], [6:0,7,4,3], [7;0,5,3,2], [3;0,5,4,2], [6;0,54,2],
[1;0,6,4,7], [5:3,1,2,7], [0;1,5,4,2], [6;1,7,5,2], [4:1,6,5,2],
(2;1,7,6,3], [7:1,4,6,3], [0;4,7,1,5], [1:2,6,5,3], [7:2,6,5,3],
0;2,6,7,3], [5:2,7,6,3], [4;2,5,7,3].

We can verify that it is a nesting N(Fy, 8; 3,4).

Consider the following design, defined on Zg and having the blocks:
U4+ Li+2,5+3], [[+757+2,)+4,j+6]
(445,743, +6+1], [+1L57j+4)+87+5

for every 7 =0,1,2,3,4,5,6,7,8.

We can verify that this is a nesting N(Py, 9; 3,4).

Theorem 4.5.2: There exists a nesting N(Py,n;3,4), for every n € N, n prime,
n > 5.

Proof: For n = 5, the existence is proved in Theorem 4.5.1. Let n > 7, n prime.

Let ©* = (Z,, B*) be the P;-design obtained from ¥ = (Z,, B), the K,-design
of index Ay = 6 defined in Theorem 4.1.3, by deleting in every block B;; € B the
edges:

€513 = {fﬂi,j,l,xi,j,fs}, €,4,24 = {$i,j,2a37i,],4}a €i4,14 = {J"i,j,lymi,j,zl}'
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So, 2* has the following blocks:
Bij=Bi; = (eijis+ € +eiju), Bij€ B.

The differences between the endpoints of the deleted edges €i,4,13, €ij,24, €ij,14 ATE:
21,21, 3¢, respectively, while the differences between the endpoints of the remaining
edges are: ¢,4,7. Further, since n is prime, for every ¢ = 1,2,..., (n — 1)/2 the values
21,21,31,1,1,% assume all the possible values of the differences between two vertices
of Z,, (see Theorem 4.1.3). Therefore ¥* has index \* = 3.

If 11 = (Z,,S5) is the same S,-design defined in Theorem 4.1.3 and F(B;;) = S;
then N* = (X%, 11, F') is a nested-design N(Py,n;3,4).

Ve

Theorem 4.5.3: There exist nestings N(Py, Ky22;3,4), N(Py, K2922;3,4).

Proof: Let Ky be the 3-partite complete graph defined on V = X UY U Z, where
X ={1,4}, Y = {2,5}, Z = {3,6} partition V in stable sets. The following blocks:

3:2,1,5,4], [1:2,3,5,6], [2;3,1,6,4], [3;5,1,2,4],
[1;5,3,2,6], [2;6,1,3,4], [6;1,5,4,2], [4;3,5,6,2],
[5;1,6,4,3], [6:1,2,4,5], [4;3,2,6,5], [5;1,3,4,6],

define a N(Py, K329;3,4).
Now, let K592 be the 4-partite complete graph defined on
Vi=LUMUNUP,
where L = {0,4}, M = {1,5}, N = {2,6}, P = {3,7} partition V' in stable sets.
The following blocks:

U+70,0+1L7+2,5+4], [7+35,7+2,7+4,5+1],
[J+574,7+3,7i+6,7+7 for every j € Zg,

define a N(Py, K2222;3,4).

Theorem 4.5.4: There exists a nesting N(Py,n;3,4), for everyn € N, n > 5, with
the following possible exceptions: n = 10,12, 14,16, 20,22, 28, 34.

Proof: For every admissible n, there exists a PBD(n) having blocks of size 5, 6,7, 8,9
([2], p. 209), with possible exceptions for 7 = 10, 11, 12,13,14,15,16,17, 18,19, 20, 22,
23,24,27,28,29,32,33,34. From Theorem 2.2, Theorem 2.7, Theorem 4.5.1 and
Theorem 4.5.2, it follows that there exists a nesting N (Py,n;3,4) for the same values
of n. From Theorem 4.5.2 and Theorem 2.7, the previous list can be reduced by
deleting all n odd. Since there exist 3-GDD of type 3%, 4-GDD of type 3%, 4* (]2,
p. 189-190), from Theorem 2.3, Theorem 4.5.1 and Theorem 4.5.3, the existence of
nesting N(Py,n;3,4) follows, also for n = 18,32, 24 and this completes the proof.

Collecting together the results obtained, we can formulate the following.

Corollary 4.5 The necessary conditions for the erzistence of a nesting design
N(Pyg,n; A, A2) are 4Xy = 3Xy, n > 5. These conditions are also sufficient for
every n > 5, with the possible exceptions of n = 10,12, 14, 16, 20, 22, 28, 34.
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46 G=S5;

In what follows, given an S3 = (y;a,b,¢) and an Sy = (x;vy,4a,b,¢), we denote
Sz U Sy = (z; (y; 0,0, ¢)).

For the necessary conditions we have the following theorem.

Theorem 4.6.1: If there exists a nesting design N(S3,n; A1, Ay), then the parameters
n, A1, Ay must satisfy one of the following conditions:

1) A\ =3h, Ay =4h, n=1mod 2, n > 5, for any positive odd integer h;
2) A = 3h, Ay = 2h, n > 5, for any positive integer h = 0 mod 2.

Proof: From Theorem 2.1, it follows that: 4\, = 3y, n > 5.

Let N = (X,II, F') be a nesting N (53, n; 3h, 4h). Consider a point z of N. If Cy,
Q,, T, are respectively the number of blocks containing z as a centre in a star of
II, the number of blocks containing x as a centre in a star of ¥ and the number of
blocks containing x as a terminal vertex always in a star of ¥, then:

30, + T, = 3h(n —1)
40, + Qe + T, = 4h(n — 1)

It follows that:
4C, — 29, = hin — 1);

hence h.(n — 1) is an even number and if 4 is odd, n = 1 mod 2.

Theorem 4.6.2: There exists a nesting N(Ss,n;3,4), for every n € N, n prime,
n > 5.

Proof: Consider the S3-design " = (Z,, B"), having for blocks the following 3-stars:
B, = {j 44,5 +2i,j+31), forevery j =0,1,2,...,n—1,1=1,2,...,(n - 1)/2,

where the values of ¢ represent all the possible differences between two distinct ver-
tices z,y € Z,. We can verify that ¥” has index A} = 3. Consider that for every
pair z,y € Z,, z < y, the difference y — z can be: 1,2,..., (n—1)/2; and that in the
edges of a block B}'; these differences are: 4,1, 2i.

It follows that any difference 6 = y — 2 = 1,2,...,(n — 1)/2 appears in the
following blocks of B": By, By ;, B, _5 /2 50, the pair {z,y} is contained in exactly
3 blocks of X. Observe that every block B, of ¥" is contained in the block B; ; of
the Ky-design ¥, defined in Theorem 4.1.3 and having index A, = 6.

If 11 = (Z,,S) is the Ss-design defined in Theorem 4.1.3 and F(BY,) = S;;, then
N" = N(¥",II, F) is a nested-design N(S3,n; 3, 4).

Theorem 4.6.3: There exist nesting N(S3,9;3,4), N(Ss,15;3,4).
Proof: The following design is defined on Zy and has the blocks:
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(G U+L7+2,7+3,7+4), (G;U+1L7+57+6,7+7),
(GG +6,7+4,7+7,7+8)), (;G+17+2,5+4,5+6)),
for every j = 0,1,...,8.

We can verify that this is a nesting N(S53,9;3,4).
The following design is defined on Z;5 and has the blocks:

(3U+27+1L,7+3,5+4) GG+ 17+5,7+8,5—3)
(150 =20+5,5+4,7+6)) (GU+47+1L7+7,7+9)
U (G—-1L,7+8,7+3,7+5) for every j =0,1,2,...,14.

We can verify that this is a nesting N(S3,15;3,4).

Theorem 4.6.4: There exists a nesting N(S3,n;3,4) if and only if n = 1 mod 2,
n > 5, except possibly for n = 15,27,39,75,87,135,183,195.
Proof: = Necessarily, n = 1 mod 2. It follows from Theorem 4.6.1. 1).

< For every admissible n, n = 1 mod 2, there exist PBD(n) having blocks of
size 5,7,9 ([2], p. 208), with the possible exceptions of n = 11,13, 15,17, 19,23, 27, 29,
31,33,39,43,51,59,71,75,83,87,93,95,99,107, 111,113,115, 119, 131, 135,139, 143,
167,173,179, 183,191, 195, 243, 283, 411, 563.

From Theorem 2.2, Theorem 4.6.2 and Theorem 4.6.3, the existence of a nesting
design N(S3,n;3,4) follows for the same values of n. From Theorem 4.6.2 and
Theorem 4.6.3, the previous list can be reduced by deleting all n prime and also
n = 195.

From Theorem 2.4, since there exist pairs of N(S3, n; 3, 4) of order n;, n, such that
(n1,m2) = (5,15),(5,19), (9,11), (5,23),(7,17), (9, 15), (11,13), (13, 15), the existence
for n =ny.ny = 75,95,99,115, 119, 135, 143, 195 follows.

From Theorem 2.4, since there exist pairs of N(S3, n; 3,4) of order ny, n, such that
(n1,m9) = (5,11),(23,5),(11,11), (13, 15), (11,23), (41,11) it follows the existence
also for n =ny.(ng — 1) +1 = 51,93,111, 183, 243, 411.

This part of the statement is so proved.

Theorem 4.6.5: i) Nesting designs N(S3,6;6,8) of order 6 do not exist.
ii) There exists a nesting N(S3,8:6,8) of order 8.

Proof: i) Suppose that there exists a nesting N(Ss, 6;6,8) of order 6. If, for a point =

- C indicates the number of blocks of the Ss;-design in which z is the centre of
the star;

— T indicates the number of blocks of the Ss-design in which z is a terminal of
the star;

— {1} indicates the number of the blocks of the Sy-design in which z is the centre
of the star;
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then necessarily
3C+T =30
404+ C+T =40

from which

Q:—C;5,T:30—3C

and this is not possible, because the number of blocks is equal to 20.

i) Consider the following design, defined on Z7 U {co} and having the blocks:

G307+ 1L,7+2,5+6), (G+1(;7+2,7+3,5+5)),

(G+6,(;i+1,7+3,7+4)), (00 (;7+1,7+2,j+3)),

G+ 1005 4+2,74+4)),  (G+5+1;00,5+3,7+4)),

(J; (G + 1500, 5 + 2,5+ 3)), (4 (0034 + 1,5 + 2,5+ 3)),
for every j € Z;.

It is possible to verify that this is a nesting N(S53, 8;6,8).

Theorem 4.6.6: There exists a nesting N(Ss, n;6,8) for everyn > 5, n # 6, except
possibly for n = 10,12,14,16, 18,20, 22,24, 26,27, 28, 30, 32, 33, 34, 38, 39, 42, 44, 46,
52,60,94, 96, 98,100,102, 104, 106, 108, 110, 116, 138, 140, 142, 146, 150, 154, 156, 158,
162, 166, 170, 172, 174, 206, 228.

Proof: Observe that for every admissible n € N there exists a PBD(n) having blocks
of size 5,7,8,9 ([2], p. 208), with a set of possible exceptions. The statement follows
from Theorem 4.6.5, Theorem 2.2 and Theorem 4.6.4.

Coallecting together the results obtained, we can formulate the following.

Corollary 4.6 The necessary conditions for the existence of a nesting design
N(S3,7m; A1, A2) [Theorem 4.6.1] are also sufficient except possibly for:

i) n = 15,27,39,75,87,135,183,195, when n = 1 mod 2, Ay = 3 mod 6, Ay =4
mod 8;

i) n = 10,12,14, 16, 18,20, 22, 24, 26, 27, 28, 30, 32, 33, 34, 38, 39, 42, 44, 46, 52, 60,
94, 96, 98, 100,102, 104, 106, 108, 110, 116, 138, 140, 142, 146, 150, 154, 156, 158,
162,166,170, 172,174, 206, 228, when Ay = 0 mod 6, Ay = 0 mod 8.

4.7 G=2P;

In what follows, if 2P, is a graph with edges {a,b}, {¢,d} and Sy is a 4-star having
terminal vertices a, b, ¢, d and centre z, then the graph 2P, + S; will be indicated by
(; (a,b), (c,d)).

For the necessary conditions we have the following theorem.

Theorem 4.7.1: If there exists a nesting design N(2Py, n; M, \2), then the param-
eters n, A1, Ay must satisfy one of the following conditions:
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1) My =h, Ay =2h, n=1 mod 4, n > 5, for any positive odd integer h;
2) M =h, Aa =2h, n =1 mod 2, n > 5, for any positive integer h = 2 mod 4;
3) Ay =h, Ay =2h, n > 5, for any positive integer h = 0 mod 4.

Proof: From Theorem 2.1, it follows that: 2X\; = Xy, n > 5.

Let N = (%,I1, F') be a nesting N (2P, n;h,2h). If z is a point of N and T, is the
number of blocks of 3 containing z, Cythe number of blocks of IT containing x as a
centre, then:

T = hin-1)
4C, + T, = 2h(n ~ 1).

It follows that Cy = h(n — 1)/4, hence h(n — 1) = 0 mod 4. This implies 1),2),3).

Theorem 4.7.2: There exists a nesting N(2P,,n;1,2) if and only if n = 1 mod 4,
n>>5.
Proof: = Necessity follows from Theorem 4.7.1.1).

«Letn=1mod4,n>5 7 =2Z,U{cc}and let & = {F, F,, ..., F,} be
a 1-factorization defined on Z'. Without loss of generality, we can suppose that the
1-factor F; contains the pair {i,00}. Observe that, if k = |F; — {{i, 00} }|, then k=0
mod 2. So, let F;—{{i,00}} = {{wi1, i1}, {Zi2, %2}, - {Zip—1, Vik—1 }» {Bik, Vi } },
for every i =1,2,...,n. Then, we can define the design N, having the blocks:

@G (i vi0), (@2, vi2))s o (G (@ipot, Y1), (Tiger Yik))s
for each i=1,2,...,n

We can verify that N is a nesting design N(2P,n;1,2).

Theorem 4.7.3: There exists a nesting N(2P;,n;2,4) if and only if n = 1 mod 2,
n > 5.
Proof: = Necessity follows from Theorem 4.7.1.2).

< Let n=1mod 2, n>5. So: i) n=1mod 4, orii)n = 3 mod 4. In case
i), we obtain the same results of Theorem 4.7.2, by a repetition of blocks.

Examine the case ii). Thus: n = 3mod4,n > 7. Let &' = {F}, Fy,...,F,}, " =
{Gi,G,,...,G,} be two 1-factorizations, defined on 2’ = Z, U {co}, such that F; N
Gi = {{i,00}}, for each ¢ = 1,... n. If F; — {{i,00}} = {{m,zia}, {@iz, zia}, ..,
{zik-vzinth, G = {{i, 004} = {{yin, vi2d, {Wis viads - oo {Wik—1, ik} }, then k = 2
mod 4.

Then, we can define the design IV, having the following blocks:

(b5 (i1, 2i2), (i3, ia)), (5 (Wi, ¥i2), (Yi3, Yia))s

(0 (T, Th-a), (Th-3, Th2))s (&5 (Ykoss Ye-a), (Uh—3, Yb—2)),
<7‘) (:U/C-17 Tk)7 (yk~17 yk)>7 for every = 17 27 sy T
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We can verify that N is a nesting N(2P,, n;2,4).

Theorem 4.7.4: There exist nestings N(2P»,6;4,8), N(2P,8;4,8).
Proof: Consider the following design, defined on Z5 U {co} and having the blocks:

(005 (J+1,5+4),(j+2,7+3)), (j;(00,i+3),(1+1,75+4),

(7; (00,5 + 1), (j + 2,5+ 3)), (45 (00,5 +2), (J+ 1,7 +4)),

(7; (00,5 +4), (5 + 2,5 +3)), (G G+ 1,7+4),(+2,5+3))
for every j € Zs.

We can verify that this is a nesting N (2P, 6; 4, 8).
Consider the following design, defined on Z; U {oo} and having the blocks:

(00; (3 + 1,7 +2),(J+3,5+5)), (
(43 (00,7 +3), (J + 2,7 +4)), (
(J; (00,5 +2), (j + 1,5 +4)), (
G G+1L,7+2),0+3,5+6)), (

ji (00,4 +1), (4 + 2,5 +4)),

75 (00,7 +5), (4 + 2,5 +4)),
J; U+ 1,7+2),(5+3,5+6)),
353 +1,5+2),(+3,7+6)),
for every j € Z;.

We can verify that this is a nesting N(2P,, 8;4, 8).

Theorem 4.7.5: There exists o nesting N(2P;,n;4,8) for everyn e N, n>5
Proof: For n odd and n = 6,n = 8, the statement follows from Theorem 4.7.3, by a
repetition of blocks, and from Theorem 4.7.4.
Let n > 10, n even. Further, let N be the nesting N(Pg, n - 1;1,2), defined on
Zn—1by the blocks [j; j +1, j + 24], where j = 0,1,2,. Li=1,2,...,(n=-1)/2,
and [z;y1, yo] indicates {z; y1,y2) U (Y1, ¥2)- Startmg ﬁom N it is posmble to define
a nested-design N(2P,,n;4,8) on Z,_; U {co}, as follows.

1) Suppose n = 2 mod 4. Then, for every j € Z,_;:

— repeat every block [j;7 + 14, j + 2i] of N four times:
57+ 4,0 + 200N, (G55 + 4,5+ 2],
Uig+4,0+ 209 [5;7 + 4,5 + 2],
— define, for u = 1,2,3,4and ¢ = 5,7, . H,(n —2)/4 (i odd) :
(G414, +2), G +i+1,5+2+2)® =
[5;7 + 4,5 +2WUlj;j+i+1, j+21+2)]“)
— define, for u = 1,2:
GG +1,5+2),0+4),6 +8)™ =[5+ 1,5 + 2™ Ui+ 4,5+ 8™,
(G5 +2,5+4), 6 +3), G+ 6™ = [;5+2,5 + 4™ Ulj5j+3,5 +6]™.

— define:
(5U+4,7+8),(+3,7+6)® =[j;7+4,j + 8P Ujj+3,5+6/W
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— delete all the remaining blocks of N and define the following:
(003 (7 + 1,7 +2), (7 + 4,5 +8)),
(75 (00,7 +1), (7 + 2,5 +4)), (i (00,5 +2), (j + 3, ] +6)),
(75 (00,7 +8), (7 + 2,7 +4)), (i (00,5 +4), (j + 1,j + 2)).

It is possible to verify that this collection of blocks defines a nested-design
N(2Py,n;4,8).

2) Suppose n = 0 mod 4.

— repeat every block of N four times, using the symbolism of 1);

— define:

GG +13+2),G+3,7 +6) =[5+ 1,5 + 2]V U5 + 3,5 + 6]
GG +1L7+2),6G+45+8) =[5+ L,j + 2D U 55 +4,5 +8]@
GG+ 2,7 +4), G +5,5+10)P = [;j +2,5 + 4P U[j; 5 +5,5 + 10/

— define:
(75 (344, 5 +20), (G+i+1, 5+204+2)) ) = [5; 44, j+20W 0[5 j+i+1, j+2i+2]0
for every ¢ even and
i=24,...,(n=2)/2ifu=1
i=6,8...,(n—2)/2ifu=2
i=4,6,...,(n—-2)/2ifu=3u=4
— delete all the remaining blocks of N and define the following:
(00; (4 + 1,7 +2),(j +3,j +6))
s (OO JH1D, (42,7 +4)), (i (o0, +6),( + 1,5 +2))
(73 (00,7 +2), (7 + 3,5 +6)), (< j; (00,7 + 3), (7 + 2,5 + 4))

It is possible to verify that this collection of blocks defines a nesting N(2P;, n;
4,8).

sollecting together the results obtained we can formulate the following.

Corollary 4.7 The necessary conditions for the ezistence of a nesting design
N(2Py,n; My, As) [Theorem 4.7.1] are always sufficient.
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