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Abstract 

The spectrum problem for G-decompositions of AKn that have a nesting 
was first considered in the case G ~ I{3 by C.J. Colbonrn and M.J. 
Colbonrn (1983) and by D.H.. Stinson (1985). For A 1 and G ~ Crn this 
problem was studied in many papers (see C.c. Lindner and C.A. Rodger, 
Chapter 8 in Contemporary Design Theory: a collection of surveys, ·Wiley 
1992, and D.H.. Stinson, Utilitas Math. 33 (1988) for more details and 
references). In this paper we generalize the nesting definition given by 
C.J. ColbonI'll and M.J. Colbonrn [Ars Combin. 16 (1983), 27--34] and 
we study the spectrum problem in the case that G has four non-isolated 
vertices or less. 

1 Introduction 

Let AKn be the complete multigraph on n vertices, where every edge is repeated ).. 
times. If G is a graph, the multigraph AKn is said to be G-decomposable if it is the 
unioIl of edge-disjoint subgraphs of K n , each of them isomorphic to G. This situation 
is denoted by AKn -+ G; AKn is also said to admit a G-decomposition I; = (\I, Ii), 
where \I is the vertex-set of )"Kn and B is the edge-disjoint decomposition of AKn 
into copies of G. Usually Ii is called the block-set of the G-decompositiou and any 
B E Ii is said to be a block. 

A G-decomposition of )"Kn , I; = (\f, Ii), is also called a G-design of order n, 
block-size IV (G) I and inde.'t A [3]. A G-design 1:* = (\1*, Ii*) is said to be a subdesign 
of I; = (\1, Ii) if V* ~ V and Ii* ~ B. More generally, it is possible to define 
G-decompositions of AH, instead of AKn , where H is any graph. 

I Lavoro esegllito nell'ambito del GNSAGA/INDAM e con contributo del MURST 
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A path-design P(n, k,'x) is a G-design of order n, block-size k, index ,X, where G 
is a path on k vertices, i.e. a graph having for vertices :rl, :1:2, ... ,:rk and for edges 
all the pairs {Xi, Xi+1}, for every i = 1,2, ... , k - 1. Such a path will be denoted by 
(Xl, :r2,' .. , .'rk). 

A star-system 3(n, Tn,'x) is a G-design of order n, block-size m + 1, index ,X, 

where G is a star with Tn terminal vertices, i.e. G ~ 3m graph having Tn + 1 vertices 
:r' (centre), :r1, .1:2, ... , :rm (terminal) and for edges all the pairs {:r', xd, for every 

1,2, ... ,7n. Such a star will be denoted by (:1:';:r:1,:r2, ... ,:rm ). 

An m-cycle-system CS(n, Tn,'x) is a G-design of order n, block-size m, index ,X, 

where G ~ Cm, the cycle with Tn vertices. 

A Steiner triple system 3),(2,3, v) is a C3-design or also a ](3-ciesign. 

In the literature there are some definitions of nesting for G-designs, mainly, for 
A 1 and G ~ Cm. 

Let 1: = (l/, C) be a Cm-design having order n and index ,X 1. 

A nest'ing of the Cm-design 1: is a mapping f : C --+ l/ such that the set IT = 
{{:r:, f(c)} : c E C, X vertex of c} is a partition of the edges of ](11' Observe that any 
nesting of a Cm-design produces an edge-disjoint decomposition of ](11 into Tn-stars. 
It is clear that a nesting of an m-cycle-design of order n is equivalent to an edge­
disjoint decompo8ition of 2](n into wheel8 vVrn having the additional property that 
for each pair of vertices X, y, one of the edges joining :r to y is on the rim of a wheel 
and the other is the spoke of a wheel. 

The spectrum problem for m-cycle-systems that have a nesting was first con­
sidered in the case where m = 3, i.e. for 3(2,3, v). This case was studied by C.J. 
Colbourn and M.J. Colbourn [1] and by C.C. Lindner and C.A. Rodger [4] who left 
15 possible exceptions; Stinson [13] completed the spectrum. Ne8ted 4-cycle-systems 
were studied by Stinson [14], while ne8ted 5-cycle-systems were studied by Lindner 
and Rodger [4]. Further, general results have been obtained by Lindner, Rodger and 
Stinson [5]. 

The same definition of nesting can be given for G-designs, in which G = (~7(G), 

E( G)) is not necessarily a cycle. A necessary condition is that 

Il/(G)I = IE(G)I· 

Recently, tviilici and Quattrocchi [10] have given the following definition. 

Let G = (V(G), E(G)) be a graph and let 1: = (V,12.) be a G-decomp08ition 
of 'x](11' A nesting of ~ is a triple N = {1:, II, F}, where II (V (1(11) , 3) is a 
decomposition of 'x](n into m-stars 8 m anel F : J1--+ 3 is a 1-1 mapping such that: 

(i) for every B E 12., the centre of the 'nt-star F(B) does not belong to V(B); all 
the term:inal vertices of F(B) belong to V(B); 

(ii) for every pair B l , B2 E B, the graphs Bl U F(Bd, B2 U F(B2) are isomorphic. 

A necessary condition is that Il/(G) 2: IE(G)I. If Il/(G)I = IE(G)I, this definition 
is equivalent to the previous. 
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In this paper we give the following definition of nesting of a G-design and we 
study the spectrum for all G-designs in which G is a graph having four non-isolated 
vertices, or less. 

Let G = (V(G), E(G)), H = (V(H), E(H)) be two graphs and let I:: = (V, B) be 
a G-design of inde.1; )'1, briefly )'lH ---t G. A nesting N(G, H; AI, A2) of I:: is a triple 
p:::, 11, F), where IT (V(H), S) is an rn-staT-des'ign of inde.7: '\2, briefly .\2H ---t Sm, 
and F : 11 ---t S is a bijection such that for every B E 

(i) the centre of the Tn-star F(B) does not belong to V(B); 

(ii) :r is a terminal vertex of F(B) if and only if :r is a vertex of V(B). 

In what follows, when H ~ I<n, such a nesting will be denoted by N N( G, n; 

A1,A2)' Observe that N is a G*-design of order n, block-size IV(G)I + 1 and index 
A = Al + A2, where G* = G U SW(G)I' 

If Al A2 A, this definition is the same as given in [1], [7], [10]. 
Further: 
(:r1' :£2, ... , Xn) will be a cycle Cn ; 

<Xl, .7:2, ... , will be a path Pn ; 

(I); Xl, :1:2, ... ,.Tn ) will be a staT Sn with centTe y; 

[y; :rl, X2, ... ,1;n] will be Pn USn) where Pn = (Xl, .T2, ... , Xn) and 
Sn (Y;:1:1,:r2, ... ,:rn); 

(y; (Xl, :1:2,"" .1:n )) will be a wheel with centre y. 

Example A nesting N(P''l, 7; 2, 3) is given by 
the P:3-design I:: (\I, 11), having index Al = 2 and order v = 7, so defined: 
V Z7 and 11 {(i, i + 1, i + 2), (i, i + 2, i + 4), (i, i + 3, i + 6) liE Zd; 
the S3-design IT (\I, S), having index A2 3 and order v = 7, so defined: 
1l = Z7 and S = {(i + 5; i, i + 1, i + 2), (i + 3; i, i + 2, i + 4), (i + 1; i, i + 3, i + 6) I 
i E Zd; 

F((i,i+1,i 2)) = (i+5;i,i+1,i+2), 
F((i,i+2,i+4)) = (i+3;i,i+2,'i+4), 
F((i,i+3,i+6)) = (i+1;i,i+3,i+6). 

Result 1: Observe that in the case G ~ J{n this new definiton of nesting is the same 
as given by Kageyama and Miao [7], [8], [9]. 

Result 2: Note that if there exists an N(G, n; AI, A2)' then there exists also an 
N (G, n; hA 1, hA2)' It is sufficient to repeat all the blocks h times. 

Result 3: In what follows, when a G-design is defined on Zn {O, 1,2, ... , n - I}, 
it is understood that all the sums in Zn mllst be reduced mod n. 

2 Preliminary results 

In this section we give some definitions and theorems useful to construct nestings 
of a G-clpsign, i.e. ne8ted G-designs. In some of them we will use pairwise balanced 

61 



designs and group divisible designs. 

Let X be a finite set of points, C a family of distinct subsets of X called groups 
which partition X, A a collection of subsets of X called blocks. Let v and A be 
positive integers and K, !VI sets of positive integers. The triple (X,C,A) is a grotLp 
divisible design, briefly a GDD, GD[K, A, !VI; v] if: 

(Cl) !X! v; 

(C2) {ICII C E C} ~ !VI; 

(C3) {!BII B E B} ~ K; 

(C4) !C n B! ::; 1, for every C E C, B E B; 

(c5) every pair {x, y} ~ X, such that x, y belong to distinct groups, is contained in 
exactly A blocks of A. 

If C contains ti groups of size mi, for i = 1,2, ... , s, the GDD is said to have 
group type miLm~2 ... m~s. When K = {k}, we will write GD[k, A, AI; v] instead of 
GD[{ k}, A, !vi; 'OJ. 

A GD[K, A, {l}; v] having group type P is called a pairwi8e balanced design and 
is denoted by (X, A) or by (v, K, A)-PBD. A (v, k, A)-PBD is simply a Kk-design. 
For A = 1, a (v, k, I)-PBD is a (v, k)-PBD. 

A GD[k, 1, {m}; krnJ is called a tmn8versal de8ign, denoted by TD[k, m]; it is also 
called a k-GDD. 

A (v, k, A)-BIBD (balanced incomplete block-design) or an 5>.(2, k, v) (Steiner sys­
tem of index A) is a pair (V, ll), where II is a finite v-set and II is a collection of 
k-subsets of V, called block8, such that every 2-subset of V is contained in exactly A 
blocks of ll. 

A parallel clas8 of a (v, k, A)-BIBD (V, ll) is a set of blocks of Ii that partition 
V. A (v, k, A)-BIBD is said to be rC80lvablc and is denoted by (1), k, A)-RBIBD if II 
can be partitioned into parallel classes. 

A neaT resolvable (v, k, k I)-BIBD, briefly a (v, k, k - I)-NRB, is a (v, k, k - 1)­
BIBD with the property that II can be partitioned into partial parallel classes missing 
a single x E V and every x E V is absent from exactly one class. 

Theorem 2.1 [3]: Let G = CV(G),E(G)) be a graph and let I.; (F,ll) be a G­
de8ign of inde.T AI. A neces8ary condition fOT the cxi8tencc of a N(G, n; Al, A2) 1,8 
that AIIV(G)I = \~IE(G)I· 

The following two theorems are special cases of the \Vilson fundamental construc­
tion for group divisible designs and other well-known theorems. So we will omit the 
proofs. 

Theorem 2.2: Let I.; (X, A) be a (n, K)-PBD, where K = {hI, h2' ... , ht}, and 
let G be (J, gmph. If, faT every hi E K, there exists a nesting N(G, hi; )'1, A2), then 
there el:ists a nesting N(G, n; AI, A2)' 
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Theorem 2.3: Let A = (X, P, A) be a k-GDD of oTdeT n, where P = {PI, P2, .. . , Pd 
and IPil = rLi, and let G be a graph. If, for every ni, there e.1;ists a nesting N(G, mni+ 
w;)'1, A2) containing a sub-design N(G, w; All A2) (wheTe w 0,1) and there exists 
a nesting N(G,Knq ,m2, ... ,mk;A1,A2) (where ml = m2 n1k), then there exists 
a nesting N(G, mn + w; AI, A2)' 

We prove the following 

Theorem 2.4: Let G ~ P3 , P4, 5:3, K4 - e and suppose that theTe exist a nesting 
design N(G,v;Al,A2), a nC8ting design N(G,w;A},A2), two oTthogonal quasi-gTOups 
of order 'W q, where q = 0 or 1. Then theTe exist nesting designs N (G, v (w - q) + 
q; AI, A2)' 
Proof: At first, consider two orthogonal quasigroups of order w q (they exist for 
every Vi - q i- 2,6); let (Zw_q,o), (Zw-q,*)' 

Let G ~ P3 . 

If (Zv,ll) is a nesting design N(P.l, v; AI, A2), T = {oo}for q 1 and T 0 for 
q = 0, then it is possible to define the design N(P.l, v( w - q) + q; AI, A2) (V, D) as 
follows: 

i) for every [x;a,b,c] Ell put in D the blocks [(.'E,i oj); (a,i),(b,j),(c,i)], i,j E 

Zw-q; 

ii) for every :x: E Zv, put in D the blocks of a design N(P:3, 10; A}, A2) defined on 
{:x:} x U T. 

The same technique can be used in the cases G ~ P4 , S3' 

Let G ~ K4 - e. 

Using the same symbolism of the case above, it is possible to define the nesting 
design (V, D) of order v(w q) + q as follows: 

i) for every {x; (J" b, (c, d)} E f1 (c, d are the non-adjacent vertices) put in D the 
blocks: {(x,ioj);(a,j),(b,i*j),((c,'i),(d,i))}, i,j E Zw-q; 

ii) for every .1; E Zv, put in D the blocks of a design N(K4 - C, w; AI, A2) defined 
on {x} x u T. 

Theorem 2.Q. [3]: If there e:x:ists a ne8ting N(Cm , n; 1,1), then there e.7;i8ts a nesting 
N(Pk , n; k 1, k), for every integeT k such that 3 ~ k < m. 

Theorem 2.6: For every k ;::: 3 and for every n ;::: 2k + 1, n odd, there e.Tists a 
nesting N(Pk , n; k - 1, k). 

The statement follows from Theorem 2.5 and from the existence of a nesting­
design N(Crn , n; 1, 1) for all n = 2m + 1 and Tn 2 3 [4]. 

Theorem 2.7: r[there exists a (v, k, k-I)-NRB, then there exists a nesting (v, k, k­
I)-BlED. 
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Proof: Let L: = (V, fl) be a (v, k, k - 1 )-NRB. Further, for every block B E B, if 
IlB is the almost-parallel class containing B, f(B) is the element of V which cloes 
not belong to its blocks. It is immediate to see that it is possible to obtain a nesting 
(v, k, k -l)-BIBD to associate each block B of fl with the star having f(B) as centre 
and the elements of B as terminal vertices. 

3 N(G,n;Al,A2) where G has n < 3 non-isolated 
vertices 

If G has 2 non-isolated vertices, then G ~ K2 ~ P2 · 

It is known that the spectrum of the nesting designs N(P2 , n; )'1, A2) was com­
pletely determined by Kageyama and Miao [7]. 

Now, we study the spectrum of a nesting N( G, 71; AI, A2), where G has 3 non­
isolated vertices. Two cases are possible: 1) G ~ K 3 , 2) G ~ Pa. 

It is well-known that the spectrum of the nesting designs N(K3, 71; 1, 1) was com­
pletely determined by Stinson [13] and the results can be extended to designs 
N(Ka, n; h, h), where Al = A2 = hEN, by a repetition of blocks. 

From Theorem 2.1, necessary conditions for the existence of a nesting design 
N(P;3, n; AI, A2) are: n ~ 4, 3Al = 2A2, i.e. Al = 2h, A2 = 3h, hEN. 

Theorem 3.2.1: If there exists a nesting N(Pa, 4; 2h, 3h), then h is even. 

Proof: Suppose that (L:, TI, F) is a nesting N(Pa, 4; 2h, 3h). If x is a point of TI, Tx 
the number of blocks of TI containing :r as a terminal vertex and CJ: is the number 
of blocks of TI containing :.r: as a centre, then 

3Cx +Tx 9h 

Cx + Tx = 6h 

From which Cx = 3h/2 and this implies h is even. 

Theorem 3.2.2: For every n prime, n ~ 5, there eX'ists a nesting N(P;3, n; 2, 3). 
Further, there eX'lst 1V(P3 , 6; 2,3), N(P3 , 8; 2, 3), N(P3 , 10; 2,3). 

Proof: Consider the following design, defined OIl Zn and having the blocks: 
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['11, + ) - 2;),) + 1,) + 2] 
[n + ) - 4; j,) + 2,) + 4] 

[71 + j - 2i;j,j + i,) + 2i] 

[1;),) + (n - 1)/2,) + n -1] for every j E Z5. 

It is possible to verify that it is an N(P:3, n; 2, 3). 

Further, the following design, defined on Z6 and having the blocks: 

[4; 5, 0, 3], [1; 2, 0, 4], [1; 3, 0,5]' [2; 4,0,1]' [2; 0,1,5]' [3; 2,1,4], 
[5; 4,1,3)' [0; 5, 1,3]' [4; 0, 2,1], [0; 5,2,3]' [5; 3, 2, 4], [3; 5, 2,4]' 
[0; 3, 4, 5], [1; 4, 5,3]' [2; 5,3,4] 

is a nesting N(P?>l 6; 2,3). 

The following design, defined on ZR and having the blocks: 

[2; 0,1,4], [2; 0,1,5], [1; 0, 2, 6] [3; 2,0,7], [4; 3, 0,5]' [1; 0, 3, 6] 
[3; 0, 4, 5], [2; 0, 4, 6], [3; 0, 5, 6] [4; 0,6, 7), [5; 0, 6,7]' [6; 0, 7, 2] 
[7; 1,2,3]' [7; 1,2,4]' [6; 5, 1,3] [4; 1,3,6], [5; 1,4,6]' [0; 7,1,6] 
[4;7,1,6], [6; 2,3,7]' [3; 7, 2, 5] [7; 5,2,6]' [5; 2,4,7]' [1; 5, 3,4] 
[2; 5, 3, 4], [0; 7, 4, 5), [0; 6, 5, 7], [1; 5, 7, 3] 

is a nesting N(P3, 8; 2,3). 

The following design, defined OIl ZlO and having the blocks: 

[2; 0,1,4]' [2; 0,1,5]' [3; 0, 2,1]' [1; 0, 2, 8], [4; 0, 3,1]' [4; 0, 3, 2], 
[3;0,4,2], [1;0,4,3]' [1;5,0,7]' [2;5,0,8]' [3;0,6,1]' [4;0,6,2]' 
[5; 7,0,8], [5; 0, 9,1]' [6; 0, 9, 2], [6; 1,2,8]' [5; 1,3,2]' [8; 1,7,2]' 
[7;1,6,3]' [9;1,7,3], [9;1,8,3]' [6;1,9,3]' [8;4,1,5]' [7;1,8,4]' 
[6;2,4,3), [8;2,5,5], [9;2,5,4]' [9;2,6,4]' [9;2,7,4]' [7;2,9,4]' 
[8;3,5,4]' [7;3,6,5], [8;3,7,5], [9;3,8,5], [8;3,9,5], [8;4,6,5]' 
[5;4,7,6]' [5;4,8,6], [1;4,9,6]' [4;5,7,6]' [6;5,8,7]' [0;5,9,7], 
[0; 6,8,7], [0; 6, 3, 8], [0; 7,9,8] 

is a nesting N(P:3, 10; 2, 3). 

Theorem 3.2.3: There exists a, nesting N(P.1, J(2,2,2; 2,3). 

Proof: Let J( 2,2,2 be a 3-parti te graph defined on V = XU}7 U Z, where X = {,TO, :1::1 }, 

y = {yo, yd, Z = {Za, zd are the three stable sets which partition V. The following 
blocks: 

[zo; .TO, Yo, .rIl, [.TO; Yo, Za, Yl], [Yo; Zo, :x:o, zd, [Zl; Xo, yo, xd, 
[:r:l;Yo"zo,yd, [Yl;ZO,.TO,Zl], [Zl;Xl,Yl,1:0], [ZO;Xl,Yl,XO], 
[:r:l; Yl, Zl, Yo], [:r:o; Yl, Zl, Yo], [Yl; Zl, :r:l, zo], [Yo; Zl, Xl, Zo] 
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define a N(P3, ](2,2,2; 2, 3). 

Theorem 3.2.4: For every n 2: 5 there exist.s a N(P3 , n; 2,3), except possibly for 
n = 12,14,16,20,22,28,68,98,124. 

Proof: Since there exists a PBD(n) having blocks of size 5,6,7 ([2], p. 208), from Theo­
rem 2.2 and Theorem 3.2.2 it follows that there exists a nesting N(P3, n; 2, 3) of order 
n 2: 5, with possible exceptions for n = 8,9,10,11,12, B, 14,15,16,17,18, 19,20,22, 
23,24,27,28,29,32,33,34,68,69,93,94,98,99,104,108,109, 114,124. 

From Theorem 2.6 and Theorem 3.2.2, the list of possible exceptions can be 
reduced to: 12,14,16,18,20,22,24,28,32,34,68,94,98,104, 108,114,124. 

Since there exist 3-GDD of type 33
, 43

, 44
, 51 and 34

, 314 and 5, 96 and 3 ([2], 
p. 189), from Theorem 2.3 and Theorem 3.2.3 it follows that the list of possible 
exceptions becomes: 12,14,16,20,22,28,68,98,104,108,124. 

From Theorem 2.4, for (v, w) = (8,13), (6,18), there exist N(P3 , n; 2, 3) for n 
v.w = 104,108. 

Now, we examine the spectrum of nesting N (P3, n; )'1, '\2) for ,\ 1 = 4, '\2 = 6. 

Theorem 3.2.5: There exist N(P3, 4; 4, 6); N(P3 , 12; 4, 6), N(P3 , 14; 4, 6). 

Proof: Consider the following design, defined on Z3 and having the blocks: 

[0; 1,2,3], 
[2; 0,1,3]' 

[0; 1,3,2]' 
[2;0,3,1], 

It is a nesting N(P3,4;4,6). 

[0; 2, 1,3], 
[2; 1,0,3], 

[1;0,2,3]' 
[3; 0,1,2], 

[1; 0, 3, 2], 
[3; 0, 2,1], 

[1; 2, 0,3]' 
[3; 1,0,2]. 

Further, since there exists a 3-GDD of type 2:3 ([2], p. 189), the existence of a 
nesting N(P3 , 12; 4, 6) follows from Theorem 2.3. 

Finally, consider the following design, defined on ZnU{ oo} and having the blocks: 

[j;j + l,j + 3,j + 2], 
[j + 7; 00, j, j + 5], 
[00;),) + 5,) + 11] 

It is a nesting N(P3 , 14; 4, 6). 

[j;j + 7,j + 4,j + 8], 
[j + 8; 00, j, j + 6], 
for every j E Z13' 

[j + 1;.J,.J + 5, j + 11], 
[j + 6;j,00,j + 1], 

Theorem 3.2.6: For every n 2: 4 theTe exists a N(P:l, n; 4, 6). 

Proof: From Theorem 3.2.4, by a repetition of blocks, and from Theorem 3.2.5, it 
follows that there exists a nesting N(P3 , n; 4, 6) for every n 2: 4, exc(~pt possibly for 
n = 16,20,22,28,68,98,124. Since there exists a PBD(n) having blocks of size 4,5,6 
((2), p. 206), from Theorem 2.2 the existence of N(P:l, n; 4, 6) follows in all the other 
cases. 

Collecting together the results obtained, we can formulate the following. 

Corollary 3.2 The necessar'y conditions fOT the existence of a nesting design 
N(P3, n; )11, '\2) are: 3'\1 = 2'\2, n 2: 4. These condition.e; are al.so 8'ufficient except 
in the following cases: 
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i) n = 4 and Al == 2 mod 4) A2 == 3 mod 6 (effective exceptions); 

ii) n = 12, 16,20,22,28,68,98,124) when Al == 2 mod 4, A2 == 3 mod 6 (possible 
exceptions) . 

REMARK: Note that if it is possible to delete some exception in Corollary 3.2.ii), 
for a pair A~, A;, giving a solution for it, then the same case can be considered solved 
for any Al kA~, A2 k/\;, kEN. So, the number of exceptions in Corollary 3.2 is 
exactly 9 and not infinite. 

This remark is valid also in all the following sections. 

4 N(G, n; AI, A2) where G has 4 non-isolated 
vertices 

In this section we study the spectrum of a nesting G-design N(G, n; AI, A2), where 
G is a graph with 4 non-isolated vertices. The possible cases are: 
1) G s::! K 4, 2) G s::! K 4 e, 3) G S:! K 3 + e, 4) G s::! C 4, 5) G s::! P4, 6) G s::! S3, 
7) G s::! 2P2' 

Observe that n 2:: 5, necessarily, and that the cases 3), 4) have already been 
studied. 

For the necessary conditions we have the following theorem. 

Theorem 4.1.1: If theTe e.'Eists a nesting design N(K4' n; AI, ).2), then the parame­
tel'S 71" AI) A2 rmtst satisfy one of the following conditions: 

1) Al 3h, A2 2h, n == 1 mod 4, n 2:: 5, for any positive odd integer h; 

2) Al = 3h, A2 211" n == 1 mod 2, n 2:: 5, for any positive integer h == 2 mod 4; 

S) Al = 3h) A2 = 211" n 2': 5) fOT any positive integer h 0 mod 4. 

Proof: From Theorem 2.1, it follows that 2Al = 3A2, 71, 2:: 5. Let N = (I:, IT, F) be 
a nesting N(K4' n; 3h, 217,). If:r: is a point of N, denote by ]v!:l: the number of blocks 
of 1: containing :r: and by Cx the number of blocks of II containing :r: as centTe. It 
follows that: 

lVIx = h(n - 1), 

4Cx + j}lx = 2h(n 1), 

hence Cx = h(n 1)/4. From this, 

1) if 11, is an odd number, necessarily n == 1 mod 4; 
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2) if h is an even number and h == 2 mod 4, necessarily n == 1 mod 2; 

3) if h 0 mod 4, 71, can be any integer, 71, ~ 5. 

Theorem 4.1.2: There exists a nesting N(K4' 71,; 3, 2) if and only if n == 1 mod 4. 

Proof: :::::? Immediate from Theorem 4.1.1, 1). 
<= Since a (71" k, k - l)-NRB exists if and only if n == 1 mod k ([2], p. 88,91), 

the statement follows from Theorem 2.7. 

Theorem 4.1.3: For every 71, E N, n prime) 71, ;::: 5, there e.'£ists a nesting 
N(K4' 71,; 6, 4). 
Proof: Let 71, be a prime number, n ;::: 5. Let 2:: = (Zn, B) be the K4-design having 
the following blocks: 

Bi,j = {Xi,j,l j, :ri,j,2 = j + i, Xi,j,3 = j + 2i, :r:i,j,4 = j + 3i}, 
for every j E Zn, i = 1,2, ... , (n 1)/2. 

We can verify that 2:: has index )q = 6. Observe that the differences between 
two vertices of Bj,i are: i, i, i, 2'i, 2i, 3i. Further, for i 1,2, .. , (n - 1)/2, 2i and 3'i 
cover all the possible differences, respectively. So, if :r, yare two vertices of 2"::, x < '.I), 

y - x 'i, {:r, y} is contained in exactly six blocks of 2"::. 

Now, consider the S4-design II = (Zn, S) having the followiIlg blocks: 

Si,j (Yi,j = 71, 2i + j; Xi,j,l = j, Xi,j,2 = j + i, Xi,j,3 = j + 27:, Xi,j,4 =.j + 3i), 

for every j E Zn, i = 1,2, ... , (n 1)/2. 

Since Ti is prime, then 71, - 2i + j rt. {j,j + i,j + 2i,j + 3i}. 

We can verify that II has index ).2 = 4. The differences between the centre and 
the other vertices of Sj,i are: n 2i, n - 3'l, n - 4'i, n 5i, which are equivalent to: 
2i, 3i, 4i, 5i. 

Since n is prime, for i = 1,2, ... , (n 1)/2 each of them describes the set of all 
the possible differences. So, if x, yare two vertices of TI, :r: < y, y - x i, {x, y} is 
contained in exactly four blocks of TI. 

If F : B --+ S is a mapping such that F(Bi,j) then N = (2::, TI, F) is a 
nesting N(K4' n; 6, 4). 

Theorem 4.1.4: There exists a nesting N(K4' n; 6, 4) if and only if 71, == 1 mod 2, 
except possibly for n = 15,27,39,75,87,135,183,195. 

Proof: :::::? From Theorem 4.1.1. 2), for h 1, directly. 
¢= Observe that if for any n there exists a nesting N(I{4, n; 3, 2), then for this 

n there exists also a nesting N(K4' n; 6, 4). Further, for every admissible n == 1 mod 
2, there exists a PBD(n) having blocks of size 5,7,9 ([2], p. 208), with some possible 
exceptions. 

Collecting together Theorem 4.1.2, Theorem 4.l.3, Theorem 2.2, and also the 
possible exceptions, the existence of a nesting N(K4' 71,; 6, 4) is proven for n == 1 mod 
2, n # 15,27,39,51,75,87,95,99,111,115,119,135,143,183,195,243,411. 

68 



From Theorem 2.4, since there exist pairs of N(I(4, n; 6, 4) of order nI, n2 such 
that (nl, n2) = (5,19), (9, 11), (5,23), (7, 17), (11, 13), (9, 27), existence follows for 
n = 71,l.n2 = 95,99,115,119,143,243; further, since there exist pairs of N(1(4, n; 
6,4) of order nl,n2 such that (71,1,71,2) = (5,11),(11,11),(41,11), existence follows 
for 71, = 71,1.(71,2 - 1) + 1 = 51,111,411. This part of the statement is now proved. 

Theorem 4.1.5: TheTe exists a nesting N(I(4, 6; 12,8) and a nesting N(K4, 8; 12,8). 

Proof: Consider the following design, defined on Z6 and having the blocks: 

{O;1,2,3,4}, {O;1,2,4,5}, 
{1;O,2,3,4}, {1;O,2,3,5}, 
{3;O,2,4,5}, {4;O,I,2,3}, 
{5;O,1,2,3}, {3;O,I,2,4}, 
{3;O,1,4,5}, {4;O,2,3,5}, 
{5; 1,2,3, 4}, {3; 1,2,4, 5}, 

{O;1,3,4,5}, 
{2;O,1,3,4}, 
{4;O,I,3,5}, 
{4;O,I,2,5}, 
{5;O,2,3,4}, 
{a; 1,2,3, 5}, 

{1;2,3,4,5}, 
{2;O,1,4,5}, 
{4;1,2,3,5}, 
{5;O,1,3,4}, 
{1;O,2,4,5}, 
{2;1,3,4,5}, 

It is possible to verify that this is a nesting N(K4, 6; 12,8). 

{1;0,3,4,5}, 
{3; 0,1,2, 5}, 
{5;0,1,2,4}, 
{2; 0,1,3, 5}, 
{2; 0, 3, 4, 5}, 
{0;2,3,4,5}. 

Consider the following design, defined on Z7 U { oo} and having the blocks: 

{j; oo,j + 1,) + 2,j + 3}, 
{j; oo,j + 1,j + 4,j + 5}, 
{oo;),j + l,j + 2,.1 + 4}, 
{j;) + 2,.1 + 3,.j + 4,.1 + 6}, 

{j; oo,j + 1,j + 3,j + 5}, 
{j; oo,j + 1,) + 2,j + 4}, 
{j; .1 + 1, j + 2,.1 + 3, j + 5}, 
{j;j + 4,j + 5,.1 + 6,.1 + I}, 
for every j E Z7' 

It is possible to verify that this is a nesting N(K4' 8; 12,8). 

Theorem 4.1.6: TheTe e.Tists a nesting N(I(4, 71,; 12, 8) fOT eveTY 71, ~ 5, except 
possibly fOT n = 10, 12, 14, 15, 16, 18,20,22,24,27,28,32,34. 

Proof: Observe that for every admissible n E N there exists a PBD(n) having blocks 
of size 5,6,7,8,9 ([2], p. 209), with possible exceptions for n = 10,11,12,13,14,15, 
16,17,18,19,20,22,23,24,27,28,29,32,33,34. 

From Theorem 2.2, Theorem 4.1.4, Theorem 4.1.5, there exists a nesting 
N(I(4, 71,; 12,8) of order n ~ 5, except possibly for n = 10,12,14,15,16,18,20,22,24, 
27,28,32,34. 

Collecting together the results obtained, we can formulate the following. 

Corollary 4.1 The necessaTY conditions fOT the e.Tistence of a nesting design 
N(K4 ,71,;)'l,A2) [TheoTem 4.1.1j aTe also sufficient with the possible exceptions of 
n = 10, 12, 14,15,16, 18, 20, 22, 24, 27, 28, 32, 34, when Al == 0 mod 12 and A2 == ° 
mod 8. 

4.2 G f'J K4 - e 

From Theorem 2.1, necessary conditions for the existence of a nesting design N(K4-
e, n; )'1, .\2) are: n ~ 5, 4.\1 = 5A2, i.e. Al = 5h, .\2 = 4h, hEN. 
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Many results can be obtained from 4.1), hy deleting an edge in the blocks of 2::. 

Recall that we indicate the graph /{4 e by {a, b, (c, d)} where c, d are the non-
adjacent vertices, and 84 U (1(4 - e) by {x;; a, b, (c, d)}, where .1: is the centre of the 
star. 

Theorem 4.2.1: There el;ist8 a ne8t'ing lV(1<4 - e, 71,; 5,4) for every prime integer 
71, E lV, 71, ~ 5. 

Proof: Let L;' = (Zn, B') be the (1(4 - e)-design obtained from L; (Zn, B), the ](4-
design of index Al 6 defined in Theorem 4.1.3, by deleting in every block Bi,j E B 
the edge {::Ci,j,I, Xi,j,4}. So, L;' has the following blocks: 

Since the difference between the endpoints of the deleted edge is 3i (see Theorem 
4.1.3) and n is prime, then fori 1,2, ... , (71, - 1)/2 the value 3i covers all the 
possible differences 1,2, ... , (71, - 1)/2 between two vertices of Zn. So, L;' has index 
A~ = 5. 

If IT = (Zn, 8) is the same S4-design defined in Theorem 4.1.3 and F(B~) = Si,j, 
then lV = (L;', IT, F) is a nesting lV(/{4 c, 71,; 5, 4). 

Theorem 4.2.2: There e:r;ists a nesting lV(/{4 - C, 9; 5,4) of order 9. 

Consider the design, defined on Zg and having the following blocks: 

{j - l;j,j + 2, (j + 1,j + 3)}, 
{j 2; j, j + 6, (j + 1, j + 3) } , 

{j 2;j,j +4, (j + 2,j +6)}, 
{j + 5;j,j -1, (j + 3,j + 4)}, 
for every j = 0, 1,2, ... ,n 1. 

It is possible to verify that this is a nesting lV(](4 - C, 9; 5, 4). 

Theorem 4.2.3: There exi8ts a nesting lV(1(4 - e, 71,; 5, 4) for' every 71, == 1 mod 2, 
n 2: 5, with possible e.'ECeptions jor 71, = 15,27,33,39,75,87,93,183,195. 

Proof: Observe that for every admissible 11, == 1 mod 2 there exist PBD(n) hav­
ing blocks of size 5,7,9 ([2], p. 2(8), with the following possible exceptions for n = 
11,13,15,17,19,23,27,29,31,33,39,43,51,59, 71, 75,83,87,93,95,99,107,111,113, 
115,119,131,135,139,143,167,173,179, 183, 191,195,243,283,411,563. 

From Theorem 2.2, Theorem 4.2.1 and Theorem 4.2.2, there exists a nesting 
lV(/{4 - e, n; 5,4) for the same values of 11" deleting all prime numbers. 

So, the possible exceptions are: 
n = 15,27,33,39,51,75,87,93,95,99,111,115,119,143,183,195,243,411. 

From Theorem 2.4, since there exist pairs of lV(/{4 - e, n; 5,4) of order 11,1, n2 
such that (711, n2) (5,19), (9, 11), (5,23), (7, 17), (11, 13), existence follows for n 
711.712 = 95,99,115,119,143; further, since there exist pairs of lV(/{4 - C, 71; 5,4) of 
order nI, n2 such that (711, n2) = (5,11), (5,23), (11,23), (41, 11), existence follows for 
71 = nl.(11,2 1) + 1 51,111,243,411. 
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REMARK: Note that, in this case, the sufficiency for the existence of a nesting 
design N(I<4 - e, n; >'1, A2) is proved (apart from a few cases) only for odd orders n. 
For even order 71" we are able to solve the problem of the existence only for n = 6 in 
the next Theorem 4.2.4. 

vVe remark that the problem is open for any even 71" 71, 2 8. 

Theorenl 4.2.4: Nesting designs N(K4 - C, 6; 5, 4) of oTder 6 do not e.Ti8t. 

Proof: Suppose that there exists a nesting N(I(4 e, 6; 5,4) of order 6. If, for a 
point :r: 

- 111 indicates the number of blocks of the (I(~ e)-design in which .1: is adjacent 
to all the other vertices of the block; 

- T indicates the number of blocks in which :r is adjacent to two vertices of the 
block; 

- C indicates the number of the blocks of the 84-design in which .T is the centre; 

then necessarily 

from which 

31\11 + 2T 25 

4C + AI + T 20 

c = !vI + 15 
8 

T = 25 - 31\1 
2 

and this implies "~1 = 1 and C = 2, T = 11. 
But this is not possible for a nesting-design with 15 blocks. 

4.3 G f".J K3 + e 

From Theorem 2.1, it follows that Al = A2. 

The spectrum of N(K3 + e, n; 1, 1) was studied by S. 1\1ilici and G. Quattrocchi 
in [11]. 

From Theorem 2.1, it follows that Al = ).2. 

The spectrum of N(C4 , n; 1,1) was studied by C.C. Lindner and D.R. Stinson [6] 
and by S. Milici and G. Quattrocchi [11] and the results can be extended to designs 
N( C4 , n; h, h), where).1 ).2 = hEN, by a repetition of blocks. 
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From Theorem 2.1, necessary conditions for the existence of a nesting design 
N(P4, n; )'1, A2) are: n 2: 5, 4Al = 3A2, i.e. Al = 3h, A2 4h, hEN. 

At first, we prove the existence in some particular cases. 

Theorem 4.5.1: There exi8t nesting de8igns N(P4, 5; 3, 4), N(P4, 6; 3, 4), N(P4,8; 
3,4), N(P4 , 9; 3, 4). 

Proof: Consider the following design, defined on Z5 and having the blocks: 

[j;j + 1,j + 2,j + 3,j + 4], (j;j + 2,j + 4,j + 1,j + 3] for every j 0,1,2,3,4. 

\Ve can verify that this is a nesting N(P4 , 5; 3, 4). 
The following design is defined on ZG and its blocks are: 

[6; 1,3,2,4]' 
[1; 2,4,5,3]' 
[2; 1,6,5,3]' 

[4; 2,1,3,5], 
[5; 1,4,6,2]' 
[4; 2, 5, 6, 3], 

[5; 6,1,2,3]' 
[2; 1,6,4,3]' 
[5; 1,4,3,2], 

We can verify that it is a nesting N(P4 , 6; 3, 4). 

[3; 1,4,5,2]' 
[1; 2,4,6,3]' 
[4; 1,2,6,3]' 

The following design is defined on Z8 and its blocks are: 

[4; 0, 2, 3,1]' [3; 1,2,0,6]' [3; 0, 2,1,6]' [5;4,0,1,3]' 
[6; 0, 3,4,1]' [7; 0, 3, 4,1]' [4; 0, 3, 2, 7], [2; 1,0,7,5]' 
[1; 4, 0, 7, 3], [6; 0, 7, 4, 3], [7; 0, 5, 3, 2], [3; 0, 5, 4, 2], 
[1; 0, 6, 4,7], [5; 3, 1,2,7]' [0; 1,5,4,2], [6; 1,7,5,2]' 
[2; 1,7,6,3]' [7; 1,4,6,3]' [0; 4, 7,1,5]' [1; 2,6,5,3]' 
[0; 2,6,7,3)' [5; 2, 7, 6, 3], [4; 2, 5, 7, 3]. 

We can verify that it is a nesting N(P4 , 8; 3, 4). 

[6; 1,5,4,3]' 
[3; 1,5,6,2]' 
[6; 2,5,1,3]. 

[2; 6,0,1,5]' 
[5;0,4,6,1]' 
[6; 0, 5, 4, 2], 
[4; 1,6,5,2]' 
[7; 2,6,5,3], 

Consider the following design, defined on Z8 and having the blocks: 

(j + 4; j, j + 1, j + 2, j + 3], 
(j + 4;j,j + 3,j + 6,j + 1], 

[j + 7;j,j + 2,j + 4,j + 6], 
[j + l;j,j + 4,j + 8,j + 5] 
for every j 0,1,2,3,4,5,6,7,8. 

\Ve can verify that this is a nesting N(P4, 9; 3,4). 

Theorem 4.5.2: There eJ:ists a nesting N(P4 , n; 3, 4), for every n E N, n pnme, 
n 2: 5. 

Proof: For n 5, the existence is proved in Theorem 4.5.1. Let n 2: 7, n prime. 

Let 2:* = (Zn, B*) be the P4-design obtained from 2: = (Znl B), the K4-design 
of index Al = 6 defined in Theorem 4.1.3, by deleting in every block Bi,j E B the 
edges: 
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So, L;* has the following blocks: 

The differences between the endpoints of the deleted edges ei,j,1:3, Ci,j,24, ei,j,14 are: 
2i, 2i, 3'i, respectively, while the differences between the endpoints of the remaining 
edges are: i, i, i. Further, since 71, is prime, for every i 1,2, ... ,(71, - 1)/2 the values 
2i, 2i, 3i, i, i, i assume all the possible values of the differences between two vertices 
of Zn (see Theorem 4.1.3). Therefore 2::* has index'\* 3. 

If 11 (Zn' 8) is the same 84-design defined in Theorem 4.1.3 and F(B!,j) = Si,j, 
then N* ,11, F) is a nested-design N(P4, n; 3, 4). 

Theorem 4.5.3: There e.Tist nestings N(P4, I<2,2,2; 3,4), N(P4, 1(2,2,2,2; 3, 4). 

Proof: Let I<2,2,2 be the 3-partite complete graph defined on V = Xu y u Z, where 
X = {l, 4}, Y {2, 5}, Z = {3, 6} partition V in stable sets. The following blocks: 

[3; 2,1,5,4]' 
[1; 5, 3, 2, 6], 
[5; 1,6,4,3]' 

define a N(P4 , ](2,2,2; 3, 4). 

[1; 2, 3, 5, 6], 
[2; 6, 1,3,4]' 
[6; 1,2,4,5]' 

[2; 3,1,6,4]' 
[6; 1,5,4,2]' 
[4; 3, 2, 6, 5], 

[3; 5,1,2,4], 
[4; 3, 5, 6, 2], 
[5; 1,3,4,6]' 

Now, let ](2,2,2,2 be the 4-partite complete graph defined on 
V' = L u 111 u N UP, 

where L {0,4}, M = {1,5}, N = {2,6}, P = {3,7} partition V' in stable sets. 
The following blocks: 

[j + 7;j,j + 1,j + 2,j + 4], [j + 3;j,j + 2,j + 4, j + 1J, 
[j + 5; j, j + 3, j + 6, j + 7] for every j E Z8, 

define a N(P4 , 1(2,2,2,2; 3, 4). 

Theorem 4.5.4: There exists a nesting N(P4, n; 3, 4), for every 71, E N, n 2 5, with 
the following possible exceptions: n = 10,12,14,16,20,22,28,34. 

Proof: For every admissible n, there exists a PBD(n) having blocks of size 5,6,7,8,9 
([2], p. 209), with possible exceptions for n = 10,11,12,13,14,15,16,17,18,19,20,22, 
23,24,27,28,29,32,3:3,34. From Theorem 2.2, Theorem 2.7, Theorem 4.5.1 and 
Theorem 4.5.2, it follows that there exists a nesting N(P4 , 71,; 3, 4) for the same values 
of n, From Theorem 4.5.2 and Theorem 2.7, the previous list can be reduced by 
deleting all n odd. Since there exist 3-GDD of type 33 , 4-GDD of type 3\ 44 ([2J, 
p. 189--190), from Theorem 2.3, Theorem 4.5.1 and Theorem 4.5.3, the existence of 
nesting N(P4 , 71,; 3, 4) follows, also for n = 18,32,24 and this completes the proof. 

Collecting together the results obtained, we can formulate the following. 

Corollary 4.5 The necessary conditions for the e.Tistence of a nesting design 
N (Pi, 71,; ,\ 1, '\2) are 4,\ 1 = 3).2, n 2 5. These condition'! aTe also sufficient for 
every n 2 5, wdh the possible e.Tceptions of n 10,12,14,16,20,22,28,34. 
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4.6 G rv 8 3 

In what follows, given an 53 = (y; a, b, c) and an 54 = (:r; y, a, b, c), we denote 
S3 U 54 = (x; (y;a,b,c)). 

For the necessary conditions we have the following theorem. 

Theorem 4.6.1: Ifthcre exists a ne8ting de8ign N(S3, n; All A2), then the pammeter8 
n, Al, A2 must satisfy one of the follow'ing conditions: 

1) Al = 3h, A2 4h, n == 1 mod 2, TL ~ 5, for any positive odd integer h; 

2) Al = 3h, A2 2h, n ~ 5, for any positive integer h == 0 '(nod 2. 

Proof: From Theorem 2.1, it follows that: 4A1 = 3A2, n ~ 5. 

Let N = eE, TI, F) be a nesting N(S3, n; 3h, 4h). Consider a point x of N. If C:Cl 

Ox, Tx are respectively the number of blocks containing x as a centre in a star of 
TI, the number of blocks containing 1; as a centre in a star of E and the number of 
blocks containing x as a terminal vertex always in a star of E, then: 

I t follows that: 

3h(n 1) 

4h(n 1) 

4Cx - 20x = h(n - 1); 

hence h.(n 1) is an even number and if h is odd, n == 1 mod 2. 

Theorem 4.6.2: There exists a nesting N(S3, n; 3, 4), for every n E N, n prime, 
n 2: 5. 

Proof: Consider the 5:r ciesign B" = (Zn' B"), having for blocks the following 3-stars: 

B~:j = (j + i;j,j + 2i,j + 3i), for every j 0,1,2, ... , n - 1, i 1,2, ... , ('1£ -1)/2, 

where the values of i represent all the possible differences between two distinct ver­
tices x, y E Zn- We can verify that ~" has index A~ = 3. Consider that for every 
pair x, y E Zn, x < y, the difference y -1; can be: 1,2, ... , (n -1)/2, and that in the 
edges of a block B:: j these differences are: 'i, i, 2i. 

It follows that any difference c5 = y - x 1,2, ... , (n - 1)/2 appears in the 
following blocks of B": B~j' B~j' B(~1-b)/2j; so, the pair {:r, y} is contained in exactly 
3 blocks of B. Observe that every block B~:j of B" is contained in the block Bi,j of 
the K4-design B, defined in Theorem 4.1.3 and having index A1 6. 

If TI = (Zn' S) is the S4-design defined in Theorem 4.1.3 and F(B'J,i) = Si,j, then 
N" = N(B", 11, F) is a nested-design N(53 , n; 3, 4). 

Theorem 4.6.3: There exist nesting N(S3, 9; 3, 4), N(S3, 15; 3, 4). 

Proof: The following design is defined on Zg and has the blocks: 
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(j; (j + 1;.1 + 2,] + 3,j + 4)), (j; (j + I;] + 5,j + 6,j + 7)), 
(j; (j + 6; .1 + 4,.7 + 7, j + 8) ) , (]; (.J + 1; j + 2, .1 + 4, j + 6) ) , 

for every .1 = 0,1, ... ,8. 

\Ve can verify that this is a nesting N(S3, 9; 3, 4). 

The following design is defined on Z15 and has the blocks: 

(j; (j + 2;.1 + l,j + 3,j + 4)) 
(j; (j - 4;j + 9,j - 5,j 2)) 
(j; (j - 2; j + 5, j + 4, j + 6) ) 
(j; (j - l;j + 8,j + 3,.1 + 5)) 

(j; (.J + 1;.1 + 5,.1 + 8,.7 - 3)) 
(j; (.J - 3;.1 + 2,.1 - 6,.1 + 7)) 
(.1; (.J + 4;.1 + l,j + 7,.1 + 9)) 

for every .1 = 0, 1, 2, ... ,14. 

Vlfe can verify that this is a nesting N(S3, 15; 3, 4). 

Theorem 4.6.4: ThcT(~ exists a nesting N(S3, n; 3, 4) if and only if n == 1 mod 2, 
n ~ 5, except possibly for' n = 15,27,39,75,87,135,183,195. 

Proof: =} Necessarily, n == 1 mod 2. It follows from Theorem 4.6.1. 1). 
¢:: For every admissible n, n == 1 mod 2, there exist PBD(n) having blocks of 

size 5,7,9 ([2], p. 208), with the possible exceptions of n = 11,13,15,17,19,23,27,29, 
31,33,39,43,51,59, 71, 75,83,87,93,95,99,107,111,113,115,119, 131,135,139, 143, 
167,173,179,183,191,195,243,283,411,563. 

From Theorem 2.2, Theorem 4.6.2 and Theorem 4.6.3, the existence of a nesting 
design N(S3, n; 3,4) follows for the same values of n. From Theorem 4.6.2 and 
Theorem 4.6.3, the previous list can be reduced by deleting all 17, prime and also 
n = 15. 

From Theorem 2.4, since there exist pairs of N(S3, n; 3, 4) of order nl, n2 such that 
(nl,71,2) = (5,15), (5, 19), (9, 11), (5,23), (7, 17), (9, 15), (11,13), (13, 15), the existence 
for n = nl.n2 = 75,95,99,115,119,135,143,195 follows. 

From Theorem 2.4, since there exist pairs of N(S3, 71,; 3, 4) of order nl, n2 such that 
(nl,n2) = (5,11), (23,5), (11, 11), (13, 15), (11,23), (41, 11) it follows the existence 
also for n = 11,1.(17,2 - 1) + 1 = 51,93,111,183,243,411. 

This part of the statement is so proved. 

Theorem 4.6.5: i) NC8ting dcsigns N(S3, 6; 6, 8) of order 6 do not exist. 
ii) Thcre eJ;ists a nesting N(S3, 8; 6, 8) of order 8. 

Proof: i) Suppose that there exists a nesting N(S3, 6; 6, 8) of order 6. If, for a point x: 

C indicates the number of blocks of the S3-design in which :r is the centre of 
the star; 

- T indicates the number of blocks of the S3-design in which x is a terminal of 
the star; 

- [2 indicates the number of the blocks of the S4-design in which x is the centre 
of the star; 
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then necessarily 

from which 

3C +T = 30 

40 + C + T = 40 

o = C + 5 T 30 - 3C 
2 ' 

and this is not possible, because the number of blocks is equal to 20. 

ii) Consider the following design, defined OIl Z7 U {oo} and having the blocks: 

(j + 3; (j;) + 1, j + 2, j + 6) ) , 
(j + 6; (j;) + 1,j + 3,j + 4)), 
(j; (j + 1; 00,] + 2,j + 4)), 
(j; (j + 1; 00,) + 2,j + 3)), 

(j + 1; (j; j + 2, j + 3, j + 5)), 
(00; (j;j + 1,j + 2,j + 3)), 
(j + 5; (j + 1; oo,j + 3,j + 4)), 
(j; (oo;j + l,j + 2,j + 3)), 

for every j E Z7' 

It is possible to verify that this is a nesting N(83 , 8; 6, 8). 

Theorem 4.6.6: There eX'ists a nesting N(83 , n; 6, 8) for' every n 2: 5, n f. 6, e:Ecept 
possibly for n 10,12,14,16,18,20,22,24,26,27,28,30,32,33,34,38,39, 42, 44, 46, 
52,60,94,96,98,100,102,104,106,108, 110,116,138,140,142,146, 150,154,156,158, 
162,166,170,172,174,206,228. 

Proof: Observe that for every admissible n E N there exists a PBD(n) having blocks 
of size 5,7,8,9 ([2J, p. 208), with a set of possible exceptions. The statement follows 
from Theorem 4.6.5, Theorem 2.2 and Theorem 4.6.4. 

Collecting together the results obtained, we can formulate the following. 

Corollary 4.6 The necessaTY conditions fOT the e:Eistence of a nesting design 
N(83 , n; ),1, ),2) [Theorem 4.6.1} are also sufficient except possibly for: 

i) n = 15,27,39,75,87,135,183,195, when n :::::: 1 mod 2, ),1 

mod 8; 
3 mod 6, A2 == 4 

ii) n = 10,12,14,16,18,20,22,24,26,27,28,30,32,33,34,38, 39, 42, 44, 46,52, GO, 
94,96,98,100,102,104, 106,108,110,116,138,140,142,146, 150,154,156,158, 
162,166,170,172,174,206,228, when Al :::::: ° mod 6, ).2 :::::: 0 mod 8. 

In what follows, if 2P2 is a graph with edges {a, b} 1 { c, d} and 84 is a 4-star having 
terminal vertices (L, b, c, d and centre x, then the graph 2P2 + 84 will be indicated by 
(x; (a, b), (c, d)). 
For the necessary conditions we have the following theorem. 

Theorem 4.7.1: If there exists a nesting design N(2P21 n; AI, A2)) then the pa:ram­
etfTs n, ),1, ).2 must satisfy one of the following conditions: 
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1) Al = h, A2 2h, 17, 1 mod 4, 17, 2': 5, for any p08itive odd integer h; 

2) Al h, A2 2h, 17, == 1 rnod 2, n 2': 5, for any positive integer h == 2 mod 4; 

:3) Al h, A2 = 2h, 17, 2': 5, for any positive integer h a mod 4. 

Proof: From Theorem 2.1, it follows that: 2Al = A2, 17, 2': 5. 
Let N = TI, F) be a nesting N(2P2, 17,; h, 2h). If .1: is a point of Nand Tx is the 
Humber of blocks of L.: containing :r:, Cxthe number of blocks of TI containing x as a 
centre, then: 

Tr = h(n-I) 

4Cx + Tx = 2h(n 1). 

It follows that C:r = h(17, 1)/4, hence h(n 1) == 0 mod 4. This implies 1),2),3). 

Theorem 4.7.2: There e.Tists a nesting N(2P21 n; 1,2) if and only if 17, == 1 mod 4, 
n 2': 5. 

Proof: =} Necessity follows from Theorem 4.7.1.1). 
<== Let n 1 mod 4, n 2': 5, Z' = ZnU{oo} and let <P = {FI ,F2 , ... ,Fn } be 

a I-factorization defined OIl Z'. \Vithout loss of generality, we can suppose that the 
I-factor Fi contains the pair fi, oo}. Observe that, if k IFi { {i, oo} } I, then k == 0 
mod 2. So, let Fi - { {i, oo}} = { {Xi,l, Yi,d, {:r:i,2, Yi,2}, ... , {Xi,k-l, Yi,k-d, {:ri,k, !Ji,d}, 
for every i 1,2, ... , n. Then, we can define the design N, having the blocks: 

(i' (x 'I}') (:r y.)) " '1.,1, . l,l, 't,2, • t,2 , 

for 
(i; (:ri,k-l, Yi,k-l), (Xi,k, Yi,k)), 
each i 1,2, .. . ,n 

We can verify that N is a nesting design N(2P2 , n; 1, 2). 

Theorem 4.7.3: There exists a nesting N(2P2 , n; 2, 4) ~f and only if n == 1 mod 2, 
n 2': 5. 

Proof: =} Necessity follows from Theorem 4.7.1.2). 
<== Let 17, 1 mod 2, n 2': 5. So: i) n == 1 mod 4, or ii) n == 3 mod 4. In case 

i), we obtain the same results of Theorem 4.7.2, by a repetition of blocks. 

Examine the case ii). Thus: n == 3 mod 4, n 2': 7. Let 1)' = {FI' F2 , ... , Fn }, <p" = 
{G I , G2 , .. ·, Gn} be two I-factorizations, defined on Z' Zn U {oo}, such that Fi n 
G i = {{ i, oo}}, for each i = 1, ... ,n. If Fi {{i, oo}} {{:r:i,l, ::ri,2}, {Xi,3, :£i,4},' .. , 
{:ri,k-l,.Ti,d}, G - {{i,oo}} = {{Yi,1,1/i,2},{Yi,3d/i,4}'''',{Yi,k-l,Yi,d}, then k == 2 
mod 4. 

Then, we can define the design N, having the following blocks: 

(i; (:r:k-S, :rk-4), (1:k-:3, 1:k-2)), 
( i; (:r k - 1 , :r k ), (Uk - 1, Uk) ) , 
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We can verify that N is a nesting N(2P2 , n; 2, 4). 

Theorem 4.7.4: TheTe exist nestings N(2P2 , 6; 4, 8), N(2P2 , 8; 4, 8). 

Proof: Consider the following design, defined on Z5 U {oo} and having the blocks: 

( 00; (j + 1, j + 4), (j + 2, j + 3)), 
(j; (oo,j + 1), (j + 2,j + 3)), 
(j; (00, j + 4), (j + 2, j + 3)), 

(j; (00, j + 3), (j + 1, j + 4)), 
(j; (oo,j + 2), (j + 1,j + 4)), 
(j; (j + l,j + 4), (j + 2,j + 3)) 

for every j E Z5. 

We can verify that this is a nesting N(2P2 , 6; 4, 8). 

Consider the following design, defined on Z7 U { oo} and having the blocks: 

(00; (j + 1,j + 2), (j + 3,j + 5)), 
(j; (oo,j + 3), (j + 2,j + 4)), 
(j; (00, j + 2), (j + 1, j + 4)), 
(j; (j + 1, j + 2), (j + 3, j + 6)), 

(j; (oo,j + 1), (j + 2,j + 4)), 
(j; (00, .j + 5), (j + 2, j + 4) ) , 
(j; (j + 1, j + 2), (j + 3, j + 6)), 
(j; (j + 1, j + 2), (j + 3, j + 6)), 

for every j E Z7. 

We can verify that this is a nesting N(2P'}., 8; 4, 8). 

Theorem 4.7.5: There exists a nesting N(2P2 , n; 4,8) for eveTY n E N, n ;?: 5. 

Proof: For n odd and n = 6, n = 8, the statement follows from Theorem 4.7.3, by a 
repetition of blocks, and from Theorem 4.7.4. 

Let n ;?: 10, n even. Further, let N be the nesting N(P2, n 1; 1,2), defined on 
Zn-lby the blocks [j; j + i, j + 2iJ, where j 0,1,2, ... ,n - 1, i 1,2, ... , (n - 1)/2, 
and [X;Yl,Y2] indicates (X;;Yl,Y2) U (Yl,Y2). Starting from N, it is possible to define 
a nested-design N(2P2 , n; 4, 8) on Zn-l U {oo}, as follows. 

1) Suppose n == 2 mod 4. Then, for every j E Zn-l: 

repeat every block [j; j + i, j + 2i] of N four times: 
[j; j + i, j + 2ij(1), U; j + 'i, j + 2'i](2), 
[j;j + i,j + 2ij(3), [j;j + i,j + 2iJ(4l ; 

- define, for 11, 1,2,3,4 and 'i 5,7, ... , (n - 2)/4 ('i odd): 
(j; (j + i,j + 2i), (j + 'i + 1,j + 2i + 2))(u) = 

[j; j + 'i, j + 2iFu) U [j; j + i + 1, j + 2i + 2) F u) 

- define, for 11, = 1,2: 

(j; (j + 1, j + 2), (j + 4), (j + 8)) (u) = [j; j + 1, j + 2 J (u) U [j; j + 4, j + 8] (u) , 

(j; (j + 2,j + 4), (j + 3), (j + 6))(1L) = [j;j + 2,j + 4J(u) U [j;j + 3,j + 6](u l . 

- define: 
(j; (j + 4,j + 8), (j + 3,j + 6))(34) = [j;j + 4,j + 8](3) U [j;j + 3,j + 6](4) 
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- delete all the remaining blocks of N and define the following: 
(00; (j + 1,.1 + 2), (j + 4,.1 + 8)), 
(j; (00, j + 1), (j + 2, .j + 4) ), (j; (00, j + 2), (j + 3, j + 6)), 
(j; (00, j + 8), (j + 2, j + 4) ), (j; (00, j + 4) , (j + 1, j + 2)). 

It is possible to verify that this collection of blocks defines a nested-design 
N(2P2, n; 4, 8). 

2) Suppose n 0 mod 4. 

- n~peat every block of N f011r times, using the symbolism of 1); 

- define: 

(j; (j + 1,.1 + 2), U + 3,.1 + 6))(12) = [.1;.1 + 1,.1 + 2](1) u [.1;.1 + 3,.1 + 6](2) 

(j; (.i + 1,.1 + 2), U + 4,j + 8))(2) [.1;.1 + 1,.1 + 2](2) U [j;.1 + 4,.1 + 8)(2) 

(j; U + 2,j + 4), U + 5,j + 10))(2) = [.i;j + 2,j + 4](2) U [j;j + 5,j + 10](2) 

define: 
(.7; (j+i,.j+2i), U+i+1,.1+2i+2))(1l) = [j;j+i,.1+2i](1J)U[j;j+i+1,j+2i+2](1l) 
for every i even and 

2, 4, ... , (n - 2) / 2 if 11 = 1 
6, 8, ... , (n - 2) /2 if u = 2 
4,6, ... , (n - 2)/2 if 11 = 3, u = 4 

- delete all the remaining blocks of N and define the following: 
( 00; (j + 1, j + 2), (j + 3, j + 6)) 
U; (00,) + 1), (j + 2,j + 4)), (j; (00,) + 6), (j + 1,j + 2)) 
U; (00, j + 2), (j + 3, j + 6)), « j; (00, j + 3), (j + 2, j + 4)) 

It is possible to verify that this collection of blocks defines a nesting N(2P2 , n; 
4,8). 

Collecting together the results obtained we can formulate the following. 

Corollary 4.7 The necessary conditions fOT the e.7:istcnce of a nest'lng design 
N(2P2, n; )q, "\2) [Thwr-ern 4.7.1] ar-e always 8ujJicient. 
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