On the spectrum of nested G-designs, where G has four non-isolated vertices or less

Lucia Gionfriddo¹

Dipartimento di Matematica e Informatica Università di Catania viale A.Doria n.6, 95125 Catania Italy lucia.gionfriddo@dmi.unict.it

Abstract

The spectrum problem for G-decompositions of λK_n that have a nesting was first considered in the case $G \cong K_3$ by C.J. Colbourn and M.J. Colbourn (1983) and by D.R. Stinson (1985). For $\lambda = 1$ and $G \cong C_m$ this problem was studied in many papers (see C.C. Lindner and C.A. Rodger, Chapter 8 in Contemporary Design Theory: a collection of surveys, Wiley 1992, and D.R. Stinson, Utilitas Math. **33** (1988) for more details and references). In this paper we generalize the nesting definition given by C.J. Colbourn and M.J. Colbourn [Ars Combin. **16** (1983), 27–34] and we study the spectrum problem in the case that G has four non-isolated vertices or less.

1 Introduction

Let λK_n be the complete multigraph on n vertices, where every edge is repeated λ times. If G is a graph, the multigraph λK_n is said to be G-decomposable if it is the union of edge-disjoint subgraphs of K_n , each of them isomorphic to G. This situation is denoted by $\lambda K_n \to G$; λK_n is also said to admit a G-decomposition $\Sigma = (V, \underline{B})$, where V is the vertex-set of λK_n and \underline{B} is the edge-disjoint decomposition of λK_n into copies of G. Usually \underline{B} is called the *block-set* of the G-decomposition and any $B \in \underline{B}$ is said to be a *block*.

A G-decomposition of λK_n , $\Sigma = (V, \underline{B})$, is also called a G-design of order n, block-size |V(G)| and index λ [3]. A G-design $\Sigma^* = (V^*, \underline{B}^*)$ is said to be a subdesign of $\Sigma = (V, \underline{B})$ if $V^* \subseteq V$ and $\underline{B}^* \subseteq \underline{B}$. More generally, it is possible to define G-decompositions of λH , instead of λK_n , where H is any graph.

Australasian Journal of Combinatorics 24(2001), pp.59-80

¹Lavoro eseguito nell'ambito del GNSAGA/INDAM e con contributo del MURST

A path-design $P(n, k, \lambda)$ is a G-design of order n, block-size k, index λ , where G is a path on k vertices, i.e. a graph having for vertices x_1, x_2, \ldots, x_k and for edges all the pairs $\{x_i, x_{i+1}\}$, for every $i = 1, 2, \ldots, k-1$. Such a path will be denoted by $\langle x_1, x_2, \ldots, x_k \rangle$.

A star-system $S(n, m, \lambda)$ is a *G*-design of order *n*, block-size m + 1, index λ , where *G* is a star with *m* terminal vertices, i.e. $G \cong S_m$ graph having m + 1 vertices x' (centre), x_1, x_2, \ldots, x_m (terminal) and for edges all the pairs $\{x', x_i\}$, for every $i = 1, 2, \ldots, m$. Such a star will be denoted by $\langle x'; x_1, x_2, \ldots, x_m \rangle$.

An *m*-cycle-system $CS(n, m, \lambda)$ is a *G*-design of order *n*, block-size *m*, index λ , where $G \cong C_m$, the cycle with *m* vertices.

A Steiner triple system $S_{\lambda}(2,3,v)$ is a C_3 -design or also a K_3 -design.

In the literature there are some definitions of *nesting* for G-designs, mainly, for $\lambda = 1$ and $G \cong C_m$.

Let $\Sigma = (V, C)$ be a C_m -design having order n and index $\lambda = 1$.

A nesting of the C_m -design Σ is a mapping $f: C \to V$ such that the set $\Pi = \{\{x, f(c)\} : c \in C, x \text{ vertex of } c\}$ is a partition of the edges of K_n . Observe that any nesting of a C_m -design produces an edge-disjoint decomposition of K_n into *m*-stars. It is clear that a nesting of an *m*-cycle-design of order *n* is equivalent to an *edge-disjoint decomposition* of $2K_n$ into *wheels* W_m having the additional property that for each pair of vertices x, y, one of the edges joining *x* to *y* is on the *rim* of a wheel and the other is the *spoke* of a wheel.

The spectrum problem for *m*-cycle-systems that have a *nesting* was first considered in the case where m = 3, i.e. for S(2, 3, v). This case was studied by C.J. Colbourn and M.J. Colbourn [1] and by C.C. Lindner and C.A. Rodger [4] who left 15 possible exceptions; Stinson [13] completed the spectrum. *Nested* 4-cycle-systems were studied by Stinson [14], while *nested* 5-cycle-systems were studied by Lindner and Rodger [4]. Further, general results have been obtained by Lindner, Rodger and Stinson [5].

The same definition of *nesting* can be given for G-designs, in which G = (V(G), E(G)) is not necessarily a cycle. A necessary condition is that

$$|V(G)| = |E(G)|.$$

Recently, Milici and Quattrocchi [10] have given the following definition.

Let G = (V(G), E(G)) be a graph and let $\Sigma = (V, \underline{B})$ be a *G*-decomposition of λK_n . A nesting of Σ is a triple $N = \{\Sigma, \Pi, F\}$, where $\Pi = (V(K_n), S)$ is a decomposition of λK_n into *m*-stars S_m and $F : \underline{B} \to S$ is a 1-1 mapping such that:

- (i) for every $B \in \underline{B}$, the *centre* of the *m*-star F(B) does not belong to V(B); all the *terminal* vertices of F(B) belong to V(B);
- (ii) for every pair $B_1, B_2 \in \underline{B}$, the graphs $B_1 \cup F(B_1), B_2 \cup F(B_2)$ are isomorphic.

A necessary condition is that $|V(G) \ge |E(G)|$. If |V(G)| = |E(G)|, this definition is equivalent to the previous.

In this paper we give the following definition of nesting of a G-design and we study the spectrum for all G-designs in which G is a graph having four non-isolated vertices, or less.

Let G = (V(G), E(G)), H = (V(H), E(H)) be two graphs and let $\Sigma = (V, \underline{B})$ be a *G*-design of index λ_1 , briefly $\lambda_1 H \to G$. A nesting $N(G, H; \lambda_1, \lambda_2)$ of Σ is a triple (Σ, Π, F) , where $\Pi = (V(H), S)$ is an *m*-star-design of index λ_2 , briefly $\lambda_2 H \to S_m$, and $F : \underline{B} \to S$ is a bijection such that for every $B \in \underline{B}$:

(i) the centre of the *m*-star F(B) does not belong to V(B);

(ii) x is a terminal vertex of F(B) if and only if x is a vertex of V(B).

In what follows, when $H \cong K_n$, such a nesting will be denoted by $N = N(G, n; \lambda_1, \lambda_2)$. Observe that N is a G^* -design of order n, block-size |V(G)| + 1 and index $\lambda = \lambda_1 + \lambda_2$, where $G^* = G \cup S_{|V(G)|}$.

If $\lambda_1 = \lambda_2 = \lambda$, this definition is the same as given in [1], [7], [10]. Further:

- (x_1, x_2, \ldots, x_n) will be a cycle C_n ;
- $\langle x_1, x_2, \ldots, x_n \rangle$ will be a path P_n ;
- $\langle y; x_1, x_2, \ldots, x_n \rangle$ will be a star S_n with centre y;
- $[y; x_1, x_2, \dots, x_n]$ will be $P_n \cup S_n$, where $P_n = \langle x_1, x_2, \dots, x_n \rangle$ and $S_n = \langle y; x_1, x_2, \dots, x_n \rangle;$
- $(y; (x_1, x_2, \ldots, x_n))$ will be a *wheel* with centre y.

Example A nesting $N(P_3, 7; 2, 3)$ is given by

- the P_3 -design $\Sigma = (V, \underline{B})$, having index $\lambda_1 = 2$ and order v = 7, so defined: $V = Z_7$ and $\underline{B} = \{\langle i, i+1, i+2 \rangle, \langle i, i+2, i+4 \rangle, \langle i, i+3, i+6 \rangle \mid i \in Z_7\};$
- $V = D_{i} \text{ and } \underline{D} = \{(i, i+1, i+2), (i, i+2, i+4), (i, i+3, i+6) \mid i \in D_{i}\}, i \in [0, i+3], i \in [0, i+3],$
- the S_3 -design $\Pi = (V, S)$, having index $\lambda_2 = 3$ and order v = 7, so defined: $V = Z_7$ and $S = \{\langle i+5; i, i+1, i+2 \rangle, \langle i+3; i, i+2, i+4 \rangle, \langle i+1; i, i+3, i+6 \rangle \mid$

$$i \in Z_7$$
;

 $\begin{array}{ll} - & F(\langle i, i+1, i+2 \rangle) = \langle i+5; i, i+1, i+2 \rangle, \\ & F(\langle i, i+2, i+4 \rangle) = \langle i+3; i, i+2, i+4 \rangle, \\ & F(\langle i, i+3, i+6 \rangle) = \langle i+1; i, i+3, i+6 \rangle. \end{array}$

Result 1: Observe that in the case $G \cong K_n$ this new definiton of nesting is the same as given by Kageyama and Miao [7], [8], [9].

Result 2: Note that if there exists an $N(G, n; \lambda_1, \lambda_2)$, then there exists also an $N(G, n; h\lambda_1, h\lambda_2)$. It is sufficient to repeat all the blocks h times.

Result 3: In what follows, when a *G*-design is defined on $Z_n = \{0, 1, 2, ..., n-1\}$, it is understood that all the sums in Z_n must be reduced mod n.

2 Preliminary results

In this section we give some definitions and theorems useful to construct *nestings* of a G-design, i.e. *nested* G-designs. In some of them we will use pairwise balanced

designs and group divisible designs.

Let X be a finite set of *points*, C a family of distinct subsets of X called *groups* which partition X, A a collection of subsets of X called *blocks*. Let v and λ be positive integers and K, M sets of positive integers. The triple (X, C, A) is a *group* divisible design, briefly a GDD, GD[K, λ , M; v] if:

$$(c_1) |X| = v;$$

- $(c_2) \ \{ |C| \mid C \in \mathcal{C} \} \subseteq M;$
- $(c_3) \{ |B| \mid B \in \mathcal{B} \} \subseteq K;$
- (c₄) $|C \cap B| \leq 1$, for every $C \in \mathcal{C}, B \in \mathcal{B}$;
- (c₅) every pair $\{x, y\} \subseteq X$, such that x, y belong to distinct groups, is contained in exactly λ blocks of A.

If C contains t_i groups of size m_i , for i = 1, 2, ..., s, the GDD is said to have group type $m_1^{t_1}m_2^{t_2}\ldots m_s^{t_s}$. When $K = \{k\}$, we will write $GD[k, \lambda, M; v]$ instead of $GD[\{k\}, \lambda, M; v]$.

A GD[$K, \lambda, \{1\}; v$] having group type 1^v is called a *pairwise balanced design* and is denoted by (X, A) or by (v, K, λ) -PBD. A (v, k, λ) -PBD is simply a K_k -design. For $\lambda = 1$, a (v, k, 1)-PBD is a (v, k)-PBD.

A $GD[k, 1, \{m\}; km]$ is called a *transversal design*, denoted by TD[k, m]; it is also called a k-GDD.

A (v, k, λ) -BIBD (balanced incomplete block-design) or an $S_{\lambda}(2, k, v)$ (Steiner system of index λ) is a pair (V, \underline{B}) , where V is a finite v-set and \underline{B} is a collection of k-subsets of V, called blocks, such that every 2-subset of V is contained in exactly λ blocks of \underline{B} .

A parallel class of a (v, k, λ) -BIBD (V, \underline{B}) is a set of blocks of \underline{B} that partition V. A (v, k, λ) -BIBD is said to be *resolvable* and is denoted by (v, k, λ) -RBIBD if \underline{B} can be partitioned into parallel classes.

A near resolvable (v, k, k-1)-BIBD, briefly a (v, k, k-1)-NRB, is a (v, k, k-1)-BIBD with the property that <u>B</u> can be partitioned into partial parallel classes missing a single $x \in V$ and every $x \in V$ is absent from exactly one class.

Theorem 2.1 [3]: Let G = (V(G), E(G)) be a graph and let $\Sigma = (V, \underline{B})$ be a *G*-design of index λ_1 . A necessary condition for the existence of a $N(G, n; \lambda_1, \lambda_2)$ is that $\lambda_1|V(G)| = \lambda_2|E(G)|$.

The following two theorems are special cases of the Wilson fundamental construction for group divisible designs and other well-known theorems. So we will omit the proofs.

Theorem 2.2: Let $\Sigma = (X, A)$ be a (n, K)-PBD, where $K = \{h_1, h_2, \ldots, h_t\}$, and let G be a graph. If, for every $h_i \in K$, there exists a nesting $N(G, h_i; \lambda_1, \lambda_2)$, then there exists a nesting $N(G, n; \lambda_1, \lambda_2)$.

Theorem 2.3: Let $\Lambda = (X, P, A)$ be a k-GDD of order n, where $P = \{P_1, P_2, \ldots, P_t\}$ and $|P_i| = n_i$, and let G be a graph. If, for every n_i , there exists a nesting $N(G, mn_i + w; \lambda_1, \lambda_2)$ containing a sub-design $N(G, w; \lambda_1, \lambda_2)$ (where w = 0, 1) and there exists a nesting $N(G, K_{m_1,m_2,\ldots,m_k}; \lambda_1, \lambda_2)$ (where $m_1 = m_2 = \ldots = m_k$), then there exists a nesting $N(G, mn + w; \lambda_1, \lambda_2)$.

We prove the following

Theorem 2.4: Let $G \cong P_3, P_4, S_3, K_4 - e$ and suppose that there exist a nesting design $N(G, v; \lambda_1, \lambda_2)$, a nesting design $N(G, w; \lambda_1, \lambda_2)$, two orthogonal quasi-groups of order w - q, where q = 0 or 1. Then there exist nesting designs $N(G, v(w - q) + q; \lambda_1, \lambda_2)$.

<u>Proof</u>: At first, consider two orthogonal quasigroups of order w - q (they exist for every $w - q \neq 2, 6$); let $(Z_{w-q}, \circ), (Z_{w-q}, *)$.

Let $G \cong P_3$.

If (Z_v, \underline{B}) is a nesting design $N(P_3, v; \lambda_1, \lambda_2)$, $T = \{\infty\}$ for q = 1 and $T = \emptyset$ for q = 0, then it is possible to define the design $N(P_3, v(w - q) + q; \lambda_1, \lambda_2)$ (V, \underline{D}) as follows:

- i) for every $[x; a, b, c] \in \underline{B}$ put in \underline{D} the blocks $[(x, i \circ j); (a, i), (b, j), (c, i)], i, j \in Z_{w-q};$
- ii) for every $x \in Z_v$, put in <u>D</u> the blocks of a design $N(P_3, w; \lambda_1, \lambda_2)$ defined on $\{x\} \times Z_{w-q} \cup T$.

The same technique can be used in the cases $G \cong P_4, S_3$.

Let $G \cong K_4 - e$.

Using the same symbolism of the case above, it is possible to define the nesting design (V, \underline{D}) of order v(w - q) + q as follows:

- i) for every $\{x; a, b, (c, d)\} \in \underline{B}$ (c, d) are the non-adjacent vertices) put in \underline{D} the blocks: $\{(x, i \circ j); (a, j), (b, i * j), ((c, i), (d, i))\}, i, j \in Z_{w-a};$
- ii) for every $x \in Z_v$, put in <u>D</u> the blocks of a design $N(K_4 e, w; \lambda_1, \lambda_2)$ defined on $\{x\} \times Z_{w-q} \cup T$.

Theorem 2.5 [3]: If there exists a nesting $N(C_m, n; 1, 1)$, then there exists a nesting $N(P_k, n; k - 1, k)$, for every integer k such that $3 \le k < m$.

<u>Theorem 2.6</u>: For every $k \ge 3$ and for every $n \ge 2k + 1$, n odd, there exists a nesting $N(P_k, n; k - 1, k)$.

The statement follows from Theorem 2.5 and from the existence of a nestingdesign $N(C_m, n; 1, 1)$ for all n = 2m + 1 and $m \ge 3$ [4].

Theorem 2.7: If there exists a (v, k, k-1)-NRB, then there exists a nesting (v, k, k-1)-BIBD.

<u>Proof</u>: Let $\Sigma = (V, \underline{B})$ be a (v, k, k - 1)-NRB. Further, for every block $B \in \underline{B}$, if Π_B is the almost-parallel class containing B, f(B) is the element of V which does not belong to its blocks. It is immediate to see that it is possible to obtain a nesting (v, k, k - 1)-BIBD to associate each block B of \underline{B} with the star having f(B) as centre and the elements of B as terminal vertices.

$\begin{array}{ll} 3 & N(G,n;\lambda_1,\lambda_2) ext{ where } G ext{ has } n \leq 3 ext{ non-isolated } \ ext{ vertices} \end{array}$

If G has 2 non-isolated vertices, then $G \cong K_2 \cong P_2$.

It is known that the spectrum of the nesting designs $N(P_2, n; \lambda_1, \lambda_2)$ was completely determined by Kageyama and Miao [7].

Now, we study the spectrum of a nesting $N(G, n; \lambda_1, \lambda_2)$, where G has 3 nonisolated vertices. Two cases are possible: 1) $G \cong K_3$, 2) $G \cong P_3$.

3.1 $G \cong K_3$

It is well-known that the spectrum of the nesting designs $N(K_3, n; 1, 1)$ was completely determined by Stinson [13] and the results can be extended to designs $N(K_3, n; h, h)$, where $\lambda_1 = \lambda_2 = h \in N$, by a repetition of blocks.

3.2 $G \cong P_3$

From Theorem 2.1, necessary conditions for the existence of a nesting design $N(P_3, n; \lambda_1, \lambda_2)$ are: $n \ge 4$, $3\lambda_1 = 2\lambda_2$, i.e. $\lambda_1 = 2h$, $\lambda_2 = 3h$, $h \in N$.

Theorem 3.2.1: If there exists a nesting $N(P_3, 4; 2h, 3h)$, then h is even.

<u>Proof</u>: Suppose that (Σ, Π, F) is a nesting $N(P_3, 4; 2h, 3h)$. If x is a point of Π , T_x the number of blocks of Π containing x as a *terminal* vertex and C_x is the number of blocks of Π containing x as a *centre*, then

$$3C_x + T_x = 9h$$
$$C_x + T_x = 6h$$

From which $C_x = 3h/2$ and this implies h is even.

<u>**Theorem 3.2.2**</u>: For every *n* prime, $n \ge 5$, there exists a nesting $N(P_3, n; 2, 3)$. Further, there exist $N(P_3, 6; 2, 3)$, $N(P_3, 8; 2, 3)$, $N(P_3, 10; 2, 3)$.

<u>Proof</u>: Consider the following design, defined on Z_n and having the blocks:

$$[n + j - 2; j, j + 1, j + 2]$$

$$[n + j - 4; j, j + 2, j + 4]$$

$$\dots$$

$$[n + j - 2i; j, j + i, j + 2i]$$

$$\dots$$

$$[1; j, j + (n - 1)/2, j + n - 1] \text{ for every } j \in Z_5.$$

It is possible to verify that it is an $N(P_3, n; 2, 3)$.

Further, the following design, defined on Z_6 and having the blocks:

is a nesting $N(P_3, 6; 2, 3)$.

The following design, defined on Z_8 and having the blocks:

[2; 0, 1, 4],	[2; 0, 1, 5],	[1; 0, 2, 6]	[3; 2, 0, 7],	[4; 3, 0, 5],	[1; 0, 3, 6]
[3; 0, 4, 5],	[2; 0, 4, 6],	[3; 0, 5, 6]	[4; 0, 6, 7],	[5; 0, 6, 7],	[6; 0, 7, 2]
[7; 1, 2, 3],	[7; 1, 2, 4],	[6; 5, 1, 3]	[4; 1, 3, 6],	[5; 1, 4, 6],	[0; 7, 1, 6]
[4; 7, 1, 6],	[6; 2, 3, 7],	[3; 7, 2, 5]	[7; 5, 2, 6],	[5; 2, 4, 7],	[1; 5, 3, 4]
[2; 5, 3, 4],	[0; 7, 4, 5],	[0; 6, 5, 7],	[1; 5, 7, 3]		

is a nesting $N(P_3, 8; 2, 3)$.

The following design, defined on Z_{10} and having the blocks:

[2; 0, 1, 4],	[2; 0, 1, 5],	[3; 0, 2, 1],	[1; 0, 2, 8],	[4; 0, 3, 1],	[4; 0, 3, 2],
[3; 0, 4, 2],	[1; 0, 4, 3],	[1; 5, 0, 7],	[2; 5, 0, 8],	[3; 0, 6, 1],	[4; 0, 6, 2],
[5; 7, 0, 8],	[5; 0, 9, 1],	[6; 0, 9, 2],	[6; 1, 2, 8],	[5; 1, 3, 2],	[8; 1, 7, 2],
[7; 1, 6, 3],	[9; 1, 7, 3],	[9; 1, 8, 3],	[6; 1, 9, 3],	[8; 4, 1, 5],	[7; 1, 8, 4],
[6; 2, 4, 3],	[8; 2, 5, 5],	[9; 2, 5, 4],	[9; 2, 6, 4],	[9; 2, 7, 4],	[7; 2, 9, 4],
[8; 3, 5, 4],	[7; 3, 6, 5],	[8; 3, 7, 5],	[9; 3, 8, 5],	[8; 3, 9, 5],	[8; 4, 6, 5],
[5; 4, 7, 6],	[5; 4, 8, 6],	[1; 4, 9, 6],	[4; 5, 7, 6],	[6; 5, 8, 7],	[0; 5, 9, 7],
[0; 6, 8, 7],	[0; 6, 3, 8],	[0; 7, 9, 8]			

is a nesting $N(P_3, 10; 2, 3)$.

Theorem 3.2.3: There exists a nesting $N(P_3, K_{2,2,2}; 2, 3)$.

<u>Proof</u>: Let $K_{2,2,2}$ be a 3-partite graph defined on $V = X \cup Y \cup Z$, where $X = \{x_0, x_1\}$, $Y = \{y_0, y_1\}, Z = \{z_0, z_1\}$ are the three stable sets which partition V. The following blocks:

 $\begin{array}{ll} [z_0; x_0, y_0, x_1], & [x_0; y_0, z_0, y_1], & [y_0; z_0, x_0, z_1], & [z_1; x_0, y_0, x_1], \\ [x_1; y_0, z_0, y_1], & [y_1; z_0, x_0, z_1], & [z_1; x_1, y_1, x_0], & [z_0; x_1, y_1, x_0], \\ [x_1; y_1, z_1, y_0], & [x_0; y_1, z_1, y_0], & [y_1; z_1, x_1, z_0], & [y_0; z_1, x_1, z_0] \end{array}$

define a $N(P_3, K_{2,2,2}; 2, 3)$.

<u>Theorem 3.2.4</u>: For every $n \ge 5$ there exists a $N(P_3, n; 2, 3)$, except possibly for n = 12, 14, 16, 20, 22, 28, 68, 98, 124.

<u>Proof</u>: Since there exists a PBD(n) having blocks of size 5,6,7 ([2], p. 208), from Theorem 2.2 and Theorem 3.2.2 it follows that there exists a nesting $N(P_3, n; 2, 3)$ of order $n \ge 5$, with possible exceptions for n = 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 27, 28, 29, 32, 33, 34, 68, 69, 93, 94, 98, 99, 104, 108, 109, 114, 124.

From Theorem 2.6 and Theorem 3.2.2, the list of possible exceptions can be reduced to: 12, 14, 16, 18, 20, 22, 24, 28, 32, 34, 68, 94, 98, 104, 108, 114, 124.

Since there exist 3-GDD of type 3^3 , 4^3 , 4^4 , 5^1 and 3^4 , 3^{14} and 5, 9^6 and 3 ([2], p. 189), from Theorem 2.3 and Theorem 3.2.3 it follows that the list of possible exceptions becomes: 12, 14, 16, 20, 22, 28, 68, 98, 104, 108, 124.

From Theorem 2.4, for (v, w) = (8, 13), (6, 18), there exist $N(P_3, n; 2, 3)$ for n = v.w = 104, 108.

Now, we examine the spectrum of nesting $N(P_3, n; \lambda_1, \lambda_2)$ for $\lambda_1 = 4$, $\lambda_2 = 6$. <u>Theorem 3.2.5</u>: There exist $N(P_3, 4; 4, 6)$, $N(P_3, 12; 4, 6)$, $N(P_3, 14; 4, 6)$. <u>Proof</u>: Consider the following design, defined on Z_3 and having the blocks:

It is a nesting $N(P_3, 4; 4, 6)$.

Further, since there exists a 3-GDD of type 2^3 ([2], p. 189), the existence of a nesting $N(P_3, 12; 4, 6)$ follows from Theorem 2.3.

Finally, consider the following design, defined on $Z_{13} \cup \{\infty\}$ and having the blocks:

 $\begin{array}{ll} [j;j+1,j+3,j+2], & [j;j+7,j+4,j+8], & [j+1;j,j+5,j+11], \\ [j+7;\infty,j,j+5], & [j+8;\infty,j,j+6], & [j+6;j,\infty,j+1], \\ [\infty;j,j+5,j+11] & \text{for every } j \in Z_{13}. \end{array}$

It is a nesting $N(P_3, 14; 4, 6)$.

<u>Theorem 3.2.6</u>: For every $n \ge 4$ there exists a $N(P_3, n; 4, 6)$.

<u>Proof</u>: From Theorem 3.2.4, by a repetition of blocks, and from Theorem 3.2.5, it follows that there exists a nesting $N(P_3, n; 4, 6)$ for every $n \ge 4$, except possibly for n = 16, 20, 22, 28, 68, 98, 124. Since there exists a PBD(n) having blocks of size 4, 5, 6 ([2], p. 206), from Theorem 2.2 the existence of $N(P_3, n; 4, 6)$ follows in all the other cases.

Collecting together the results obtained, we can formulate the following.

Corollary 3.2 The necessary conditions for the existence of a nesting design $\overline{N(P_3, n; \lambda_1, \lambda_2)}$ are: $3\lambda_1 = 2\lambda_2$, $n \ge 4$. These conditions are also sufficient except in the following cases:

- i) n = 4 and $\lambda_1 \equiv 2 \mod 4$, $\lambda_2 \equiv 3 \mod 6$ (effective exceptions);
- ii) n = 12, 14, 16, 20, 22, 28, 68, 98, 124, when $\lambda_1 \equiv 2 \mod 4$, $\lambda_2 \equiv 3 \mod 6$ (possible exceptions).

<u>*REMARK*</u>: Note that if it is possible to delete some exception in Corollary 3.2.*ii*), for a pair λ_1^* , λ_2^* , giving a solution for it, then the same case can be considered solved for any $\lambda_1 = k\lambda_1^*$, $\lambda_2 = k\lambda_2^*$, $k \in N$. So, the number of exceptions in Corollary 3.2 is exactly 9 and not *infinite*.

This remark is valid also in all the following sections.

$\begin{array}{ll} 4 & N(G,n;\lambda_1,\lambda_2) \text{ where } G \text{ has } 4 \text{ non-isolated} \\ \text{ vertices} \end{array}$

In this section we study the spectrum of a nesting G-design $N(G, n; \lambda_1, \lambda_2)$, where G is a graph with 4 non-isolated vertices. The possible cases are:

1) $G \cong K_4$, 2) $G \cong K_4 - e$, 3) $G \cong K_3 + e$, 4) $G \cong C_4$, 5) $G \cong P_4$, 6) $G \cong S_3$, 7) $G \cong 2P_2$.

Observe that $n \geq 5$, necessarily, and that the cases 3), 4) have already been studied.

4.1 $G \cong K_4$

For the necessary conditions we have the following theorem.

Theorem 4.1.1: If there exists a nesting design $N(K_4, n; \lambda_1, \lambda_2)$, then the parameters n, λ_1, λ_2 must satisfy one of the following conditions:

- 1) $\lambda_1 = 3h$, $\lambda_2 = 2h$, $n \equiv 1 \mod 4$, $n \ge 5$, for any positive odd integer h;
- 2) $\lambda_1 = 3h$, $\lambda_2 = 2h$, $n \equiv 1 \mod 2$, $n \ge 5$, for any positive integer $h \equiv 2 \mod 4$;
- 3) $\lambda_1 = 3h, \ \lambda_2 = 2h, \ n \ge 5$, for any positive integer $h \equiv 0 \mod 4$.

<u>Proof</u>: From Theorem 2.1, it follows that $2\lambda_1 = 3\lambda_2$, $n \ge 5$. Let $N = (\Sigma, \Pi, F)$ be a nesting $N(K_4, n; 3h, 2h)$. If x is a point of N, denote by M_x the number of blocks of Σ containing x and by C_x the number of blocks of Π containing x as centre. It follows that:

$$M_x = h(n-1),$$

$$4C_x + M_x = 2h(n-1),$$

hence $C_x = h(n-1)/4$. From this,

1) if h is an odd number, necessarily $n \equiv 1 \mod 4$;

2) if h is an even number and $h \equiv 2 \mod 4$, necessarily $n \equiv 1 \mod 2$;

3) if $h \equiv 0 \mod 4$, n can be any integer, $n \ge 5$.

<u>Theorem 4.1.2</u>: There exists a nesting $N(K_4, n; 3, 2)$ if and only if $n \equiv 1 \mod 4$. Proof: \Rightarrow Immediate from Theorem 4.1.1, 1).

 \Leftarrow Since a (n, k, k-1)-NRB exists if and only if $n \equiv 1 \mod k$ ([2], p. 88,91), the statement follows from Theorem 2.7.

<u>Theorem 4.1.3</u>: For every $n \in N$, n prime, $n \geq 5$, there exists a nesting $N(K_4, n; 6, 4)$.

<u>Proof</u>: Let n be a prime number, $n \ge 5$. Let $\Sigma = (Z_n, B)$ be the K_4 -design having the following blocks:

$$B_{i,j} = \{ x_{i,j,1} = j, \ x_{i,j,2} = j+i, \ x_{i,j,3} = j+2i, \ x_{i,j,4} = j+3i \},$$

for every $j \in \mathbb{Z}_n, \ i = 1, 2, \dots, (n-1)/2.$

We can verify that Σ has index $\lambda_1 = 6$. Observe that the differences between two vertices of $B_{j,i}$ are: i, i, i, 2i, 2i, 3i. Further, for i = 1, 2, ..., (n-1)/2, 2i and 3icover all the possible differences, respectively. So, if x, y are two vertices of Σ , x < y, y - x = i, $\{x, y\}$ is contained in exactly six blocks of Σ .

Now, consider the S_4 -design $\Pi = (Z_n, S)$ having the following blocks:

$$S_{i,j} = \langle y_{i,j} = n - 2i + j; x_{i,j,1} = j, x_{i,j,2} = j + i, x_{i,j,3} = j + 2i, x_{i,j,4} = j + 3i \rangle,$$
for every $j \in \mathbb{Z}_n, i = 1, 2, \dots, (n-1)/2.$

Since n is prime, then $n - 2i + j \notin \{j, j + i, j + 2i, j + 3i\}$.

We can verify that Π has index $\lambda_2 = 4$. The differences between the *centre* and the other vertices of $S_{j,i}$ are: n - 2i, n - 3i, n - 4i, n - 5i, which are equivalent to: 2i, 3i, 4i, 5i.

Since n is prime, for i = 1, 2, ..., (n-1)/2 each of them describes the set of all the possible differences. So, if x, y are two vertices of Π , x < y, y - x = i, $\{x, y\}$ is contained in exactly four blocks of Π .

If $F: B \to S$ is a mapping such that $F(B_{i,j}) = S_{i,j}$, then $N = (\Sigma, \Pi, F)$ is a nesting $N(K_4, n; 6, 4)$.

<u>Theorem 4.1.4</u>: There exists a nesting $N(K_4, n; 6, 4)$ if and only if $n \equiv 1 \mod 2$, except possibly for n = 15, 27, 39, 75, 87, 135, 183, 195.

<u>Proof</u>: \Rightarrow From Theorem 4.1.1. 2), for h = 1, directly.

 \Leftarrow Observe that if for any *n* there exists a nesting $N(K_4, n; 3, 2)$, then for this *n* there exists also a nesting $N(K_4, n; 6, 4)$. Further, for every admissible $n \equiv 1 \mod 2$, there exists a PBD(*n*) having blocks of size 5, 7, 9 ([2], p. 208), with some possible exceptions.

Collecting together Theorem 4.1.2, Theorem 4.1.3, Theorem 2.2, and also the possible exceptions, the existence of a nesting $N(K_4, n; 6, 4)$ is proven for $n \equiv 1 \mod 2$, $n \neq 15, 27, 39, 51, 75, 87, 95, 99, 111, 115, 119, 135, 143, 183, 195, 243, 411.$

From Theorem 2.4, since there exist pairs of $N(K_4, n; 6, 4)$ of order n_1, n_2 such that $(n_1, n_2) = (5, 19), (9, 11), (5, 23), (7, 17), (11, 13), (9, 27)$, existence follows for $n = n_1.n_2 = 95, 99, 115, 119, 143, 243$; further, since there exist pairs of $N(K_4, n; 6, 4)$ of order n_1, n_2 such that $(n_1, n_2) = (5, 11), (11, 11), (41, 11)$, existence follows for $n = n_1.(n_2 - 1) + 1 = 51, 111, 411$. This part of the statement is now proved. **Theorem 4.1.5**: There exists a nesting $N(K_4, 6; 12, 8)$ and a nesting $N(K_4, 8; 12, 8)$. **Proof**: Consider the following design, defined on Z_6 and having the blocks:

$\{0; 1, 2, 3, 4\},\$	$\{0; 1, 2, 4, 5\},\$	$\{0; 1, 3, 4, 5\},\$	$\{1; 2, 3, 4, 5\},\$	$\{1; 0, 3, 4, 5\},\$
$\{1; 0, 2, 3, 4\},\$	$\{1; 0, 2, 3, 5\},\$	$\{2; 0, 1, 3, 4\},\$	$\{2; 0, 1, 4, 5\},\$	$\{3; 0, 1, 2, 5\},\$
$\{3; 0, 2, 4, 5\},\$	$\{4; 0, 1, 2, 3\},\$	$\{4; 0, 1, 3, 5\},\$	$\{4; 1, 2, 3, 5\},\$	$\{5; 0, 1, 2, 4\},\$
$\{5; 0, 1, 2, 3\},\$	$\{3; 0, 1, 2, 4\},\$	$\{4; 0, 1, 2, 5\},\$	$\{5; 0, 1, 3, 4\},\$	$\{2; 0, 1, 3, 5\},\$
$\{3; 0, 1, 4, 5\},\$	$\{4; 0, 2, 3, 5\},\$	$\{5; 0, 2, 3, 4\},\$	$\{1; 0, 2, 4, 5\},\$	$\{2; 0, 3, 4, 5\},\$
$\{5; 1, 2, 3, 4\},\$	$\{3; 1, 2, 4, 5\},\$	$\{0; 1, 2, 3, 5\},\$	$\{2; 1, 3, 4, 5\},\$	$\{0; 2, 3, 4, 5\}.$

It is possible to verify that this is a nesting $N(K_4, 6; 12, 8)$.

Consider the following design, defined on $Z_7 \cup \{\infty\}$ and having the blocks:

 $\begin{array}{ll} \{j;\infty,j+1,j+2,j+3\}, & \{j;\infty,j+1,j+3,j+5\}, \\ \{j;\infty,j+1,j+4,j+5\}, & \{j;\infty,j+1,j+2,j+4\}, \\ \{\infty;j,j+1,j+2,j+4\}, & \{j;j+1,j+2,j+3,j+5\}, \\ \{j;j+2,j+3,j+4,j+6\}, & \{j;j+4,j+5,j+6,j+1\}, \\ \text{for every } j \in Z_7. \end{array}$

It is possible to verify that this is a nesting $N(K_4, 8; 12, 8)$.

Theorem 4.1.6: There exists a nesting $N(K_4, n; 12, 8)$ for every $n \ge 5$, except possibly for n = 10, 12, 14, 15, 16, 18, 20, 22, 24, 27, 28, 32, 34.

<u>Proof</u>: Observe that for every admissible $n \in N$ there exists a PBD(n) having blocks of size 5, 6, 7, 8, 9 ([2], p. 209), with possible exceptions for n = 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 27, 28, 29, 32, 33, 34.

From Theorem 2.2, Theorem 4.1.4, Theorem 4.1.5, there exists a nesting $N(K_4, n; 12, 8)$ of order $n \ge 5$, except possibly for n = 10, 12, 14, 15, 16, 18, 20, 22, 24, 27, 28, 32, 34.

Collecting together the results obtained, we can formulate the following.

Corollary 4.1 The necessary conditions for the existence of a nesting design $\overline{N(K_4, n; \lambda_1, \lambda_2)}$ [Theorem 4.1.1] are also sufficient with the possible exceptions of n = 10, 12, 14, 15, 16, 18, 20, 22, 24, 27, 28, 32, 34, when $\lambda_1 \equiv 0 \mod 12$ and $\lambda_2 \equiv 0 \mod 8$.

4.2 $G \cong K_4 - e$

From Theorem 2.1, necessary conditions for the existence of a nesting design $N(K_4 - e, n; \lambda_1, \lambda_2)$ are: $n \ge 5, 4\lambda_1 = 5\lambda_2$, i.e. $\lambda_1 = 5h, \lambda_2 = 4h, h \in N$.

Many results can be obtained from 4.1), by deleting an edge in the blocks of Σ .

Recall that we indicate the graph $K_4 - e$ by $\{a, b, (c, d)\}$ where c, d are the nonadjacent vertices, and $S_4 \cup (K_4 - e)$ by $\{x; a, b, (c, d)\}$, where x is the centre of the star.

<u>Theorem 4.2.1</u>: There exists a nesting $N(K_4 - e, n; 5, 4)$ for every prime integer $n \in N, n \geq 5$.

<u>Proof</u>: Let $\Sigma' = (Z_n, B')$ be the $(K_4 - e)$ -design obtained from $\Sigma = (Z_n, B)$, the K_4 design of index $\lambda_1 = 6$ defined in Theorem 4.1.3, by deleting in every block $B_{i,j} \in B$ the edge $\{x_{i,j,1}, x_{i,j,4}\}$. So, Σ' has the following blocks:

$$B'_{i,j} = B_{i,j} - \{x_{i,j,1}, x_{i,j,4}\}, \ B_{i,j} \in B.$$

Since the difference between the endpoints of the deleted edge is 3i (see Theorem 4.1.3) and n is prime, then for i = 1, 2, ..., (n-1)/2 the value 3i covers all the possible differences 1, 2, ..., (n-1)/2 between two vertices of Z_n . So, Σ' has index $\lambda'_1 = 5$.

If $\Pi = (Z_n, S)$ is the same S_4 -design defined in Theorem 4.1.3 and $F(B'_{i,j}) = S_{i,j}$, then $N = (\Sigma', \Pi, F)$ is a nesting $N(K_4 - e, n; 5, 4)$.

Theorem 4.2.2: There exists a nesting $N(K_4 - e, 9; 5, 4)$ of order 9.

<u>Proof</u>: Consider the design, defined on Z_9 and having the following blocks:

$$\{j-1; j, j+2, (j+1, j+3)\}, \quad \{j-2; j, j+4, (j+2, j+6)\}, \\ \{j-2; j, j+6, (j+1, j+3)\}, \quad \{j+5; j, j-1, (j+3, j+4)\}, \\ \text{for every } j=0, 1, 2, \dots, n-1.$$

It is possible to verify that this is a nesting $N(K_4 - e, 9; 5, 4)$.

<u>Theorem 4.2.3</u>: There exists a nesting $N(K_4 - e, n; 5, 4)$ for every $n \equiv 1 \mod 2$, $n \geq 5$, with possible exceptions for n = 15, 27, 33, 39, 75, 87, 93, 183, 195.

<u>Proof</u>: Observe that for every admissible $n \equiv 1 \mod 2$ there exist PBD(n) having blocks of size 5, 7, 9 ([2], p. 208), with the following possible exceptions for n = 11, 13, 15, 17, 19, 23, 27, 29, 31, 33, 39, 43, 51, 59, 71, 75, 83, 87, 93, 95, 99, 107, 111, 113, 115, 119, 131, 135, 139, 143, 167, 173, 179, 183, 191, 195, 243, 283, 411, 563.

From Theorem 2.2, Theorem 4.2.1 and Theorem 4.2.2, there exists a nesting $N(K_4 - e, n; 5, 4)$ for the same values of n, deleting all prime numbers.

So, the possible exceptions are:

n = 15, 27, 33, 39, 51, 75, 87, 93, 95, 99, 111, 115, 119, 143, 183, 195, 243, 411.

From Theorem 2.4, since there exist pairs of $N(K_4 - e, n; 5, 4)$ of order n_1, n_2 such that $(n_1, n_2) = (5, 19), (9, 11), (5, 23), (7, 17), (11, 13)$, existence follows for $n = n_1 \cdot n_2 = 95, 99, 115, 119, 143$; further, since there exist pairs of $N(K_4 - e, n; 5, 4)$ of order n_1, n_2 such that $(n_1, n_2) = (5, 11), (5, 23), (11, 23), (41, 11)$, existence follows for $n = n_1 \cdot (n_2 - 1) + 1 = 51, 111, 243, 411.$ <u>*REMARK*</u>: Note that, in this case, the sufficiency for the existence of a nesting design $N(K_4 - e, n; \lambda_1, \lambda_2)$ is proved (apart from a few cases) only for odd orders n. For even order n, we are able to solve the problem of the existence only for n = 6 in the next Theorem 4.2.4.

We remark that the problem is open for any even $n, n \ge 8$.

Theorem 4.2.4: Nesting designs $N(K_4 - e, 6; 5, 4)$ of order 6 do not exist.

<u>Proof</u>: Suppose that there exists a nesting $N(K_4 - e, 6; 5, 4)$ of order 6. If, for a point x:

- M indicates the number of blocks of the $(K_4 e)$ -design in which x is adjacent to all the other vertices of the block;
- T indicates the number of blocks in which x is adjacent to two vertices of the block;
- C indicates the number of the blocks of the S_4 -design in which x is the centre;

then necessarily

$$3M + 2T = 25$$
$$4C + M + T = 20$$

from which

$$C = \frac{M+15}{8}$$
$$T = \frac{25-3M}{2}$$

and this implies M = 1 and C = 2, T = 11. But this is not possible for a nesting-design with 15 blocks.

4.3 $G \cong K_3 + e$

From Theorem 2.1, it follows that $\lambda_1 = \lambda_2$.

The spectrum of $N(K_3 + e, n; 1, 1)$ was studied by S. Milici and G. Quattrocchi in [11].

4.4 $G \cong C_4$

From Theorem 2.1, it follows that $\lambda_1 = \lambda_2$.

The spectrum of $N(C_4, n; 1, 1)$ was studied by C.C. Lindner and D.R. Stinson [6] and by S. Milici and G. Quattrocchi [11] and the results can be extended to designs $N(C_4, n; h, h)$, where $\lambda_1 = \lambda_2 = h \in N$, by a repetition of blocks.

4.5 $G \cong P_4$

From Theorem 2.1, necessary conditions for the existence of a nesting design $N(P_4, n; \lambda_1, \lambda_2)$ are: $n \ge 5$, $4\lambda_1 = 3\lambda_2$, i.e. $\lambda_1 = 3h$, $\lambda_2 = 4h$, $h \in N$.

At first, we prove the existence in some particular cases.

<u>**Theorem 4.5.1**</u>: There exist nesting designs $N(P_4, 5; 3, 4)$, $N(P_4, 6; 3, 4)$, $N(P_4, 8; 3, 4)$, $N(P_4, 9; 3, 4)$.

<u>Proof</u>: Consider the following design, defined on Z_5 and having the blocks:

[j; j+1, j+2, j+3, j+4], [j; j+2, j+4, j+1, j+3] for every j = 0, 1, 2, 3, 4.

We can verify that this is a nesting $N(P_4, 5; 3, 4)$. The following design is defined on Z_6 and its blocks are:

[6; 1, 3, 2, 4],	[4; 2, 1, 3, 5],	[5; 6, 1, 2, 3],	[3; 1, 4, 5, 2],	[6; 1, 5, 4, 3],
[1; 2, 4, 5, 3],	[5; 1, 4, 6, 2],	[2; 1, 6, 4, 3],	[1; 2, 4, 6, 3],	[3; 1, 5, 6, 2],
[2; 1, 6, 5, 3],	[4; 2, 5, 6, 3],	[5; 1, 4, 3, 2],	[4; 1, 2, 6, 3],	[6; 2, 5, 1, 3].

We can verify that it is a nesting $N(P_4, 6; 3, 4)$.

The following design is defined on Z_8 and its blocks are:

[4; 0, 2, 3, 1],	[3; 1, 2, 0, 6],	[3; 0, 2, 1, 6],	[5; 4, 0, 1, 3],	[2; 6, 0, 1, 5],
[6; 0, 3, 4, 1],	[7; 0, 3, 4, 1],	[4; 0, 3, 2, 7],	[2; 1, 0, 7, 5],	[5; 0, 4, 6, 1],
[1; 4, 0, 7, 3],	[6; 0, 7, 4, 3],	[7; 0, 5, 3, 2],	[3; 0, 5, 4, 2],	[6; 0, 5, 4, 2],
[1; 0, 6, 4, 7],	[5; 3, 1, 2, 7],	[0; 1, 5, 4, 2],	[6; 1, 7, 5, 2],	[4; 1, 6, 5, 2],
[2; 1, 7, 6, 3],	[7; 1, 4, 6, 3],	[0; 4, 7, 1, 5],	[1; 2, 6, 5, 3],	[7; 2, 6, 5, 3],
[0; 2, 6, 7, 3],	[5; 2, 7, 6, 3],	[4; 2, 5, 7, 3].		

We can verify that it is a nesting $N(P_4, 8; 3, 4)$.

Consider the following design, defined on Z_8 and having the blocks:

We can verify that this is a nesting $N(P_4, 9; 3, 4)$.

<u>Theorem 4.5.2</u>: There exists a nesting $N(P_4, n; 3, 4)$, for every $n \in N$, n prime, $n \geq 5$.

<u>Proof</u>: For n = 5, the existence is proved in Theorem 4.5.1. Let $n \ge 7$, n prime.

Let $\Sigma^* = (Z_n, B^*)$ be the P_4 -design obtained from $\Sigma = (Z_n, B)$, the K_4 -design of index $\lambda_1 = 6$ defined in Theorem 4.1.3, by deleting in every block $B_{i,j} \in B$ the edges:

$$e_{i,j,13} = \{x_{i,j,1}, x_{i,j,3}\}, \ e_{i,j,24} = \{x_{i,j,2}, x_{i,j,4}\}, \ e_{i,j,14} = \{x_{i,j,1}, x_{i,j,4}\}.$$

So, Σ^* has the following blocks:

$$B_{i,j}^* = B_{i,j} - (e_{i,j,13} + e_{i,j,24} + e_{i,j,14}), \quad B_{i,j} \in B.$$

The differences between the endpoints of the deleted edges $e_{i,j,13}$, $e_{i,j,24}$, $e_{i,j,14}$ are: 2*i*, 2*i*, 3*i*, respectively, while the differences between the endpoints of the remaining edges are: *i*, *i*, *i*. Further, since *n* is prime, for every i = 1, 2, ..., (n-1)/2 the values 2*i*, 2*i*, 3*i*, *i*, *i*, *i* assume all the possible values of the differences between two vertices of Z_n (see Theorem 4.1.3). Therefore Σ^* has index $\lambda^* = 3$.

If $\Pi = (Z_n, S)$ is the same S_4 -design defined in Theorem 4.1.3 and $F(B_{i,j}^*) = S_{i,j}$, then $N^* = (\Sigma^*, \Pi, F)$ is a nested-design $N(P_4, n; 3, 4)$.

<u>Theorem 4.5.3</u>: There exist nestings $N(P_4, K_{2,2,2}; 3, 4)$, $N(P_4, K_{2,2,2,2}; 3, 4)$.

<u>Proof</u>: Let $K_{2,2,2}$ be the 3-partite complete graph defined on $V = X \cup Y \cup Z$, where $X = \{1, 4\}, Y = \{2, 5\}, Z = \{3, 6\}$ partition V in stable sets. The following blocks:

[3; 2, 1, 5, 4],	[1; 2, 3, 5, 6],	[2; 3, 1, 6, 4],	[3; 5, 1, 2, 4],
[1; 5, 3, 2, 6],	[2; 6, 1, 3, 4],	[6; 1, 5, 4, 2],	[4; 3, 5, 6, 2],
[5; 1, 6, 4, 3],	[6; 1, 2, 4, 5],	[4; 3, 2, 6, 5],	[5; 1, 3, 4, 6],

define a $N(P_4, K_{2,2,2}; 3, 4)$.

Now, let $K_{2,2,2,2}$ be the 4-partite complete graph defined on

$$V' = L \cup M \cup N \cup P,$$

where $L = \{0, 4\}, M = \{1, 5\}, N = \{2, 6\}, P = \{3, 7\}$ partition V' in stable sets. The following blocks:

 $\begin{array}{ll} [j+7;j,j+1,j+2,j+4], & [j+3;j,j+2,j+4,j+1], \\ [j+5;j,j+3,j+6,j+7] & \text{for every } j \in Z_8, \end{array}$

define a $N(P_4, K_{2,2,2,2}; 3, 4)$.

Theorem 4.5.4: There exists a nesting $N(P_4, n; 3, 4)$, for every $n \in N$, $n \ge 5$, with the following possible exceptions: n = 10, 12, 14, 16, 20, 22, 28, 34.

<u>Proof</u>: For every admissible n, there exists a PBD(n) having blocks of size 5, 6, 7, 8, 9 ([2], p. 209), with possible exceptions for n = 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 27, 28, 29, 32, 33, 34. From Theorem 2.2, Theorem 2.7, Theorem 4.5.1 and Theorem 4.5.2, it follows that there exists a nesting $N(P_4, n; 3, 4)$ for the same values of n. From Theorem 4.5.2 and Theorem 2.7, the previous list can be reduced by deleting all n odd. Since there exist 3-GDD of type 3³, 4-GDD of type 3⁴, 4⁴ ([2], p. 189–190), from Theorem 2.3, Theorem 4.5.1 and Theorem 4.5.3, the existence of nesting $N(P_4, n; 3, 4)$ follows, also for n = 18, 32, 24 and this completes the proof.

Collecting together the results obtained, we can formulate the following.

Corollary 4.5 The necessary conditions for the existence of a nesting design $\overline{N(P_4, n; \lambda_1, \lambda_2)}$ are $4\lambda_1 = 3\lambda_2$, $n \geq 5$. These conditions are also sufficient for every $n \geq 5$, with the possible exceptions of n = 10, 12, 14, 16, 20, 22, 28, 34.

4.6 $G \cong S_3$

In what follows, given an $S_3 = \langle y; a, b, c \rangle$ and an $S_4 = \langle x; y, a, b, c \rangle$, we denote $S_3 \cup S_4 = \langle x; \langle y; a, b, c \rangle$.

For the necessary conditions we have the following theorem.

<u>Theorem 4.6.1</u>: If there exists a nesting design $N(S_3, n; \lambda_1, \lambda_2)$, then the parameters n, λ_1, λ_2 must satisfy one of the following conditions:

1) $\lambda_1 = 3h$, $\lambda_2 = 4h$, $n \equiv 1 \mod 2$, $n \geq 5$, for any positive odd integer h;

2) $\lambda_1 = 3h$, $\lambda_2 = 2h$, $n \ge 5$, for any positive integer $h \equiv 0 \mod 2$.

<u>Proof</u>: From Theorem 2.1, it follows that: $4\lambda_1 = 3\lambda_2, n \ge 5$.

Let $N = (\Sigma, \Pi, F)$ be a nesting $N(S_3, n; 3h, 4h)$. Consider a point x of N. If C_x , Ω_x , T_x are respectively the number of blocks containing x as a *centre* in a star of Π , the number of blocks containing x as a *centre* in a star of Σ and the number of blocks containing x as a *terminal* vertex always in a star of Σ , then:

$$3\Omega_x + T_x = 3h(n-1)$$
$$4C_x + \Omega_x + T_x = 4h(n-1)$$

It follows that:

$$4C_x - 2\Omega_x = h(n-1);$$

hence h(n-1) is an even number and if h is odd, $n \equiv 1 \mod 2$.

<u>Theorem 4.6.2</u>: There exists a nesting $N(S_3, n; 3, 4)$, for every $n \in N$, n prime, $n \geq 5$.

<u>Proof</u>: Consider the S_3 -design $\Sigma'' = (Z_n, B'')$, having for blocks the following 3-stars:

 $B_{i,j}'' = \langle j+i; j, j+2i, j+3i \rangle$, for every $j = 0, 1, 2, \dots, n-1, i = 1, 2, \dots, (n-1)/2$,

where the values of *i* represent all the possible differences between two distinct vertices $x, y \in Z_n$. We can verify that Σ'' has index $\lambda''_1 = 3$. Consider that for every pair $x, y \in Z_n$, x < y, the difference y - x can be: $1, 2, \ldots, (n-1)/2$, and that in the edges of a block $B''_{i,i}$ these differences are: i, i, 2i.

It follows that any difference $\delta = y - x = 1, 2, ..., (n-1)/2$ appears in the following blocks of $B'': B''_{\delta,j}, B''_{(n-\delta)/2j}$; so, the pair $\{x, y\}$ is contained in exactly 3 blocks of Σ . Observe that every block $B''_{i,j}$ of Σ'' is contained in the block $B_{i,j}$ of the K_4 -design Σ , defined in Theorem 4.1.3 and having index $\lambda_1 = 6$.

If $\Pi = (Z_n, S)$ is the S_4 -design defined in Theorem 4.1.3 and $F(B''_{j,i}) = S_{i,j}$, then $N'' = N(\Sigma'', \Pi, F)$ is a nested-design $N(S_3, n; 3, 4)$.

<u>Theorem 4.6.3</u>: There exist nesting $N(S_3, 9; 3, 4)$, $N(S_3, 15; 3, 4)$. <u>Proof</u>: The following design is defined on Z_9 and has the blocks:

$$\begin{array}{ll} \langle j; \langle j+1; j+2, j+3, j+4 \rangle \rangle, & \langle j; \langle j+1; j+5, j+6, j+7 \rangle \rangle, \\ \langle j; \langle j+6; j+4, j+7, j+8 \rangle \rangle, & \langle j; \langle j+1; j+2, j+4, j+6 \rangle \rangle, \\ & \text{for every } j=0, 1, \dots, 8. \end{array}$$

We can verify that this is a nesting $N(S_3, 9; 3, 4)$.

The following design is defined on Z_{15} and has the blocks:

$$\begin{array}{ll} \langle j; \langle j+2; j+1, j+3, j+4 \rangle \rangle & \langle j; \langle j+1; j+5, j+8, j-3 \rangle \rangle \\ \langle j; \langle j-4; j+9, j-5, j-2 \rangle \rangle & \langle j; \langle j-3; j+2, j-6, j+7 \rangle \rangle \\ \langle j; \langle j-2; j+5, j+4, j+6 \rangle \rangle & \langle j; \langle j+4; j+1, j+7, j+9 \rangle \rangle \\ \langle j; \langle j-1; j+8, j+3, j+5 \rangle \rangle & \text{for every } j=0,1,2,\ldots,14. \end{array}$$

We can verify that this is a nesting $N(S_3, 15; 3, 4)$.

<u>**Theorem 4.6.4**</u>: There exists a nesting $N(S_3, n; 3, 4)$ if and only if $n \equiv 1 \mod 2$, $n \geq 5$, except possibly for n = 15, 27, 39, 75, 87, 135, 183, 195.

<u>Proof</u>: \Rightarrow Necessarily, $n \equiv 1 \mod 2$. It follows from Theorem 4.6.1. 1).

 \Leftarrow For every admissible $n, n \equiv 1 \mod 2$, there exist PBD(n) having blocks of size 5, 7, 9 ([2], p. 208), with the possible exceptions of n = 11, 13, 15, 17, 19, 23, 27, 29, 31, 33, 39, 43, 51, 59, 71, 75, 83, 87, 93, 95, 99, 107, 111, 113, 115, 119, 131, 135, 139, 143, 167, 173, 179, 183, 191, 195, 243, 283, 411, 563.

From Theorem 2.2, Theorem 4.6.2 and Theorem 4.6.3, the existence of a nesting design $N(S_3, n; 3, 4)$ follows for the same values of n. From Theorem 4.6.2 and Theorem 4.6.3, the previous list can be reduced by deleting all n prime and also n = 15.

From Theorem 2.4, since there exist pairs of $N(S_3, n; 3, 4)$ of order n_1, n_2 such that $(n_1, n_2) = (5, 15), (5, 19), (9, 11), (5, 23), (7, 17), (9, 15), (11, 13), (13, 15)$, the existence for $n = n_1 \cdot n_2 = 75, 95, 99, 115, 119, 135, 143, 195$ follows.

From Theorem 2.4, since there exist pairs of $N(S_3, n; 3, 4)$ of order n_1, n_2 such that $(n_1, n_2) = (5, 11), (23, 5), (11, 11), (13, 15), (11, 23), (41, 11)$ it follows the existence also for $n = n_1.(n_2 - 1) + 1 = 51, 93, 111, 183, 243, 411.$

This part of the statement is so proved.

<u>Theorem 4.6.5</u>: i) Nesting designs $N(S_3, 6; 6, 8)$ of order 6 do not exist. ii) There exists a nesting $N(S_3, 8; 6, 8)$ of order 8.

<u>Proof</u>: i) Suppose that there exists a nesting $N(S_3, 6; 6, 8)$ of order 6. If, for a point x:

- C indicates the number of blocks of the S_3 -design in which x is the centre of the star;
- T indicates the number of blocks of the S_3 -design in which x is a terminal of the star;
- Ω indicates the number of the blocks of the S_4 -design in which x is the centre of the star;

then necessarily

$$3C + T = 30$$
$$4\Omega + C + T = 40$$

from which

$$\Omega = \frac{C+5}{2}, \ T = 30 - 3C$$

and this is not possible, because the number of blocks is equal to 20.

ii) Consider the following design, defined on $Z_7 \cup \{\infty\}$ and having the blocks:

 $\begin{array}{ll} \langle j+3; \langle j;j+1,j+2,j+6\rangle\rangle, & \langle j+1; \langle j;j+2,j+3,j+5\rangle\rangle, \\ \langle j+6; \langle j;j+1,j+3,j+4\rangle\rangle, & \langle \infty; \langle j;j+1,j+2,j+3\rangle\rangle, \\ \langle j; \langle j+1;\infty,j+2,j+4\rangle\rangle, & \langle j+5; \langle j+1;\infty,j+3,j+4\rangle\rangle, \\ \langle j; \langle j+1;\infty,j+2,j+3\rangle\rangle, & \langle j; \langle \infty;j+1,j+2,j+3\rangle\rangle, \\ & \text{for every } j\in Z_7. \end{array}$

It is possible to verify that this is a nesting $N(S_3, 8; 6, 8)$.

Theorem 4.6.6: There exists a nesting $N(S_3, n; 6, 8)$ for every $n \ge 5$, $n \ne 6$, except possibly for n = 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 32, 33, 34, 38, 39, 42, 44, 46, 52, 60, 94, 96, 98, 100, 102, 104, 106, 108, 110, 116, 138, 140, 142, 146, 150, 154, 156, 158, 162, 166, 170, 172, 174, 206, 228.

<u>Proof</u>: Observe that for every admissible $n \in N$ there exists a PBD(n) having blocks of size 5, 7, 8, 9 ([2], p. 208), with a set of possible exceptions. The statement follows from Theorem 4.6.5, Theorem 2.2 and Theorem 4.6.4.

Collecting together the results obtained, we can formulate the following.

Corollary 4.6 The necessary conditions for the existence of a nesting design $\overline{N(S_3, n; \lambda_1, \lambda_2)}$ [Theorem 4.6.1] are also sufficient except possibly for:

- i) n = 15, 27, 39, 75, 87, 135, 183, 195, when $n \equiv 1 \mod 2$, $\lambda_1 \equiv 3 \mod 6$, $\lambda_2 \equiv 4 \mod 8$;
- ii) $n = 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 32, 33, 34, 38, 39, 42, 44, 46, 52, 60, 94, 96, 98, 100, 102, 104, 106, 108, 110, 116, 138, 140, 142, 146, 150, 154, 156, 158, 162, 166, 170, 172, 174, 206, 228, when <math>\lambda_1 \equiv 0 \mod 6$, $\lambda_2 \equiv 0 \mod 8$.

4.7 $G \cong 2P_2$

In what follows, if $2P_2$ is a graph with edges $\{a, b\}, \{c, d\}$ and S_4 is a 4-star having terminal vertices a, b, c, d and centre x, then the graph $2P_2 + S_4$ will be indicated by $\langle x; (a, b), (c, d) \rangle$.

For the necessary conditions we have the following theorem.

Theorem 4.7.1: If there exists a nesting design $N(2P_2, n; \lambda_1, \lambda_2)$, then the parameters n, λ_1, λ_2 must satisfy one of the following conditions:

1) $\lambda_1 = h$, $\lambda_2 = 2h$, $n \equiv 1 \mod 4$, $n \ge 5$, for any positive odd integer h;

2) $\lambda_1 = h$, $\lambda_2 = 2h$, $n \equiv 1 \mod 2$, $n \ge 5$, for any positive integer $h \equiv 2 \mod 4$;

3) $\lambda_1 = h$, $\lambda_2 = 2h$, $n \ge 5$, for any positive integer $h \equiv 0 \mod 4$.

<u>Proof</u>: From Theorem 2.1, it follows that: $2\lambda_1 = \lambda_2$, $n \ge 5$. Let $N = (\Sigma, \Pi, F)$ be a nesting $N(2P_2, n; h, 2h)$. If x is a point of N and T_x is the number of blocks of Σ containing x, C_x the number of blocks of Π containing x as a *centre*, then:

$$T_x = h(n-1)$$
$$4C_x + T_x = 2h(n-1).$$

It follows that $C_x = h(n-1)/4$, hence $h(n-1) \equiv 0 \mod 4$. This implies 1),2),3).

<u>Theorem 4.7.2</u>: There exists a nesting $N(2P_2, n; 1, 2)$ if and only if $n \equiv 1 \mod 4$, $n \geq 5$.

<u>Proof</u>: \Rightarrow Necessity follows from Theorem 4.7.1.1).

 $\leftarrow \text{Let } n \equiv 1 \mod 4, n \geq 5, Z' = Z_n \cup \{\infty\} \text{ and let } \Phi = \{F_1, F_2, \dots, F_n\} \text{ be} \\ \text{a 1-factorization defined on } Z'. Without loss of generality, we can suppose that the 1-factor <math>F_i$ contains the pair $\{i, \infty\}$. Observe that, if $k = |F_i - \{\{i, \infty\}\}|$, then $k \equiv 0 \mod 2$. So, let $F_i - \{\{i, \infty\}\} = \{\{x_{i,1}, y_{i,1}\}, \{x_{i,2}, y_{i,2}\}, \dots, \{x_{i,k-1}, y_{i,k-1}\}, \{x_{i,k}, y_{i,k}\}\}, \\ \text{for every } i = 1, 2, \dots, n. \text{ Then, we can define the design } N, \text{ having the blocks:} \end{cases}$

 $\langle i; (x_{i,1}, y_{i,1}), (x_{i,2}, y_{i,2}) \rangle, \quad \dots \quad \langle i; (x_{i,k-1}, y_{i,k-1}), (x_{i,k}, y_{i,k}) \rangle,$ for each $i = 1, 2, \dots, n$

We can verify that N is a nesting design $N(2P_2, n; 1, 2)$.

Theorem 4.7.3: There exists a nesting $N(2P_2, n; 2, 4)$ if and only if $n \equiv 1 \mod 2$, $n \geq 5$.

<u>Proof</u>: \Rightarrow Necessity follows from Theorem 4.7.1.2).

 \Leftarrow Let $n \equiv 1 \mod 2$, $n \geq 5$. So: i) $n \equiv 1 \mod 4$, or ii) $n \equiv 3 \mod 4$. In case i), we obtain the same results of Theorem 4.7.2, by a repetition of blocks.

Examine the case ii). Thus: $n \equiv 3 \mod 4$, $n \geq 7$. Let $\Phi' = \{F_1, F_2, \ldots, F_n\}$, $\Phi'' = \{G_1, G_2, \ldots, G_n\}$ be two 1-factorizations, defined on $Z' = Z_n \cup \{\infty\}$, such that $F_i \cap G_i = \{\{i, \infty\}\}$, for each $i = 1, \ldots, n$. If $F_i - \{\{i, \infty\}\} = \{\{x_{i,1}, x_{i,2}\}, \{x_{i,3}, x_{i,4}\}, \ldots, \{x_{i,k}\}\}$, $G - \{\{i, \infty\}\} = \{\{y_{i,1}, y_{i,2}\}, \{y_{i,3}, y_{i,4}\}, \ldots, \{y_{i,k-1}, y_{i,k}\}\}$, then $k \equiv 2 \mod 4$.

Then, we can define the design N, having the following blocks:

$$\begin{array}{ll} \langle i; (x_{i,1}, x_{i,2}), (x_{i,3}, x_{i,4}) \rangle, & \langle i; (y_{i,1}, y_{i,2}), (y_{i,3}, y_{i,4}) \rangle, \\ & & \dots \\ \langle i; (x_{k-5}, x_{k-4}), (x_{k-3}, x_{k-2}) \rangle, & \langle i; (y_{k-5}, y_{k-4}), (y_{k-3}, y_{k-2}) \rangle, \\ \langle i; (x_{k-1}, x_k), (y_{k-1}, y_k) \rangle, & \text{for every } i = 1, 2, \dots, n. \end{array}$$

We can verify that N is a nesting $N(2P_2, n; 2, 4)$.

Theorem 4.7.4: There exist nestings $N(2P_2, 6; 4, 8)$, $N(2P_2, 8; 4, 8)$.

<u>Proof</u>: Consider the following design, defined on $Z_5 \cup \{\infty\}$ and having the blocks:

We can verify that this is a nesting $N(2P_2, 6; 4, 8)$.

Consider the following design, defined on $Z_7 \cup \{\infty\}$ and having the blocks:

We can verify that this is a nesting $N(2P_2, 8; 4, 8)$.

Theorem 4.7.5: There exists a nesting $N(2P_2, n; 4, 8)$ for every $n \in N$, $n \ge 5$. <u>Proof</u>: For n odd and n = 6, n = 8, the statement follows from Theorem 4.7.3, by a repetition of blocks, and from Theorem 4.7.4.

Let $n \ge 10$, n even. Further, let N be the nesting $N(P_2, n-1; 1, 2)$, defined on Z_{n-1} by the blocks [j; j+i, j+2i], where j = 0, 1, 2, ..., n-1, i = 1, 2, ..., (n-1)/2, and $[x; y_1, y_2]$ indicates $\langle x; y_1, y_2 \rangle \cup \langle y_1, y_2 \rangle$. Starting from N, it is possible to define a nested-design $N(2P_2, n; 4, 8)$ on $Z_{n-1} \cup \{\infty\}$, as follows.

- 1) Suppose $n \equiv 2 \mod 4$. Then, for every $j \in \mathbb{Z}_{n-1}$:
 - repeat every block [j; j + i, j + 2i] of N four times: $[j; j + i, j + 2i]^{(1)}, [j; j + i, j + 2i]^{(2)},$ $[j; j + i, j + 2i]^{(3)}, [j; j + i, j + 2i]^{(4)};$

- define, for u = 1, 2, 3, 4 and $i = 5, 7, \dots, (n-2)/4$ (*i* odd) : $\langle j; (j+i, j+2i), (j+i+1, j+2i+2) \rangle^{(u)} = [j; j+i, j+2i]^{(u)} \cup [j; j+i+1, j+2i+2)]^{(u)}$

- define, for u = 1, 2:

 $\langle j; (j+1,j+2), (j+4), (j+8) \rangle^{(u)} = [j; j+1, j+2]^{(u)} \cup [j; j+4, j+8]^{(u)}, \\ \langle j; (j+2, j+4), (j+3), (j+6) \rangle^{(u)} = [j; j+2, j+4]^{(u)} \cup [j; j+3, j+6]^{(u)}.$

- define: $(j; (j+4, j+8), (j+3, j+6))^{(34)} = [j; j+4, j+8]^{(3)} \cup [j; j+3, j+6]^{(4)}$ - delete all the remaining blocks of N and define the following: $\langle \infty; (j+1, j+2), (j+4, j+8) \rangle,$ $\langle j; (\infty, j+1), (j+2, j+4) \rangle, \langle j; (\infty, j+2), (j+3, j+6) \rangle,$ $\langle j; (\infty, j+8), (j+2, j+4) \rangle, \langle j; (\infty, j+4), (j+1, j+2) \rangle.$

It is possible to verify that this collection of blocks defines a nested-design $N(2P_2, n; 4, 8)$.

- 2) Suppose $n \equiv 0 \mod 4$.
 - repeat every block of N four times, using the symbolism of 1);
 - define:

$$\begin{split} \langle j; (j+1,j+2), (j+3,j+6) \rangle^{(12)} &= [j; j+1, j+2]^{(1)} \cup [j; j+3, j+6]^{(2)} \\ \langle j; (j+1,j+2), (j+4, j+8) \rangle^{(2)} &= [j; j+1, j+2]^{(2)} \cup [j; j+4, j+8]^{(2)} \\ \langle j; (j+2, j+4), (j+5, j+10) \rangle^{(2)} &= [j; j+2, j+4]^{(2)} \cup [j; j+5, j+10]^{(2)} \end{split}$$

- define:

 $\langle j; (j+i, j+2i), (j+i+1, j+2i+2) \rangle^{(u)} = [j; j+i, j+2i]^{(u)} \cup [j; j+i+1, j+2i+2]^{(u)}$ for every *i* even and $i = 2, 4, \dots, (n-2)/2$ if u = 1

- $i = 6, 8, \dots, (n-2)/2$ if u = 2
- $i = 4, 6, \dots, (n-2)/2$ if u = 3, u = 4
- delete all the remaining blocks of N and define the following:

 $\langle \infty; (j+1, j+2), (j+3, j+6) \rangle$ $\langle j; (\infty, j+1), (j+2, j+4) \rangle, \langle j; (\infty, j+6), (j+1, j+2) \rangle$ $\langle j; (\infty, j+2), (j+3, j+6) \rangle, \langle < j; (\infty, j+3), (j+2, j+4) \rangle$

It is possible to verify that this collection of blocks defines a nesting $N(2P_2, n; 4, 8)$.

Collecting together the results obtained we can formulate the following.

Corollary 4.7 The necessary conditions for the existence of a nesting design $\overline{N(2P_2, n; \lambda_1, \lambda_2)}$ [Theorem 4.7.1] are always sufficient.

REFERENCES

- C.J. Colbourn and M.J. Colbourn, Nested triple systems, Ars Combinatoria 16 (1983), 27–34.
- [2] C.J. Colbourn and J.H. Dinitz, *The CRC-handbook of Combinatorial Designs*, CRC Press, (1996).
- [3] L. Gionfriddo, New nesting for G-designs, case of order a prime, Congressus Numerantium 145 (2000), 167–176.

- [4] C.C. Lindner and C.A. Rodger, *Decomposition into cycles II: Cycle systems*, Contemporary Design Theory, eds. J.H. Dinitz and D.R. Stinson, Wiley (1992).
- [5] C.C. Lindner, C.A. Rodger and D.R. Stinson, Nesting of cycle systems of odd length, Discrete Mathematics 77 (1989), 191–203.
- [6] C.C. Lindner and D.R. Stinson, Nesting cycle systems of even length, J. Comb. Math. Comb. Comp. 8 (1990), 147–157.
- [7] S. Kageyama and Y. Miao, The spectrum of nested designs with block size three or four, Congressus Numerantium, **114** (1996), 73–80.
- [8] S. Kageyama and Y. Miao, Nested designs with block size five and subblock size two, J. Statist. Plann. Infer., 64 (1997), 125–139.
- [9] S. Kageyama and Y. Miao, Nested designs with superblock size four, J. Statist. Plann. Infer., 73 (1998), 229–250.
- [10] S. Milici and G. Quattrocchi, On nesting of path-designs, J. Comb. Math. Comb. Comp., to appear.
- [11] S. Milici and G. Quattrocchi, On nesting of G-decomposition of λK_v where G has four non-isolated vertices or less, to appear.
- [12] D.A. Preece, Nested balanced incomplete block designs, Biometrika, 54 (1967), 479–486.
- [13] D.R. Stinson, The spectrum of nested Steiner triple systems, Graphs and Combinatorics, 1 (1985), 189–191.
- [14] D.R. Stinson, On the spectrum of nested 4-cycle-systems, Utilitas Math., 33 (1988), 47–50.

(Received 24/3/2000; revised 15/1/2001)